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Abstract

The Teacher’s Dilemma:
A game-based approach for motivating appropriate challenge

among peers

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by Ari Bader-Natal

In classroom-based studies, peer tutoring has proved to be an effective learn-

ing strategy, both for the tutees and for their peer tutors. Today, the increasingly

widespread availability of computers and internet access in the homes and after-school

programs of students offers a new venue for peer learning. In seeking to translate the

successes of peer-assisted learning from the classroom to the Internet, one major hur-

dle to overcome is that of motivation. When teachers are no longer supervising stu-

dent activity and when participation itself becomes voluntary, peer tutoring protocols

may stop being educationally productive. In order to successfully leverage these peer

interactions, we must find a way to facilitate and motivate learning among a group of

unsupervised peers. In this dissertation, we respond to this challenge by reconceptu-

alizing the interactions among peers within the context of a different medium: that

of games. In designing a peer tutoring experience as a two-player game, we gain a

valuable set of tools and techniques for affecting student participation, engagement,

goals, and strategies.

Our contributions: 1) We define a criteria for games – the Teacher’s Dilemma

criteria – that motivates players to challenge one another with problems of appropri-

ate difficulty; 2) We show three games that satisfy the Teacher’s Dilemma criteria
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when played by rational players under idealized conditions; 3) We demonstrate, using

computer simulations of strategic dynamics, that game-play will converge towards

meeting these criteria, through time, under more realistic conditions; 4) We design a

suite of software that incorporates a Teacher’s Dilemma game into several web-based

activities for different learning domains; 5) We collect data from thousands of students

using these activities, and examine how the games actually affected the game-play

strategy and learning among these students.

The game-theoretic analysis establishes the possibility for a game-based mecha-

nism for motivating appropriate challenges, the simulations support the plausibility of

this approach given non-optimal players, the implemented software systems demon-

strate the scalability of this model, and the data analysis supports the real-world

applicability of this game-based approach to motivating appropriate challenges for

learning among unsupervised peers.
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Chapter 1

Introduction

When a well-intentioned parent divides a dessert into two pieces for two children, it

is rare for both to find the split fair, no matter how even-handed the effort. For the

children, a much more satisfactory solution – and an entry point into the mathematical

literature of cake-cutting algorithms [69, 76] – is one in which one cuts the dessert and

the other chooses from among the two pieces. Viewed as a game, the first “player”

to act is motivated to adopt a cutting strategy of maximizing the size of the smaller

piece, and the second “player” is motivated to adopt a choosing strategy of selecting

the piece they deem preferable. The children arrive at a solution that they both find

fair, and neither is envious of the other’s piece.

Once the children finish eating, they run off to another room to play some games

online. In one of these games, the ESP Game [79, 78], they race to describe the

contents of an image using the same descriptive words as their unseen and unknown

partner does, playing from elsewhere in the world. The rules and rewards in this

game result in a different desirable outcome: given the independence of the players,

any agreements between them suggests that the agreed-upon descriptions are likely
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CHAPTER 1. INTRODUCTION

to be accurate. The children enjoy playing, and the accurate descriptive image labels

are of value to the game’s creators.

Now it is time for the children to study. Can we, in the same spirit as the

cake cutting game for fair division and the description matching game for accurate

labeling, construct a game in which the children provide one another with challenges

that stimulate learning? This thesis explores the idea of a game-based approach to

peer-assisted learning, and argues that an “appropriate challenge” game for study is,

indeed, possible.

Towards this end, we motivate and describe a set of game criteria, which we call

the Teacher’s Dilemma criteria. We claim that games that meet these criteria have

the desirable property of motivating participating players to identify and provide one

another with challenges of appropriate difficulty for learning. We will support this

claim with game-theoretic analysis, computer simulation of repeated play dynam-

ics, and the examination of implemented web-based activities building on Teacher’s

Dilemma games.

1.1 Context and Prior Work

Benjamin Bloom [11] observed that the summative achievement scores of the average

student under one-to-one tutoring is, in certain domains, two standard deviations

above that of the average student under conventional group instruction. Noting the

prohibitively high cost of providing one-to-one tutoring for all students, Bloom chal-

lenged researchers to devise practical methods that generate this level of achievement

without the associated high cost of personal tutoring. His “2 sigma” challenge pro-

vides a context for exploring two bodies of research upon which we build: peer tutoring

2



CHAPTER 1. INTRODUCTION

and intelligent tutoring. We briefly review both of these areas, and then discuss some

recent efforts to combine these two approaches.

In peer tutoring, students are grouped, often in dyads, and are tasked with pro-

viding some form of support to their fellow learners. By providing these peers with

structured supports, in the form of a protocol or script to follow, the students may

more effectively assist one another in learning in the classroom setting. Researchers

and practitioners define and implement these interactions in a variety of ways, and

apply them to a wide range of contexts. In some cases, peers are of the same age,

while in other cases, tutoring occurs cross-age. The value of peer-driven learning has

been explored and validated in many classroom-based studies. In their meta-analysis

of 65 of these published studies, Cohen, Kulik, and Kulik [21] found tutoring pro-

grams to have positive effects both on the tutees and on the peer tutors. Some of the

work on peer tutoring focuses on the cooperative nature of collaboration (as opposed

to a competitive or individualistic dynamic), including that of Johnson and Johnson

[42, 44, 43] and Slavin [74, 75]. Other work focuses on introducing and analyzing new

protocols for reciprocal tutoring among learners in various classroom settings, includ-

ing ClassWide Peer Tutoring (CWPT), Peer-Assisted Learning Strategies (PALS),

Classwide Student Tutoring Teams (CSTT), and START protocols, as discussed and

compared by Maheady, Mallette, and Harper [55]. The various protocols explored by

Fantuzzo et al. [28], Greenwood [34], King [46, 47, 48] and the collection edited by

O’Donnell and King [64] sketch out a wide range of approaches to the over-arching

vision of engaging students as naturalistic tutors for one other.

