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Abstract

The traditional approachto complex problemsin science
andengineerings to breakdown eachprobleminto a setof
primitive building blocks,which arethencombinedby rules
to form structures. In turn, thesestructurescan be taken
apartsystematicallyto recover the original building blocks
thatwentinto them. Connectionistmodelsof suchcomplex
problemg(especiallyin therealmof cognitive sciencehave
oftenbeencriticizedfor their putative failure to supportthis
sortof compositionality systematicityandrecoverability of
componentsln this papemwe discussaconnectionismodel,
Recursie Auto-Associatve Memory (RAAM), designedo
dealwith theseissues. Specifically we shav how an ini-
tial approachto RAAM involving arbitrary building-block
representationplacedsevere constraintson the scalability
of the model. We describea re-analysishe building-block
and‘“rule” component®f the modelasmerelytwo aspects
of asingleunderlyingnonlineardynamicalsystemallowing
themodelto represenanunboundeaumberof well-formed
compositionabtructuresWe concludeby speculatingabout
theinsightthatsucha“unified” view mightcontributeto our
attemptsto understandaind modelrule-gorerned,composi-
tional behaior in avariety of Al domains.

I ntroduction

The traditional approachto complex problemsin science
andengineerings to breakdown eachprobleminto a setof

primitive building blocks,whicharethencombinedy rules
to form structuresin generalthisapproactasprovedsuc-
cessfulenoughthat it is rarely mentioned et aloneques-
tioned,in contexts outsideof introductoryAl andengineer

ing courses. Neverthelesswhen appliedto complec sys-
temsin nature the approachendsto be anoversimplifica-
tion.

At oneendof the spectrumwe find autocatalytiacchemi-
calreactionghatgeneratéhecomponentsequiredfor their
own synthesis(Zaikin & Zhabotinsly 1970). Suchreac-
tions provide perhapsthe simplestexample of a system
in which the rolesof building blocksandrules are entan-
gledin a uncorventionalway. At the otherendwe have
thefull-blown compleity of humanbehaior, notablylan-
guage. In this domainthe Chomskan “wordsandrules”
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approachPinker 1999) hashecomethe dominantanalyti-
calframework, despitehetheoreticabifficultiesassociated
with the definition of “word” (Sciullo & Williams 1987),
the practicaldifficulty of automaticallyisolating individ-
ual wordsin fluent speech(Rabiner& Juang1993), and
the everydayobsenation that real languageseemso con-
tain more exceptionsthanrules. In betweenthesetwo ex-
tremeslies all the compleity of real biological systems,
in which basic engineeringconceptslike modularity and
reuserun up againstthe difficulty of knowing precisely
whatbuilding blocksarebeingmodularizedandactedupon
in rule-governedways. Suggestionfor thesencludegenes
(Dawkins1990),speciegWynne-Edvwards1962),andmen-
tal faculties(Fodor1983),amongothers.

Engineersandresearchergsingbiologicallyinspiredap-
proachedo problem-solvinghave hadto dealwith various
manifestationf this issue. In the field of geneticalgo-
rithmsthe notion of “building block” (Goldbeg 1989)has
receveda gooddealof attentionandgeneratedomecon-
troversy(Forrest& Mitchell 1993). It is only recentlythat
thoroughstudiesof crucial issueslike compositionalityin
artificial andnaturalevolution have beenundertalen (Wat-
son2002),anda greatdealof work remainsto be done.

In a somevhat parallel development,the literature on
connectionist(a.k.a. neural) networks is fraughtwith at-
temptsto addresghe issueof rule-governedcomposition-
ality. At one extreme,the distributed, “eliminativist” ap-
proachtries to do away with structuresandrulesentirely,
seeingboth asemegentepiphenomenée.g., hidden-layer
activations)in thebehavior of networkstrainedon patterned
data(ElIman1990). At the otherextreme,so-calledocalist
approacheghooseto represenstructureexplicitly, either
throughdirectconnectionamongunitsrepresentingrim-
itive concepts,or through neuron-like synchronousdiring
of thoseunits or clustersof units (Shastri& Ajjanagadde
1993).

