
Advanced Tutorial on 
Coevolution

Anthony Bucci
Brandeis University

Waltham MA USA 02454
abucci@cs.brandeis.edu

Sevan G. Ficici
Harvard University

Cambridge MA USA 02138
sevan@eecs.harvard.edu

© Copyright 2007 by Sevan G. Ficici & Anthony Bucci

GECCO 2007

Copyright is held by the author/owner(s).

GECCO’07, July 7–11, 2007, London, England, United Kingdom.

ACM  978-1-59593-697-4/07/0007.

Conventional Coevolution

Initialize
Population(s)

Evaluate Individuals

Done?

Selection/Variation

no

yes

N
ew

 G
en

er
at
io
n

Output Fittest
Individual(s)

Conventional Coevolution

Initialize
Population(s)

Evaluate Individuals

Done?

Selection/Variation

no

yes Output Fittest
Individual(s)

most coevolution research 
concerns evaluation

N
ew

 G
en

er
at
io
n

Conventional Coevolution

Initialize
Population(s)

Evaluate Individuals

Done?

Selection/Variation

no

yes Output Fittest
Individual(s)

result is typically the most-fit
individual in each population; 
the question of what the result
should be is now gaining more
attention.
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Conventional Coevolution

Initialize
Population(s)

Evaluate Individuals

Done?
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most coevolution research has
put aside the question of evolutionary
representation; this is an area that is
gaining more attention now.
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Main Themes

Interaction

Game
Theory

Elaboration

Strategy
Sets

Represen-
tation

Mono-
tonicity

Interaction

To evaluate an individual in coevolution, 
we must have it interact with others

The outcome of evaluation is contingent
upon whom the individual interacts with

The individual may appear good in one 
context and poor in another context

This context sensitivity is game theoretic 
in nature

Solutions may be sets of individuals

Elaboration

We want the evolving individuals to 
improve over evolutionary time

Coevolutionary “arms race” is an example

Improvement can be viewed as an 
accumulation of competences, or 
elaboration

We will discuss different forms of 
elaboration



Main Topics

Game theory

game, strategies, payoffs

solution concepts: implementation

Strategy sets

Mixtures, Pareto front, archives, ...

Representation

Monotonic improvement over time

Motivation: Coevolutionary 
Pathologies

Cycling: algorithm revisits a portion of 
state-space periodically—no progress

Disengagement: loss of fitness gradient

Overspecialization: lack of elaboration

Forgetting: loss of potentially useful traits

Relative overgeneralization: favoring of 
versatile components over those of 
optimal solution

Game Theory

Mathematics of strategic reasoning 
[Fundenberg & Tirole 1998]

If we have a number of interacting agents...

How will they behave; what will be outcome?

If we interact, how should we behave? 

Provides descriptive predictions of how 
players will behave

Provides prescriptive (normative) 
instructions on how to behave

Game Theory

Provides predictions and instructions 
about behavior

Assumes all agents are rational, selfish

Nash equilibrium [Nash 1951]

A configuration of strategic choices such that no 
player has incentive to deviate unilaterally from 
its current strategy

All finite games have at least one Nash 
equilibrium



Game Theory: Components

Game specifies for each player...

strategies that are available

outcomes that result for each strategy when 
interacting with other players’ strategies

Solution concept

formal specification of what configuration of 
players’ behaviors (strategies) constitutes a 
solution to the game

Rock Paper Scissors

Rock Paper Scissors

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

Player 2

P
la
ye
r 
1

Rock Paper Scissors

Rock Paper Scissors

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

Player 2

P
la
ye
r 
1

Pure strategies: rock, paper, scissors

Mixed strategy: any probability distribution 
over pure strategies

Rock Paper Scissors

Rock Paper Scissors

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

Player 2

P
la
ye
r 
1

Payoffs (outcomes) for all possible pure-
strategy interactions

For mixed strategies, we calculated 
expected payoffs based on probability 
distributions used



