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Abstract

Extending “body-brain” evolution to the real-world presents
a number of difficulties due to conflicting idealizations be-
tween evolutionary and constructional models. Toward ad-
dressing this gap, we develop a simple model system to an-
alyze the effects of undoing these idealizations. Preliminary
experiments with this system show that high variability de-
velopmental substrates can influence evolutionary dynamics
by causing ambiguities in selection. Furthermore the sub-
strate can enable the evolution of adaptive responses to non-
deterministic developmental effects.

Introduction
Background

An important approach towards Artificial Life is via the in-
vestigation of the system principles of interaction and self-
organization by building robots(Brooks, 1992). A key prin-
ciple being to design the robots such that their adaptive be-
havior is achieved with a parsimony of global knowledge
models (Brooks, 1991; Harvey et al., 1997; Pfeifer, 1996).
The rationale being that the structure of the systems required
to achieve the desired behavior under this constraint could
provide insights into the nature of interaction-based adap-
tive behavior both in biological as well as engineering sys-
tems. This rationale in turn suggests that the same principle
of global knowledge parsimony could be applied to the de-
sign of the very processes by which the entire robots (i.e.
“body and brain”) themselves come to be (Sims, 1994; Pol-
lack et al., 1999).

We can distinguish two interpretations of the general
question of how complete adapted robots could be obtained
by interaction based processes. From a functional perspec-
tive, the explanandum is of how adapted robots could be
evolved from unadapted ones with respect to a particular
behavioral context. From an embodiment perspective, the
explanandum is how particular physically embodied robots
could be constructed (or transformed) from simpler precur-
sors by such processes. When the solution concept of inter-
est is in terms of interaction-based processes that can gener-

ate actual embodied robots performing the desired behavior!
both these aspects require to be addressed.

Motivation

In industrial engineering practice, knowledge intensive pro-
tocols of abstract specification and validation enable the
functional and embodiment aspects to be addressed with a
significant degree of independence, as problems of design
and manufacturing respectively. Applying the principle of
knowledge parsimony, the question then is how could these
aspects be addressed in an integrated way without making
the knowledge intensive specification/implementation dis-
tinction. Even though such a distinction is not involved in
biological evolution, we believe that achieving this integra-
tion in an artificial evolutionary system presents some basic
conceptual difficulties.

In evolutionary algorithms with an explicit developmen-
tal phase?, the embodiment aspects are treated as a deter-
ministically unfolding process that satisfies the Genotype-
Phenotype map abstraction. Though this abstraction is a key
axiom in Evolutionary Computation, development as a gen-
erative representation of the phenotype is far removed from
the issues involved in the real-world construction of complex
structures.

A more relevant, even if simplistic, characterization of
problems related to embodiment have been discussed by (Si-
mon, 1962) and (Crane, 1950). In the parable of the two
watchmakers, Simon (Simon, 1962) discusses how prob-
lems caused by the instability of intermediate stages in con-
structing complicated structures depends on the structure of
the construction process even though the specifications of
the final structure are known to both watchmakers. Simi-
larly, Crane(Crane, 1950) discusses the problem of error ac-
cumulation in the assembly of structures involving a large
number of parts and how the specificity of interactions dur-

! As differ from a solution concept in terms of build-able speci-
fications for such robots as in(Funes and Pollack, 1998; Lipson and
Pollack, 2000; Hornby and Pollack, 2002)

2See(Hornby and Pollack, 2002; Stanley and Miikkulainen,
2003) for extensive reviews



ing construction has an impact on this accumulation. How-
ever, in both these examples the functional aspects are ne-
glected. There is an implicit idealization of a goal structure
where processes unable to produce this specific outcome are
categorically maladapted. Furthermore there is no notion of
how these processes may be systematically varied to retain
these properties while producing different final structures.

This suggests the existence of a gap in the way the way
that the functional and embodiment aspects of biological
systems has been conceived, where each is typically stud-
ied by idealizing the other. The conundrum is that with re-
spect to the problem of producing complete robots neither
of these idealizations is entirely valid. In this paper we dis-
cuss preliminary investigations toward identifying concepts
required to bridge this functional-embodiment divide within
an evolutionary developmental framework.

Problem definition
Basic model

In order to model both functional as well embodiment as-
pects, we adopt a simple evolutionary model and introduce
modifications to the developmental phase to accommodate
issues relevant to embodiment processes. This is described
in an implementation independent manner below.