TheRAAM Mode

An entirely differentapproachdiscussedn the remainder
of this paper takesthe traditional notion of compositional



structurevery seriouslywhile still attemptingto exploit the
distributedrepresentationthatgive neuralnetwork models
so much of their appeal. In this approach called Recur
sive Auto-Associatve Memory, or RAAM (Pollack1990),
the basic building blocks are binary strings representing
thevariousentitiesto be combined(words,conceptsetc.).
As shown in Figure 1, the RAAM network consistsof an
encoder which recursvely composedhe binary stringsto
producefixed-sizevectorrepresentationsf structuresover
thosestrings, and a decoder which unpacksthe encoded
vectorrepresentationisito (anapproximatiorof) theirorig-
inal forms. Togetherthe encoderanddecoderaretrained
asan auto-associatofAckley, Hinton, & Sejnavski 1985)
using the standardneural net back-propagatiomlgorithm
(RumelhartHinton, & Williams 1986).
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Figurel: RAAM encodinganddecodingatreestructure.

The key insight of RAAM s that the hidden-layerac-
tivations representingcompositionalstructurecan be fed
backinto theencodeiinput, allowing structuregfixed-arity
trees)of arbitrarysizeandcompleity to bebuilt. Similarly,
the outputof the decodeiis fed backto the decoderinput,
after passingthrougha “terminal test” to seewhetherit is
similar enoughto a binary string (all zerosand ones)for
decodingto terminate.If not, decodingcontinues.Thede-
coderoutputis computedy alogistic sigmoid“squashing”
function whoserangeis the interval (0,1). Therefore,the
simplestterminaltestis simply a hardthresholdin which
valuesbelow 0.2 aretreatedas0, andvaluesabose 0.8as1.

Limitations of RAAM

Although RAAM answeredhe challengeof shawving how
neuralnetworkscouldrepresentompositionastructuresn
a systematiovay, andled to lots of philosophicaldiscus-
sion, the modelfailed to scaleup reliably to datasetsof
morethanafew dozendifferenttrees.This limitation arose
from the terminaltest, which createda variety of “halting
problem”: decodingeitherterminatedtoo soon,treatinga
non-terminalasaterminal,or continuedindefinitely, treat-
ing aterminalasa non-terminal.In addition,encodingof
novel structuresover existing terminalsweretypically de-
codedto already-learnedtructureoverthoseterminals.

A numberof different fixes were attempted,generally
involving a more elaborateterminal test than the simple
threshold.No significantprogressvasmade however, un-
til akey insightaboutthedecodeiemeged.

New RAAM formulation
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Figure2: An exampleRAAM decoderthatis a 4 neuron
network, parameterizedby 12 weights. Eachapplication
of thedecoderconvertsan (X, Y") coordinatento two new
coordinates.

Considerthe RAAM decodershavn in figure 2. It con-
sistsof four neuronghateachreceve thesame(X,Y) in-
put. Theoutputportionof thenetwork is dividedinto aright
anda left pair of neurons.In the operationof the decoder
the output from eachpair of neuronsis recursvely reap-
pliedto thenetwork. Usingthe RAAM interpretationgach
suchrecursionimplies a branchingof a nodeof the binary
tree representedyy the decoderand initial starting point.
However, this samenetwork recurrencecanalsobe evalu-
atedin the context of dynamicalsystems.This network is
aform of iteratedfunctionsystenor IFS (Barnsley 1993),
consistingof two pseudo-contraate transformswhich are
iteratively appliedto pointsin atwo-dimensionaspace.