Rock Paper Scissors

Rock Paper Scissors

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

Player 2
P
la
ye
r 
1

Rock > Scissors > Paper > Rock

No pure strategy is universally best

Solving this game requires a set of 
strategies

Rock Paper Scissors

Rock Paper Scissors

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

Player 2

P
la
ye
r 
1

Nash equilibrium strategy is mixed
R, P, S each played with probability = 1/3

expected payoff of Nash player is zero, 
regardless of what other player does

expected payoff of other player is also zero, 
regardless of what it does

Main Themes

Interaction

Game
Theory

Elaboration

Strategy
Sets

Mono-
tonicity

Represen-
tation

Interaction and Elaboration

From the outcomes of pure-strategy 
interaction...

we find that no single pure strategy provides all 
needed competences

The Nash mixed-strategy...

is a set of pure strategies...

and represents an elaboration of pure-strategies



Solution Concept

Specifies properties of a solution

•(not the solution itself)

But must be implemented in search algorithm

Incorrect implementation of solution concept 
will cause search algorithm to diverge from 
desired solution properties

Solution Concept

Examples where algorithm fails to 
implement Nash equilibrium in a game

Proportional selection and Rock-Paper-Scissors: 
mixed Nash equilibrium? [Hofbauer & Sigmund 1998]

Alternative selection methods and Hawk-Dove 
game [Ficici et al. 2000, 2005]

Diversity maintenance methods and Hawk-Dove 
game [Ficici 2001]

Rock-Paper-Scissors
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Under fitness-proportional selection...

Nash equilibrium represented as polymorphic 
population of pure-strategists is unstable

Nash equilibrium also unstable for mixed strategists

Nash concept not properly implemented here

Hawk-Dove Game
[Maynard Smith 1982]

Hawk Dove

Hawk -25 50

Dove 0 15

Nash equilibrium strategy for these payoffs:

7/12 Hawk, 5/12 Dove

probability distribution for a mixed strategy...

OR proportions for polymorphic population of 
pure-strategists



Proportional Selection
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Truncation Selection
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Chaos

Truncation Selection

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Proportion Hawks @ Time t

P
ro
p
o
rt
io
n
 H
a
w
k
s
 @

 T
im
e
 t
+
1

neutrally stable
period-2 cycle

(µ, λ)-ES Selection

0 0.

2

0.

4

0.

6

0.

8

1
0

0.

2

0.

4

0.

6

0.

8

1

Proportion Hawks @ Time t

0 0.

2

0.

4

0.

6

0.

8

1
0

0.

2

0.

4

0.

6

0.

8

1

Proportion Hawks @ Time t

P
ro
p
o
rt
io
n
 H
a
w
k
s
 @

 T
im
e
 t
+
1

µ/λ = 0.6 µ/λ = 0.3µ/λ = 0.5

Regime 1
(0 0.41]
Chaos

Regime 2
[0.42 0.58]
All-Hawk

Regime 3
[0.59 1.0)
All-H or -D

0 0.

2

0.

4

0.

6

0.

8

1
0

0.

2

0.

4

0.

6

0.

8

1

Proportion Hawks @ Time t

selection pressure increase

Rank Selection

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Proportion Hawks @ Time t

P
ro
p
o
rt
io
n
 H
a
w
k
s
 @

 T
im
e
 t
+
1 neutrally stable

period-2 cycle



Boltzman Selection
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Proportional Selection
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Competitive Fitness Sharing
[Rosin 1997]
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Similarity-Based Fitness Sharing
[Goldberg 1989]

Proportion Hawks @ Time t
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Discussion

We use different selection methods and 
diversity-maintenance methods to 
improve search for a particular domain

Evolving population expected to both:

contain sufficient genetic diversity for search

represent solution to search task (may be a 
polymorphism)

These tasks not necessarily orthogonal

Above illustrates pitfalls

Discussion

Why not separate tasks?

