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Abstract

In the �eld of optimization and machine learning techniques, some very e�cient
and promising tools like Genetic Algorithms (GAs) and Hill-Climbing have been
designed. In this same �eld, the Evolving Non-Determinism (END) model pro-
poses an inventive way to explore the space of states that, combined with the use
of simulated co-evolution, remedies some drawbacks of these previous techniques
and even allow this model to outperform them on some di�cult problems.
This new model has been applied to the sorting network problem, a reference
problem that challenged many computer scientists, and an original one-player
game named Solitaire. For the �rst problem, the END model has been able to
build from scratch some sorting networks as good as the best known for the 16-
input problem. It even improved by one comparator a 25 years old result for the
13-input problem! For the Solitaire game, END evolved a strategy comparable
to a human designed strategy.
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1 Introduction

The aim of this paper is to describe a model that implements a new optimization
technique. This inventive model, called Evolving Non-Determinism (END), is
largely inspired from simulated co-evolution, a fundamental principle coming
from the �eld of Arti�cial Life.
In fact, the END model can be seen as many simple competing organisms that
interact locally one with each other and which result in the emergence of a par-
ticular species of organisms that corresponds to the solution of the optimization
problem.
The END model is extremely di�erent from other well-known techniques: Ge-
netic Algorithms (GAs), Hill-Climbing or Simulated Annealing (SA) in the way
the information about the landscape (or the topology) of the space of states is
used. This allows the END model to outperform these techniques in the case
of problems for which there is only little information about the gradient of the
landscape.

A drawback of a technique like GAs is that crossover and mutation operators
used to evolve genes may create genes that correspond to an invalid solution.
For some problems, this drawback can be such that the population size has to
be very important to counterbalance this undesirable property.
For Hill-Climbing and SA, some operators have also to be designed in order
to evolve solutions by �nding some new solutions in their neighborhood. The
design of such operators may be very elaborate for some problems.
Unlike these techniques, the END model doesn't care about solution represen-
tation or local neighboring solutions since solutions are generated incrementally
and are always valid. That is, a solution is represented as a sequence of \compo-
nents" each of them depending only on the previous components of the sequence.
Encouraging results described in this paper, let us expect that a broader �eld
of applications can be tackled by the END model.

In this paper, the END model is applied on two di�cult \real-life" problems.
The �rst one is the follow-up of an established problem since several approaches
([1, 5, 9]) have been used to try to improve some 25 years old results concerning
sorting networks [7]. Actually, this problem was also at the origin of an early
paper [11] in which GAs were used to try to replicate Hillis's experiment for the
16 input problem and in which some ideas of the END model were presented.
The second problem is a very simple one-player game for which the player tries
to �nd a strategy to get a score as large as possible.

This paper is organized as follows. Principles and parameters of the model
are presented in details in Section 2. In Section 3, we de�ne a problem for
which some mathematical results are well-known and then we use it to analyze
e�ciency of the model. Results for the two real-life problems are presented in
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Section 4. A summary and possible future research are described in Section 5.

2 Evolving Non-Determinism

2.1 Principles

2.1.1 Description of Organisms

In the END model, selection and co-evolution are fundamental principles. In-
deed, the model can be seen as a population of N organisms. These organisms
live in a grid world, wrap-around, for which there are as many slots as organ-
isms. Each slot is occupied by an organism and each organism works like a
non-deterministic Turing machine.

2.1.2 Representation of the Space of States

We already said in the introduction that the kind of problems we want to solve
are such that any solution can be built incrementally. We call such a problem
an incremental problem.
Now, let us introduce some concepts and notations to de�ne formally why we
made this assumption.

De�nitions:

Let T be an arbitrary tree and P be the incremental problem at hand.
In the following, � represents any node of the tree T .
We also de�ne:

children(�): the set of children of �.
depth(�): the depth of the node represented by � in T .
parent(�): the parent of �, and
ancestor(�; i): the ith ancestor of �. Therefore:

ancestor(�; 1) = parent(�)
ancestor(�; 0) = �

ancestor(�; depth(�)) = root(T )

Then, we say that T is the tree of solutions for P if T can be de�ned as follows:

� If � is an internal node then � represents a partial solution for P .

� Otherwise, children(�) = ; and � is a leaf of the tree T . In that case, �
represents a correct solution for P .

� For any node �, if children(�) 6= ; then children(�) is the set of correct
and fair extensions (or correct and fair decisions) of the partial solution
represented by �.

With the following de�nitions:

� A correct solution for the problem P is a solution for P .
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� A partial solution for the problem P is an ordered set of decisions such that
this set doesn't represent a correct solution for P but it can be extended
to such a solution.

� A correct extension (or correct decision), noted c extension(�), is an ex-
tension (or a decision) that transform the current partial solution � to
either another partial solution or a correct solution.

� A correct and fair extension (or correct and fair decision), noted c f extension(�),
is a correct extension which is useful (or fair). That means that the new
set of correct and fair extensions is di�erent from the one corresponding
to � or any ancestor of �. That is:

children(�) = fc f extension(�)g

fc f extension(�)g � fc extension(�)g, and

8i 2 [0::(depth(�)� 1)],

fc f extension(�)g 6= fc f extension(ancestor(�); i)g.

