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Abstract

“The best way for adaptive agents to learn is to be exposed
to problems that are just a little more difficult than those they
already know how to solve”. While this has been a guid-
ing concept in developing algorithms for gradient construc-
tion in coevolution, it has remained largely an intuition rather
than a formal concept. In this paper, we build on the order-
theoretic formulation of coevolution to develop some prelim-
inary formal concepts towards clarifying the nature of the re-
lation between the variational structure imposed by the rep-
resentation and coevolutionary learning. By explicitly mar-
rying the learnability problem to the variational structure of
the learner space, we describe a basic idealization of how co-
evolution with an Ideal Teacher could inherently address the
problem of appropriate gradient creation with the intent that
this could serve as a basis to developing practical algorithmic
mechanisms that approximate this idealized behavior.

Introduction

Coevolutionary problem-solving involves the simultaneous
processes of gradient creation and gradient following. This
dynamic has long been framed in terms of an arms-race be-
tween species competing for the same niche (Hillis 1991;
Sims 1994; Cliff & Miller 1995; Rosin 1997; Floreano,
Nolfi, & Mondada 1998). However, another metaphor that
has been increasingly used to frame this dynamic treats the
coevolving populations as playing the role of a Learner
and a Teacher/Trainer respectively (Epstein 1994; Pollack &
Blair 1998; Juillé 1999; Ficici 2004; Bucci & Pollack 2003;
De Jong & Pollack 2004). Here, the teacher poses differ-
ent problems for the learner (i.e. creates gradient) and the
learner attempts to acquire the capability to solve these prob-
lems by repeated interactions with these problems (i.e. fol-
lows gradient).

An important guiding idealization with this metaphor is
that of an Ideal Trainer (Juillé 1999) (for the sake of con-
sistency, we will use the term Ideal Teacher instead of Ideal
Trainer from this point on). An ldeal Teacher consistently
poses problems that are not too “difficult” or too “easy” but
having a level of difficulty that provides a learning gradi-
ent that is just appropriate to promote the adaptation of the
learner based on its current capabilities. This is based on the
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notion that “the best way for adaptive agents to learn is to be
exposed to problems that are just a little more difficult than
those they already know how to solve”[emphasis in original]
(Juillé 1999). By bheing able to pose such appropriate prob-
lems as the learner dynamically adapts, the Ideal Teacher is
envisioned as directing learning in a way that enables a con-
tinuous open-ended improvement of the learner’s capability.

This idealization leads to the fundamental design question
of how the Ideal Teacher can be operationalized by low in-
ductive bias coevolutionary algorithms. In this regard, two
differing interpretations of the Ideal Teacher, which we will
refer to as the challenge-centered and evaluation-centered
perspectives, have recently emerged. From a challenge-
centered perspective, the intended role of the Ideal Teacher
is one of constructing a learning gradient (or challenge)
that can elicit a desired dynamic transformation of the
learner population. This has been the classic approach of
choice, especially within the arm-race framework. How-
ever, the intended role of an Ideal Teacher in the more recent
evaluation-centered approach is one of revealing the gradi-
ent in capabilities that exists among the learners in the pop-
ulation, by effectively treating the current population as a
more static entity (Ficici & Pollack 2001).

The motivating rationale of the evaluation-centered ap-
proach is that when the Teacher can consistently provide an
accurate assessment of the current population of learners it
can provide a fine gradient for selection to act on. Further-
more, it would rarely be the case that a “good” learner ap-
pearing in the population would be prematurely lost due to
inaccurate evaluation. In this way, such an approach could,
in principle, ensure that no regress occurs in the evolution of
the learners. The key operational difficulty here is of consis-
tently identifying the problems or tests that provide an accu-
rate evaluation of the current learner population. Address-
ing this difficulty and related aspects of such an evaluation-
centered approach has so far been the dominant focus of re-
cent work in developing coevolutionary algorithms within
the Teacher-Learner framework (Bucci & Pollack 2003;
Bucci, Pollack, & De Jong 2004; De Jong & Pollack 2004).

While accurate evaluation is indeed an important aspect
of coevolutionary problem solving, an evaluation-centered
approach is silent on the question of how a succession of
learners of increasing capabilities can be actively generated.
So far, the variational properties of the learners are treated



as a blackbox and this approach is more geared to be able
to identify suitable learners when they happen to appear in
the population. This is in sharp contrast to the challenged-
centered approach which is explicitly centered on promoting
the active adaptation of the learners. Noting this difference,
the question motivating the work here is of how a more ac-
tive view of gradient construction could be incorporated into
the dominantly evaluation-centered concepts of Pareto co-
evolution.