While peer tutoring seeks to support the learner through the individualized at-

tention of a peer, intelligent tutoring systems (ITS) seek to support the learner using

an interactive computer program. The goal of much of the research in the field
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CHAPTER 1. INTRODUCTION

of intelligent tutoring system, beginning with SCHOLAR in 1970 [13], has been to

build a software-based tutor with sufficient artificial intelligence (AI) to effectively

help the student learn. VanLehn [77] describes tutoring systems as consisting of an

“outer loop” and an “inner loop”, the former concerned with planning the sequence

of problems to pose, and the latter concerned with providing scaffolding support to

the student in the form of hinting and feedback. Both sets of activities are ideally

tailored to each individual student, based on models of the student and the learning

task domain. The variety of artificial intelligence techniques used to construct, re-

vise, and apply these models is as wide as the field of AI itself, including production

rule-based systems [2, 3], Bayesian networks [56, 17], statistical models [41, 22], and

clustering methods [7], among many others.

One significant draw for the intelligent tutoring approach is that, once a good tu-

tor has been developed, the marginal cost for supporting additional students is very

low. This makes it attractive for its affordability and scalability. Unfortunately, the

initial cost to develop an effective tutor is quite high, both in terms of money, time,

and expertise, and the resulting software may be highly domain-dependent. Given

the relative ease in developing an effective (classroom-based) peer tutoring environ-

ment, some ITS researchers have explored hybrid approaches designed to combine

useful aspects of peer tutoring into an intelligent tutoring system. Three other recent

research efforts can be viewed as such, also. Walker and colleagues have explored tech-

niques for, and the effects of, incorporating peer tutoring into a cognitive tutoring

architecture [82, 81, 58, 57]. Kumar, McCalla, and Greer [51] adopted a “human-

in-the-loop” design in their peer help network. Chan and colleagues have explored

tutoring interactions beyond the computer-tutor human-tutee standard paradigm in

ITS research, including peer tutoring approaches [16, 14, 86, 15] and synchronous
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CHAPTER 1. INTRODUCTION

game-based approaches [18, 87]. Our own approach also lies at this intersection of

intelligent tutoring and peer tutoring.

1.2 Outline

We seek to draw on the scalability of the computer-based systems and on the relative

simplicity of supporting learning among peers in the systems that we build. Beyond

representing a useful combination of these existing approaches, the hybrid approach

enables a new possibility for peer tutoring, since network-based software allows the

peers to interact beyond classroom walls. The increasingly widespread availability of

computers with internet access – at home and in after-school programs – offers a new

venue for peer-assisted learning. But when teachers are no longer supervising and

when participation becomes voluntary, the peer tutoring protocols may stop being

educationally productive (or may stop entirely). In order to leverage this new venue

successfully, we must find a way to facilitate and motivate a learning environment

among an internet-connected group of peers. One effective tool for structuring in-

teractions and influencing behavior is through the design of formal games [80]. We

propose that a formal game can overlay a peer tutoring protocol, and that the combi-

nation tutoring-game can effectively provide a learning-conducive environment for a

network of unsupervised peers. We suggest that this tutoring-game can form the ba-

sis for a “lightweight” intelligent tutoring system, in which the intelligence originates

not from domain experts, but rather from the knowledge, beliefs, and common-sense

reasoning of the participating peers.

In Chapter 2, we introduce a model of appropriate challenge as an indicator of

the student’s probability of learning. We then define the Teacher’s Dilemma criteria

5



CHAPTER 1. INTRODUCTION

for games that, if met, motivate appropriate challenges. Among these criteria are

the requirements that the dominant strategy for a rational tutee must be to provide

a best-effort response to any challenge posed, and that the dominant strategy for a

rational tutor must be to seek to identify and pose appropriate challenges given their

tutee’s abilities. Rather than using zero-sum games (in which one player’s success is

necessarily another’s failure), we decouple the motivational structure for peer tutors

and their peer tutees. We motivate the tutor to identify and pose problems at the

cusp of the student’s abilities. This includes both difficult problems that they believe

their tutee may be capable of solving and simple problems that they believe the

student cannot solve (even though they ought to be able to). We motivate the tutee

to provide her best effort in responding, and reward her based on performance. Many

different games can fit this profile, and we detail three of them. Each is presented

and analyzed as an formal game based on game-theoretic assumptions. We provide

proofs that each meets the Teacher’s Dilemma criteria.

In Chapter 3, we illustrate, via computer simulations, that symmetric repeated

play of one of these games converges to player strategies in which the tutor poses

challenges of appropriate difficulty for their tutee, and the tutee replies with a best-

effort response, consistent with the Teacher’s Dilemma criteria.

In Chapter 4, we describe two software systems that we have built in order to

enable students to participate in Teacher’s Dilemma games across the internet. Both

systems build on a common interaction paradigm illustrated in Figure 1.1. The Spell-

BEE system represents our first attempt to build a web-based activity based on a

Teacher’s Dilemma game, applied to the task domain of American-English spelling.

The activity is currently accessible online at http://SpellBEE.org/. Since we pub-

licly released it four years ago, we have accumulated data from over 25,000 completed

6
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CHAPTER 1. INTRODUCTION

fourteen-question matches. The BEEweb, a subsequent system, expanded on this

model and provided a more general scalable platform for game-based learning activ-

ities. A growing suite of activities are based on this model. We discuss the design

goals and implementation decisions involved in constructing both of these systems.

In Chapter 5, we summarize and analyze the data collected over the past four

years from thousand of students who have actively used learning activities built on

the SpellBEE and BEEweb systems. We present statistics about the usage of these

systems, providing an overall picture of how much data has been collected, who

participates, and for how long. Over 14,000 people have actively participated in the

SpellBEE activity alone, posing and responding to over 400,000 challenge problems.

Based on this participation, we pose four research questions. First, we explore a

core assumption of our model, that a game can be used to affect how peer tutors

select challenges, by asking: “Does the game’s payoff structure significantly affect the

challenge selection strategies of tutors?” Second, we examine the collective student-

modeling ability of the tutors in predicting the probability of a correct response

from their tutees by asking: “How does the predictive performance of tutors, on the

aggregate, compare to known difficulty-based performance expectations?” Third, we

ask whether tutor or tutee grade levels (as a rough indicator of ability) affect the level

of difficulty of the challenges posed: “Do the main effects of tutor grade or tutee grade

(or the interaction effect of both) significantly affect the difficulty level of challenges

posed?” Fourth, we examine if and where tutees improve at the task domain with

use of our systems: “Does the response accuracy of tutees collectively improve with

use of the system?” These four questions provide an empirical basis for evaluating

the effectiveness of our web-based systems built on a Teacher’s Dilemma game.

