

Conventional Coevolution

Main Themes

Interaction

- To evaluate an individual in coevolution, we must have it <u>interact</u> with others
- The outcome of evaluation is <u>contingent</u> upon <u>whom</u> the individual interacts with
- The individual may appear good in one context and poor in another context
- This context sensitivity is game theoretic in nature
- Solutions may be <u>sets</u> of individuals

Elaboration

- We want the evolving individuals to improve over evolutionary time
- Coevolutionary "arms race" is an example
- Improvement can be viewed as an accumulation of competences, or elaboration
- We will discuss different forms of elaboration

Main Topics

Game theory

- O game, strategies, payoffs
- O solution concepts: implementation
- Strategy sets
 - O Mixtures, Pareto front, archives, ...
- Representation
- Monotonic improvement over time

Game Theory

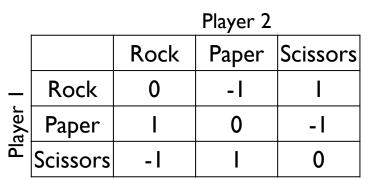
- Mathematics of strategic reasoning [Fundenberg & Tirole 1998]
- If we have a number of interacting agents...
 - O How <u>will</u> they behave; what will be outcome?
 - O If we interact, how <u>should</u> we behave?
- Provides descriptive <u>predictions</u> of how players will behave
- Provides prescriptive (normative) instructions on how to behave

Motivation: Coevolutionary Pathologies

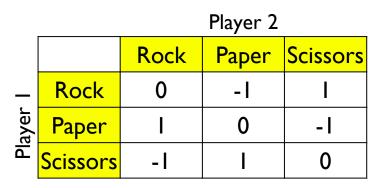
- Cycling: algorithm revisits a portion of state-space periodically—no progress
- Disengagement: loss of fitness gradient
- Overspecialization: lack of elaboration
- **Example 1** Forgetting: loss of potentially useful traits
- Relative overgeneralization: favoring of versatile components over those of optimal solution

Game Theory

- Provides predictions and instructions about behavior
- Assumes all agents are rational, selfish
- Nash equilibrium [Nash 1951]
 - A configuration of strategic choices such that no player has incentive to deviate unilaterally from its current strategy
 - All finite games have at least one Nash equilibrium

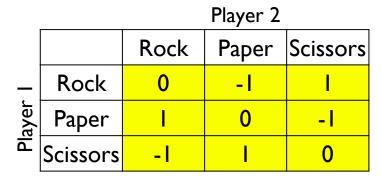

Game Theory: Components

- Game specifies for each player...
 - O strategies that are available
 - <u>outcomes</u> that result for each strategy when interacting with other players' strategies


Solution concept

formal specification of what configuration of players' behaviors (strategies) constitutes a solution to the game

Rock Paper Scissors


Rock Paper Scissors

Pure strategies: rock, paper, scissors

Mixed strategy: any probability distribution over pure strategies

Rock Paper Scissors

- Payoffs (outcomes) for all possible purestrategy interactions
- For mixed strategies, we calculated expected payoffs based on probability distributions used

Rock Paper Scissors

		Player 2		
		Rock	Paper	Scissors
Player I	Rock	0	- 1	I
	Paper	I	0	- 1
	Scissors	-1	I	0

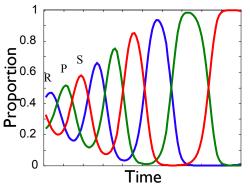
Rock > Scissors > Paper > Rock
 No pure strategy is universally best
 Solving this game requires a <u>set</u> of strategies

Rock Paper Scissors

		•			
	Player 2				
		Rock	Paper	Scissors	
_	Rock	0	- 1	I	
layer	Paper	I	0	-	
Ē	Scissors	-	I	0	
 Nash equilibrium strategy is mixed R, P, S each played with probability = 1/3 expected payoff of Nash player is zero, regardless of what other player does expected payoff of other player is also zero, regardless of what it does 					
Interaction and Elaboration From the outcomes of pure-strategy interaction					
we find that no single pure strategy provides all needed competences					
The Nash mixed-strategy					
c	O is a set of pure strategies				
O and represents an elaboration of pure-strategies					

Solution Concept

Specifies <u>properties</u> of a solution •(not the solution itself)


But must be implemented in search algorithm

Incorrect implementation of solution concept will cause search algorithm to diverge from desired solution properties

Solution Concept

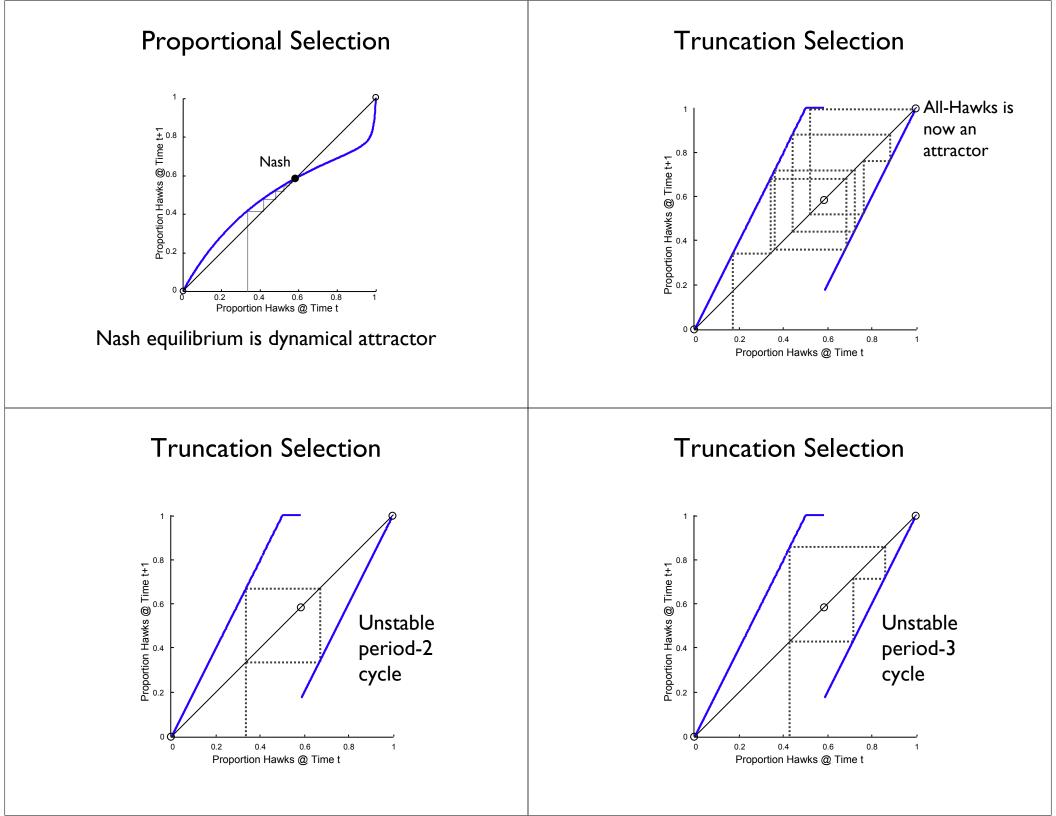
- Examples where algorithm fails to implement Nash equilibrium in a game
 - Proportional selection and Rock-Paper-Scissors: mixed Nash equilibrium? [Hofbauer & Sigmund 1998]
 - Alternative selection methods and Hawk-Dove game [Ficici et al. 2000, 2005]
 - O Diversity maintenance methods and Hawk-Dove game [Ficici 2001]