Correct and fair extensions prevent to have in�nite path in the tree T if
every solutions for the problem P can be described by a �nite number of
incremental steps and if we don't consider solutions that are equivalent to
another one by simply removing some useless extensions (fairness).

Now, if we call space of states the space of solutions for P then the space of
states is equivalent to the leaves of the tree T .
In fact, any solution for P can be built incrementally by a sequence of decisions
(or extensions) and therefore corresponds to a leaf of the tree T .
Conversely, any leaf of the tree T is, by construction, a solution for the problem.

We can conclude this formal presentation of the space of states by the fol-
lowing important observation.

Observation: The set children(�) depends only on previous nodes on the path
from the root to the node �. That means that any given solution for P
can be retrieved in the tree T by incrementally building the path from the
root to the leaf corresponding to this solution. This is done by correctly
guessing at each node of the path which child in the set of children must
be picked.
Therefore, the whole tree T doesn't have to be known to built such a path.

To be more concrete, let us consider the example of the Hamiltonian circuit
problem. This decision problem can easily be transformed into an incremental
problem. Indeed, we are going to show how the tree of solutions T could be
built for any graph.
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First, we arbitrarily pick a vertex of the graph G as the initial vertex and asso-
ciate it to the root of the tree T . Now, for each vertex connected to this initial
vertex, we create a child to the root. Each of these child nodes is labelled with
its corresponding vertex. At this step, the depth of the tree is 1.
This operation is repeated for each of the terminal nodes of T : we consider the
set of the neighbors in G of the vertex associated to the terminal node but not
these vertices that already correspond to an ancestor of the terminal node. In
that way, we can't create cycles (ie: we consider only fair extensions). Then, we
create a child for each of these vertices and we link it to the considered terminal
node. Again, new nodes are labelled with their corresponding vertex.
This process is repeated recursively until the tree T can't be extended.
Finally, for each node for which the depth equals the number of vertices in the
graph, we create another child if there is an edge connecting the corresponding
vertex to the initial vertex. Therefore, such edges are created if and only if there
is an Hamiltonian circuit in the graph.
In that way, this tree represents exactly all possible paths beginning at the initial
vertex and there is one leaf corresponding to each Hamiltonian circuit (if there
are some). Moreover, if there are some Hamiltonian circuits, they correspond
to the deepest nodes in this tree.

Of course, the tree T is not built (in the worst case, its size grows exponen-
tially with the number of vertices), but any path from the root to a leaf can be
built incrementally without the knowledge of the whole tree.
However, what our model would intend to do would be to �nd the longest path
in this tree in order to decide whether or not there is an Hamiltoninan circuit
in the graph.
In fact, we transformed a decision problem into an optimization problem based
on the search of a longest path in a tree.

2.1.3 Co-evolution of Organisms

The way our model works is the following: Each organism selects a path from
the root to a leaf in the tree of solutions associated to the problem at hand.
This path is built incrementally, choosing uniformly randomly a child for each
node encountered. Therefore, this path correspond to a correct solution.

Then, each organism can be seen as the member of a species regarding what
the �rst choice is in its solution.
Moreover, a �tness can be associated to each organism. It can be the length of
the path associated to its solution if we are looking for a shortest/longest path.
It can also be a value attached to the leaf and which can be an evaluation of
the solution. Whatever the �tness function is, the model looks for the leaf for
which this �tness is optimal (therefore, this leaf may be di�erent than the ones
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corresponding to the longest/shortest path in the tree).
According to the value of the �tness function, a selection is performed in the

population of organism. This selection is operated as follows:
For each slot, organisms in the neighborhood are considered and the organism
with the highest �tness is copied into the slot providing this organism has a
better �tness than the one actually occupying the slot. If several organisms
have the same �tness in the neighborhood, one of them is picked randomly.
Otherwise, the slot occupant remains unchanged (and has eventually been copied
to slots of its neighborhood).

The important thing to notice is that each organism is linked to the solution
it represents since its species is represented by the pre�x of its solution. There-
fore, when an organism is copied to a neighbor slot, its associated solution is
also copied.

The idea of this selection is that an organism with a higher value for the
�tness probably made a better choice for the �rst choice of its solution. There-
fore, this organism is duplicated and take the place of some worse organisms.
The model simulates the co-evolution of competing species.

Now that the selection is completed, for the next round, every organism
builds another solution. However, each organism keeps the �rst choice of its
previous solution and builds its new solution beginning with this �rst choice.
This process can be seen as a backtrack until depth 1 in the tree of solutions
and the incremental building of a new random path starting from this node.
By proceding in that way, organisms don't change the species they belonged
to (since it is related to the initial choice). Then, another round of selection is
performed.

Figure 1 describes with a simulation how such a population of competing
species evolves. This simulation was performed in a 1024 slots world. There
are 10 species competing; each species is represented by a number from 0 to 9.
The �tness function used for selection is the one described in section 3 for the
study of the model performance. Looking at this simulated evolution, it can be
seen that as rounds go o�, the species represented by '0' takes more and more
importance and it almost dominates all the other species after 16 rounds.