Let population perform search

Let another mechanism (not population) 
represent best solution found so far

Leads us to archive methods

Archive Methods

Archives provide a way to

collect (according to some organizing priniple) 
“good” individuals over evolutionary time

encapsulate wider phenotypic range (than a 
population contains at any one moment in time)

broaden evaluation (and selection pressure) via 
augmented phenotypic diversity

ameliorate evolutionary forgetting

represent the result of the evolutionary process

Archive Methods

Hall-of-Fame [Rosin & Belew 1997]

accumulate fittest of each generation

sample k members for testing current generation

shown to help, but weak organizing principle

Dominance Tournament [Stanley & Miikkulainen 

2002]

Nash memory [Ficici & Pollack 2003]

Pareto archives [de Jong 2004]



Dominance Tournament
For zero-sum games, symmetric or not

Organizing principle is Pareto dominance

Add strategy X to DT archive if and only if 
X outperforms each member of archive

Each new member inserted into archive 
has a broader demonstrated range of 
competence

Avoids intransitive cycles

Most recently added member is “solution”

Dominance Tournament

A
B
A

If B beats A

C
B
A

If C beats B and A

If D beats C, but not B, then D excluded

Nash Memory
For zero-sum games, symmetric or not

Organizing principle is Nash equilibrium

Begin with arbitrary approximation to 
Nash equilibrium N of game, and empty 
“memory” M

If strategy S beats N, then update N and M 
to obtain a new Nash approximation that 
doesn’t lose to any strategy in S ж N ж
M

Final approximation N is “solution”

Nash Memory

N

M

N and M are mutually 
exclusive sets of pure 
strategies

N is initially an arbitrary 
pure strategy

M is initially the empty 
set



Nash Memory

N

M

N is Nash strategy with 
respect to pure 
strategies in N ж M

M is set of strategies that 
used to be in N earlier 
and may be again in the 
future

M is of bounded size

Nash Memory

N

M

s

If s does not beat N, 
then discard s; keep 
searching

Otherwise, s indicates a 
weakness in N; update N

Nash Memory

N

M

{s}

N′

M′LP

Nash Memory

N

M

{s}

N′

M′LP



Nash Memory

N

M

{s}

N′

M′LP

discard

Nash Memory
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Even though M is finite, and strategies 
discarded, monotonic improvement of N 
is approximated

Pareto Archives

Pareto Coevolution [Ficici & Pollack 2001; 
Noble & Watson 2001] treats entities with 
two roles: candidates and tests (sometimes 
learners and teachers)

Candidates are incented to perform

Tests are incented to inform about 
candidates

Key insight: performing ≠ informing

Performing

Candidates Tests



Performing

TestsCandidates

Performing

TestsCandidates

Informing

TestsCandidates

Informing

TestsCandidates



Informing

TestsCandidates

Pareto Archives: IPCA

Incremental Pareto Coevolution Archive 
[de Jong 2004]

Theoretically ensures monotonic progress 
for Pareto Coevolution

Allows the candidate population to 
explore

Test archive maintains candidate 
distinctions and can grow without bound

Pareto Archives: LAPCA

LAyered Pareto Coevolution Archive [de 
Jong 2004]

Keeps a tunable number of Pareto layers

Approximates IPCA, but bounds the 
archive – loses monotonicity guarantee

Combined with NEAT and applied to 
coevolve Pong players [Monroy et al. 
2006]

Test-Based Problems

Candidate solutions are tested by 
interacting with other entities, as in:

TestCandidateDomain

Second playerFirst playerStrategy 
learning

InputFunction or 
model

Function/model 
regression

Data pointClassifierClassification

Unsorted listSorting networkDesign



Pareto Coevolution

Maintains two populations, candidate 
solutions and tests

Candidates are compared using Pareto 
dominance: A dominates B if it does at least 
as well as B against all tests and better on 
at least one

Tests are compared using distinctions
[Ficici & Pollack 2001] or informativeness
[Bucci & Pollack 2003] 

Solution set is non-dominated front of 
candidates and an informative set of tests