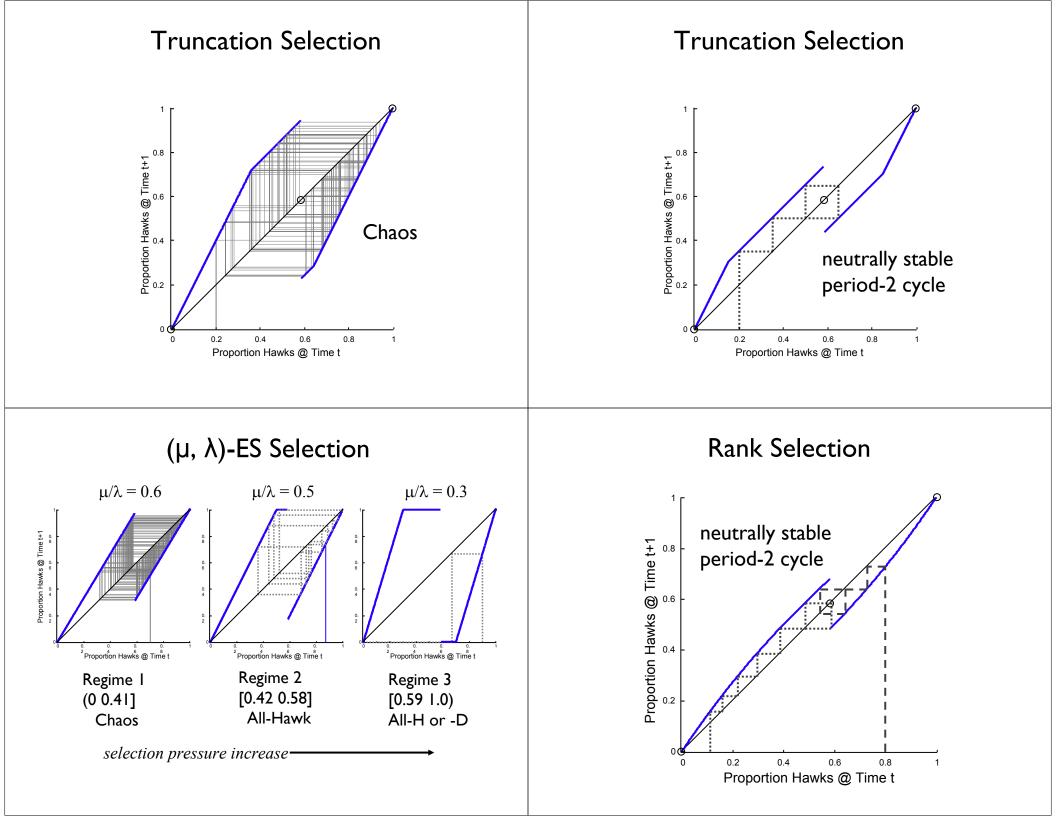
Rock-Paper-Scissors

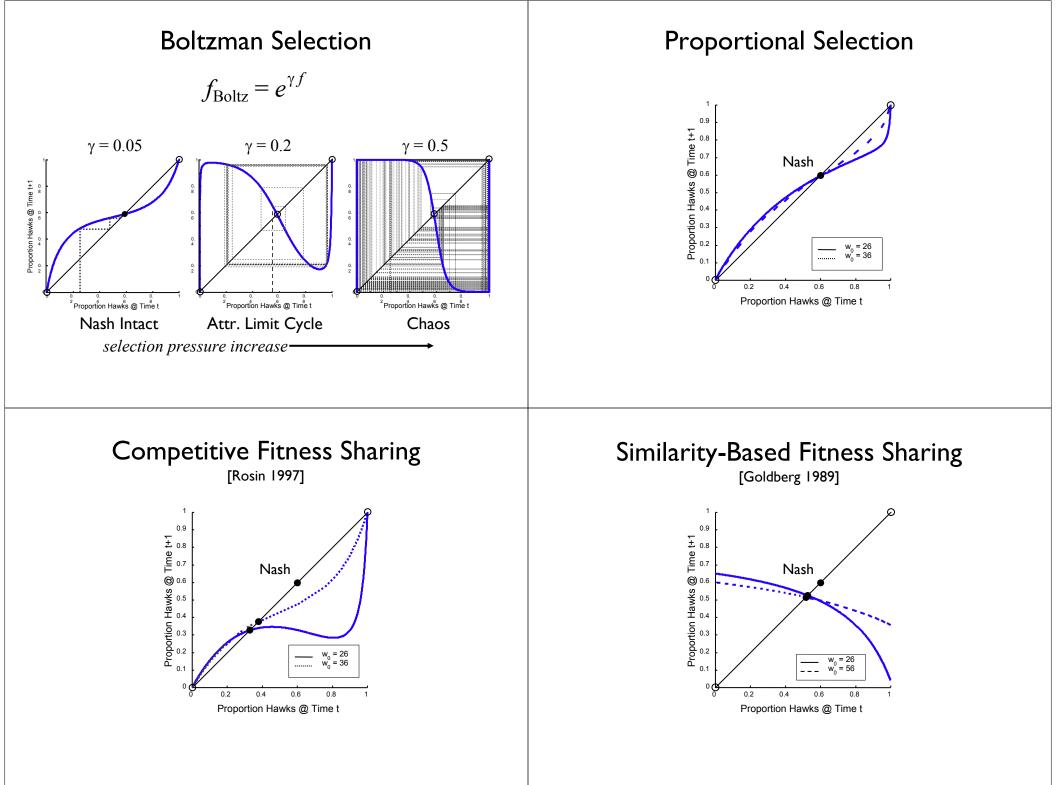
Under fitness-proportional selection...

- Nash equilibrium represented as polymorphic population of pure-strategists is unstable
- O Nash equilibrium also unstable for mixed strategists

Nash concept not properly implemented here


Hawk-Dove Game


[Maynard Smith 1982]


	Hawk	Dove
Hawk	-25	50
Dove	0	15

Nash equilibrium strategy for these payoffs:

- **O** 7/12 Hawk, 5/12 Dove
- O probability distribution for a mixed strategy...
- OR proportions for polymorphic population of pure-strategists

Discussion

- We use different selection methods and diversity-maintenance methods to improve search for a particular domain
- Evolving population expected to both:
 - O contain sufficient genetic diversity for search
 - represent solution to search task (may be a polymorphism)
- These tasks not necessarily orthogonal
- Above illustrates pitfalls