In Appendix A, we discuss an alternative system design for supporting Teacher’s
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CHAPTER 1. INTRODUCTION

Figure 1.1: A web-based reciprocal tutoring activity, created by interleaving the steps
of two instances of a Teacher’s Dilemma game.
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Dilemma games, dubbed “BEEmail.” This minimal proof-of-concept was designed to

show that a Teacher’s Dilemma game can be built on a decentralized architecture, al-

lowing it to transcend the scalability constraints of systems built around a centralized

server.

In Appendix B, we detail the construction and contents of two data sets collected

from the SpellBEE system that we are releasing publicly to the research community.

In these data sets, we collect, categorize, and count spelling errors. The sets are

based on two different techniques for formatting and labeling the data, which we

presume to be appropriate for different types of applications. The first set details

99,498 instances of 44,450 misspellings of 2,984 English words, filtered by error type.

The second set details 102,181 instances of 18,150 misspellings of 2,764 English words,

filtered by frequency. Sample data (for one word) is included for each, and the data

sets, in their entirety, are available online at http://www.cs.brandeis.edu/~ari/

dissertation/.

Figure 1.2 provides an outline of the Teacher’s Dilemma games, system architec-

tures, and learning activities that are introduced and discussed in this dissertation.

1.3 Contributions

We summarize the main contributions of this thesis as follows:

1. We define a criteria for games – the Teacher’s Dilemma criteria – that motivates

players to challenge one another with problems of appropriate difficulty;

2. We show three games that satisfy the Teacher’s Dilemma criteria when played

9
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Games

Systems Activities

Difficulty-based

SpellBEE

BEEweb

Expectation-based
BEEmail

Equivalence-based

SpellBEE

PatternBEE

MoneyBEE

GeograBEE

Teacher's
Dilemma

Figure 1.2: An outline of the Teacher’s Dilemma games, system architectures, and
learning activities introduced and discussed in subsequent Chapters.

once among rational players under idealized conditions;

3. We demonstrate, using computer simulations of strategic dynamics, that game-

play will converge towards meeting these criteria, through time, under more

realistic conditions;

4. We design a suite of software that incorporates a Teacher’s Dilemma game into

several web-based activities for different learning domains;

5. We collect data from thousands of students using these activities, and examine

how the games actually affected the game-play strategy and learning among

these students.

Our game-theoretic analysis establishes the possibility for a game-based mecha-

nism for motivating appropriate challenges, the simulations support the plausibility of
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this approach given non-optimal players, the implemented software systems demon-

strate the scalability of this model, and the data analysis supports the real-world

applicability of this game-based approach to motivating appropriate challenges for

learning among unsupervised peers.
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Chapter 2

Games as a mechanism for learning

In seeking to translate the successes of classroom-based peer-assisted learning from

the classroom to the Internet, one major hurdle to overcome is that of motivation.

When teachers are no longer supervising student activity and when participation itself

becomes voluntary, peer tutoring protocols may stop being educationally productive.

In order to successfully leverage this out-of-classroom venue, we must find a way to

facilitate and motivate a learning environment solely among a group of peers. We

respond to this challenge by viewing the interaction among peers from the context of a

different medium: that of games. In re-conceptualizing the peer tutoring experience

as a two-player game, we gain a valuable set of tools and techniques for affecting

student participation, engagement, goals, and strategies.

While there are many different ideas about what constitutes a “game,” we draw

on two in particular: The first is the mathematical concept of games, developed

within the field of game theory [80]. We draw on this for such concepts as dominant

strategies, expected utility, and rationality, which together offer a means for reasoning

about how the structure and payoffs of a game relate to the strategies that players will
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CHAPTER 2. GAMES AS A MECHANISM FOR LEARNING

adopt. The second topic that we draw on, digital games, is less precisely defined, but

is perhaps more familiar to students. Kirriemuir & McFarlane suggest that computer

games have become the most frequently used interactive media among children [49].

The immense popularity of some of these games reflects that the medium can offer

remarkably engaging experiences [50]. We suggest that by drawing on and combining

both of these types of games, a web-based peer tutoring activity can provide sufficient

motivational and strategic structure to offer a viable learning environment.

In this chapter, we develop a basis for constructing games for learning. We begin

by introducing a probabilistic model of appropriateness for problem-solving chal-

lenges. We then describe a set of criteria that define the class of Teacher’s Dilemma

games, each of which provides the learner with challenges of appropriate difficulty for

practice. We construct three formal games, and prove that, under standard game-

theoretic assumptions, each satisfies the Teacher’s Dilemma criteria. As a whole, this

chapter offers a theoretical basis for constructing and analyzing games as a mechanism

for motivating appropriate challenge among peers.

2.1 Appropriate Challenge

While there are many different ways that a software system can aid student learning,

we examine one in particular: a system can challenge the student with problems to

solve, provide the opportunity to respond, and offer useful feedback on performance.

All such challenge-response-feedback experience is not equally valuable, however, as

both the opportunity for, and likelihood of, learning can vary by student and by

problem. We will introduce appropriateness as a term that quantifies the likelihood

of the student learning from a given problem. Challenges for which the student
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is almost certain to respond incorrectly are minimally appropriate, because, while

the skills involved are most likely not yet known (which offers room for growth),

the likelihood that the student will be able to learn from the feedback provided is

low. Similarly, a challenge that the student is almost certain to solve correctly is

also minimally appropriate because, while the likelihood of the student being able to

effectively understand and learn from the feedback provided may be high, the skills

involved are most likely already mastered, leaving no opportunity for learning. More

appropriate challenges, on the other hand, test skills that the student has not yet

mastered, but are able to master with some feedback and practice. Our definition of

challenge appropriateness is a response to the Meta-Game of Learning (MGL) concept

suggested by Pollack & Blair [65], and explored further by Blair [10], Davies and

Sklar [25], and Sklar and Parsons [73]. We define appropriateness probabilistically,

as described in the following section.

