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Abstract

One of the persistent themes in Artificial Life
research is the use of co-evolutionary arms rac-
es in the development of specific and complex
behaviors. However, other than Sims’s work
on artificial robots, most of the work has at-
tacked very simple games of prisoners dilem-
ma or predator and prey. Following Tesauro’s
work on TD-Gammon, we used a 4000 param-
eter feed-forward neural network to develop a
competitive backgammon evaluation func-
tion. Play proceeds by a roll of the dice, appli-
cation of the network to all legal moves, and
choosing the move with the highest evalua-
tion. However, no back-propagation, reinforce-
ment or temporal difference learning methods
were employed. Instead we apply simple hill-
climbing in a relative fitness environment. We
start with an initial champion of all zero
weights and proceed simply by playing the
current champion network against a slightly
mutated challenger, changing weights when
the challenger wins. Our results show co-evo-
lution to be a powerful machine learning
method, even when coupled with simple hill-
climbing, and suggest that the surprising suc-
cess of Tesauro’s program had more to do with
the co-evolutionary structure of the learning
task and the dynamics of the backgammon
game itself, than to sophistication in the learn-
ing techniques.

1.0  Introduction

It took great chutzpah for Gerald Tesauro to start
wasting computer cycles on TD-Gammon
(Tesauro, 1992). Letting a machine learning program
play itself backgammon in the hopes of bettering itself,
indeed! After all, the dream of computers mastering a
domain by self-play or “introspection” had been
around since the early days of AI, forming part of
Samuel’s checker player (Samuel, 1959). Donald

Michie initiated machine learning work on
reinforcement with his MENACE tic-tac-toe learner
using matchboxes with the positions drawn on them
(Michie, 1961). However such self-organizing systems
had generally been fraught with problems of scale and
representation and abandoned by the field of AI. Self-
playing game learners often learn weird and brittle
strategies which allow them to draw each other, yet
play poorly against humans and other programs. Yet
after millions of iterations of self-play, Tesauro’s
program has become one of the best backgammon
players in the world (Tesauro, 1995) and his weights
are viewed by his corporation as significant enough
intellectual property to keep as a trade secret except to
leverage sales of their minority operating system.
(International Business Machines, 1995). However,
Tesauro has published the weights for a player using a
linear evaluation function called PUBEVAL, which we
made use of as a yardstick. Others have replicated this
TD result both for research purposes (Boyan, 1992) and
reportedly in a commercial product called Jellyfish.

How is this success to be understood, explained,
and replicated in other domains? Is TD-Gammon
unbridled good news about the reinforcement learning
method? For the idea of “conditioning” a machine with
rewards and punishments has been rejected by modern
cognitive science as part of the associationist paradigm
based on its weak or non-existent internal
representations. It has been brought back to life in
modern machine learning form through work initiated
by Klopf, 1982, Barto et al., 1983, and Sutton, 1984.
Similarly, there is a lot of work in learning in neural
networks following the explosive success of Back-
Propagation at overcoming some limitations of the
Perceptron(Rumelhart et al., 1986). However, with
respect to the goal of a self-organizing learning
machine which starts from a minimal specification and
rises to great sophistication, TD-Gammon stands quite
alone in both the reinforcement and neural network
literature.

In general, the problem with learning through self-
play is that the player could keep playing the same
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kinds of games over and over, only exploring some
narrow region of the strategy space, missing out on
critical areas of the game where it could then be
vulnerable to other programs or human experts. Such a
learning system might declare success when in reality
it has simply converged to a “mediocre stable state” of
continual draws or a long term cooperation which
merely mimics competition. Such a state can arise in
human education systems, where the student gets all
the answers right and rewards the teacher with
positive feedback for not asking harder questions.

The problem is particularly prevalent in self-play
for deterministic games such as chess or tic-tac-toe. We
have worked on using a population to get around it
(Angeline and Pollack, 1994). Schraudolph et al., 1994
added non-determinism to the game of Go by choosing
moves according to the Boltzmann distribution of
statistical mechanics. Others, such as Fogel, 1993,
expanded exploration by forcing initial moves. Susan
Epstein, 1994, has studied a mix of training using self-
play, random testing, and training against an expert in
order to better understand this phenomenon.