In this paper, we translate the intuition of the Ideal
Teacher into concrete formal concepts using the order-
theoretic formulation of coevolution proposed by Bucci and
Pollack (Bucci & Pollack 2003). The key proposal emerg-
ing from this theoretical exercise is the notion of a Complete
Learnable Test set that describes the gradient construction
properties of an Ideal Teacher.

Background

Juillé (1999) noted that coevolutionary problems can be con-
sidered to be a form of multi-objective optimization. Rather
than a single objective defined by the environment, ev-
ery problem posed by the teacher and encountered by the
learning population presents an independent objective to be
solved. Based on this conception of multi-objective prob-
lems, Ficici and Pollack(Ficici & Pollack 2001) and No-
ble and Watson (Noble & Watson 2001) explicitly brought
the techniques of Multi-Objective Optimization (MOO) to
bear on coevolution with the use of Pareto dominance as the
corresponding solution concept. Here we adopt the order-
theoretic framing of this Pareto coevolution problem pro-
posed by Bucci and Pollack (Bucci & Pollack 2003), the
relevant basic elements of which are described below.

Order-theoretic framework

Let the finite set of learners or students be S and the finite
set of problems or tests (posed by the teacher) be 7. The
interaction between the learners and the tests is defined by
the function p : S x T'— R, where R is the set of ordered
outcomes of the interactions between the learners and the
tests. We restrict the focus to the case where R = {0 < 1}.
Though represented by 0 and 1, these outcomes are tokens
representing “not solved”(lose) and “solved”(win) respec-
tively, rather than numerical payoffs and the relation be-
tween 0 and 1 is ordinal.

The functionp : SxT — R can be curried on 7T to obtain
p:S — (T — R),whichassigns to each s € S the function
ps : T — R. This function p, describing the behavior of s
for all tests in 7" will be referred to as the interaction profile
for s. Each learner in .S has such an interaction profile for
all tests in 7. Similarly, the function can be curried on S to
obtainp : T'— (S — R). The corresponding function p;
for each test t € T is referred to as the response profile of .

The function p can be represented as shown in Table 1.
The value in position (4, j) is the outcome of the interaction
between s; and ¢;, where |S| = N and |T'| = M). The
entire row corresponding to learner s; represents its interac-
tion profile, and the entire column corresponding to test ¢;
represents its response profile. In keeping with the represen-

tation of the function p as a matrix, we will use the shorthand
(s;,t;) to refer to the interaction p(s;, t;).

~
N
~

t1,  ta 3 M
S1 1 1 0 1 1
So 0 0 0 1 1
s3 | 0 1 0 1 0
sy | O 0 1 1 1

Table 1: Matrix representation of p

As the outcomes are ordered, a preference relation < be-
tween each s, s’ € S is defined by a pairwise comparison
<pw Of the outcomes of each test in p, with p,,. The rela-
tion < is treated here as being the Pareto dominance relation.
So s < s’ implies that s” Pareto-dominates s. This ordering
on (S, <) obtained from the complete set of interaction pro-
files defines a pre-order on S. So, the maximal elements of
(S, <) are the desired solutions to the problem.

Accordingly, the coevolutionary search problem is to find
the maximal elements of the pre-order (.5, <) defined by the
Pareto dominance relation over the set of all interaction out-
comes as defined by p. Since there may be several maximal
elements, it is important to note here that a solution to the
problem may be a subset of S rather than necessarily being
a single individual learner.

The class of problems of interest here are those where the
size of T is extremely large, i.e. where |T'| is of the same
order as |S|. For such problems evaluating each individual
from S in the population against all the elements in 7" at
every step of the search process (as with EMOO algorithms)
is highly impractical. So, a motivating premise in using a
coevolutionary approach is to solve such search problems
by the use of only a limited population of tests at any given
time in order to evaluate the learner population, where the
test population can itself evolve over the search process.

From this point on, we will use the term “teacher” to refer
to the search algorithm operating on the population of tests.
The algorithm operating on the learner population, however,
will simply be referred to as the learner algorithm. In the
next section, we use these basic concepts to identify the test
properties required to serve as a learnable gradient.

Test difficulty

As noted earlier, an Ideal Teacher can consistently provide
tests that are neither too “difficult” nor too “easy” but that
are at a level of difficulty that provides a learning gradient
that is “just appropriate” to the promote the adaptation of the
learner based on its current capabilities. In order to address
how this notion can be operationalized, we need to define
what it means for a test to be “difficult” or “easy” for a par-
ticular learner. We interpret this as a difference in terms of
the learnability of a test.