2.1.1 Defining Appropriate Challenge

In quantifying learning opportunities, we seek to capture the probability that, from

a particular challenge-response-feedback sequence, the student will learn the skills

required to solve that challenge (and others like it.) We begin by making two obser-

vations about learning, and then construct an operational definition of appropriate

challenge based on a probabilistic interpretation of these observations. First, we note

that a student can only learn what they do not already know. Second, we note that

a student is more likely to successfully internalize (i.e. learn from) feedback on easier

problems than on harder problems. For learning to occur, the challenge must be one

that the student does not already know but is able to successfully internalize based
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on the feedback provided. Specifically, we can use the product rule to frame this

relationship. Letting P(A) represent the probability that the student does not yet

know the skills involved, and letting P(B) represent the probability that the student

is able to learn from the feedback provided, we can define challenge appropriateness

as:

APPRs(c) = P(A ∩B) = P(A)P(B|A) (2.1.1)

A very simple model of appropriateness can be derived by representing P(A) and

P(B|A) each in terms of a single variable: the likelihood that the student is able

to provide an accurate response to the challenge posed. For student s, given some

challenge c and response r, we let Ar,c denote the accuracy of the student’s response

to the challenge (where Ar,c = 1 denotes a correct response and Ar,c = 0 denotes

an incorrect response.) We define P(A), the probability that the student does not

yet know how to solve a challenge, as (1− P [Ar,c]), the probability that the student

provides an incorrect response to that challenge. We define P(B|A), the probability

that the student is able to learn how to solve a challenge that they do not yet know, as

P [Ar,c], the probability that the student provides a correct response to that challenge:1

P(A) = 1− P [Ar,c] (2.1.2)

P(B|A) = P [Ar,c] (2.1.3)

APPRs(c) = P(A)P(B|A)

= (1− P [Ar,c]) P [Ar,c] (2.1.4)

1In this model, we assume that the probability of “guessing” (i.e. student does not know the skill
but their answer happens to be correct) and “slipping” (i.e. student does know the skill but their
answer happens to be incorrect) are both negligible.
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Given the shape of the appropriateness function (i.e. that the second derivative

of the function is negative), the point at which the first derivative is zero indicates a

maximum value for challenge appropriateness:

dAPPRs(c)

dP [Ar,c]
= 0

P [Ar,c] = 0.5

Thus, challenge appropriateness under this model is maximized when P [Ar,c] = 0.5.

Given that P [Ar,c] = 1 − P [¬Ar,c], this also implies that P [¬Ar,c] = 0.5 occurs at

maximally appropriate challenges, and so we also have:

P [Ar,c] = P [¬Ar,c] (2.1.5)

The most appropriate challenges are therefore those for which the student’s response

is equally likely to be correct or incorrect.2

2.1.2 Contextualizing Appropriate Challenge

Our student-specific model of problem appropriateness shares certain similarities with

several established models of instruction, motivation, and assessment.

From their studies of learner-determined study time allocation, Metcalfe and Ko-

rnell formed the Region of Proximal Learning framework, which offered a better fit

for their experimental results than the dominant discrepancy reduction model [60].

Where the discrepancy reduction model suggests that self-directed learners will choose

to study the hardest problems first (since they offer the most opportunity for growth),

2Assuming that the probability of an accurate response based on guessing is negligible.
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the Region of Proximal Learning framework models a different approach. Learners

should first briefly address “easy” problems, then spend the bulk of their study time

on the “medium” difficulty problems, and use any remaining time on the “hard”

problems. Metcalfe and Kornell observe that during medium-difficulty study, the

length of time during which learning gains continued to occur was greater than the

length of active learning while studying the easy problems. The origins of their model

are traced back to a number of other theories of learning, including those of Vygot-

sky’s Zone of Proximal Development [68], which provides a model of development

with instructional implications. Vygotsky suggests that for every student, there are

problems that the student is currently unable to solve alone but is able to solve in

collaboration with another person, and argues that instruction is most productive

when it targets problems in this zone [68].

Among models of motivation, Csikszentmihalyi suggests that when the difficulty

level of a challenge matches the level of a learner’s skill, a positive “flow” experience

can result. Mismatches, on the other hand, result either in boredom (given easy

challenges and high skills) or in anxiety (given hard challenges and low skills) [23]. In

order to maintain this flow state once skills improve, challenge difficulty must increase

to compensate. Koster situates this notion within his approach towards game design

[50], and Hunicke and Chapman suggest a more direct application of flow theory to

games, through the dynamic adjustment of game difficulty to constantly match the

player’s observed skill level [40]. Lepper discusses how it is the activities that provide

an intermediate level of difficulty that stimulate the most intrinsic motivation for

learning within the student [52]. When extrinsic motivations are used, they should

ideally be incorporated into the activity itself.

Within the literature on assessment, item response theory provides a model for es-
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timating student ability based on observations of performance on problems of known

difficulty [54]. Assuming the simplest one-parameter Rasch model [67, 29] and a

dichotomous model of response accuracy, the amount of information about the stu-

dent’s ability gained by posing a particular challenge item aligns exactly with our

functional definition of challenge appropriateness. Item information is greatest when

the probability that the student will respond correctly is 0.5. Chen and colleagues

have explored how an IRT-based tutoring system can this use item information as

a basis for “curriculum sequencing” (i.e. recommending future content for study)

[19, 20].

2.2 Game Theoretic Concepts and Definitions

The techniques, terminology, and assumptions that we will use in examining games

designed to provide learners with challenges of appropriate difficulty are drawn from

game theory. Many excellent resources on game theory are available (e.g. Gintis

[31], Fudenberg & Tirole [30], von Neumann & Morgenstern [80]), so we present here

only a brief overview of the specific terminology, techniques, and assumptions most

relevant to the discussions that follow.

In the following paragraphs, we will elaborate on the italicized terminology: In the

three games discussed throughout the rest of this chapter, we focus on two-player,

non-zero sum, extensive form games. We assume that both players act rationally,

attempting to maximize utility and expected utility (given their privately-held beliefs

about player types.) For each game, we seek to show that certain strategies of in-

terest are dominant for each player, resulting in strategy profiles that constitute an

equilibrium with a desired system-wide property: that tutors will pose tutees with
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challenges of appropriate difficulty.

In each two-player game, the two participating peers adopt asymmetric roles: one

is a “Teacher” and the other is a “Student.” We note that these roles refer to game-

play only, and do not imply that the Teacher is an instructor in a classroom. As

we shall see later, a particular learner may play the Teacher role in one game and

the Student role in another, perhaps even simultaneously. Within the context of the

game, the Teacher is the player tasked with selecting problems, and the Student is

the player tasked with solving these problems.