It is easy to understand that, proceding in that way, organisms corresponding
to best �rst choices are theoretically stronger than others during the selection
step and therefore duplicate more often. So, their species take more and more
importance in the total population.
Therefore, the size of the population and the selection process must be com-
patible with the size of the problem (regarding the number of species created,
for example) to expect this behavior to happen. In other words, the size of
the sample must be large enough to allow a valid statistical analysis! Section 3
provides some measures to identify which e�ciency may be expected for a given
population size.
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Step 16 - Disorder = 812

Figure 1: Simulation of the co-evolution of 10 competing species in a 1024 slots
world.
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If we let this scenario run inde�nitely, we can expect a species to overcome all
other species and to be the only one in the population. However, this can take
a very long time to happen, especially if there are some di�erent �rst choices
leading to equivalent optimal solutions.

The idea is to decide when to stop this scenario. For that purpose we use
a parameter called commitment degree. This parameter is used by organisms
when they \backtrack" and build a new solution. The commitment degree de-
�nes the depth of the backtrack. Initially, its value is one and it is increased
according to a strategy.
Moreover, if the value of the commitment degree is increased then the species
each organism belongs to is no longer de�ned by the �rst choice it made but by
the C �rst choices, where C is the value of the commitment degree.
Therefore, when the commitment degree is increased each new species can be
seen as a sub-species or a specialization of previous species.

The strategy to manage the evolution of the commitment degree is of course
the key of the good working of the model. It is discussed in the following section.

2.1.4 Strategy to Manage the Commitment Degree

In fact, there are no rules to �nd the best strategy. For our experiments, we
designed two di�erent strategies.

The �rst one is the simpler since the commitment degree is increased every
n rounds, where n is �xed. n has to be chosen astutely so that good species
have time to grow and to reach a signi�cant size.
The problem with this strategy is that the value of n is di�cult to estimate
a-priori.

The second strategy uses a measure of the state of the model called disorder
measure. The idea of this measure is to have a way to detect when a species
overcomes others to a degree such that we can consider that this species corre-
sponds to the �rst best choices and such that, after increasing the commitment
degree, sub-species of this overcoming species are signi�cantly represented ac-
cording to the total population size. The value of this measure tends to decrease
as some species dominates the others. When this disorder measure reach a given
threshold, the commitment degree is increased.
The drawback of this strategy is that it can take a long time for the disorder
measure to reach the given threshold if there are some di�erent �rst choices that
are equivalent. This problem doesn't appear with the �rst strategy. That's why
a combination of these two strategies has been used for real problems.

Thus, as the commitment degree increases, organisms commit themselves in
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these earliest choices which seem to be the most attractive.

Finally, when the commitment degree can't be increased because it equals
the length of the found out solution, the simulation stops.

2.2 Parameters of the model

From the description of the model in the previous section, it appears that a
few parameters manage the way the model works. These parameters are the
following:

Population size: as this size grows, the number of solutions generated at each
round increases. The size of the \sample" is more important and it is
more likely that species corresponding to optimal solutions don't disappear
because of a too small number of representatives.

Neighborhood used for selection: Unformally, the intuition behind this pa-
rameter is the following:
If this neighborhood is large then we can expect that when a good solution
is found out, it propagates more easily in the population. Therefore, the
convergence to a good solution can be fast.
However, a large neighborhood may forbid the discovery of a better so-
lution since it shrinks the space of explored solutions. It is not the case
when a small neighborhood is used. But, the drawback of the later case
is that convergence is slower.

Management of the commitment degree evolution: the strategy used to
schedule increasements of the commitment degree is very important. In-
deed, it must be such that the number of representatives of \interesting"
species at the next round is su�cient to expect them to overcome other
species with a high probability.

All these parameters will be analyzed experimentally in section 3.

2.3 Comparison to other Optimization Techniques

As we have already said, our model doesn't exploit information about local gra-
dient of the landscape. Indeed, once a solution is built, only �rst choices of
this solution are used for the next round. That means that we don't try to get
some better solution in the neighborhood of this solution, using some gradient
information as it is the case for Simulated Annealing or Hill-Climbing. This
remark doesn't apply to Genetic Algorithms. In fact, the drawback of GAs are
the operators used to evolve in the landscape. Indeed, cross-over or mutation
may make very di�cult the search of an optimal solution if the new genotype
doesn't correspond to a valid solution. In the case of some problems, like the
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two presented in this paper, this drawback is not negligible and good e�ciency
can only been reached if a very large population of genes is used.

To understand a little more easily how the END model works, let us make
the following analogy:
Children of the root of the tree of solutions can be seen as a partition of the
space of states. Each child (or species) corresponding to a particular sub-set of
this partition.
Then, the selection process allows species that generate a better solution on av-
erage (regarding the �tness) to dominate other species. Such species correspond
to the domains of the space of states for which the mean value for the �tness
is larger. Therefore, at this stage, details and gradient of the landscape of the
space of states are not considered. Roughly, we can compare this when we look
at two mountains regions very far away and we expect that the highest peak is
located in the mountain for which the average altitude is the higher. That is,
we expect the highest peak to be in a region of high mountains!
Then, as the commitment degree increases, each domain is partitioned into
smaller sub-domains and, therefore, details of the landscape take more and
more importance.

Of course, it is easy to de�ne a landscape such that this strategy doesn't
work. For example, de�ne a �tness such that the optimal correspond to a peak
located in a region with a very low �tness and for which another region, far
from this optimal peak, has a high average value. This strategy will be inclined
to �nd out a local optimum in the region of high average �tness.
As we will see later in this paper, the space of states for the sorting network
problem has this kind of landscape.