Development is considered to be a series of transforma-
tions starting with the zygote and terminating at the adult
organism which enters the reproducing population on which
selection acts. The process occurs in a particular environ-
mental context § and & is the set of all phenotypes. The
zygote is defined as ¢sar € Pr, and the net effect of the
development process is to produce a series of intermediate
states of the embryo Ogsqrr — ...0r — Or41 — ... till it halts
at the “adult” phenotype ¢ fi;;. This temporally ordered se-
quence of intermediate phenotypic states from Qqr t0 O finai
constitutes the ontogeny of ¢ ;.. The final configuration
0 rina Obtained on a given execution instance is taken to be
the individual which enters the reproducing population. The
behavioral measure of interest (i.e. the fitness function) is
defined to be e : ¢ — R.

The zygote has associated with it a genotype g € G and
the cellular interpreter machinery i € I for the genotype (G
is the set of all genotypes and I is the set of all interpreters).
The interaction of g and i results in “actions” that effect the
present state of the developing embryo. The various interac-
tions involved in development are assumed to be effected by
ambient variability that has a stable pattern particular to the
operative physics and {. So development with the same zy-
gote §gqr Would not necessarily result in the same outcome.

Consequently, rather than a genotype-phenotype map we
have a relation D C G x ®¢, where a pair (g,¢) € D indi-
cates the possible genotype and phenotype combination for
a given individual. So each genotype g can be considered to
be associated with a finite set (sample space) £, of possi-
ble adult phenotypes where Q, C ®¢. A phenotype ¢ € P¢

is in Q, iff ¢ has a non-zero probability of being produced
as O ina With g. Formally the development process can be
described as a function &y, : G — € where € is the set
of pairs (Q,,P,) for all g € G, with P, being the probability
distribution on €,.

Selection for specificity

Consider the sample space €, associated with a genotype
g. Specificity is used here with respect to the maximum
possible difference in fitness between two phenotypes in
Qg. Suppose eyip and ey, are the minimum and maxi-
mum values of e over the phenotypes in Q,. A closed in-
terval I, = [€min,€max] is defined on the real-number line
using these two values, where e, and ey, are the great-
est lower bound (g.1.b) and least upper bound (l.u.b.) of Io,
respectively(emay, emin 7 to0). So the specificity associated
with g is the length of the interval s = |Igg| = €min — Cmax

So we can say that the developmental process has high
specificity if s is a “small” value and low specificity if s is a
“large” value. In general terms, a process that could produce
individuals having high fitness values with high specificity
even in the presence of ambient variability is very desirable
as a solution.

With respect to an evolutionary process though, it is a
higher-order property as compared to the fitness function
e based on the behavior of the individuals in the popu-
lation. So a question of interest is whether there would
be an implicit selection for genotypes that have greater
specificity of fitness outcomes especially when associated
with high values of both e, and ep.. This is also
question of interest with respect to biology where devel-
opmental processes are known to have high reproducibil-
ity in their outcomes. It raises a chicken-egg question
of whether developmental specificity is due to properties
unique to the living or whether the specificity was an im-
plicitly evolved property. Here we use evolution on a sim-
ple toy-system to demonstrate how developmental substrates
capable of “measurement” could influence the evolution of
specificity(Viswanathan and Pollack, 2004).

Development with a tiling machine

Implementing genetic “actions” The toy system de-
scribed in this section instantiates the model described in
the previous section. The “actions” resulting from the inter-
pretation of the genotype, take the form of assembly actions.
These are performed by a tiling machine modeled as a gantry
robot that is restricted to movement in two dimensions (see
Figure 1).

This machine has a head that can be moved under pro-
grammable control to locations in the workspace identified
by their (x,y) coordinates, by a series of horizontal and ver-
tical translations. The workspace, which is the equivalent of
the environmental context {, is a square partition of a two
dimensional plane such that it can perfectly accommodate
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Figure 1: Tiling machine in workspace

M x M identical square tiles without any gaps. The machine
has an explicit spatial existence so it cannot move through
tiles.

The atomic operations performed at the head are a release
operation to release tiles individually, and a sense operation
by means of a sensor that returns a binary outcome based on
whether the position immediately in front of it in the Y + di-
rection is occupied or not with a 1 or 0 respectively. A finite
number of tiles are available to the machine which can be
released individually at the head under programmable con-
trol.

This programmed control is achieved by means of a pro-
gram g (the genotype) which is executed with a fixed in-
terpreter i embedded in the tiling machine, where a pro-
gram is a finite sequenced list of (x,y) locations in the
workspace. From this we can see that configuration of tiles
in the workspace at time ¢, is the equivalent of the state of
the embryo ¢;. And with the execution of the program g, the
tile configurations also change resulting in a developmental
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Tile physics The physics governing the behavior of a tile
on being released at the tile-head is similar to the Tetris
game. There is a constant velocity “diffusion” acting down-
ward along the Y + direction such that a tile released at a par-
ticular location moves at the rate of one tile length per time
step. The stochasticity arises from the interference when a
released tile comes in contact with other tiles or with the
edges of the workspace and continues till the tile comes to
rest.