Shows a Distinction

TestsCandidates

Shows No Distinction

TestsCandidates

Informative

TestsCandidates



Differently Informative

TestsCandidates

Uninformative

TestsCandidates

Differently Uninformative

TestsCandidates

Reducing the Number of Tests

Ideal Test Set [Bucci & Pollack 2003]

Complete Evaluation Set [de Jong & Pollack 
2004]

[de Jong & Pollack 2004] posited the 
existence of multiple underlying objectives
akin to fitness functions

[Bucci et al. 2004] grounded the idea as 
coordinate systems (informative dimensions)



Dimension Extraction

Coordinate systems collect several tests 
into a composite axis

Set of axes forms a coordinate system 
analogous to a basis for a vector space

[Bucci et al. 2004] proved coordinate 
systems exist and gives a polynomial-time 
algorithm to extract one

[de Jong & Bucci 2006] gave a CEA, DECA, 
which extracts coordinate systems from 
populations to inform selection

Dimension Extraction

Population 2 (T)
Population 1 (S)

t1 t2 t+

t3

t+ s4

s1

s3

s2

2-d coordinate system extracted 
from a population

Reducing the Amount of Testing: 
EEA

• Estimation-Exploration Algorithm [Lipson 
et al. 2005]

• Candidates are models of a system

• Tests are probes of the real system 
(assumed to be expensive)

• Aim is to evolve a model of the real system 
using as few probes as possible

Main Themes

Interaction

Game
Theory

Elaboration

Strategy
Sets

Mono-
tonicity

CCEA

Represen-
tation



Cooperative Coevolution
[Potter & De Jong 1994]

• Monolithic problem may be too difficult

Monolithic ProblemMonolithic Problem

Cooperative Coevolution
[Potter & De Jong 1994]

• Decompose into mosaic of semi-
independent sub-problems

Subprob. 2Subprob. 2 Sub. 4Sub. 4

Subproblem 1Subproblem 1

Subproblem 3Subproblem 3

Cooperative Coevolution
[Potter & De Jong 1994]

Subprob. 2Subprob. 2 Sub. 4Sub. 4

Subproblem 1Subproblem 1

Subproblem 3Subproblem 3

Pop. 1

Pop. 2

Pop. 3

Pop. 4

Cooperative Coevolutionary
Algorithms (CCEAs)

[Potter & De Jong 1994] argued that 
CCEAs optimize functions

[Wiegand 2003] argued they do not 
optimize functions, but rather optimize for 
robustness.

Used EGT to argue certain Nash equilibria
are preferred

Same work suggested biasing CCEA such 
that they do optimize



Biasing CCEA Towards 
Optimization

[Panait et al.  2004] aimed to bias the 
CCEA by mixing evaluation with another 
term biasing towards its optimal evaluation

[Bucci & Pollack 2005] used Pareto 
dominance comparison with no bias term; 
collaborators were tests

[Panait et al. 2006] proposed an archive of 
good collaboration choices, iCCEA

Analyzing Collaboration Schemes
[Popovici & De Jong 2005]

Best response curves are a property of a 
problem

In CCEA, intersection points of best 
response curves are Nash equilibria

Trajectories of individuals is a propety of 
an algorithm; e.g., the collaboration scheme

Trajectories which land at best response 
curve intersection points get stuck even if 
they are suboptimal

Analyzing Collaboration Schemes
[Popovici & De Jong 2005]

Population 1

P
o
p
u
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ti
o
n
 2 Global optimum

NeuroEvolution of Augmenting 
Topologies (NEAT)

Evolves increasingly complex neural 
network topologies [Stanley & Miikkulainen
2004]

Mutations occasionally add new structure

Speciation protects innovative structures

In combination, these mechanisms support 
elaboration



Alteration vs. Elaboration

Alteration alone may damage capabilities
Elaboration accumulates capabilities
Can we abstract this idea?

Progress in Coevolution

A core theme in coevolution research: 
How to ensure progress—is it possible?

Evaluation: individual interacts with others

Measured quality of an individual is function 
of which other individuals interact with it

Constantly shifting landscape!