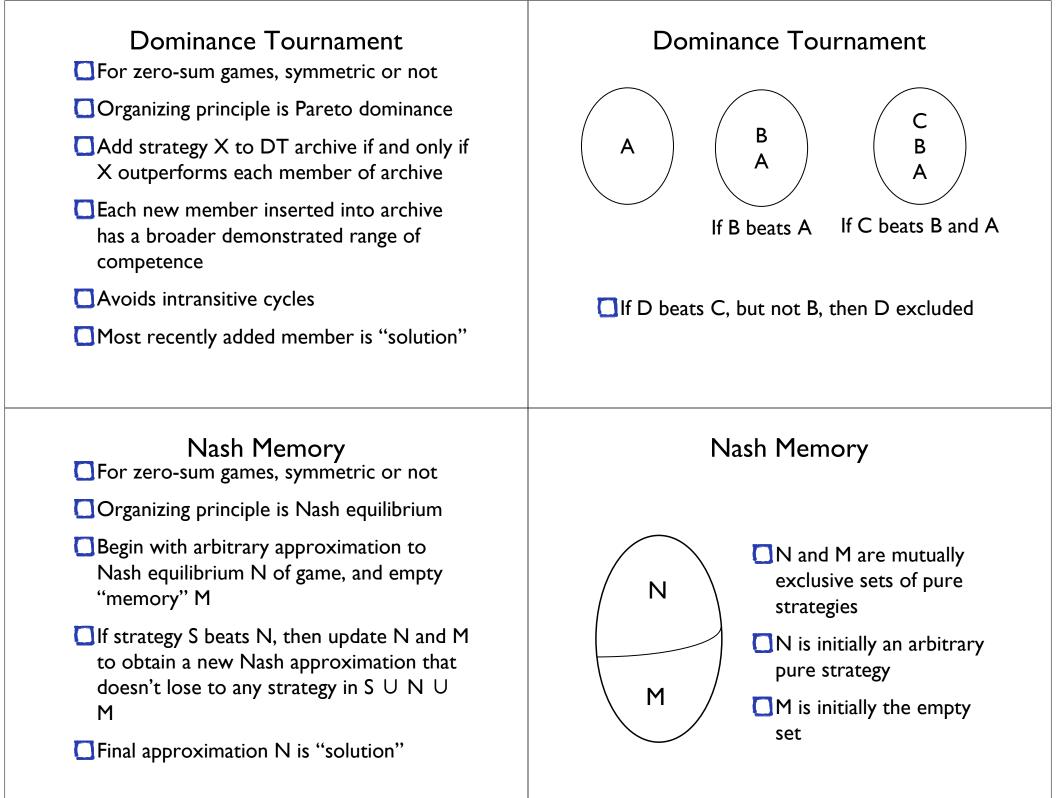
Discussion

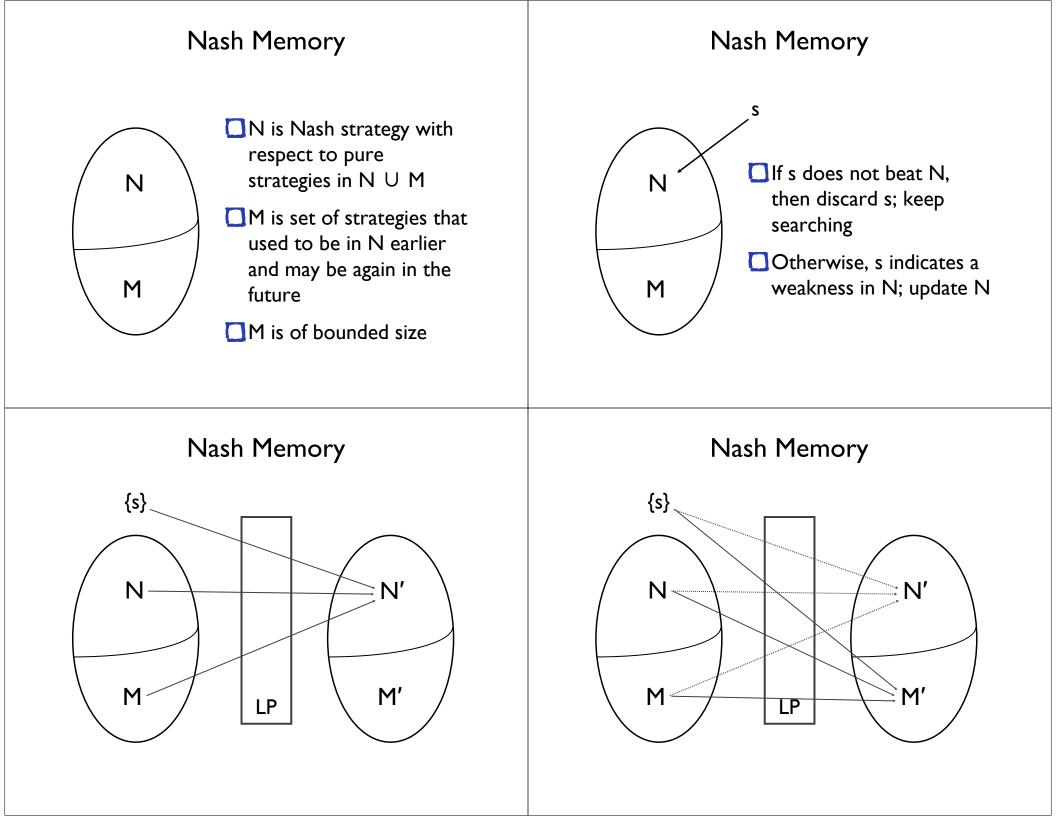
Why not separate tasks?

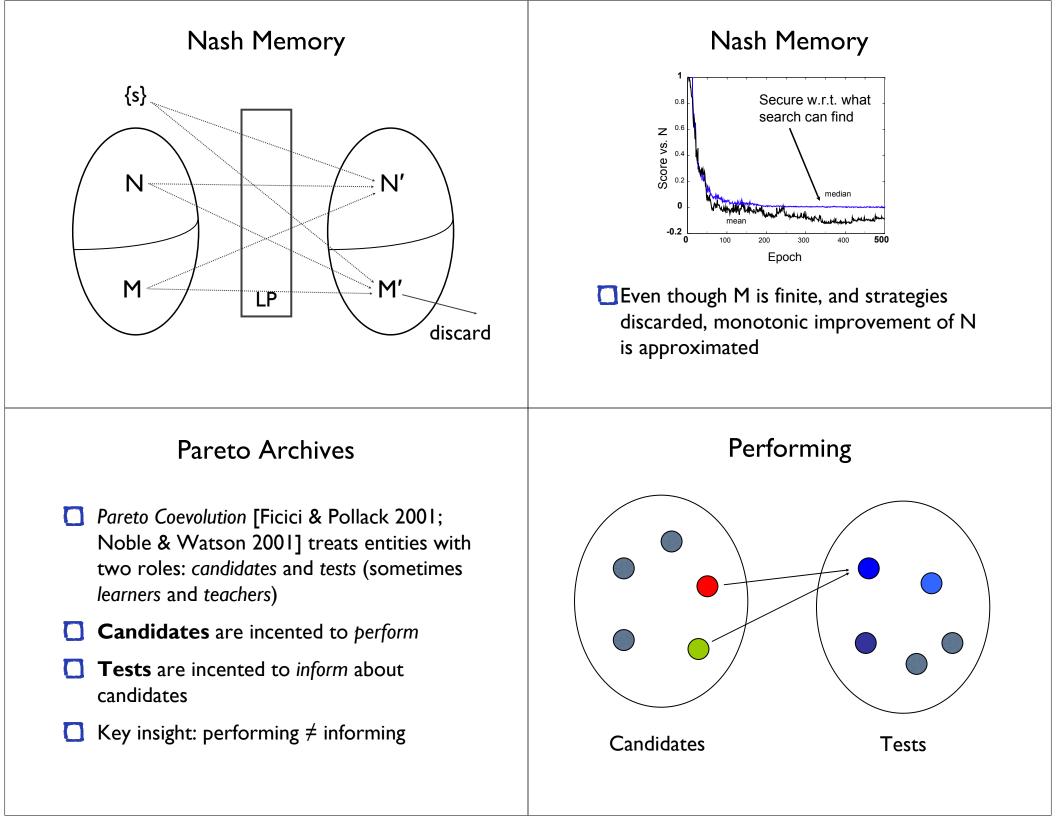
Let population perform search

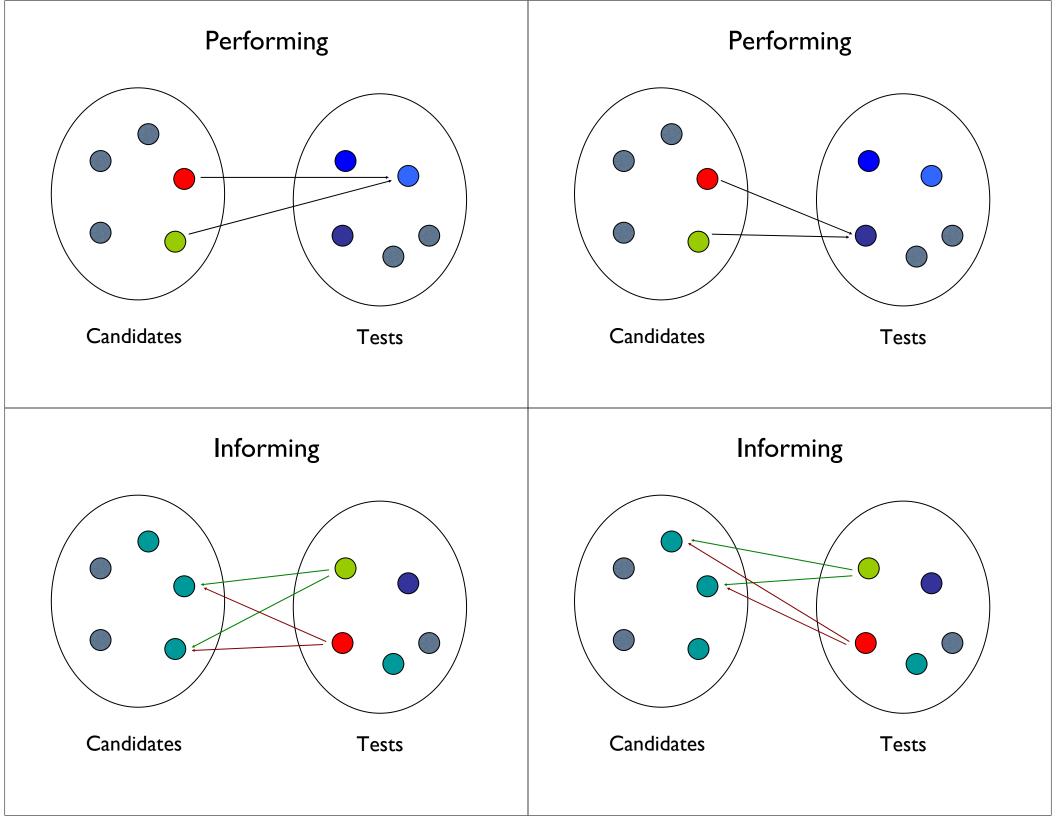
Let another mechanism (not population) represent best solution found so far