3The motion from the origin to a point (x,,Y,) takes place by
horizontal motion along the y = 0 edge till the x, coordinate is
reached, followed by downward motion till the location is reached
if unobstructed. This path is retraced to return to the origin. A
movement between consecutive locations occurs indirectly by first
returning to the origin.
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Figure 2: Tile interference physics

The interference is modeled as occurring as defined in
Figure 2. The hatched square is the tile that is descend-
ing. It’s possible position in the next time step are shown
as squares with dotted outlines. The numbers indicate the
probability with which the tile will come to rest at that posi-
tion. the particular values chosen are arbitrary. The dark line
indicates a tile or a wall at that periphery and the tile cannot
proceed through it.

Interpreters The focus in this setup is on the effect of fea-
tures in the genotype-interpreter relation. Here we consider
two interpreters icoupied and igrqre. The interpreter icoupiea is
such that for each location in the program, the tiling-head
releases a tile at that location and on completion does not re-
turn to the origin but continues to release tiles till the sensor
indicates a tile occupying the location immediately in front
of it. At this point it returns to the origin and the next com-
mand in executed. Due to this, the execution of the program
is now coupled with the developing configuration.

The interpreter igq is identical t0 icouprea €xcept that it
maintains a state variable that is incremented each time it
detects a tile in front of it and shifts to execute the next com-
mand.

Evolutionary setup
The fitness function

A behavior evaluation function e : CIDg; — R is defined as:

n

e(0) =Y (d(T;,A) +d(T;,B))

i=1

where ¢ € @, T; is the location of the " tile in ¢, and d(p, q)
is the non-linearized version of the Manhattan distance be-
tween two points p and ¢ in { where d(p,q) = |x, — x4| +



[yp = gl if [xp —xq| < M/2; and d(p,q) = M/3 +|yp —yq|
otherwise.

In words, the value e(9) is the sum of the distances (as
defined by d) of every tile in a tile-configuration ¢ from two
pre-chosen points A and B in the workspace {. The points
chosen here are A = (1,M) and B = (M, M) where M is the
length of each side of the workspace. These points corre-
spond to the lower left and lower right corners of { in Figure
1. The fitness of a configuration is related to the presence
of specific features of the configuration. Configurations that
have tiles concentrated close to X = 5 axis, and away from
the ¥ = M edge would tend to have higher values as com-
pared to one where the tiles are randomly distributed around
. Construction of these features require tight correlations
between the locations of the tiles that are released, and the
fitness drops rapidly with the lack of correlation.

Algorithm

Each genotype is represented as a tape consisting of a string
of integer values specifying a series of (x,y) coordinate pairs
in the workspace {. These are treated as being of fixed
length defining n locations. So the genotype space G con-
sists of (M?)" programs where M is the length of a side of
the workspace {. Here M = 10 and n = 20. The maximum
number of tiles available for release is also equal to 20. The
maximum value of e for these parameter values is equal to
414.64.

The algorithm used here is similar to a canonical evolu-
tion algorithm having the structure

.Gi=>Pi—> P = G, > Giz1 > Py1 = P ...

where P; represents the i generation of individuals with
phenotypes on which selection acts, and G; represents the
gene pool of the generation.

The gene pool Gy is initialized with a random sampling
of G. The size of the gene pool is maintained constant at 30
throughout.

Contingent development (G; — P;): Each of the geno-
types in this gene pool generates a maximum of N individ-
uals by a developmental process involving the interpreter i.
Only a fraction k of these N is assumed to come to matu-
rity and enter the reproductively viable population P;. Here
N =10 and k = 0.5. So, the population always consists of
30 x 5 = 150 individuals. The developmental contexti.e. the
interpreter and the environmental noise model is assumed to
be the same for the entire population and throughout the evo-
lutionary process.

When the interpreter is icoupieq, the first kN developed in-
dividuals are added to the population without any exclusion.
However with the interpreter iy, whether an individual en-
ters the population depends on the state accumulated during
the developmental process of the individual. Here we pick
a hand-designed value for this threshold to be 25% of the
total number of tiles, so an individual enters the population

only when the accumulated state crosses this threshold. If
no instance crosses this threshold after N — 1 trials, the last
individual always enters the population.

Fitness assignment (P, — P/): Based on the behavior of
the individuals as determined by e, the population P; is as-
sumed to take on a reproductive viability in relative propor-
tion to their behavior. This redistribution of P; in terms of
their relative fitness is represented as P;.

Selection (P — G;):In proportion to their relative fitness
in P/, a subset of the individuals in the population and hence
their genotypes G} are selected to be reproduced. Due to
the fixed size of the gene-pool, 30 individuals in the popula-
tion are selected for asexual reproduction in each generation.
The selection is elitist with the default selection of the top 2
individuals with highest fitness.