Learnability and test difficulty

Ficici and Pollack (2001) define the learnability of a test
with respect to a particular learner as “the probability that



the learner can be transformed, over some number of varia-
tion steps, to become competent (or more competent) at the
task posed by the teacher” [emphasis added].

From this definition, we can see that given a learner s € S
and a test ¢ € T such that (s,t) = 0, the ability of s to learn
to solve ¢ is dependent on the variational structure of the
learner space S. This space is essentially the set S aug-
mented by the topological structure induced by the varia-
tional operators particular to the encoding of the members
of S.

For simplicity, we restrict our attention to variation with
mutation operators. With mutational operators, the topology
induced on S can be assumed to take the form of an undi-
rected graph S = (S, E), where S is the vertex set and E
is the set of edges. An edge e € F exists between s; and
s (si,s; € S)if and only if s; can be obtained by a single
application of the mutational operator 1 to s;. We assume
here that the effect of the mutation operator is reversible, i.e.
if s; can be obtained from s, by a single application of the
operator, then the reverse is also possible.

Given this space S, if a learner s’ = p™(s) can be ob-
tained by n applications of the mutation operator to s such
that (s’,¢) = 1, then it would follow that ¢ is learnable by s
1, Critical to this interpretation is the value of n. Here we
focus on the case where n = 1. Therefore, the learnability
of a test ¢ by the learner s is the likelihood that there exists a
learner s’ = p(s) such that (s',¢) = 1.

Based on this notion of learnability, the “difficulty” of a
test ¢ for a learner s, can be interpreted as follows. A test ¢
is said to be “too difficult” for a learner s, if (s,t) = 0 and
n > 1 mutations of s are required to produce s’ such that
(s',t) = 1. However, if (u(s),t) = 1) then the problem is
“appropriate”, in being just beyond the present capability of
s. On the other hand, if (s,¢) = 1 then no variation on s is
required to solve the test. Such a test can be considered to be
“too easy”. The “fitness landscape” corresponding to these
three cases is shown in Figure 1.

Learnability and Improvement

The above definition of learnability with respect to a single
test however requires a critical amendment in the context of
the global search problem. Suppose s’ = p(s) was such that
it indeed solves the problem ¢. This by itself is insufficient
to determine whether s’ Pareto dominates s, i.e. s is better
or no worse than s on all the tests in T'.

In order for a teacher to ascertain whether s’ is indeed a
true improvement over s, the relative performance of the two
learners would, in principle, need to be evaluated across all
the tests in 7". Indeed if the teacher could present all the tests
to the learner at each instance then there would no demands
on the teacher to provide graded challenges to the learner
and there would no need for coevolution. Therefore, rather
than posing a gradient defined by a single learnable test for
s, we would ideally like the teacher to pose a small and suf-
ficient collection of tests A C T such that if learnable by
s would indicate an improvement with respect to the global
solution concept.

1" (s) is used to indicate n applications of . to s

In this regard, A would need to contain tests that s can
solve, rather than only containing tests that s cannot solve.
This is to avoid a situation where a variant s’ that solves tests
that s cannot solve also “forgets™ how to solve the tests that s
can solve. For example, consider the scenario in Table 2. Let
A = {t1,t9,t5} be the set of tests that s cannot solve. The
perceived learnability of A due to the existence of a variant
s’ that solves all the tests in A is deceptive. Even though
s’ solves all the tests in A, it has “forgotten” how to solve
ts. So, an evaluation of s < s’ based on A alone would be
inaccurate in this case.

~
~
N

1
0
1

ts |
0
1

Table 2: Deceptive evaluation due to “forgetting”

S

!

to ts g
0 1 1
s 1 0 1

=

It is learnability in this stronger sense that is of particular
relevance to the overall goals of coevolutionary search. This
brings us to the question — given a learner s in S what is
the set of sufficient tests A, that are learnable by s? The
answer to this question follows from the above definitions,
as discussed next.

The Complete Learnable Test set

As S can be treated as a graph, each learner s is associated
with a set e, C S of all 1-neighbors obtained by a single
application of the mutation operator to s. Corresponding to
the edge between s and each member of ¢ is a unique test
set as described below.

Consider the interaction profile of a learner s given by
ps. Applying a mutation to s produces another learner, say
s’ € €. If the interaction profiles are such that py # ps,
it implies that s and s’ have different behaviors. Let A,
be the set of all tests in T" such that A, o = {t|(s,t) #
(s',t),8' € es,t €T}

The properties of the tests in A, s can be interpreted in a
dynamic way. The tests A » C T are sensitive to the vari-
ation of s by responding to this change by a change in their
outcomes. Since each test ¢ € A, , produces different val-
ues corresponding to s and s’, each ¢ distinguishes between
s and s'. Similarly, the tests in ' — A, , are insensitive
as the change of s to s’ does not result in a change in their
values.