In the context of RAAMSs the main interestingproperty
of contractve IFSeslies in the trajectoriesof pointsin the
space.For contractve IFSesthe spaceis divided into two
setsof points. The first setconsistsof pointslocatedon
the underlyingattractor(fractal attractor)of the IFS. The
secondsetis thecomplemenbf thefirst, pointsthatarenot
on the attractor The trajectoriesof pointsin this second
setarecharacterizedby a gravitation towardsthe attractor
Finite, multiple iterationsof the transformshave the effect
of bringing the pointsin this secondset arbitrarily close
to the attractor In this sense the attractorpoints, rather
than points above or belowv an arbitrary cutoff threshold,
represenaguaranteeterminatingconditionfor theRAAM
decoder

Using the points (vectors)of the attractor ratherthan



bit strings,asa “natural” terminaltest,allowed usto over
comethe RAAM halting problem. The relevantthreshold
is not proximity to anarbitraryvaluelike O or 1, but rather
proximity to the (theoreticallyinfinite) dustof pointsrepre-
sentingthe attractor With this approachwe wereableto
increasethe numberof decodablereesfrom a few dozen
to tensof thousands Ultimately the numberof decodable
treeswasin factprovedto beunboundedin (Melnik, Levy,
& Pollack 2000). An equally promisingresultfrom that
work wastheobsenationthattheunboundedetof decoded
treescouldbe madeto conformto a setof rules,contraryto
traditionalclaimsaboutthe fundamentaincompatibility of
rule-basedcindconnectionisapproaches.

Thedifferencebetweerthe old andnew formulationsof
RAAM is vividly illustratedin Figure3, whichmapstheat-
tractoranddecodedreesfor anattractorimagederivedby
a visual “Blind Watchmaler” technique(Dawkins 1986).
As the figure shaws, the attractor(terminals)andits com-
plement(decodedrees)arebothpartof asingle,(theoreti-
cally) continuousspace.Every pointin this spacedecodes
to aterminalor non-terminaltree,with the depthandvari-
ety of thetreesbeinglimited by the arbitrary pixel resolu-
tion at which the spacds sampled?
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Figure3: Map of uniquetreesin 2D fractal RAAM, sam-
pled at 100x100pixels. Eachnon-terminaltreeis repre-
sentedby a differentgrayscalevalue. Attractor (terminal
set)is blackspiral.

1In thisrespectve mayaccuseaf returningto thesortof arbi-
trary discretecutof thatplaguedthe terminaltestof old RAAM.
We hopeby now to have corveyed the sensan which the frac-
tal terminaltestrespectgshe underlyingdynamicsof the model,
in a way that the thresholdingcutof terminaltestdid not. Fur-
ther, our artificial neurons,implementedwith double-precision
floating-pointnumberslikely have excessiely high precisionas
comparedo thebiologicalneuronghatinspirethem.

Re-grounding the Symbols

Eschaving the useof arbitrarybit-string representationas
primitive building blocks overcomesthe scalability prob-
lemswith theolderRAAM formulation,but leavesuswith
abootstrappingroblem:if theterminalsaredefinedasthe
pointson the attractor andthe attractoris a functionof the
decodemveights,thenthe symbolic“ground” is constantly
changingunderneatlourfeetastheweightsareadaptediia
back-propor someotherlearningalgorithm. We currently
seetwo waysout of this dilemma.

First, we might exploit someother principle to fix the
set of terminal vectors, and then train the RAAM en-
coder/decodemetwork asin theolderversionof themodel,
using back-propagationThe criterion for evaluatingsuch
aprinciplewould bethe extentto whichit producedermi-
nal vectorsyielding a rich, complex dynamicsof the sort
portrayedin Figure 3. A salientfeatureof this figure is
thatthe terminals(attractor)take on realvaluesdistributed
over a large portion of the unit square(whereashe origi-
nal bit-string representationaould be locatedonly in the
extremecornersof this space). This suggestshat general
(real-valued)terminalvectorsin the space(0, 1) arethe
sortof representationae shouldbelooking for.