However, a second property of the END model has to be taken into account.
This property is coming from the ability of the model to maintain a certain
degree of diversity. This degree of diversity is directly related to the strategy
used to manage the evolution of the commitment degree and it allows the model
to not converge too quickly.

Finally, an analogy may also be done between the END model and a classical
Arti�cial Intelligence heuristic search technique: Beam Search [2].
In this technique, a number of nearly optimal alternatives (the beam) are ex-
amined in parallel and some heuristic rules are used to focus only on promising
alternatives, therefore keeping the size of the beam as small as possible. This
technique proceeds like the END model in the sense that the search state space
is described by a directed graph in which each node is a state and each edge
represents the application of an operator that tranforms a state into a successor
state. A solution is a path from an initial state to a goal state.
Therefore, the problemmodeling is very similar for the two techniques. However,
the main di�erence is that the END model doesn't use some heuristic rules but
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only a �tness function that quantify the degree of quality of a solution. Beam
search uses heuristic rules to prune the set of alternatives at each step of the
incremental building of a path to a goal state. This pruning is performed by
the END model during selection but it is performed in an auto-adaptive way:
no heuristic is provided to the model.
The END model evolves by itself a strategy of search in the space of states.

3 Experimental Analysis of the model

3.1 The Reference Problem

The problem used for experiments is called the ramp problem which is in fact a
sorting problem. Hillis �rst addressed this sorting problem, evolving some or-
ganisms he called \Ramps" [8] and he discovered how di�cult it can be because
of the topology of the space of states. However, the study of this problem al-
lowed him to study with success some inventive features to evolve his population
of organisms. Later, he even decided to train his modi�ed version of the genetic
algorithm to tackle a more challenging problem: the design of sorting-networks.

Formally, the ramp problem can be stated as follows:
Let Sn be an arbitrary set of n di�erent integers we want to sort. For this
purpose, the following �tness function is de�ned:

fn(�) = number of ascents in �,

where:
� � represents an arrangement of Sn, and
� an ascent is a pair of consecutive terms in � such that the �rst term is
smaller than the second one.

For example, if S10 = f0; 1; 2; 3; 4; 5;6;7; 8; 9g:
f10(f0; 3; 5; 7; 2;1;4; 6; 8;9g) = 7
f10(f0; 1; 2; 3; 4;5;6; 7; 8;9g) = 9

So, if we look at the sequence of sorted items in Sn we get a sequence of in-
creasing numbers, ie: a ramp.

This problem is obvious but is however very di�cult for GAs when the geno-
type is coded in the trivial way, ie: each gene corresponding to one element of
Sn. Indeed, for this problem, GAs are liable to provide a sequence of sorted
sub-sets instead of a unique sorted set. For example, with the same set S10 as
before, GAs will more likely �nd a local optimum solution like:

f1; 3; 4; 5; 8; 9;0;2;6; 7g

That is: 2 sorted sub-sets (ie: a double-ramp) for which the value of the �tness
function is only 1 unit lesser than the optimal value.
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In fact, the number of arrangements for which the function fn equals a given
value is a well-known problem. These numbers are called Eulerian numbers [3]

and are noted

�
n

m

�
.

�
n

m

�
represents the number of permutations of Sn

that have m ascents. Their values are provided by the following formula:

En(m) =

�
n

m

�
=

mX
k=0

�
n+ 1
k

�
(m+ 1� k)n(�1)k

where m is the value of the �tness function for which we want to count the
number of solutions.
We can check, using the symmetry property: En(m) = En(n� (m + 1)), that:

En(n� 1) = 1, ie: there is a unique optimal solution, and
En(n� 2) = 2n � (n+ 1)

This last formula tells us that the number of local optima for which �tness value
is 1 unit lesser than the optimal value grows exponentially with the size of the
set Sn.

The tree of solutions T corresponding to this problem is the tree representing
every possible permutations. Each path from the root to a leaf corresponds to
the incremental building of a set of size n by picking uniformly randomly one
item in Sn which has not been picked yet.
Therefore, the degree of a node � in T equals (n� depth(�)), every leaves is of
depth n and the total number of leaves is n!.
For our experiments, the algorithm used by each organism of the population to
generate a solution to the problem works in that way and is presented in �gure
2.

The initial value of the commitmentdegree is 0. So, the list PARTIAL_SOLUTION
is empty at the beginning. When the value of the commitment degree increases,
the list PARTIAL_SOLUTION keeps the elements corresponding to the �rst choices
of the organism. The selection process ensures that organisms who made the
best �rst choices are more likely to survive and spread over the population.

Experiments were performed on a Maspar MP-2 parallel computer. The
con�guration of our model is composed of 4K processors elements (PEs). In
the maximal con�guration a MP-2 system has 16K PEs. Each PE has a 1.8
Mips processor, forty 32-bit registers and 64 kilobytes of RAM. The PEs are
arranged in a two-dimensional matrix.
This architecture is particularly well-adapted for our model since it is designed
as a two-dimensional (grid) world. Each PE simulates one organism if we want
to study a 4K population, but it can also simulate more organisms if we want
a larger population.