The game itself is considered non-zero sum because, at the conclusion of the game

when both players are awarded payoffs, the sum of these payoffs does not total to

zero. In strictly competitive two-person games, on the other hand, one player’s loss

is necessarily the other player’s gain.

The games that we introduce are extensive form games, in which player actions oc-

cur sequentially (rather than simultaneously), with full knowledge of previous actions

taken. Sequential form games are traditionally represented by a game-tree, and illus-

trations of extensive-form games (such as Figure 2.1) can be interpreted as follows:

Activity proceeds from the root node (at top) to the terminal nodes (at bottom.)

Each node represents an action made by the player labeled above it (or, in the case

of non-player labels, by the game itself.) The branches represent choices among the

specified labeled options, and the gray triangles represent a large set of options, as

specified. The comma-separated values displayed below the terminal nodes indicate

the payoff values awarded to each player if that node is reached. The first value of

the pair indicates the payoff to the Teacher, and the second indicates the payoff to

the Student.

The player rationality assumption implies that, when faced with the choice be-
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tween a smaller and a larger end-game utility value payoff, the rational player will

always choose the larger of the options.

In games that involve uncertainty, utility-maximization is not sufficient to deter-

mine rational player actions. The notion of expected utility fills this gap, by weighting

each uncertain outcome by the probability with which it occurs. When choosing

among several actions leading to uncertain outcomes, the expected utility values of

these actions can be compared, and we assume that the rational player will always

select the action offering the largest expected utility.

While the probability of uncertain events may be agreed upon by players in some

situations (e.g. two players may both agree that the probability of a coin tossed will

land on its head is 0.5), there are other situations in which probabilities may differ,

based on privately-held beliefs. When querying a player about a privately-held belief,

that player may or may not honestly reveal it. In our games, the beliefs themselves

pertain to player types, in which the types indicate whether or not the particular

player will be able to correctly solve a particular problem.

For games in which a player must choose a single action, the player’s strategy is

defined by that action. For games involving sequences of actions, the player’s strategy

is defined by the sequence of actions that they choose. One player strategy is said to

strictly dominate another if it yields a higher payoff (or is said to weakly dominate

another if it yields at least as high of a payoff) as the other, regardless of the strategy

chosen by the other game player(s). A strategy is said to be dominant if it dominates

all other strategies (with strict and weak variations.) The selected strategies of each

player in the game, taken as a set, constitute a strategy profile.

Each equilibrium concept specifies a set of qualifying conditions for strategy pro-

files. A Nash equilibrium, for example, is a strategy profile in which neither player
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can become better off (in terms of utility) by switching strategies, unless the other

player also switches strategies. We are primarily concerned with an equilibrium that

offers a desired educational property: that tutors will pose tutees with challenges of

appropriate difficulty, and tutees will try their best to solve these challenges.

2.3 The Teacher’s Dilemma criteria

In order to construct games in which students are provided with challenges of ap-

propriate difficulty on which to practice, we begin by formalizing this goal as cri-

teria for inclusion in a special class of Teacher’s Dilemma games. We introduce

the appropriateness-dominance criteria: the tutor’s dominant strategy in a Teacher’s

Dilemma game must be to pose challenges of appropriate difficulty for the tutee.

We supplement the appropriateness-dominance requirement with a second Teacher’s

Dilemma criteria, affecting the tutee. The tutee’s dominant strategy in a game must

be to provide a “best-effort” response: one that they believe most likely to be cor-

rect. This effort-dominance requirement prevents situations in which the tutee is

provided with motivation to purposefully answer a question incorrectly for strategic

reasons. Just as the effort-dominance criterion is needed to maintain the integrity of

the appropriateness-dominance criterion given the tutee’s freedom to strategize, other

game-specific criteria may be necessary to maintain the integrity of these criteria in

games that introduce additional assumptions and resources. We will discuss these

additional criteria as necessary.
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2.4 Three Teacher’s Dilemma games

One of the advantages offered by defining the Teacher’s Dilemma in terms of criteria

rather than as a specific game, is that we leave room for significant variations in

implementation. We have not specified the number of players that participate, nor

have we specified what responsibilities or decisions are tasked to each player (aside

from challenge-response by the tutee.) Additional domain-specific resources or game-

play assumptions may be present or absent. We exhibit this flexibility by introducing

three different games, perhaps best-suited for practicing problems in different task

domains, each provably satisfying the Teacher’s Dilemma game criteria.

2.4.1 A difficulty-based Teacher’s Dilemma game

The first game that we introduce is a simple two-player game, which we call the

difficulty-based game. Figure 2.1 illustrates this game. In this game, the Teacher first

selects a challenge to pose to the Student. The Student then provides a response,

and the accuracy of this response is objectively assessed (by the game, as discussed

below.) Both players receive payoffs based on the accuracy of the response and the

difficulty of the problem, as it is objectively assessed by the game, within the context

of a well-defined task domain. The task domain is a set or grammar of challenges

that test a student’s abilities in a single topic. For a task-domain to be well-defined,

the accuracy of any legal response r to any legal challenge c must be calculable.

The Teacher’s payoff, πt, and the Student’s payoff, πs are as follows:

πt =

1−Dc if Ar,c = 0

Dc if Ar,c = 1
(2.4.1)
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c ∈ C

r

Teacher

r ∈ R

Student

1

(Dc, 1)

0

(1 −Dc, 0)

Ar,c

Figure 2.1: A difficulty-based Teacher’s Dilemma game, in which the Teacher’s payoff
is determined by challenge difficulty and response accuracy, and the Student’s payoff is
determined solely by response accuracy. The Teacher chooses some challenge, c, from
the space of legal challenges in the task domain, C. The Student then chooses some
response, r, from the space of legal responses in the task domain, R. Dc indicates the
difficulty of challenge c, ranging from 0 for the easiest challenges to 1 for the most
difficult challenges. Ar,c represents the game-determined accuracy of response r to
challenge c, where Ar,c = 1 for correct responses or Ar,c = 0 for incorrect responses.
Players are rewarded points as shown in parentheses (with the Teacher’s payoff listed
before the Student’s payoff).