Fortunatelythereis agrowing body of literaturedescrib-
ing techniquedor representingymbolicdata(suchasword
meanings)n exactly suchvector spaces.The Latent Se-
manticAnalysismodel(Landaue®& Dumais1997),which
usesco-occurrencestatisticson text corpora,is one such
modelthat hasenjoyed a good deal of successn a num-
berof domainswheretraditionalsymbolictechnique$have
proven less adequate. Another possiblecandidateis El-
man’s SimpleRecurrenfNetwork (SRN)modelof temporal
structure.(EImani990).EImanhasshavn how trainingthis
sortof network on atemporalpredictiontaskcanresultin
hiddenlayer activationsthatembodymeaningfulcateyori-
calinformationabouttheitem presentedn the input layer
(suchaspartof speectandmorefine-grainedsemantiais-
tinctions).It is intriguing to speculaténow suchrepresenta-
tions might interactwith a RAAM beingtrainedto induce
treesovertheitemsin thetemporalsequences.

Secondwe might extendthe unified approachtaken so
far, by usingthe IFS decodemweightsto label the attrac-
tor terminalsaswell. Barnslg (1993)notesthateachpoint
ontheattractoris associateavith anaddressvhichis sim-
ply the sequencef indicesof the transformsusedto ar

2Wwith respecto languagédearning asupervisedilgorithmlike
back-propseemsmore appropriateto the sequentiakasksgiven
to EImans SRNs,thanit doesto a structure-learningnodellike
RAAM: whereashe sequencef wordsis explicitly availableas
input to the language-learnethe putative syntacticstructureof
of that sequencés muchlessobvious. We might conceptualize
thelanguage-learnestaskassomehwv deducinga setof decoder
weightsthatwill yield the appropriatesequencesgiven an SRN
representatioof the sequentialtems.



rive on that point from other pointson the attractor The
addresss essentiallyaninfinite sequencef digits. There-
fore to achieve a labelingfor a specificalphabetwe need
only considera sufficient numberof significantdigits from
this addressWith a two-transformdecoderandonesignif-
icantdigit, this schemegivesusbinaryaddressef) and1,
a andb) sufiicientfor representing large varietyof formal
languages.This approachallows us to derive the decoder
weightswithoutthe needfor anencoderusinga numberof
evolutionaryalgorithmsinsteadof back-prop.Thefirst au-
thor is currentlyworking with an undegraduatestudentin
anattempto co-evolve IFS RAAM decodergor a pursuer
evadercommunicatiorgameof thesortdescribedn (Ficici
& Pollack 1998), wherethe “messages’tonsistof zeros
andones. Our hopeis that simultaneousgonflicting con-
straintsof thisgame(be predictabldo friends,confusingto
enemies)will yield a rich compositionaldynamics,based
solelyonthestringrepresentationavailableto thecommu-
nicatingagents.

Relevance to Computational Synthesis

From the perspeciie of the currentsymposium the main
insightof the IFS RAAM work is thattreatingthe building

blocks and compositionalrules of a systemas two sepa-
ratecomponentsaybeaninherentlylimiting approach. It

wasonly afterunderstandingheterminals(attractormpoints)
and non-terminals(transientsto attractor)as merely dif-

ferentaspectof a singleunderlyingsystem(IFS) that we
were able to overcomethe severe limitations of the orig-

inal RAAM formulation. Although this result was ob-
tainedin the contet of a particulartype of model (auto-
associatie neuralnet) appliedto a particulartype of com-
positional structure(fixed-arity tree), we believe that the
insight gainedfrom the result may have profoundimpli-

cationsfor thefield of computationakynthesisasawhole.
In facingthe challengeof scalingto high compleities, we
may well needto turn away from thetraditionaldichotomy
betweerbuilding block andrule, andseekout substraten

which suchdistinctionsemegeasartifactsof humanobser

vation,ratherthanbeingstipulateddesignprinciples.
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