Next sections present results of our experiments for di�erent values of the
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Begin with a list PARTIAL_SOLUTION of n items

/* where n = value of the commitment degree */

DO BEGIN

Compute the set NON_USED_ITEMS of items not in

PARTIAL_SOLUTION

IF (not_empty(NON_USED_ITEMS))

Pick one ITEM uniformly randomly in

NON_USED_ITEMS

PARTIAL_SOLUTION = append(PARTIAL_SOLUTION, {ITEM})

END_IF

UNTIL (empty(NON_USED_ITEMS))

/* A list containing every elements of the initial set has */

/* been generated. */

Figure 2: END algorithm for each organism for the ramp problem.

model's parameters.

3.2 Evolution of E�ciency and Time Complexity for Dif-

ferent Schedule Strategies

In this section, we are interested to study the e�ciency of the model for each of
the two strategies we de�ned to manage the commitment degree.
We called the �rst one the �xed schedule strategy. In that case, the commitment
degree is regularly increased after a �xed number of rounds.
The second one is called the disorder measure strategy. The disorder measure
is a way to determine when the species distribution in the population is such
that some species overcome the others. The less disorder is allowed, the more
some species overcome the others and therefore, the less diversity is allowed
(remember �gure 1).

The aim of this section is to compare those two strategies regarding the
e�ciency of the model, that is the success rate to �nd out the best solution.
Figure 3 presents the results for two di�erent problem sizes. We completed
our experiments using a 4096 slots world. For each parameter value, 50 runs
have been performed. For the disorder measure strategy, the number of rounds
has been determined by averaging the total number of rounds for the successful
runs. Indeed, since the evolution of the commitment degree is managed by a
threshold for this strategy, the total number of rounds can be di�erent for one
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run compared to another one.
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Figure 3: Success rate versus the number of rounds for the disorder measure and
the �xed schedule strategies.

The conclusion of this experiment is that the disorder measure strategy al-
lows the same e�ciency with a smaller number of rounds, compared to the �xed
schedule strategy. This is easy to understand since the number of rounds re-
quired for some species to overcome the others decreases as the di�erence of
�tness increases between the species. Indeed, for the ramp problem, as the
commitment degree increases, the di�erentiation is more and more important
between species which took the �rst best choices and the others.
However, the �xed schedule strategy may be interesting in the case of problems
for which there are several di�erent �rst choices that lead to the optimal solu-
tion. In that case, it may take a very large number of rounds for some species
to overcome the others. But, using the �xed schedule strategy the increasement
of the commitment degree can be forced. A marriage of those two strategies
allows a very good e�ciency for the END model.
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3.3 Evolution of E�ciency and Time Complexity for Dif-

ferent Selection Neighborhood

The aim of this section is to understand the e�ect of the size of the neighbor-
hood considered during selection on the e�ciency of the END model.
The size of the neighborhood is de�ned by its radius. The Manhattan distance
is used to determine if an organism is part of a neighborhood.
For the experiments, a 4096 slots world and a problem size of 20 items were used.
The radius was in the range: [1::8]. Then, using the �xed schedule strategy so
that the computation time was the same for each value of the neighborhood
radius, the curve of the success rate was plotted. Such a courb was plotted for
a few values of the �xed number of rounds for the commitment degree increase-
ment. For each point of this graphics, 50 runs have been performed. Figure 4
presents results of these experiments.
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Figure 4: Success rate versus neighborhood radius for selection, for di�erent
values of the number of rounds used for the �xed schedule strategy.

The analysis of these results tells us that a large radius allows the model
to �nd an optimal solution more e�ciently when the total number of rounds is
low. That is, an optimal solution is found out faster.
On the contrary, as the total number of rounds increases, a small neighborhood
allows the model to �nd an optimal solution more e�ciently because the con-
vergence is slow. For large values of the radius, the convergence is too fast and
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the optimal solution cannot be found at each run.
Therefore, experiments support the intuition presented in section 2.2.

3.4 Evolution of Complexity to Find the Optimal Solution

In this section, we are interested to study, for di�erent problem size, the evolu-
tion of parameters value that allow the model to �nd out the optimal solution.
We completed our experiments with a world size of 4096 slots and a neighbor-
hood size for selection reduced to the 4 closest neighbors (radius = 1). This
value has been chosen to allow the maximum freedom to explore the space of
states (ie: to maintain diversity and to prevent premature convergence).

Problems for a size of the input set ranging from 20 to 60 elements have
been considered. For each instance of the problem, we ran the model with dif-
ferent values for the threshold parameter and for each value of the threshold, we
completed 50 runs. Then, the number of runs for which the model converged
to the optimal solution was counted.
Results are presented in �gure 5.
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Figure 5: Success rate versus threshold value.

Now, an interesting measure to study would be the growth of the total
number of rounds as the size of the problem increases to reach a given success
rate. In that purpose, with the same data set, we measured for which value of
the threshold a given success rate is reached and we looked at the average of the
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corresponding number of rounds that were necessar for successful runs to �nd
out the optimal solution. Results corresponding to this measure are presented
in �gure 6.
The very interesting result is that the courb is not linear but is logarithmic. This
result is very surprising since the size of the space of states and the number of
local optima grows exponentially with the problem size.
In fact, since the random generation of solutions takes linear time, this courb
means that for a given probability (1��) and for problem sizes within range

for a given population size, the END model is able to �nd the optimal
solution in polynomial time.
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Figure 6: Number of rounds to reach a given success rate.