πs =

0 if Ar,c = 0

1 if Ar,c = 1
(2.4.2)

The Student receives 1 point if the response is accurate, or 0 if it is not. The Teacher

receives Dc points (where Dc measures the difficulty of the challenge, ranging from

0 for easiest to 1 for most difficult) if the response is accurate, or 1 − Dc if it is
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not. As this game relies on the objective assessment of problem difficulty Dc and of

response accuracy Ar,c, the game is only applicable to task domains for which these

assessments are attainable.

We point out that response accuracy Ar,c does not constitute a game strategy for

the Student. The complicating factor here is that the Student’s payoff is based on

response accuracy, but the Student can only indirectly affect accuracy, via choice of

response r. The “trembling hand” construct in game theory provides a way to model

a situation in which a player does not have full control over their own actions [31], but

this does not sufficiently describe the current situation. We note that while a Student

does not always have the ability to provide a response that she is sure is accurate, the

Student does always have the ability to provide a response that she is sure is incorrect.

So the Student’s available choice of strategy is limited by ability in one direction, but

not in the other. Depending on the Student’s payoff function πs, the Student may have

an incentive to exercise this asymmetry, by preferring a response guaranteed to be

incorrect over a response likely (but not certain) to be correct. For some games, such

strategic under-performance may be a form of “gaming the system” [6]. With this in

mind, the effort-dominance criteria is included in the Teacher’s Dilemma formulation.

For a game to be effort-dominant, the rational Student must always prefer (based on

expected utility values) to provide their “best-effort” response. If the Student were

to identify the probabilities with which each response will be assessed as accurate, no

response is deemed more likely to be accurate than a “best-effort” response.

We can show that this game meets the criteria of a Teacher’s Dilemma game.

Namely, that providing a best-effort response is the dominant strategy for the Student,

and that providing a maximally-appropriate challenge is the dominant strategy for

the Teacher.
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Best-effort strategies dominate

Expected utility is a linear combination of the probability of occurrence and resulting

payoffs of subsequent game tree branches. For the Student:

Eπs =
1∑

i=0

P [Ar,c = i] (πs|Ar,c = i) (2.4.3)

While the payoff values here are known from the statement of the game, the corre-

sponding probabilities are not. It is left to the Student to estimate the likelihood

of reaching each terminal node. We refer to this estimation as the Student’s “true

expectation” of this probability, and denote it as Ės(r, c). This estimate is based en-

tirely on the player’s privately-held beliefs regarding the likelihood of the outcome.

By definition of true expectation, the Student believes that P[Ar,c] = Ės and that

P[¬Ar,c] = 1− Ės. The Student’s expected utility can be restated as a linear combi-

nation of these true expectations and the payoffs from the game statement:

Eπs =
(
1− Ės

)
(πs|¬Ar,c) +

(
Ės

)
(πs|Ar,c)

=
(
1− Ės

)
(0) +

(
Ės

)
(1)

= Ės (2.4.4)

Given a posed challenge c, we call the response that the Student believes most

likely to be correct a “best-effort” response, and denote it as rBE. We call another

response that they believe less likely to be correct a “less-effort” response, and de-

note it as rLE. In the expectation notation used above, we denote this as Ės(rBE, c) >

Ės(rLE, c). We abbreviate this by using a tilde to denote the “less-effort” case, so

we can restated this as Ės > Ẽs. A payoff function is strictly effort-dominant if the
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expected utility associated with a “best-effort” response is greater than that associ-

ated with any non-best-effort response (i.e. ∀c∀rBE∀rLE [Eπs(rBE, c) > Eπs(rLE, c)].)

Since Eπs(rBE, c) = Ės and Eπs(rLE, c) = Ẽs, the best-effort strategy yields a higher

expected utility than the less-effort strategy iff Ės > Ẽs. As Ės > Ẽs holds true by def-

inition of Ẽs a best-effort strategy strictly dominates all other “less-effort” strategies.

Appropriate-challenge strategies dominate

As the structure of the game (as shown in Figure 2.1) is known by all players, the

previous analysis informs the Teacher’s strategy. Since the best-effort strategy is

strictly dominant for the Student, the Teacher can assume that a rational Student

will adopt it.3 The Teacher’s task, then, is to select a challenge that maximizes

the Teacher’s expected payoff given a best-effort response from the Student. This

expected utility is:

Eπt =
1∑

i=0

P [Ar,c = i] (πs|Ar,c = i) (2.4.5)

As above, the probability of accuracy must be estimated by the player. Using sim-

ilar notation as above, we let Ėt represent the Teacher’s privately-held expectations

regarding P [Ar,c].

Eπt = P [Ar,c = 0] (πt|¬Ar,c) + P [Ar,c = 1] (πt|Ar,c)

=
(
1− Ėt

)
(1−Dc) +

(
Ėt

)
(Dc) (2.4.6)

3Thus, during repeated game-play, the Teacher can safely attribute the Student’s performance
directly to their ability, without concern that it may instead reflect their strategy.
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Assuming that Ėt accurately reflects P [Ar,c] and thatDc accurately reflects 1−P [Ar,c],

the Teacher’s expected utility for posing challenge c to the Student is a function of

the appropriateness of that challenge for that Student:

Eπt =
(
1− Ėt

)
(1−Dc) +

(
Ėt

)
(Dc)

= (1− P [Ar,c]) (P [Ar,c]) + (P [Ar,c = 1]) (1− P [Ar,c])

= 2P [Ar,c] (1− P [Ar,c])

= 2APPRs(c) (2.4.7)

For a maximally-appropriate challenge, cAPPR, P [Ar,cAPPR
] = 0.5 holds by definition,

and the Teacher’s expected utility is Eπt(r, cAPPR) = 0.5. For a less-appropriate chal-

lenge, cOTHER, P [Ar,cOTHER
] 6= 0.5, and the Teacher’s expected utility Eπt(r, cOTHER) <

0.5. Thus, the strategy of selecting a maximally-appropriate challenge strictly dom-

inates any other challenge-selection strategy. Since the Teacher’s expected utility

varies linearly with the challenge appropriateness of the problem posed, we can go one

step further. For all c1, c2 for which APPRs(c1) > APPRs(c2), Eπt(r, c1) > Eπt(r, c2)

must hold. Thus, any strategy involving the selection of a specific challenge is strictly

dominated by all strategies involving the selection of a more appropriate challenge.