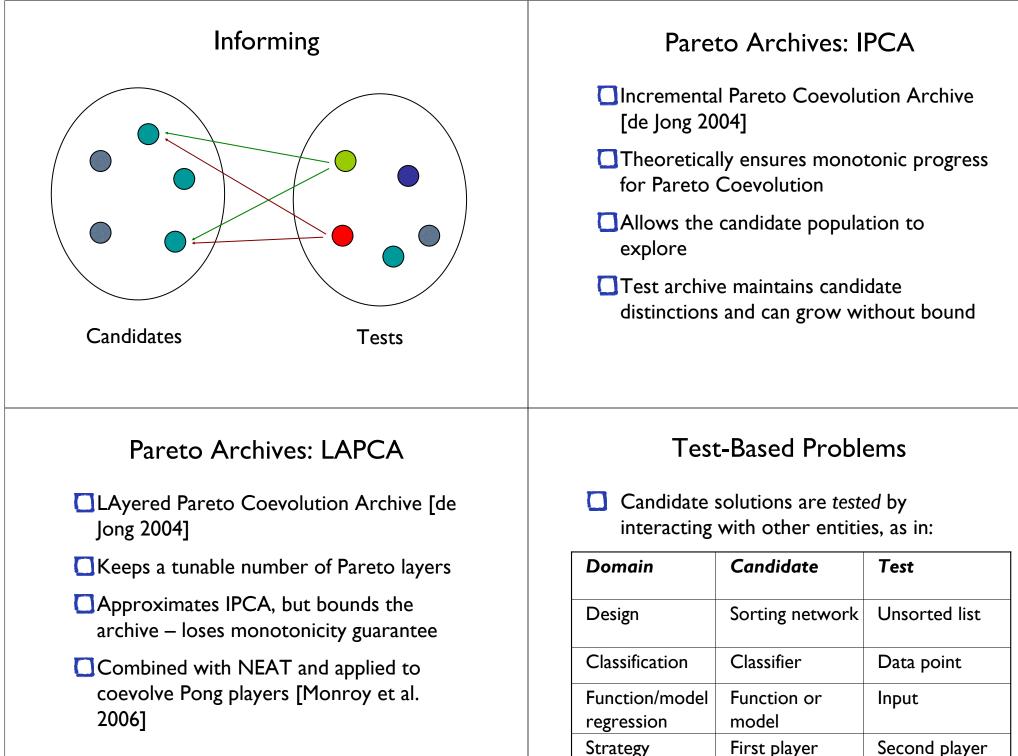
Leads us to <u>archive methods</u>

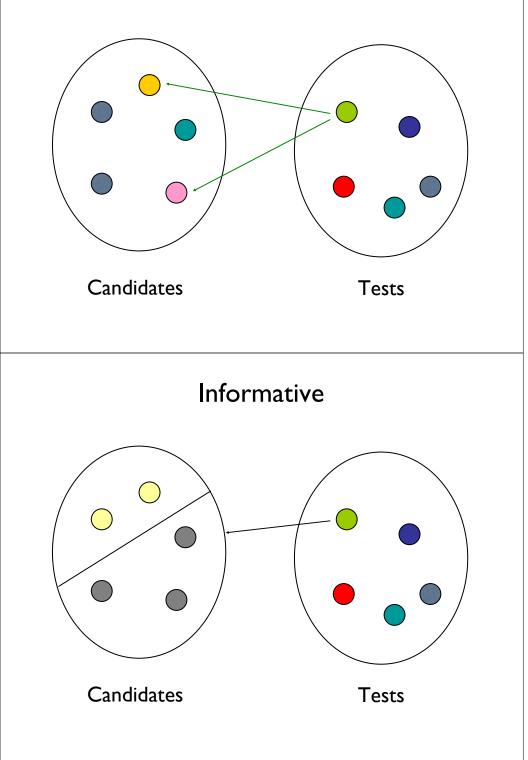

Archive Methods

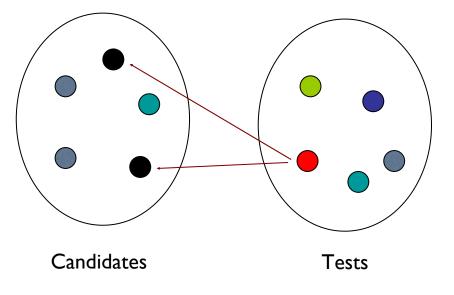

Archives provide a way to

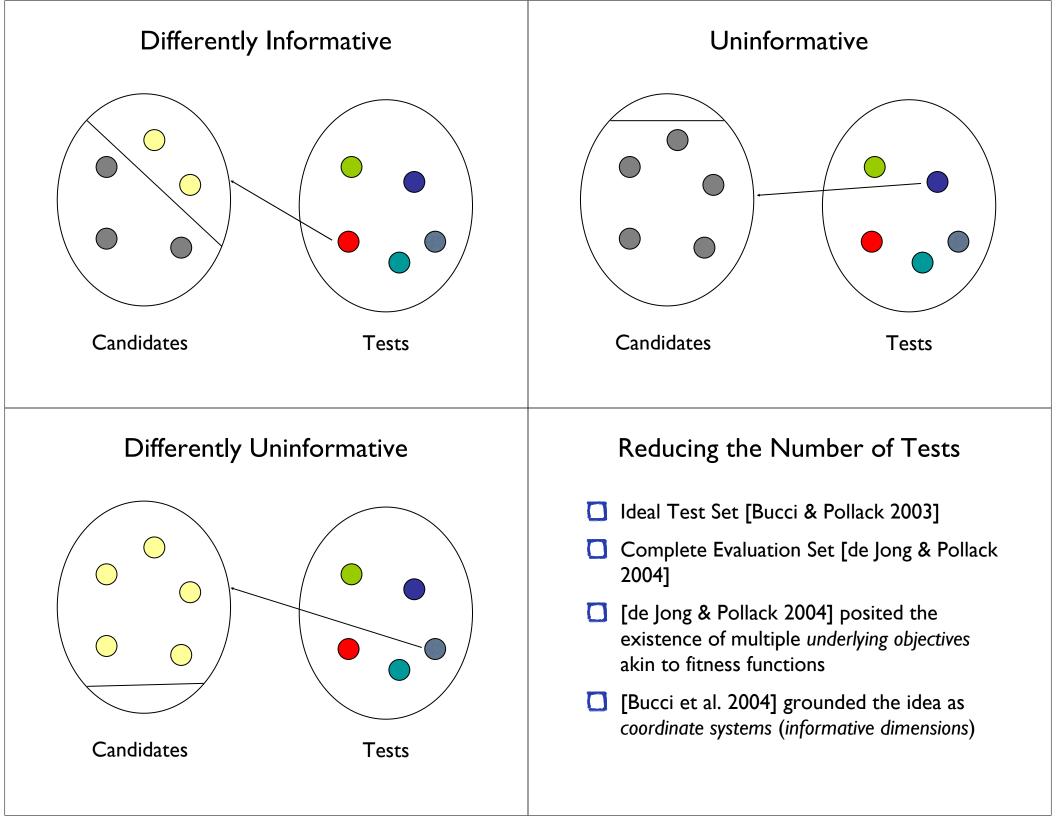

- collect (according to some organizing priniple)
 "good" individuals over evolutionary time
- encapsulate wider phenotypic range (than a population contains at any one moment in time)
- broaden evaluation (and selection pressure) via augmented phenotypic diversity
- O ameliorate evolutionary forgetting
- O represent the result of the evolutionary process