However, there is no miracle in that result. Indeed, it can be shown that
the expected (or average) value of the �tness function for a randomly generated
solution is:

fn;i =
n

2
�

i � 1

n� 1

where:

� i is the �rst choice for the solution, and

� n is the size of the input set.

Then, if we consider the size of the sample that is required to determine with
a low probability of error which �rst choice is the best one, it can be proven
that this size increases at most as a polynomial of degree 4. Experimentally,
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we determined that the number of rounds required to reach a given success rate
grows a little slower than a 4th degree polynomial. Therefore, this is as good or
slightly better than a naive statistical approach.
In fact, the END model has two important advantages compared to such an
approach:

� It doesn't need an a priori knowledge of the topology of the space of states.

� A strategy is evolved by the model itself to �nd out an optimum, by
eliminating \unpromising" species very soon and by maintaining diversity
to keep attractive species. Therefore, an auto-adaptive behaviour emerges
while the model is searching for the optimum. This also allow a large
improvement for the total work.

4 Results for Two Di�cult Real-Life Problems

4.1 Sorting Networks

4.1.1 Presentation

An oblivious comparison-based algorithm is such that the sequence of compar-
isons performed is the same for all inputs of any given size. This kind of algo-
rithm received much attention since they allow an implementation as circuits:
comparison-swap can be hard-wired. Such an oblivious comparison-based al-
gorithm for sorting n values is called an n-input sorting network (a survey of
sorting networks research is in [7]).
There is a convenient graphical representation of sorting networks as the one in
�gure 7 which is a 10-input sorting network. Each horizontal line represents an
input of the sorting network and each connection between two lines represents a
comparator which compares the two elements and exchange them if the one on
the upper line is larger than the one on the lower line. The input of the sorting
network is on the left of the representation. Elements at the output are sorted
and the larger element is on the bottom line.

Performance of a sorting network can be measured in two di�erent ways:
1. Its depth which is de�ned as the number of parallel steps that it takes to

sort any input, given that in one step disjoint comparison-swap operations
can take place simultaneously. Current upper and lower bounds are pro-
vided in [9], in which the depth for 9- and 10-input sorting networks is
proved to be optimal using an algorithm executed on a supercomputer.
Table 1 presents these current bounds on depth for sorting networks for
n � 16.

2. Its length, that is the number of comparison-swap used. Optimal sorting
networks for n � 8 are known exactly and are presented in [7] along with
the most e�cient sorting networks to date for 9 � n � 16. Table 2 presents
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Figure 7: A 10-input sorting network using 29 comparators and 9 parallel steps
[7].

inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Upper 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9

Lower 0 1 3 3 5 5 6 6 7 7 7 7 7 7 7 7

Table 1: Current upper and lower bounds on the depth of n-input sorting net-
works.

these results.
The 16-input sorting network has been the most challenging one. Knuth [7]
recounts its history as follows. First, in 1962, Bose and Nelson discovered
a method for constructing sorting networks that used 65 comparisons and
conjectured that it was best possible. Two years later, R. W. Floyd and D.
E. Knuth, and independently K. E. Batcher, found a new way to approach
the problem and designed a sorting networks using 63 comparisons. Then,
a 62-comparator sorting network was found by G. Shapiro in 1969, soon
to be followed by M W. Green's 60 comparator network.

inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

comparators 0 1 3 5 9 12 16 19 25 29 35 39 46 51 56 60

Table 2: Best upper bounds currently known for length of sorting networks.

4.1.2 Previous work

Most of the previous work to �nd good sorting networks focussed on the 16-
input problem.

The �rst person who used optimization technics to design sorting networks
is W. Daniel Hillis. In [5], he used GAs and then co-evolution to �nd a 61-
comparator, only one more sorting exchange than the construction of Green.
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However, Hillis considerably reduced the size of the search space since he initial-
ized genes with the �rst 32 comparators of Green's network. Indeed, since the
pattern of the last 28 comparators of Green's construction is not very intuitive,
one can think that a better solution exists with the same initial 32 comparators.

In a previous paper, overviewing the END model [11], a 60 comparator sort-
ing network was found out with the same initial conditions as Hillis, that is as
good as the best known. Two attempts were also done on the 15-input problem
and the model was able to �nd two 56 comparators sorting networks, again as
good as the best known, with no initial conditions.

Ryan [10] applied a Genetic Programming approach to the problem of 9-
input sorting networks. Kim Kinnear also used GP, but in the area of adaptive
sorting algorithms, to �nd an algorithm to sort n elements in O(n2) time [6].

Ian Parberry ([9]) worked on the optimal depth problem and found out op-
timal values for 9 and 10-input sorting networks using an e�cient exhaustive
search.

4.1.3 Non-Deterministic Sorting Network Algorithm

The aim of this non-deterministic algorithm is to generate incrementally and
randomly some valid sorting networks. Each organism runs this algorithm (see
�gure8), making some random choices until a valid sorting network is found.
Moreover, this algorithm can generate only valid and fair sorting networks.
That is, valid sorting networks with no useless comparators.

Valid sorting networks are built using the zero-one principle, which is a spe-
cial case of Bouricius's theorem.

Zero-one principle: If a network with n input lines sorts all 2n sequences of
0's and 1's into nondecreasing order, it will sort any arbitrary sequence of
n numbers into nondecreasing order.