We have motivated appropriate challenge by aligning the Teacher’s expected utility

function with a Student-specific measure of challenge appropriateness.

While we have sufficiently addressed the case in which Ėt = P [Ar,c] and Dc =

1 − P [Ar,c], other dynamics may arise when one or both of these statements do not

hold. On challenges for which P [Ar,c] 6= Ėt, Figure 2.2 indicates that less-appropriate

challenges may appear preferable. While this may undermine appropriateness in the

one-shot game, repeated play between a particular pair of players provides the Teacher
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Figure 2.2: The Teacher’s expected utility, Eπt , is a function of the Teacher’s true
expectation, Ėt, and the challenge’s difficulty value, Dc.

with the opportunity to observe the error in their estimation of the Student, and re-

vise Ėt to incorporate, and better account for, these observations. Through repeated

play, a learning Teacher will converge upon the true probability over time, ultimately

valuing Ėt = P [Ar,c]. This learning process is in the Teacher’s best interests, as it

provides an increasingly accurate mapping (from actions to payoffs) based on which

the Teacher can take action. Similarly, if the challenge difficulty function does not

initially reflect student response accuracy (i.e. Dc 6= 1 − P [Ar,c]), it, too, may be

realigned by introducing an observation-based updating process. When a dynamic

process is used to update the Dc difficulty metric, inaccuracies may be corrected over

time. Given repeated play, difference between Dc and 1−P [Ar,c] will be reduced, ulti-

mately resulting in the equivalent-functions case discussed in the previous paragraph.

Thus, mis-aligned functions will align over time, and the dominant strategy for the

Teacher will then be to select maximally-appropriate challenges for their Student.

By meeting the Teacher’s Dilemma game criteria, this difficulty-based game offers
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one approach to motivating the selection of challenges of appropriate difficulty for

learners.

2.4.2 An expectation-based Teacher’s Dilemma game

While the previous section shows that the structure of the difficulty-based game will,

under certain assumptions, converge to appropriate challenges being posed, the game

assumes the existence of a suitable difficulty metric and the use of a learning algorithm

to update that metric based on observed data. In this section, we introduce a second

game. This game is designed to motivate appropriate challenges without the need for

– or existence of – the dynamically-adjusted difficulty metric, as used in the previous

game. Figure 2.3 shows an expectation-based Teacher’s Dilemma game.

We will show that the tutee’s payoff is structured in such a way as to motivate

honesty in the statement of expectation while simultaneously motivating best-effort

responses (i.e. the tutee never has an incentive to purposefully miss an answer), and

the tutor’s payoff is structured to motivate the selection of appropriate challenges.

The intuition behind the expectation-based game is that estimates of the proba-

bility of response accuracy – previously obtained through the difficulty metric – can

alternatively be obtained by directly querying the players themselves. So, in this

game, we assume that each player can form an opinion regarding the probability

that the Student’s response will be correct. Building on this notion of “true expecta-

tion” (Ė , as introduced above), we introduce a second notion, “stated expectation” E .

Where true expectation reflects a player’s privately-held beliefs, stated expectation

reflects their publicly-shared beliefs. For the Teacher, the statement of expectation is

a response to the student modeling question: “With what probability do you expect

29



CHAPTER 2. GAMES AS A MECHANISM FOR LEARNING

c ∈ C

Teacher

r ∈ R

Student

Es = 1Es = 0 Es = 0.5

Student

1

(8, 9)

0

(0, 8)

Ar,c

1

(4, 15)

0

(4, 6)

Ar,c

1

(0, 17)

0

(8, 0)

Ar,c

Figure 2.3: An expectation-based Teacher’s Dilemma game, in which both players’
payoffs are determined by the accuracy of the Student’s response and the Student’s
level of confidence in that response. The Teacher first chooses some challenge, c, from
the space of legal challenges in the task domain, C. The Student then chooses some
response, r, from the space of legal responses in the task domain, R. The Student
then states the probability with which they believe their response to be correct. The
accuracy of the response to the challenge is objectively assessed by the game, Ar,c

(where Ar,c = 1 for correct responses or Ar,c = 0 for incorrect responses.) Finally,
both players are rewarded points as shown in parentheses (with the Teacher’s payoff
listed before the Student’s payoff).

the tutee to accurately respond to the challenge question?” For the Student, the

statement of expectation requires metacognitive reflection: “With what probability

do you believe your response to the challenge question to be accurate?” As we will

show, stated and true expectations may differ from one another, as the stated expec-

tation may vary based on the context in which the student is asked to share. Players
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are free to misrepresent their true beliefs, and can be expected to do so whenever

some strategic advantage (i.e. increase in expected utility) can be gained.

In order to show that our expectation-based game meets the Teacher’s Dilemma

criteria, we must show that, in this game, misrepresenting true beliefs can never of-

fer any strategic advantage, and so players have no incentive to distort or otherwise

misrepresent their true expectations. Thus, an expectation-based game must simul-

taneously meet three criteria to qualify as Teacher’s Dilemma games. Response effort

and statement truth must both dominate Student strategies, and challenge appropri-

ateness must dominate Teacher strategies.

We note that Figure 2.3 is an instantiation of the game presented in Figure 2.4,

in which the expectation statement is discretized into three levels (Es = 0, Es = 0.5,

or Es = 1). The five w parameters from Figure 2.4 are set as follows: w1 = 8, w2 = 0,

w3 = −8, w4 = 9, and w5 = 8.

We can show that for the general form of the game (and thus, for all instances,

including the one shown in Figure 2.3), the Teacher’s Dilemma criteria are all met.