From this perspective, if the change in s to s is such that
only the tests in A, ;- corresponding to interaction outcome
of 0 with s change their values to being 1 with s’ then it
implies that s < s’. Similarly if this change in the test out-
comes is from 1 to 0 then it implies that s’ < s. And finally,
if there exist at least two tests in A, ,+ such that one changes
its outcome from being 0 to 1 and the other from 1 to 0, then
s and s’ are mutually non-dominated or incomparable by <.

Such a set A, ,, of “sensitive” tests, with respect to s and
s;, exists for each s; € €,. This set A, ;. can be considered
to be an attribute associated with the edge joining s and each
s; as shown in Figure 2. The complete set of tests which are
learnable (and possibly improvable) by s can therefore be



(a) "Too Difficult"

(b) "Appropriate”

(c) "Too easy"

1
Interaction
outcome
p(-.t)
0
Current s) Current  (s) Current
learner, s learner, s learner, s

Figure 1: Effect of variation on the “difficulty” of learning to solve test ¢ by a learner s

Figure 2: Subgraph of S corresponding to e U {s}

obtained as A, = |J A 5,. Ay is complete in that s cannot
learn to or forget how to solve any further test from 7', for
the given variational structure S. From this point on we will
refer to A, as being the Complete Learnable Test (CLT) set
for s.

At the outset, we can see that the Complete Learnable Test
set has the following characteristics:

o If s < s’ with respect to A, (s’ € ¢) then s < s" with
respect to 7.

e Atestt, where (s,t) = 0, is learnable by s if and only if
t is a member of A,.

o Similarly, for every test t’ € A, where (s,t’) = 1, there
exists some variant in e, that can forget how to solve ¢'.

It is important to note that A, is not necessarily the min-
imal set of tests required to accurately evaluate the relation
between s and its neighbors, if they were simultaneously
present. From the perspective of the underlying dimensions
of the problem (Bucci, Pollack, & De Jong 2004), the set
A, s may contain a number of tests that are redundant in
the information that they provide. Furthermore, there may
be different non-minimal proper subsets of A, , that can
perform the same role, i.e. where the relation between s and
every s’ € €, as evaluated using these test sets is identical
to that obtained with Ag. It is in this sense that A, is the set

of sufficient tests for evaluating learning though all the tests
are not necessary for this purpose.

So, to summarize what we have achieved: Starting from
the general intuition about the dynamic behavior of an Ideal
Teacher, we have arrived at a definition of a specific concept
describing the exact properties of the tests generated by the
Ideal Teacher to achieve this dynamic process of continu-
ous learning. So, when we speak of an Ideal Teacher that
constructs a learnable gradient for an individual learner, the
gradient it provides to the learner takes the form the tests of
a Complete Learnable Test set. In the next section, we de-
scribe how such an Ideal Teacher can produce the dynamic
of continuous improvement of a gradient following learner
by generating the CLT test for a succession of learners.

Idealized coevolution

Let v = {A4|s € S§}. This is the set of all the CLT sets
corresponding to each of the elements s in S. We can define
a topological structure as T = (-, E), where an edge e ex-
ists between A, and A, if and only if there exists an edge
between s and s’ in S, i.e. T and S are isomorphic. The
key idea that we propose here is the conception of the Ideal
Teacher as operating on the structured state space defined by
I" rather than on the test space 7. Whenever presented with
a learner from S, the meta-problem that the teacher poses
to this learner is not a single test but a collection of tests
corresponding to a particular member of ~.

This process can be conceived as taking the form shown in
Figure 3. Given a learner s, the meta-problem posed by the
teacher is the corresponding collection of tests A;. Given
the gradient posed by A, the learner performs a local hill-
climbing operation. All the variants of s are generated, and
if a variant s’ € €, dominates s with respect to the tests in
A, then it is selected.

Rather than a synchronous adaptation, at the next iter-
ation when presented with s’, the teacher correspondingly
performs a local search in T" using s’ as the basis to find the
corresponding CLT set for s’, i.e. ideally “moving” along the
edge from A, to A, . The test set A, is in turn presented as
the learning gradient for s, and so on. In this idealization,
the tests posed by the teacher are always learnable and the
learning that occurs corresponds to progress with respect to
the global learning problem.
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Figure 3: ldealized (asynchronous) coevolution with CLT
sets

If this idealized coevolutionary process were realizable in
this form, the pathologies of “disengagement” (i.e. loss of
gradient), “forgetting” and cycling (Watson & Pollack 2001)
would be impossible. Even so, one pathology typical of hill-
climbers would however be present, namely, of the learners
getting stuck on local optima when the learner dominates or
is incomparable to all its neighbors. As all the relevant tests
are intrinsically contained in each CLT set, there would be
no possibility of making a locally inaccurate evaluation to
escape the local optimum and the notion of variation open-
ing up a new dimension along which learning could con-
tinue (Ficici & Pollack 2001; Stanley & Miikkulainen 2004)
would be meaningless.