Therefore, we only consider all 2n possible inputs instead of the n! permu-
tations of n distinct numbers to incrementally build a sorting network.

The �tness of a sorting network is represented by its length. However, for
the selection process, ties are broken using the depth of the sorting networks. In
that way, we also generate some sorting networks with a few number of parallel
steps.
Then the selection process propagates the best solutions.
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Begin with an empty or a partial network

DO BEGIN

Compute the set of significant comparators

IF (set of significant comparators IS NOT empty)

Pick one of these comparators randomly and add

it to the existing partial network

END_IF

UNTIL (set of significant comparators is empty)

/* A valid sorting network has been generated */

Figure 8: END algorithm run by each organism.

4.1.4 Results

Results for the 16-input problem initialized with the �rst 32 comparators of
Green's sorting network will not been presented. The last version of the model
is able to evolve a sorting network as good as the best known with a success
rate of almost 100% within 10 to 15 minutes.
Only results of evolved sorting networks with no initialization are described.

In order to increase the probability of �nding good sorting networks, we used
a 64K population size, each processor of the Maspar simulating 16 organisms.
Therefore, because of the high degree of parallelization of this model, compu-
tation time provided in this section would be divided by 4 with the maximal
con�guration of this parallel computer (16K processors) and by 16 with an hy-
pothetical 64K processors Maspar.

Before presenting results, let us come back to a previous observation.
As it has been said in section 2.3, the landscape of the space of states is such
that optimal solutions don't correspond to the species which perform well for
lower value of the commitment degree. That means that if we let the model
evolve until there are only a few species remaining then the probability that the
best solution be found out is very low. This behaviour can be oberved in �gure
9 which shows the evolution of the success rate as the value of the threshold
decreases. First the success rate increases but, once the diversity degree is forced
to be lower by decreasing the threshold value (the disorder measure strategy is
used), the success rate also decreases.

This explains why one needs to maintain diversity to be able to �nd out an
optimal solution.
We have been interested to tackle two di�erent sorting network problems:
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Figure 9: Success rate for the 10-input sorting network problem versus the
threshold value for the disorder measure strategy.

1. The 13-input problem because of the large gap between the best known
result and the 12-input one.

2. The 16-input problem because it is the most challenging one.

For the 13-input sorting network problem, we ran the END model 6 times
with di�erent values for the selection neighborhood radius (between 1 and 5)
and the threshold. Each run was completed in about 8 hours. For 2 runs, we
got a sorting network better than the best known. That is, the END model
discovered two sorting networks using only 45 comparators, one comparator
less than the best current known. Moreover, those two sorting networks use 10
parallel steps which is very good since to get smaller delay time one often has
to add one or two extra comparator modules ([7]) and the best known delay for
the 13-input problem is 9.
Figure 10 presents those 13-input sorting networks.

For the 16-input sorting network problem, we ran the END model 3 times.
Each run was completed in a period of 48 to 72 hours. However, only 12 to
18 hours would be required with the maximal con�guration for the Maspar (ie:
using 16K processors). For 2 runs, a 60 comparator sorting network was found
out, each of them using 10 parallel steps! This is as good as the best human-built
sorting network designed by M. W. Green. Those sorting networks were entirely
designed from scratch by the END model (ie: there was no initial comparators
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Figure 10: Two 13-input 45-comparators sorting networks using 10 parallel
steps.

as it was the case the previous times this problem was tackled using computers).
Figure 11 presents these two 16-input sorting networks.

As a remark, it is interesting to notice that the 4 last parallel steps of those
two sorting networks are identical (but are however di�erent from Green's con-
struction).

4.2 A One-Player Game: Solitaire

4.2.1 Presentation of the game

This second problem is an original one and no one has published about it.
However, it is an interesting one since it shows how di�cult the modelling of a
problem can be for other classical optimization techniques.

To play this game, you only need a piece of paper with a grid layout and
a pencil. First, the player draws a �xed initial pattern composed of crosses,
like the left picture in �gure 12. The rule is that a cross can be added at
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Figure 11: Two 16-input 60-comparators sorting networks using 10 parallel
steps.
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an intersection of the grid layout if and only if it allows the drawing of a line
composed of 5 crosses that do not overlap another line. This line may however
be the continuation of another line or may cross another line. That is, the new
line can share at most one common cross with another line. This new line can
be drawn vertically, horizontally or diagonally.
The right picture in �gure 12 shows a possible con�guration of this game after a
few moves. Crosses of the initial pattern are circled to be identi�ed more easily.
Now, the goal of this game is simply to draw as many lines as possible!
Therefore, it is clearly an optimization problem.

If this game is played by hand, one can see that a good strategy is di�cult
to elaborate. After a few plays, a score of 70-80 lines is relatively common.
However, to reach 90 lines is less obvious and a score greater than 100 lines is
exceptional.

One can think that, maybe, there is a pattern of moves such that, it would
be possible to repeat it in�nitely. Alas, it can be proven that the number of
moves is �nite. That is, there is an optimal con�guration for this game with a
maximal number of lines. However, no tight upper bound has been established
for this maximal number.

x x x x

x

x

x x x x

x

x

xxxx

x

x

xxxx

x

x

xxxx

x

x

x x x x

x

x

xb xb xb xb

xb

xb

xb xb xb xb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb
xb
xb
xbxbxbxb

xb
xb
xb xb xb xb

xb
xb

x

x

x

@
@
@

x

@
@
@

x

�
�
�

x

x

�
�
�

x

x

x

@
@
@

x

x

x

Figure 12: The initial con�guration and a possible con�guration after 13 moves
for the Solitaire game. For a clearer picture, the grid layout is not drawn but is
represented by the rules on the border.