Tesauro, 1992 pointed out some of the features of
Backgammon that make it suitable for approaches
involving self-play and random initial conditions.
Unlike chess, a draw is impossible and a game played
by an untrained network making random moves will
eventually terminate (though it may take much longer
than a game between competent players). Moreover
the randomness of the dice rolls leads self-play into a
much larger part of the search space than it would be
likely to explore in a deterministic game.

Our hypothesis is that the success of TD-gammon
is not due to the Back-Propagation, Reinforcement, or
Temporal-Difference technologies, but to an inherent
bias from the dynamics of the game of backgammon,
and the co-evolutionary setup of the training. In co-
evolutionary learning, the desired task dynamically
changes as the learner proceeds. We test this
hypothesis by using a much simpler learning method
for backgammon - namely hill-climbing - which retains
the properties of self-play and initial randomness.

2.0  Setup

We use a standard feedforward neural network
with two layers and the sigmoid function, set up in the
same fashion as Tesauro with 4 units to represent the
number of each player’s pieces on each of the 24
points, plus 2 units each to indicate how many are on
the bar and off the board. In addition, we added one
more unit which reports whether or not the game is in
the endgame or “race” situation, making a total of 197
input units. These are fully connected to 20 hidden
units, which are then connected to one output unit that

judges the position. Including bias on the hidden units,
this is a total of 3980 weights. The game is played by
generating all legal moves, converting them into the
proper network input, and picking the position judged
as best by the network. We started with all weights set
to zero. Our initial algorithm was hillclimbing:
i. add gaussian noise to the weights
ii. play the network against the mutant for a num-

ber of games
iii. if the mutant wins more than half the games, se-

lect it for the next generation.
The noise was set so each step would have a 0.05

RMS distance (which is the euclidean distance divided
by ).

Surprisingly, this worked reasonably well! The
networks so evolved improved rapidly at first, but
then sank into mediocrity (when tested against
Tesauro’s public domain evaluator PUBEVAL). The
problem we perceived is that comparing two close
backgammon players is like tossing a biased coin
repeatedly: it may take dozens or even hundreds of
games to find out for sure which of them is better.
Replacing a well-tested champion is dangerous
without enough information to prove the challenger is
really a better player and not just a lucky novice.
Rather than burden the system with so much
computation, we instead introduced the following
modifications to the algorithm:

Firstly, the games are played in pairs, with the
order of play reversed and the same random seed used
to generate the dice rolls for both games. This washes
out some of the unfairness due to the dice rolls when
the two networks are very close - in particular, if they
were identical, the result would always be one win
each. Though, admittedly, if they make different moves
early in the game, what is a good dice roll at a
particular move of one game may turn out to be a bad
roll at the corresponding move of the parallel game.
Secondly, when the challenger wins the contest, rather
than just replacing the champion by the challenger, we
instead make only a small adjustment in that direction:

champion = 0.95*champion + 0.05*challenger (EQ 1)
This idea, similar to the “inertia” term in back-

propagation, was introduced on the assumption that
small changes in weights would lead to small changes
in decision-making by the evaluation function. So, by
preserving most of the current champion’s decisions,
we would be less likely to have a catastrophic
replacement of the champion by a lucky novice
challenger.

In the initial stages of evolution, two pairs of
parallel games were played and the challenger was
required to win 3 out of 4 of these games. Running this
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algorithm on an SGI workstation, we were able to get
through about 15,000 generations per day.

Figure 1 shows the first 35,000 players rated
against PUBEVAL1. There are three things to note: (1)
the percentage of losses against PUBEVAL falls from
100% to about 67% by 20,000 generations, (2) the
frequency of successful challengers increases over time
as the player improves, and (3) there are epochs (e.g.
starting at 20,000) where the performance against
PUBEVAL begins to falter. The first fact shows that our
simple self-playing hill-climber is capable of learning.
The second fact is quite counter-intuitive - we expected
that as the player improved, it would be harder to
challenge it! This is true with respect to a uniform
sampling of the 4000 dimensional weight space, but
not true for a sampling in the neighborhood of a given
player: once the player is in a good part of weight
space, small changes in weights can lead to mostly
similar strategies, ones which make mostly the same
moves in the same situations. However, because of the
few games we were using to determine relative fitness,
this increased frequency of change allows the system to
drift, which may account for the subsequent degrading
of performance.