Open-ended search spaces problematic

Progress in Coevolution

Monitoring progress

Miller & Cliff 1994

Floreano & Nolfi 1997

Rosin 1997

Stanley & Miikkulainen 2002

Bader-Natal & Pollack 2004, 2005

Approach

Examine the issue of progress from 
viewpoint of solution concepts

Some solution concepts intrinsically 
“support” monotonic progress

Not a value judgment—use whatever 
solution concept is appropriate

But something to be aware of!



Desirable Property

As your knowledge of a search-space 
increases...

... your estimations of a solution should 
improve

The longer the algorithm runs, 
the better the output should be!

(Experience tells us this is not the case in coev.)

As your knowledge of a search-space 
increases...

... your estimations of a solution should 
improve

Desirable Property

As your knowledge of a search-space 
increases...

... your estimations of a solution should 
improve

Desirable Property

As your knowledge of a search-space 
increases...

... your estimations of a solution should 
improve

Desirable Property



As your knowledge of a search-space 
increases...

... your estimations of a solution should 
improve

Desirable Property Monotonic Improvement

. . 
.

. . 
.

Complete
Knowledge

Global
Solution

Knowledge

Estimations

Monotonic Improvement

. . 
.

. . 
.

Complete
Knowledge

Global
Solution

Possible in coevolution when 
used to solve game of strategy?

Reasoning

•Should get monotonic improvement because...

Knowledge of strategy space strictly increasing

Evaluation increasingly comprehensive

. . 
.

. . 
.



Reasoning

•Might not get monotonic improvement because...

Evaluation never fully complete

New strategy may radically shift evaluations

. . 
.

. . 
.

Shift of Perspective

1.Begin with Rock

2.Discover Paper; Rock loses to Paper

3.Then discover Scissors; Paper loses, Rock 
wins

Paper appears to lose quality; Rock gains it

Directional improvement ill-defined 
concept

Depends on Solution Concept

•If solution concept is “monotonic”...

then monotonic increase in knowledge Χ

monotonic improvement of estimation

. . 
.

. . 
.

will be a solution to any Y where

X 萎 Y 萎 Z

is solution to X and Z, where X 萎 ZIf

Monotonicity

With a monotonic solution concept...

Then



not solution to some game D, where C 萎 D 萎 E

Then solution concept is non-monotonic

solution to games C and E, where C 萎 E

Monotonicity

A
B

C
D

E

Monotonicity

A monotonic solution concept means:

once you discard an estimation in favor of 
another...

you will never return the to earlier estimation

... regardless of whatever new strategies you 
discover in the future

Non-monotonic solution concept means:

you may return to an estimation from some 
earlier point in time as you discover new 
strategies

Monotonic Solution Concepts

Solution concepts that are monotonic

Nash equilibrium

Pareto optimality, but only if you exclude newly 
discovered strategies that appear identical to 
ones previously discovered

Non-monotonic

Maximal expected payoff; best response

This notion of monotonicity subsumes 
that of [de Jong 2005]
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[Watson and Pollack, 2000], [Ficici and Pollack, 2001],
[Ashlock et al., 2004], [Bucci and Pollack, 2002], [Bucci and Pollack, 2003],
[de Jong and Pollack, 2003], [Bucci et al., 2004], [de Jong, 2004a],
[de Jong, 2004b], [Bongard and Lipson, 2005], [de Jong and Bucci, 2006]

1 c©2007 by Sevan G. Ficici and Anthony Bucci

1



5 Pareto Coevolution

[Watson and Pollack, 2000], [Ficici and Pollack, 2001],
[Noble and Watson, 2001], [Bucci and Pollack, 2002],
[Bucci and Pollack, 2003], [de Jong and Pollack, 2003], [Bucci et al., 2004],
[de Jong, 2004a], [de Jong, 2004b], [Bongard and Lipson, 2005],
[de Jong and Bucci, 2006], [Watson, 2006]

6 Archive Methods, design and use

[Rosin and Belew, 1997], [Stanley and Miikkulainen, 2002a],
[Ficici and Pollack, 2003], [de Jong, 2004a], [de Jong, 2004b],
[Monroy et al., 2006]