Variation (G; — G} ,): With the exception of the geno-
types corresponding to the elite individuals, the selected
genotypes differ from the genotypes that constructed the par-
ents. This difference is implemented explicitly with a vari-
ation operation to produce the gene pool of the next gener-
ation Gjy1, from G;. The variation is restricted to single-
locus mutations of the parental genotype, where the prob-
ability of a mutation occurring is uniform over the entire
parental genome. A mutation results in a random change in
a location specified within a local neighborhood A to the
extent that it lies within {. The neighborhood of a location
(x0,0) is given as Ny, ) = {(x,) : (|x—xo| < 1]y —yo| =
0) V (Jx—x0| =0,y —yo| < r)} where r =2.

Results

The results from a representative run with the interpreter
icoupiea are shown in Figures 3 and4. Firstly, we see that the
fitness of the best individual does not change much through-
out even in the first generation. However this has a pro-
nounced effect on the fitness values in the population as the
mean fitness can be seen to increase rapidly with the first
15 generations, but then remains flat after that. However the
stable value of the mean fitness is significantly below the
best fitness due to the large variation in fitness values for
each genotype as can be see in Figure 4.

In comparison, the fitness of the best individual and the
mean fitness with iy, (Figure 5) is of the same order as
icoupred- However, there is a significant difference in the in-
terval lengths of the individuals entering the population with
iyqare (Figure6). As the best and mean fitness are of the same
order as icoupied, this is due to an increase in the value of
emin Of the genotypes in the population though without an
increase in e,,4y. This reduction in the interval length can be
seen as the downward shift in the scatter plot as compared
to that of icoupied-

The higher specificity with iy4. can be attributed to the
manner in which the maintained state is used to selectively
exclude individuals from the population based on the con-
tingencies of their particular ontogenies.
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Figure 3: Fitness variation with icoupied
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Figure 4: Scatter plot of interval length with ioupieq

The rationale is that at different stages in development
there may exist low-dimensional measurable properties and
events that provide information about the global state. So
developmental elements whose behavior is contingent on
the “measurements” of this low dimensional information
could influence subsequent states in the ontogenic trajec-
tory. However, developmental interactions are hidden from
the selective pressure acting on the population. So on evolu-
tionary time scales these contingent responses can be “cali-
brated” by evolution such that they are related to the fitness
of the outcomes.

In the case of the tiling-machine, a sensor response of 1 at
the head occurring immediately after release indicates that
the tile was at the very location it was released at. On the
other hand a sensor response of 0 after releasing the tile indi-
cates uncertainty as it provides no information about where
the tile would eventually come to rest. So a larger number
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Figure 6: Scatter plot of interval length with iz,

of 1s would indicate greater certainty about the outcomes of
the tile release operations though it says nothing about the
fitness of the outcome. As can be seen in Figure 7 that plots
the accept rate i.e. number of individuals accepted relative
to those that were obtained, the accept rate is about 50% as
compared to the 100% in the case of icoupiea-

The existence of such low-dimensional measurable prop-
erties containing global-state information is tested empiri-
cally by determining whether evolution can find a way to use
the additional state maintained by iy to influence the out-
come distribution. This “calibration” to exclude individuals
that correspond to low-fitness individuals is clearly observ-
able in this case.

Discussion

The tiling machine system described here is primarily used
here as a way to provide a transparent and qualitative
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demonstration of the issues to be addressed toward a unified
functional-embodiment approach to the evolution of com-
plex real-world systems.

The fundamental difference that arises with the presence
of non-genetic variation in the population is that selection
of genotypes is now an ambiguous process as the observed
fitness differences in the individuals in the population may
not correspond to heritable variation. More importantly,
this variation is not due to lack of precision in evaluating
the fitness but involving systemic variations in the struc-
ture and behavior between the different developmental out-
comes. So there is no “true” phenotype associated with a
genotype with the other phenotypic variants being the effect
of noise. As a result the key problems are related to how or-
der and structure can be extracted from the high variability
involved. Here we have used a simple experiment to demon-
strate the critical role that developmental substrates can play
in this context by enabling the evolution of specificity. A
more comprehensive analysis of this issue is presented in
(Viswanathan and Pollack, 2004).

By incorporating interactional specificity into construc-
tion but without reference to a “goal” structure and showing
the relation of embodiment processes to the behavior rather
than structure of the outcomes, this paper presents an incre-
mental step toward bridging the gap between the functional
and embodiment perspectives.

Conclusion

This paper identifies a class of problems arising due to the
idealizations in functional and embodiment perspectives of
evolutionary development. Toward addressing this issues, a
preliminary abstraction for the analysis of evolvable devel-
opmental substrates is described and demonstrated using a
simple toy-system. Experiments with this system suggest
that the developmental substrate could exert adaptive influ-
ences on the ontogeny at the interactional level.
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