To counteract the drift, we decided to change the
rules of engagement as the evolution proceeds
according to the following “annealing schedule”: after
10,000 generations, the number of games that the
challenger is required to win was increased from 3 out
of 4 to 5 out of 6; after 70,000 generations, it was further
increased to 7 out of 8. The numbers 10,000 and 70,000

1.  PUBEVAL is quite a strong machine player, trained on a
database of expert preferences using comparison training.
(Tesauro, personal communication). Figures 1 and 4 have
been corrected since an earlier release of this paper.
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Figure 1: Percentage of losses of our first 35,000 generation
players against PUBEVAL. Each match consisted of 200 games.
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were chosen on an ad hoc basis from observing the
frequency of successful challenges. We are currently
investigating how an appropriate annealing schedule
may be determined in a more principled manner as the
evolution proceed by dynamically adjusting the
standard deviation of the gaussian noise, currently
fixed at 0.05, as well as the margin of victory required
of the challenger. Of course each bout was abandoned
as soon as the champion won more than one game,
making the average number of games per generation
considerably less than 8.

After 100,000 games, we have developed a
surprisingly strong player, capable of winning 40% of
the games against PUBEVAL. The networks were
sampled every 100 generations in order to test their
performance. Networks at generation 1,000, 10,000 and
100,000 were extracted and used as benchmarks.
Figure 2 shows the percentage of losses of the sampled
players against the three benchmark networks. Note
that the three curves cross the 50% line at 1, 10, and
100, respectively and show a general improvement
over time.

The end-game of backgammon, called the “bear-
off,” can be used as another yardstick of the progress of
learning. The bear-off occurs when all of a player’s
pieces are in the player’s home, or first 6 points, and
then the dice rolls can be used to remove pieces. To test
our network’s ability at the end-game, we set up a
racing board with two pieces on each player’s 1
through 7 point and one piece on the 8 point as shown
in Figure 3. In playing from this position, the skill
involves knowing to first move the three pieces from
the 7 and 8 points, and then aggressively removing
pieces rather than moving them around (which a
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Figure 2: Percentage of losses against benchmark networks 1,000
[lower], 10,000 [middle] and 100,000 [upper]. This shows a
noisy but nearly monotonic increase in player skill as evolution
proceeds.
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random player might do). The graph in Figure 4 shows
the average number of rolls to bear-off of each
generation network playing itself using a set of 200
random dice-streams.

3.0  Discussion

3.1  Machine Learning and Evolution

We believe that our evidence of success in learning
backgammon using simple hillclimbing indicates that
the reinforcement and temporal difference
methodology used by Tesauro in TD-gammon was

Figure 3: Starting position for bear-off trials
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Figure 4: Average number of rolls to bearoff by each generation,
sampled with 200 dicestreams. PUBEVAL averaged 16.6 rolls for
the task.
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non-essential for its success. The success came from the
setup of co-evolutionary self-play biased by the
dynamics of backgammon. Our result is thus similar to
the bias found by Mitchell, Crutchfield & Graber in
Packard’s evolution of Cellular Automata to the “edge
of chaos”(Packard, 1988, Mitchell et al., 1993).

TD-Gammon is a major milestone for a kind of
evolutionary machine learning in which the initial
specification of model is far simpler than expected
because the learning environment is specified
implicitly, and emerges as a result of the co-evolution
between a learning system and its training
environment: The learner is embedded in a learning
environment which responds to its own improvements
in a never-ending spiral. While this effect has been seen
in population models, it is completely unexpected for a
“1+1” hillclimbing evolution.