Archive Methods


- Hall-of-Fame [Rosin & Belew 1997]
 - O accumulate fittest of each generation
 - sample k members for testing current generation
 - Shown to help, but weak organizing principle
- Dominance Tournament [Stanley & Miikkulainen 2002]
- Nash memory [Ficici & Pollack 2003]
- Pareto archives [de Jong 2004]

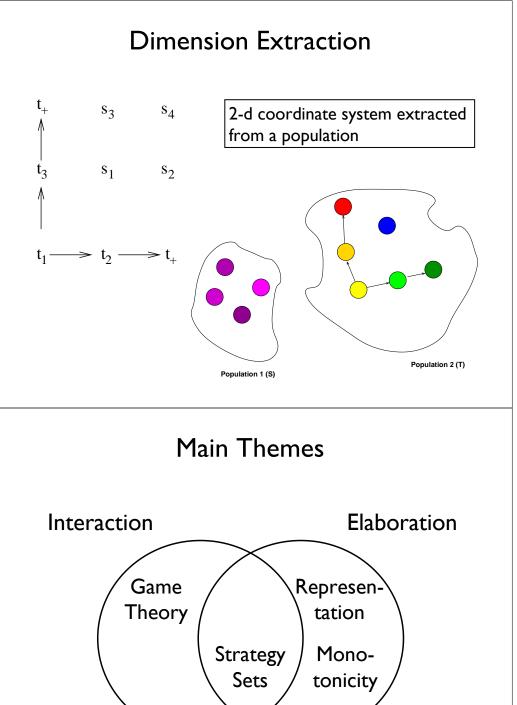

learning


Pareto Coevolution

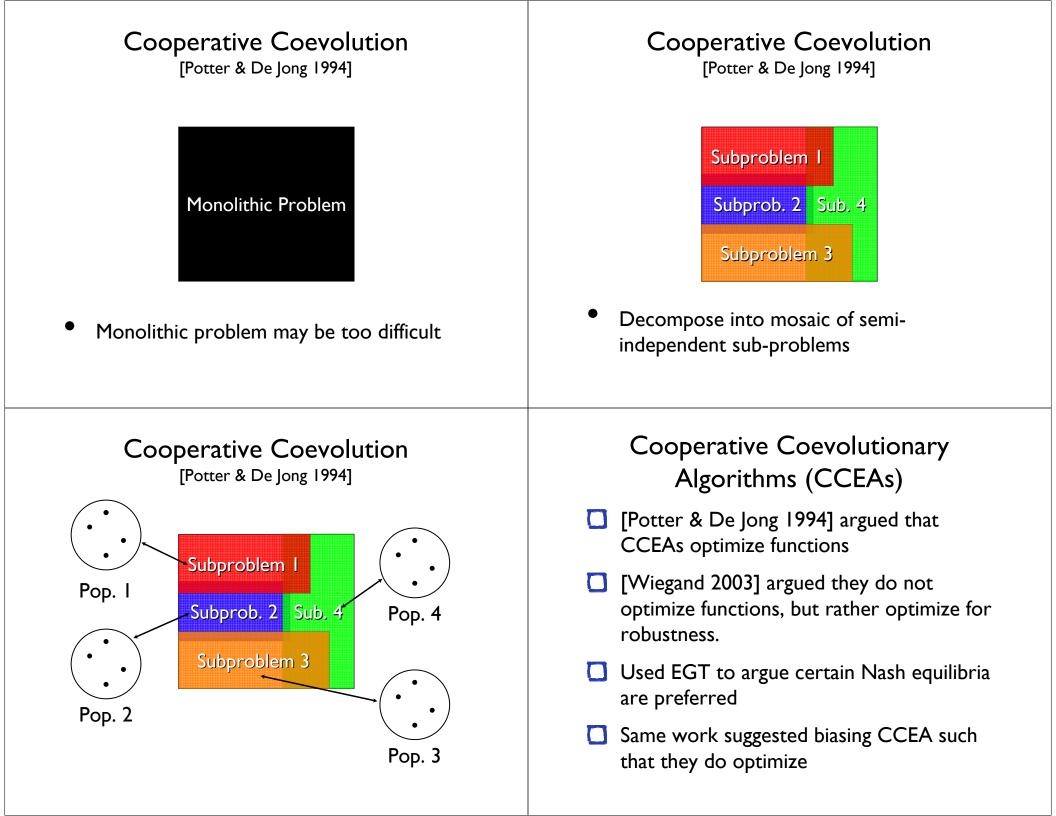

- Maintains two populations, candidate solutions and tests
- Candidates are compared using Pareto dominance: A dominates B if it does at least as well as B against all tests and better on at least one
- Tests are compared using distinctions [Ficici & Pollack 2001] or informativeness [Bucci & Pollack 2003]
- Solution set is non-dominated front of candidates and an informative set of tests

Shows No Distinction

Shows a Distinction



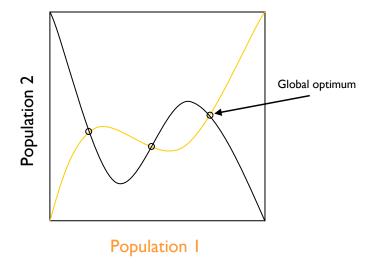
Dimension Extraction


- Coordinate systems collect several tests into a composite axis
- Set of axes forms a coordinate system analogous to a basis for a vector space
- [Bucci et al. 2004] proved coordinate systems exist and gives a polynomial-time algorithm to extract one
- [de Jong & Bucci 2006] gave a CEA, DECA, which extracts coordinate systems from populations to inform selection

Reducing the Amount of Testing: EEA

- Estimation-Exploration Algorithm [Lipson et al. 2005]
- Candidates are models of a system
- **Tests** are probes of the real system (assumed to be expensive)
- Aim is to evolve a model of the real system using as few probes as possible

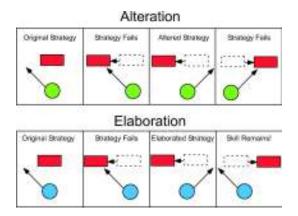
CCEA


Biasing CCEA Towards Optimization

- [Panait et al. 2004] aimed to bias the CCEA by mixing evaluation with another term biasing towards its optimal evaluation
- [Bucci & Pollack 2005] used Pareto dominance comparison with no bias term; collaborators were tests
- [Panait et al. 2006] proposed an archive of good collaboration choices, iCCEA

Analyzing Collaboration Schemes [Popovici & De Jong 2005]

- Best response curves are a property of a problem
- In CCEA, intersection points of best response curves are Nash equilibria
- Trajectories of individuals is a propety of an algorithm; e.g., the collaboration scheme
- Trajectories which land at best response curve intersection points get stuck even if they are suboptimal


Analyzing Collaboration Schemes [Popovici & De Jong 2005]

NeuroEvolution of Augmenting Topologies (NEAT)

- Evolves increasingly complex neural network topologies [Stanley & Miikkulainen 2004]
- Mutations occasionally add new structure
- **Speciation protects innovative structures**
- In combination, these mechanisms support elaboration

Alteration vs. Elaboration

Alteration alone may damage capabilities Elaboration accumulates capabilities Can we abstract this idea?