This game is interesting because it is a typical example of a problem which
seems impossible to code using other optimization technique like GAs or Hill-
climbing. That shows that the END model is a tool to address new complicated
problems.
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4.2.2 Results

The most recent result is a 110 lines game con�guration. This result has been
found out with a population size of 1024 and required two weeks of computation
on a workstation.

By curiosity, we were interested to know the con�guration of the game after
the �rst 40 moves (this con�guration is shown in �gure 13). Then, we were very
astonished to observe that most of the moves were located in the same area
of the game board. It is the same as our best own strategy for hand-playing!
Therefore, the END model evolved a strategy by itself which is comparable to
an \experienced" human player!
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Figure 13: The best con�guration found out for the Solitaire game, using 110
lines (on the right); and the con�guration for this best play after 40 moves (on
the left).

5 Conclusion

This paper presented an inventive and very promising technique. By using a
new approach for the search in the state space and a particular way to construct
incrementally solutions, this model can outperform actual techniques. However,
it should be noticed that when the topology of the search space for a given prob-
lem is well-known and its gradient is appropriate for Hill-Climbing or SA, these
techniques are more e�cient than the END model regarding execution time.
Indeed, the approach of the END model is a statistical one which progressively
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takes into account details of the landscape; no gradient information is used.

The aim of this paper was to present in details the parameters of the model
in order to understand their importance in the e�ciency. This is the reason
why we focussed only on some elementary operators for selection and solution
generating. The model described in this paper can be easily enhanced with
some new features like:

� Allowing the use of some heuristics for solution generating to reduce the
number of potential extensions at each node of the tree of solutions.

� Managing a local memory for each organism that would memorize its
\past" and would allow learning.

� Each organisms looks for a local optimum before selection rounds. When
possible, this technique allows a faster convergence.

The END model is also highly parallelizable and it is easy to imageine a
parallel machine, using a 2-D mesh architecture, with a very large number of
processors, each one simulating an organism. Since the complexity of the prob-
lems the model is able to handle increases with the size of the population, such
an implementation would be fantastic!

Finally, the very encouraging results let us think about applying this model
on even more challenging problems like:

� multi-player games,

� problem solving,

� mechanical discovery of heuristics or theorems,

for which each organism would be an elementary and naive game player or
problem solver. Then, we could expect the emergence of some \high-level strate-
gies"...

6 Acknowledgments

I would like to thank Marty Cohn, Patrick Tufts, Ira Gessel, Gary Drescher,
Jacques Cohen and Jordan Pollack for their advice and discussions. The idea
to use the ramp problem to study the END model e�ciency comes from Gary.
Patrick helped me a lot by exchanging ideas and references with me. I would
like also to thank Roger Gallier who challenged me one day with the Solitaire
problem. I owe many sleepless nights to him and this problem. Thanks also to
the NSF whose grant allowed the Brandeis Computer Science to buy a Maspar
machine. Without this machine, all this work wouldn't have been possible.
Finally, I want to thank my wife, Anne, for the moral support she provided me
while I was working on this project and her constant curiosity.

26



References

[1] Richard Belew and Thomas Kammeyer, \Evolving Aesthetic Sorting Net-
works using Developmental Grammars". In Proceedings of the Fifth Inter-
national Conference of Genetic Algorithms.

[2] Roberto Bisiani, \Beam Search". In Encyclopedia of Arti�cial Intelligence,
Vol. 2, Second Edition, John Wiley & Sons, 1992.

[3] Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math-
ematics, a Foundation for Computer Science. Second edition, Addisson-
Wesley, 1989.

[4] Milton W. Green, \Some Improvements in Nonadaptive Sorting Algo-
rithms". Stanford Research Institute. Menlo Park, California.

[5] W. Daniel Hillis, \Co-Evolving Parasites Improve Simulated Evolution as an
Optimization Procedure". In Arti�cial Life II, Langton, et al, Eds. Addison
Wesley, 1992, pp. 313-324.

[6] Kim Kinnear, \Generality and Di�culty in GP: Evolving a Sort". In Pro-
ceedings of the Fifth International Conference on Genetic Algorithms, S.
Forrest, Morgan Kaufmann Publishers, 1993.

[7] Donald E. Knuth, The Art of Computer Programming: Volume 3 - Sorting
and Searching. Addison Wesley, 1973.

[8] Steven Levy, Arti�cial Life: the Quest for a New Creation.Pantheon Books,
1992.

[9] Ian Parberry, \A Computer-Assisted Optimal Depth Lower Bound for Nine-
Input Sorting Networks". In Mathematical Systems Theory, No 24, 1991, pp.
101-116.

[10] Conor Ryan, \Pygmies and Civil Servants". In Advances in Genetic Pro-
gramming, Kim Kinnear, Ed. MIT Press, 1994.

[11] Patrick Tufts and Hugues Juille, \Evolving Non-Deterministic Algorithms
for E�cient Sorting Networks". Unpublished.

27