The process of co-evolution, as seen from
evolutionary ecology, is of two species forming part of
each other’s environment and thus certain
characteristics are co-adapted, either to an equilibrium
or in a continuing arms-race. In Artificial Life, there
have been many recent results on formal and
computational ecology models which appear to have
arms race dynamics (Holland, 1994, Kauffman, 1993,
Ray, 1992, Lindgren, 1992).

The idea of machine learning based on evolution is
most often thought of in terms of the genetic algorithm
field pioneered by Holland (Holland, 1975). Much of
this work however has become focused on
optimization to a fixed goal expressed as an absolute
fitness function. Using the idea of co-evolution in
learning recognizes the difference between an
optimization based on absolute fitness and one based
on relative fitness (with respect to the rest of the
population). This was explored by Hillis (Hillis, 1992)
on the sorting problem, by Angeline & Pollack
(Angeline and Pollack, 1994) on genetically
programmed Tic-Tac-Toe players, on predator/prey
games, e.g. (Cliff and Miller, 1995, Reynolds, 1994), and
by Juille & Pollack on the intertwined spirals problem
(Juille and Pollack, 1995). Rosin & Belew applied
competitive fitness to several games (Rosin and
Belew, 1995). However, besides Tesauro’s TD-
Gammon, which has not to date been viewed as an
instance of co-evolutionary learning, Sims’ artificial
robot game (Sims, 1994) is the only other domain as
complex as Backgammon to have substantial learning
success.

3.2  Learnability and Unlearnability

Learnability can be formally defined as a time
constraint over a search space. How hard is it to
randomly pick 4000 floating-point weights to make a
good backgammon evaluator? It is simply unlearnable.



How hard is it to find weights better than the current
set? Initially, when all weights are random, it is quite
easy. As the playing improves, we would expect it to
get harder and harder, perhaps similar to the
probability of a tornado constructing a 747 out of a
junkyard. However, if we search in the neighborhood
of the current weights, we will find many players
which make mostly the same moves but which can
capitalize on each other’s slightly different choices and
exposed weaknesses in a tournament.

Although the setting of parameters in our initial
runs involved some guesswork, now that we have a
large set of “players” to examine, we can try to
understand the phenomenon. Taking the 1000th,
10,000, and 100,000th champions from our run again,
we sampled random players in their neighborhoods at
different RMS distances to find out how likely is it to
find a winning challenger. We took 1000 random
neighbors at each of 11 different RMS distances, and
played them 8 games against the corresponding
champion. Figure 6 plots the average number of games

won against the three champions in the range of
neighborhoods. This graph demonstrates that as the
players improve over time, the probability of finding
good challengers in their neighborhood increases. This
accounts for why the frequency of successful
challenges goes up. Each successive challenger is only
required to take the small step of changing a few
moves of the champion in order to beat it. Therefore,
under co-evolution the unlearnable becomes learnable as
we convert from a single question to a continuous
stream of questions, each one dependent on the
previous answer.

Figure 5: Distance versus probability of random challenger
winning against champions at generation 1,000, 10,000 and
100,000.
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3.3  Relative versus Absolute Expertise

Does Backgammon allow relative expertise or is
there some absolutely optimal strategy? While
theoretically there exists a perfect “policy” for
backgammon which would deliver the best move for
any position, and this perfect policy could exactly rate
every other player on a linear scale, in practice it seems
there are many relative cycles. Figure 6 shows a graph

of the “food chain” over every 5000th player in our
sequence of 100,000. By playing them 1000 games
against each other and showing the dominance
relations with arrows, we can see many relative
expertise cycles, albeit with small margins of victory,
such as [45,000 beats 70,000 beats 85,000 beats 45,000].

In spatial studies of iterated prisoners dilemma
following (Axelrod, 1984), a stable population of “tit
for tat” can be invaded by “all cooperate” which then
allows exploitation by “all defect”. This kind of relative
expertise dynamics, which can be seen clearly in the
simple game of rock/paper/scissors (Littman, 1994)
might initially seen as very bad for self-play learning,
because what looks like an advance might actually lead
to a cycle of mediocrity. A small group of champions in
a dominance circle might arise and hold a temporal
monopoly preventing further advance. On the other
hand, it may be that such a basic form of instability
prevents the formation of sub-optimal monopolies and
allows learning to progress.