Progress in Coevolution

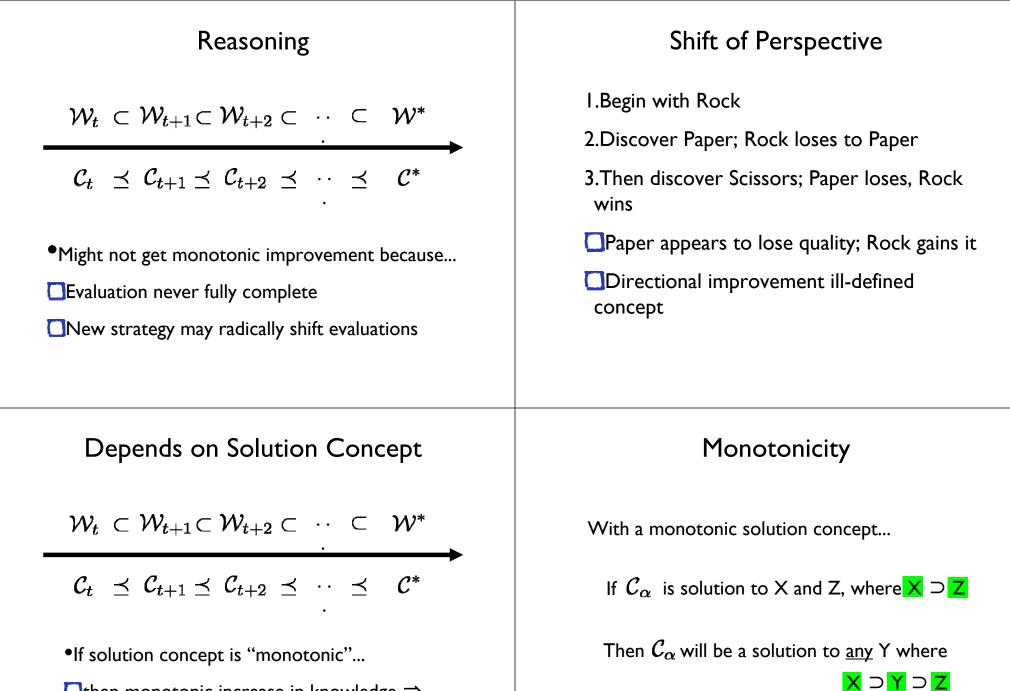
Monitoring progress

- O Miller & Cliff 1994
- C Floreano & Nolfi 1997
- **O** Rosin 1997
- O Stanley & Miikkulainen 2002
- O Bader-Natal & Pollack 2004, 2005

Progress in Coevolution

- A core theme in coevolution research: How to ensure progress—is it possible?
- Evaluation: individual interacts with others
- Measured quality of an individual is function of which other individuals interact with it

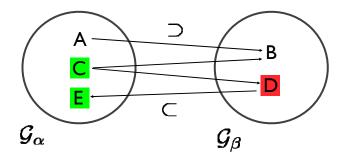
Constantly shifting landscape!


Open-ended search spaces problematic

Approach

- Examine the issue of progress from viewpoint of solution concepts
- Some solution concepts intrinsically "support" monotonic progress
- Not a value judgment—use whatever solution concept is appropriate
- But something to be aware of!

Desirable Property	Desirable Property	
 As your knowledge of a search-space increases your estimations of a solution should improve The longer the algorithm runs, the better the output should be! (Experience tells us this is not the case in coev.) 	 P As your knowledge of a search-space increases your estimations of a solution should improve 	
Desirable Property	Desirable Property	
 <i>P</i> As your knowledge of a search-space increases <i>W</i> ⊂ <i>P</i> your estimations of a solution should improve 	\mathcal{P} \square As your knowledge of a search-space increases $\mathcal{W} \subset \mathcal{P}$ \square your estimations of a solution should improve $\mathcal{C} \in \mathcal{P}$ $\mathcal{C} \in 2^{\mathcal{P}}$	


Desirable Property	Monotonic Improvement	
$ \begin{array}{c} \mathcal{P} \\ \blacksquare \text{ As your knowledge of a search-space} \\ \text{ increases } \mathcal{W} \subset \mathcal{P} \\ \blacksquare \text{ your estimations of a solution should} \\ \end{array} $	Complete Knowledge $\mathcal{W}_t \subset \mathcal{W}_{t+1} \subset \mathcal{W}_{t+2} \subset \cdots \subset \mathcal{W}^*$	
improve $\mathcal{C} \in \mathcal{P}$ $\mathcal{C} \in 2^{\mathcal{P}}$	$egin{array}{cccc} \mathcal{C}_t & \preceq & \mathcal{C}_{t+1} \preceq & \mathcal{C}_{t+2} & \preceq & \cdots & \preceq & \mathcal{C}^* & & & & & & & & & & & & & & & & & & &$	
Monotonic Improvement	Reasoning	
$egin{array}{c} { m Complete}\ { m Knowledge}\end{array} \ \mathcal{W}_t\ \subset\ \mathcal{W}_{t+1}\!\subset\ \mathcal{W}_{t+2}\subset\ \cdots\ \subset\ \mathcal{W}^* \end{array}$	$\mathcal{W}_t \subset \mathcal{W}_{t+1} \subset \mathcal{W}_{t+2} \subset \cdots \subset \mathcal{W}^*$ $\mathcal{C}_t \ \preceq \ \mathcal{C}_{t+1} \preceq \ \mathcal{C}_{t+2} \ \preceq \cdots \ \preceq \ \mathcal{C}^*$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 Should get monotonic improvement because Knowledge of strategy space strictly increasing Evaluation increasingly comprehensive 	

 $\Box then monotonic increase in knowledge \Rightarrow$

monotonic improvement of estimation

Monotonicity

 C_{α} solution to games **C** and **E**, where **C** \supset **E** C_{α} not solution to some game **D**, where **C** \supset **D** \supset **E** Then solution concept is <u>non-monotonic</u>

Monotonicity

- A monotonic solution concept means:
 - once you discard an estimation in favor of another...
 - O you will never return the to earlier estimation
 - ... regardless of whatever new strategies you discover in the future
- Non-monotonic solution concept means:
 - you may return to an estimation from some earlier point in time as you discover new strategies

Monotonic Solution Concepts

Solution concepts that are monotonic

- O Nash equilibrium
- Pareto optimality, but only if you exclude newly discovered strategies that <u>appear</u> identical to ones previously discovered

Non-monotonic

Maximal expected payoff; best response

This notion of monotonicity subsumes that of [de Jong 2005]

Advanced Tutorial on Coevolution—References¹

1 Background

1.1 Game Theory

[Fudenberg and Tirole, 1998], [Nash, 1951]

1.2 Dynamical Systems

[Strogatz, 1994]

2 Solution Concepts

[Fudenberg and Tirole, 1998], [Ficici, 2004], [de Jong, 2005], [Bucci and Pollack, 2007], [Wiegand, 2003]

2.1 Solution Concept and Evolutionary Dynamics

[Maynard-Smith and Price, 1973],[Maynard-Smith, 1982],[Fogel and Fogel, 1995],[Fogel et al., 1997],[Fogel et al., 1998],[Hofbauer and Sigmund, 1998],[Liekens et al., 2004],[Ficici et al., 2005],[Ficici, 2006],[Ficici and Pollack, 2007]

3 Representation

[Moriarty and Miikkulainen, 1997], [Stanley and Miikkulainen, 2002b], [Stanley and Miikkulainen, 2004], [Ashlock et al., 2006]

4 Evaluation

[Bull, 2001],[Panait et al., 2004],[Popovici and De Jong, 2005a],[Popovici and De Jong, 2005b],[Popovici and De Jong, 2006c],[Popovici and De Jong, 2006b],[Popovici and De Jong, 2006a]

4.1 Test-Based Evaluation

[Juillé and Pollack, 1996b],[Juillé and Pollack, 1996b],[Juillé and Pollack, 1998],[Juillé, 1999],[Watson and Pollack, 2000],[Juillé and Pollack, 2000],[Ashlock et al., 2004],[Bucci and Pollack, 2002],[de Jong and Pollack, 2003],[Bucci et al., 2004],[de Jong, 2004b],[Bongard and Lipson, 2005],[de Jong and Bucci, 2006]

 $^{^1 @2007}$ by Sevan G. Ficici and Anthony Bucci

5 Pareto Coevolution

[Watson and Pollack, 2000],[Ficici and Pollack, 2001],[Noble and Watson, 2001],[Bucci and Pollack, 2002],[Bucci and Pollack, 2003],[de Jong and Pollack, 2003],[Bucci et al., 2004],[de Jong, 2004b],[de Jong and Bucci, 2006],[Watson, 2006]