7 Progress in Coevolution

[Miller and Cliff, 1994], [Floreano and Nolfi, 1997],
[Bader-Natal and Pollack, 2004], [de Jong, 2005],
[Bader-Natal and Pollack, 2005], [Ficici, 2005]

8 Cooperative Coevolution

[Potter and Jong, 1994], [Potter and Jong, 2000], [Wiegand et al., 2001],
[Wiegand et al., 2002b], [Wiegand et al., 2002a], [Wiegand et al., 2003],
[Wiegand, 2003], [Jansen and Wiegand, 2004], [Panait et al., 2004],
[Bucci and Pollack, 2005], [Popovici and De Jong, 2005a],
[Popovici and De Jong, 2005b], [Popovici and De Jong, 2006c],
[Popovici and De Jong, 2006b], [Popovici and De Jong, 2006a]

9 Markov Analyses

[Bull, 2001], [Schmitt, 2003a], [Schmitt, 2003b]

10 No Free Lunch

[Wolpert and Macready, 1997], [Wolpert and Macready, 2005]

2



References

[Ashlock et al., 2006] Ashlock, D., Kim, E.-Y., and Leahy, N. (2006). Under-
standing representational sensitivity in the iterated prisoners dilemma with
fingerprints. IEEE Transactions on System, Man, and Cybernetics—Part C:
Applications and Reviews, 36(4):464–475.

[Ashlock et al., 2004] Ashlock, D., Willson, S., and Leahy, N. (2004). Coevolu-
tion and tartarus. In Proceedings of the 2004 IEEE Congress on Evolutionary
Computation, pages 1618–1624. IEEE Press.

[Bader-Natal and Pollack, 2004] Bader-Natal, A. and Pollack, J. (2004). A
population-differential method of monitoring success and failure in coevo-
lution. In Proceedings of the 2004 Genetic and Evolutionary Computation
Conference. Springer.

[Bader-Natal and Pollack, 2005] Bader-Natal, A. and Pollack, J. (2005). To-
wards metrics and visualizations sensitive to coevolutionary failures. In 2005
AAAI Fall Symposium on Coevolutionary and Coadaptive Systems. AAAI.
AAAI Technical Report FS-05-03.

[Bongard and Lipson, 2005] Bongard, J. C. and Lipson, H. (2005). Nonlinear
system identification using coevolution of models and tests. IEEE Transac-
tions on Evolutionary Computation, 9(4):361–383.

[Bucci et al., 2004] Bucci, A., Pollack, J., and de Jong, E. (2004). Automated
extraction of problem structure. In Proceedings of the 2004 Genetic and
Evolutionary Computation Conference. Springer Verlag.

[Bucci and Pollack, 2002] Bucci, A. and Pollack, J. B. (2002). Order-theoretic
analysis of coevolution problems: Coevolutionary statics. In Barry, A. M.,
editor, 2002 Genetic and Evolutionary Computation Conference Workshop
Program, pages 229–235.

[Bucci and Pollack, 2003] Bucci, A. and Pollack, J. B. (2003). A mathematical
framework for the study of coevolution. In De Jong, K. A., Poli, R., and
Rowe, J. E., editors, Proceedings of the Foundations of Genetic Algorithms
2003 Workshop (FOGA 7), pages 221–235. Morgan Kaufmann Publishers.

[Bucci and Pollack, 2005] Bucci, A. and Pollack, J. B. (2005). On identifying
global optima in cooperative coevolution. In GECCO 2005: Proceedings of the
2005 conference on Genetic and evolutionary computation, volume 1, pages
539–544. ACM Press.

[Bucci and Pollack, 2007] Bucci, A. and Pollack, J. B. (2007). Thoughts on
solution concepts. In GECCO 2007: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, London. ACM Press. Forthcoming.

[Bull, 2001] Bull, L. (2001). On coevolutionary genetic algorithms. Soft Com-
puting, 5(3):201–207.

3
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