3.4  Avoiding Mediocre Stable States

We are not suggesting that 1+1 hillclimbing is an
advanced machine learning technique which others
should bring to many tasks. Without internal cognition
about opponents behavior, co-evolution usually
requires a population. Therefore, there must be
something about the dynamics of backgammon itself
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Figure 6: A partial graph of “who eats who”, showing for each
5000th player, the immediate dominance relationships.



which is helpful because it permitted both TD learning,
and hill-climbing, to succeed where they would clearly
fail on other tasks and in other games of this scale. If
we can understand why the backgammon domain led
to successful acquisition of expert strategies from
random initial conditions, we might be able to re-cast
other domains in its image.

We believe it is not simply the dice rolls which
overcome the problems of self-learning. Others have
tried to add randomness to deterministic games and
have not generally met with success. There is
something special about backgammon which we
suspect to be more critical; namely, the instability of the
game with respect to predictions of winning. What is
seen as exciting about backgammon to observers is that
the outcome of the game continues to be uncertain
until all contact is broken and one side has a clear
advantage. There are many situations in backgammon
where one dice roll, or an improbable sequence, can
dramatically reverse which player is expected to win.

A learning system itself can be viewed as a meta-
game, between teacher and student, which are
identical in a self-play situation. The teacher’s goal is to
correct the student’s mistakes, while the student’s goal
is to placate the teacher and avoid correction. A
mediocre stable state for a self-learning system can be
seen as an equilibrium situation in this meta-game. If
the game includes draws, a player which learns to
draw itself will have solved its meta-game equilibrium
and stop learning. If draws are not allowed, it may be
possible for a self-playing learner to collude with itself
- to simulate competition while actually cooperating.2

For example, if slightly suboptimal moves would allow
a player to “throw” a game, a player under self-play
could find a meta-game equilibrium by alternately
throwing games to itself!

We cannot prove it yet, but our hypothesis is that
the dynamics of backgammon discussed above
actively prevent this sort of collusion from forming in
the meta-game of self-learning.

4.0  Conclusions

We have noticed several weaknesses in our player
that stem from the training which does not yet reward
or punish the double and triple costs associated with
severe losses (“gammoning” and “backgammoning”)
nor take into account the gambling process of
“doubling.” We are continuing to develop the player to
be sensitive to these issues in the game. As noted in

2.  For example, in a prisoner’s dilemma, if the payoff for
temptation 7 instead of 5, the long term bonus for alternating
defections (3.5) would be more rational than cooperat-
ing(3.0). See Angeline, 1994 for related discussion

(Sutton, 1988), the goals of good game playing and
accurate position evaluation are not quite the same. In
backgammon, the opponent’s stable configuration is
immutable in the course of a single move. This
effectively partitions the space of positions into a large
number of `regions’ in such a way that two moves from
different regions are never directly compared. Indeed,
preliminary studies on the evaluation of end-game
situations suggest that our player does not operate by
global position analysis. Rather, the opponent’s
configuration serves to multiplex an evaluation
function that is then tuned to discriminate only those
positions in the current region.3

TD-Gammon remains a tremendous success in
Machine Learning, but the causes for its success have
not been well understood. We do not claim that our
100,000 generation player is as good as TD-Gammon,
ready to challenge the best humans, but it is
surprisingly good considering its humble origins from
hill-climbing with a relative fitness measure. Interested
players can challenge our evolved network using a
web browser through our home page at:

http://www.demo.cs.brandeis.edu
Replicating some of TD-Gammon’s success under

a much simpler learning paradigm, we find that the
Reinforcement and Temporal Difference methods are
not the primary cause for success; rather it is the
dynamics of backgammon combined with the power of
co-evolutionary learning. If we can isolate the features
of the backgammon domain which enable
evolutionary learning to work so well, it may lead to a
better understanding of the conditions necessary, in
general, for complex self-organization.
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