Discussion

Given the formulation developed in the previous sections
and the notion of the CLT set, the question that follows is
how such an idealized teaching-learning process could be
approximated by an actual algorithm.

Central to addressing this issue is that of how a CLT set
A, of a learner s could be used to construct the CLT set of
its neighbors in €, to continually provide relevant gradient
to the iteratively improving learner. At the outset, we can see
that if s and s’ are neighbors in S, then A, v C A, N Ay
So the question is one of how the tests in Ay — A, & can
be obtained by search through 7" using € U s as the gradient
and without generating any further variants of s’.

A starting point towards this end could be to consider the
teachability properties of the test space 7. Due to the dual
nature of learners and tests as defined by p, exactly the same
rationale as described in Section 3.2 applies to the test space
as well. Much like the Complete Learnable Test set, there
exists a Complete Teachable Learner set, <7;,associated with
each t € 7. This is the set of all learners that exhibit dif-
ferences in behavior for all 1-mutations of the test ¢. This
is equivalent to the distinctions observable when moving
columnwise in the interaction matrix of p.

This formulation also brings to light another critical con-
ceptual issue that we believe has not been widely appreci-
ated before, namely the amount of bias required to discover
useful variation. At the minimum, given a single learner
s, the teacher is posed with the search problem of finding
an appropriate learnable test ¢ from the set of possible tests
T. This test ¢ requires to satisfy two criteria, namely, (a)
(s,t) = 0 and (b) there exists some s’ = u(s) such that

/ Test set \

Competency
gap set (Cy)

Complete H
earnable Test
set (CLTs)

o 4

Figure 4: Venn diagram of relation between T, C, and A,
for a learner s

(s',t) = 1. These requirements present a formidable search
problem for the teacher.

If a student s is randomly selected from S, then the
teacher “knows” little about the student beyond the fact that
the outcome would either be 0 or 1 for whatever test ¢ may
be picked from T'. The teacher’s lack of knowledge about
the student’s identity has another broader implication.

Let the competence gap set Cs C T be the set of all tests
such that ¢t € C if and only if (s,t) = 0. The relation
between T, C, and A, is shown in Venn-diagram form in
Figure 4. Given this relation, suppose the teacher randomly
picks two tests ¢, and t; and the resultant outcome of inter-
actions are (s,t,) = (s,t,) = 0. While ¢, and ¢, reveal
gaps in the competence of the learner, this raises the ques-
tion of how the teacher can assess which (if any) of these two
tests (or both) isin L, and can provide an appropriate learn-
ing gradient for s, given that learnability involves variational
behavior that has yet to occur.

One obvious way to make this assessment is by actually
evaluating the tests with each of the 1-variants of s. How-
ever, such an after-the-fact assessment is effectively an ex-
haustive trial and error process, and reduces learnability to
an irrelevant concept. So, we can see that a fundamental
issue in addressing the teacher’s search problem is in be-
ing able to assess the learnability of tests with respect to
s indirectly without exhaustively generating the variants of
s. This raises the fundamental issue of whether such an in-
direct evaluation could be achieved without some external
heuristic that provides additional information about where
tests belonging to the CLT may be more readily found in the
test-space. Our conjecture, based on preliminary investiga-
tions, suggest that such meta-heuristics could play a consid-
erable role in achieving this end.

Conclusion

While the impact of the dispositional properties of the varia-
tional properties on evolution has been receiving increasing
attention in the Evolutionary Computation literature (Wag-
ner & Altenberg 1996; Wolpert & Macready 1997), their
avatars in coevolution taking the form of learnability and
teachability have remained largely unstudied despite the



recognition of their importance. Towards engaging this
complex issue, this paper presents a preliminary attempt to
develop the formal concepts and machinery to make explicit
the relation between the variational structure imposed by the
representation and coevolutionary learning. While the ap-
proach adopted here is clearly simplistic and focussed on
an idealization, it presents a framework that could act as a
source of intuitions and analysis in developing algorithmic
operationalizations to address the issue of gradient construc-
tion that is central to coevolution.
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