6 Archive Methods, design and use

[Rosin and Belew, 1997],[Stanley and Miikkulainen, 2002a],[Ficici and Pollack, 2003],[de Jong, 2004a],[Monroy et al., 2006][de Jong, 2004a],

7 Progress in Coevolution

[Miller and Cliff, 1994], [Floreano and Nolfi, 1997], [Bader-Natal and Pollack, 2004], [de Jong, 2005], [Bader-Natal and Pollack, 2005], [Ficici, 2005]

8 Cooperative Coevolution

[Potter and Jong, 1994],[Potter and Jong, 2000],[Wiegand et al., 2001],[Wiegand et al., 2002b],[Wiegand et al., 2002a],[Wiegand et al., 2003],[Wiegand, 2003],[Jansen and Wiegand, 2004],[Panait et al., 2004],[Bucci and Pollack, 2005],[Popovici and De Jong, 2005a],[Popovici and De Jong, 2005b],[Popovici and De Jong, 2006c],[Popovici and De Jong, 2006b],[Popovici and De Jong, 2006a]

9 Markov Analyses

[Bull, 2001], [Schmitt, 2003a], [Schmitt, 2003b]

10 No Free Lunch

[Wolpert and Macready, 1997], [Wolpert and Macready, 2005]

References

- [Ashlock et al., 2006] Ashlock, D., Kim, E.-Y., and Leahy, N. (2006). Understanding representational sensitivity in the iterated prisoners dilemma with fingerprints. *IEEE Transactions on System, Man, and Cybernetics—Part C: Applications and Reviews*, 36(4):464–475.
- [Ashlock et al., 2004] Ashlock, D., Willson, S., and Leahy, N. (2004). Coevolution and tartarus. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pages 1618–1624. IEEE Press.
- [Bader-Natal and Pollack, 2004] Bader-Natal, A. and Pollack, J. (2004). A population-differential method of monitoring success and failure in coevolution. In Proceedings of the 2004 Genetic and Evolutionary Computation Conference. Springer.
- [Bader-Natal and Pollack, 2005] Bader-Natal, A. and Pollack, J. (2005). Towards metrics and visualizations sensitive to coevolutionary failures. In 2005 AAAI Fall Symposium on Coevolutionary and Coadaptive Systems. AAAI. AAAI Technical Report FS-05-03.
- [Bongard and Lipson, 2005] Bongard, J. C. and Lipson, H. (2005). Nonlinear system identification using coevolution of models and tests. *IEEE Transac*tions on Evolutionary Computation, 9(4):361–383.
- [Bucci et al., 2004] Bucci, A., Pollack, J., and de Jong, E. (2004). Automated extraction of problem structure. In *Proceedings of the 2004 Genetic and Evolutionary Computation Conference*. Springer Verlag.
- [Bucci and Pollack, 2002] Bucci, A. and Pollack, J. B. (2002). Order-theoretic analysis of coevolution problems: Coevolutionary statics. In Barry, A. M., editor, 2002 Genetic and Evolutionary Computation Conference Workshop Program, pages 229–235.
- [Bucci and Pollack, 2003] Bucci, A. and Pollack, J. B. (2003). A mathematical framework for the study of coevolution. In De Jong, K. A., Poli, R., and Rowe, J. E., editors, *Proceedings of the Foundations of Genetic Algorithms* 2003 Workshop (FOGA 7), pages 221–235. Morgan Kaufmann Publishers.
- [Bucci and Pollack, 2005] Bucci, A. and Pollack, J. B. (2005). On identifying global optima in cooperative coevolution. In *GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation*, volume 1, pages 539–544. ACM Press.
- [Bucci and Pollack, 2007] Bucci, A. and Pollack, J. B. (2007). Thoughts on solution concepts. In GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, London. ACM Press. Forthcoming.
- [Bull, 2001] Bull, L. (2001). On coevolutionary genetic algorithms. Soft Computing, 5(3):201–207.

- [Cantú-Paz et al., 2003] Cantú-Paz et al., editors (2003). 2003 Genetic and Evolutionary Computation Conference. Springer.
- [de Jong, 2004a] de Jong, E. D. (2004a). The incremental pareto-coevolution archive. In Deb, K. et al., editors, *Proceedings of the 2004 Genetic and Evolutionary Computation Conference*, LNCS 3102, pages 525–536. Springer-Verlag.
- [de Jong, 2004b] de Jong, E. D. (2004b). Towards a bounded pareto-coevolution archive. In *Proceedings of the 2004 Congress on Evolutionary Computation*, pages 2341–2348.
- [de Jong, 2005] de Jong, E. D. (2005). The maxsolve algorithm for coevolution. In Proceedings of the 2005 Genetic and Evolutionary Computation Conference. ACM.
- [de Jong and Bucci, 2006] de Jong, E. D. and Bucci, A. (2006). Deca: Dimension extracting coevolutionary algorithm. In *Proceedings of the 2006 Genetic and Evolutionary Computation Conference*.
- [de Jong and Pollack, 2003] de Jong, E. D. and Pollack, J. B. (2003). Learning the ideal evaluation function. In [Cantú-Paz et al., 2003], pages 277–288.
- [Ficici, 2006] Ficici, S. (2006). A game-theoretic investigation of selection methods in two-population coevolution. In *Proceedings of the 2006 Genetic and Evolutionary Computation Conference*. ACM Press.
- [Ficici and Pollack, 2007] Ficici, S. and Pollack, J. (2007). Evolutionary dynamics of finite populations in games with polymorphic fitness-equilibria. *Journal* of *Theoretical Biology*. forthcoming.
- [Ficici, 2004] Ficici, S. G. (2004). Solution Concepts in Coevolutionary Algorithms. PhD thesis, Brandeis University.
- [Ficici, 2005] Ficici, S. G. (2005). Monotonic solution concepts in coevolution. In Proceedings of the 2005 Genetic and Evolutionary Computation Conference, pages 499–506.
- [Ficici et al., 2005] Ficici, S. G., Melnik, O., and Pollack, J. B. (2005). A gametheoretic and dynamical-systems analysis of selection methods in coevolution. *IEEE Transactions on Evolutionary Computation*, 9(6):580–602.
- [Ficici and Pollack, 2001] Ficici, S. G. and Pollack, J. B. (2001). Pareto optimality in coevolutionary learning. In Kelemen, J. and Sosík, P., editors, *Sixth European Conference on Artificial Life (ECAL 2001)*, pages 316–325. Springer.
- [Ficici and Pollack, 2003] Ficici, S. G. and Pollack, J. B. (2003). A gametheoretic memory mechanism for coevolution. In [Cantú-Paz et al., 2003], pages 286–297.

- [Floreano and Nolfi, 1997] Floreano, D. and Nolfi, S. (1997). God save the Red Queen! Competition in co-evolutionary robotics. In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, *Proceedings of the Second Conference on Genetic Programming*, pages 398– 406. Morgan Kaufmann.
- [Fogel and Fogel, 1995] Fogel, D. B. and Fogel, G. B. (1995). Evolutionary stable strategies are not always stable under evolutionary dynamics. In *Evolutionary Programming IV*, pages 565–577.
- [Fogel et al., 1997] Fogel, D. B., Fogel, G. B., and Andrews, P. C. (1997). On the instability of evolutionary stable states. *BioSystems*, 44:135–152.
- [Fogel et al., 1998] Fogel, G. B., Andrews, P. C., and Fogel, D. B. (1998). On the instability of evolutionary stable strategies in small populations. *Ecological Modelling*, 109:283–294.
- [Fudenberg and Tirole, 1998] Fudenberg, D. and Tirole, J. (1998). Game Theory. MIT Press.
- [Hofbauer and Sigmund, 1998] Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press.
- [Jansen and Wiegand, 2004] Jansen, T. and Wiegand, R. P. (2004). The cooperative coevolutionary (1+1) ea. Evolutionary Computation, 12(4):405–434.
- [Juillé, 1999] Juillé, H. (1999). Methods for Statistical Inference: Extending the Evolutionary Computation Paradigm. PhD thesis, Brandeis University.
- [Juillé and Pollack, 1996a] Juillé, H. and Pollack, J. (1996a). Co-evolving intertwined spirals. In Fogel, L. J., Angeline, P. J., and Bäck, T., editors, *Proceedings of the Fifth Annual Conference on Evolutionary Programming*, pages 461–468. MIT Press.
- [Juillé and Pollack, 1996b] Juillé, H. and Pollack, J. (1996b). Dynamics of coevolutionary learning. In Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, pages 526–534. MIT Press.
- [Juillé and Pollack, 1998] Juillé, H. and Pollack, J. B. (1998). Coevolving the "ideal" trainer: Application to the discovery of cellular automata rules. In Koza, J. R. et al., editors, *Proceedings of the Third Annual Genetic Program*ming Conference, pages 519–527. Morgan Kaufmann.
- [Juillé and Pollack, 2000] Juillé, H. and Pollack, J. B. (2000). Coevolutionary learning and the design of complex systems. Advances in Complex Systems, 2(4):371–393.
- [Liekens et al., 2004] Liekens, A., Eikelder, H., and Hilbers, P. (2004). Predicting genetic drift in 2×2 games. In Proceedings from the Genetic and Evolutionary Computation Conference, pages 549–560.

- [Maynard-Smith, 1982] Maynard-Smith, J. (1982). Evolution and the Theory of Games. Cambridge University Press.
- [Maynard-Smith and Price, 1973] Maynard-Smith, J. and Price, G. R. (1973). The logic of animal conflict. *Nature*, 246:15–18.
- [Miller and Cliff, 1994] Miller, G. F. and Cliff, D. (1994). Protean behavior in dynamic games: Arguments for the co-evolution of pursuit-evasion tactics. In Cliff, D., Husbands, P., Meyer, J.-A., and Wilson, S. W., editors, *From Animals to Animats III*, pages 411–420. MIT Press.
- [Monroy et al., 2006] Monroy, G. A., Stanley, K. O., and Miikkulainen, R. (2006). Coevolution of neural networks using a layered pareto archive. In GECCO '06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pages 329–336. ACM Press.
- [Moriarty and Miikkulainen, 1997] Moriarty, D. and Miikkulainen, R. (1997). Forming neural networks through efficient and adaptive coevolution. *Evolu*tionary Computation, 5(4):373–399.
- [Nash, 1951] Nash, J. (1951). Non-cooperative games. The Annals of Mathematics, 54(2):286–295. Second Series.
- [Noble and Watson, 2001] Noble, J. and Watson, R. A. (2001). Pareto coevolution: Using performance against coevolved opponents in a game as dimensions for pareto selection. In Spector, L. et al., editors, *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001)*, pages 493–500. Morgan Kaufmann.
- [Panait et al., 2004] Panait, L., Wiegand, R. P., and Luke, S. (2004). A sensitivity analysis of a cooperative coevolutionary algorithm biased for optimization. In Kalyanmoy Deb et al., editor, *Genetic and Evolutionary Computation Conference – GECCO 2004*, volume 3102 of *Lecture Notes in Computer Science*, pages 573–584. Springer.
- [Popovici and De Jong, 2005a] Popovici, E. and De Jong, K. A. (2005a). A dynamical systems analysis of collaboration methods in cooperative coevolution. In *Proceedings of the AAAI 2005 Fall Symposium on Coevolutionary and Coadaptive Systems*. AAAI Press.
- [Popovici and De Jong, 2005b] Popovici, E. and De Jong, K. A. (2005b). Understanding cooperative co-evolutionary dynamics via simple fitness landscapes. In Proceedings of the Genetic and Evolutionary Computation Conference.
- [Popovici and De Jong, 2006a] Popovici, E. and De Jong, K. A. (2006a). The dynamics of the best individuals in co-evolution. *Natural Computing*, 5(3):229–255.

- [Popovici and De Jong, 2006b] Popovici, E. and De Jong, K. A. (2006b). The effects of interaction frequency on the optimization performance of cooperative coevolution. In *Proceedings of the 2006 Genetic and Evolutionary Computation Conference*. ACM Press.
- [Popovici and De Jong, 2006c] Popovici, E. and De Jong, K. A. (2006c). Sequential versus parallel cooperative coevolutionary algorithms for optimization. In *Proceedings of the 2006 Congress on Evolutionary Computation*. IEEE Press.
- [Potter and Jong, 1994] Potter, M. A. and Jong, K. A. D. (1994). A cooperative coevolutionary approach to function optimization. In Davidor, Y. and Schwefel, H.-P., editors, *Proceedings of the Third Conference on Parallel Problems Solving from Nature (PPSN 3)*, pages 249–257. Springer-Verlag.
- [Potter and Jong, 2000] Potter, M. A. and Jong, K. A. D. (2000). Cooperative coevolution: An architecture for evolving coadapted subcomponents. *Evolu*tionary Computation, 8(1):1–29.
- [Rosin and Belew, 1997] Rosin, C. D. and Belew, R. (1997). New methods for competitive co-evolution. *Evolutionary Computation*, 5(1):1–29.
- [Schmitt, 2003a] Schmitt, L. M. (2003a). Coevolutionary convergence to a global optima. In [Cantú-Paz et al., 2003], pages 373–374.
- [Schmitt, 2003b] Schmitt, L. M. (2003b). Theory of coevolutionary genetic algorithms. In Guo, M. and Yang, L. T., editors, *International Symposium on Parallel and Distributed Processing and Applications (ISPA)*, volume 2745 of *Lecture Notes in Computer Science*, pages 285–293. Springer.
- [Schoenauer et al., 2000] Schoenauer, M. et al., editors (2000). Parallel Problem Solving from Nature VI. Springer-Verlag.
- [Stanley and Miikkulainen, 2002a] Stanley, K. O. and Miikkulainen, R. (2002a). The dominance tournament method of monitoring progress in coevolution. In Barry, A., editor, 2002 Genetic and Evolutionary Computation Conference Workshop Program, pages 242–248.
- [Stanley and Miikkulainen, 2002b] Stanley, K. O. and Miikkulainen, R. (2002b). Evolving neural networks through augmenting topologies. *Evolutionary Computation*, 10(2):99–127.
- [Stanley and Miikkulainen, 2004] Stanley, K. O. and Miikkulainen, R. (2004). Competitive coevolution through evolutionary complexification. *Journal of Artificial Intelligence Research*, 21:63–100.
- [Strogatz, 1994] Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos. Addison-Wesley Publishing Company.

- [Watson, 2006] Watson, R. A. (2006). Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution. MIT Press.
- [Watson and Pollack, 2000] Watson, R. A. and Pollack, J. B. (2000). Symbiotic combination as an alternative to sexual recombination in genetic algorithms. In [Schoenauer et al., 2000], pages 425–434.
- [Wiegand, 2003] Wiegand, R. P. (2003). An Analysis of Cooperative Coevolutionary Algorithms. PhD thesis, George Mason University.
- [Wiegand et al., 2002a] Wiegand, R. P., De Jong, K. A., and Liles, W. C. (2002a). The effects of representational bias on collaboration methods in cooperative coevolution. In *Parallel Problem Solving from Nature*, *PPSN-VII*, pages 257–268.
- [Wiegand et al., 2001] Wiegand, R. P., Liles, W., and De Jong, K. (2001). An empirical analysis of collaboration methods in cooperative coevolutionary algorithms. In *Proceedings from the Genetic and Evolutionary Computation Conference*, pages 1235–1242.
- [Wiegand et al., 2002b] Wiegand, R. P., Liles, W., and De Jong, K. (2002b). Analyzing cooperative coevolution with evolutionary game theory. In Proceedings of the 2002 Congress on Evolutionary Computation CEC2002, pages 1600–1605. IEEE Press.
- [Wiegand et al., 2003] Wiegand, R. P., Liles, W. C., and De Jong, K. (2003). Modeling variation in cooperative coevolution using evolutionary game theory. In *Foundations of Genetic Algorithms* 7, pages 203–220. Morgan Kaufmann.
- [Wolpert and Macready, 1997] Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. *IEEE Transactions on Evolutionary Computation*, 1(1):67–82.
- [Wolpert and Macready, 2005] Wolpert, D. H. and Macready, W. G. (2005). Coevolutionary free lunches. *IEEE Transactions on Evolutionary Computation*, 9(6):721–735.