We begin by stating the game’s payoff functions, noting that we impose the following

restrictions on the w-values: w3 < 0, w3 + w4 > 0, and w1 > 0:

πt =

w1Es + w2 if Ar,c = 0

w1(1− Es) + w2 if Ar,c = 1
(2.4.8)

πs =

w3Es
2 + w5 if Ar,c = 0

w3(1− Es)
2 + w4 + w5 if Ar,c = 1

(2.4.9)

By definition of true expectation, the Teacher believes that P[Ar,c] = Ėt and P[¬Ar,c] =

1−Ėt, and the Student believes that P[Ar,c] = Ės and P[¬Ar,c] = 1−Ės. The expected
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c ∈ C

Teacher

r ∈ R

Student

10
Es

Student

1

(w1(1 − Es) + w2,

0

(w1Es + w2,

Ar,c

w3(1 − Es)2 + w4 + w5)w3Es
2 + w5)

Figure 2.4: The generalized form of the expectation-based Teacher’s Dilemma, in
which stated expectation Es is not discretized. Payoffs values are parameterized into
five w-values, and we impose the restrictions that w3 < 0, w3 + w4 > 0, and w1 > 0.

utility of each player can thus be stated as a function of these Ė probabilities and the

payoff above, as plotted in Figures 2.5 and 2.6. For the Teacher:

Eπt =
1∑

i=0

P [Ar,c = i] (πt|Ar,c = i)

=
(
1− Ėt

)
(w1Es + w2) +

(
Ėt

)
(w1 (1− Es) + w2)

= w1

(
Ėt + Es − 2ĖtEs

)
+ w2 (2.4.10)
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Figure 2.5: The Teacher’s expected utility is a function of their true expectation Ėt

and the Student’s stated expectation Es. Shown here with w1 = 1 and w2 = 0.)

For the Student:

Eπs =
1∑

i=0

P [Ar,c = i] (πs|Ar,c = i)

=
(
1− Ės

) (
w3E2

s + w5

)
+

(
Ės

) (
w3 (1− Es)

2 + w4 + w5

)
= w3E2

s − 2w3ĖsEs + w3Ės + w4Ės + w5 (2.4.11)

We can show that for this game, the Student’s payoff function πs is simultane-

ously truth-dominant and effort-dominant, and the Teacher’s payoff function πt is

appropriateness-dominant.
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Figure 2.6: The Student’s expected utility is a function of their true expectation Ės

and stated expectation Es regarding response accuracy. Shown here with w3 = −1,
w4 = 2, and w5 = 1.)

Best-effort, truthful strategies dominate

As we showed in the previous section, the student’s expected utility is:

Eπs = w3E2
s − 2w3ĖsEs + w3Ės + w4Ės + w5 (2.4.12)

Using the same approach as in the effort-dominance proof for the first game, we re-

call that a payoff function is strictly effort-dominant if the expected utility associated

with a “best-effort” response is greater than that associated with any non-best-effort

response (i.e. ∀c∀rBE∀rLE [Eπs(rBE, c) > Eπs(rLE, c)].) Based on the Student’s ex-

pected utility for this game, this requires:

Eπs(rBE, c) > Eπs(rLE, c)[
w3E2

s − 2w3ĖsEs + w3Ės + w4Ės + w5

]
>

[
w3E2

s − 2w3ẼsEs + w3Ẽs + w4Ẽs + w5

]
(−2w3Es + w3 + w4)

(
Ės − Ẽs

)
> 0 (2.4.13)
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Given that Ės > Ẽs, we can say that there exists some ∆ > 0 such that Ės = Ẽs+∆.

Substituting this into 2.4.13, we get:

(−2w3Es + w3 + w4)
(
(Ẽs + ∆)− Ẽs

)
> 0

(−2w3Es + w3 + w4) ∆ > 0

w3Es <
w3 + w4

2
(2.4.14)

Recall that, as stated in Figure 2.4, w3 < 0 and w3 + w4 > 0 limits the w-values.

Based on the signs of these terms, we have w3+w4

2w3
< 0. And since Es is a probability,

we know that 0 ≤ Es ≤ 1 must hold. Combining these:

w3 + w4

2w3

< 0 ≤ Es ≤ 1 (2.4.15)

This inequality holds for every value for Es, making a best-effort strategy strictly dom-

inate all non-best-effort strategies. Thus, the Student’s strategy is effort-dominant.

Next, we wish to establish that the truthful revelation of privately-held beliefs

(i.e. Es = Ės) yields a payoff higher than any untruthful revelations (i.e. Es 6= Ės).

In this expectation-based game, we wish to use the Student’s expectation of response

accuracy Ės(r, c) as an approximation for the actual (but unknown) probability of

response accuracy P[Ar,c]. Since this expectation is privately-held by the Student, it

cannot be directly accessed to determine the Teacher’s payoff. Instead, we must rely

on what the student reveals this expectation to be, which may or may not accurately

reflect their private beliefs. To avoid any discrepancies, we wish to design the context

in which the Student states his expectation in such a way as to encourage honest

reporting and discourage any distortion. Assuming player rationality, if the truth-

revealing strategy dominates untruthful strategies, we have succeeded. Within the
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mechanism design literature, such strategies are discussed in terms of the concepts of

incentive compatibility, truthful mechanisms, and proper scoring rules [62, 63, 85, 61]

We will identify the highest-paying stated expectation corresponding to each true

expectation, and show that the two are always equal. Given the downward-facing

orientation of the expectation surface (due to the restriction that w3 < 0, as illustrated

in Figure 2.6), we can solve for these maxima by identifying when the partial derivative

of Eπs with respect to Es is zero:

Eπs = w3E2
s − 2w3ĖsEs + w3Ės + w4Ės + w5

0 =
∂Eπs

∂Es

= 2w3Es − 2w3Ės

Es = Ės (2.4.16)

The Student attempting to maximize expected utility will therefore always state their

expectation (Es) exactly as they truly believe it (Ės.) Any misleading statement of

true expectation leads to a lower expected utility, and so πs is truth-dominant.

Appropriate-challenge strategies dominate

We note that based on the results of the previous section, a Teacher can assume that

their Student will adopt a best-effort response strategy and a truthful expectation-

statement strategy, and should form their own strategy accordingly. Our primary

criteria for the Teacher’s strategy is that it be appropriateness-dominant. We show

that, when the players’ true expectations agree, the Teacher’s strategy is immediately

appropriateness-dominant, and when the players’ true expectations do not initially

agree, the Teacher’s strategy converges on appropriateness-dominance over the course

of repeated play between the pair.
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If the Teacher believes that he will agree with the Student’s stated expectation

of response accuracy, we have Ėt = Es. We can rewrite the Teacher’s expected utility

purely in terms of Ėt, and then solve for the highest expected utility. Noting that

since w1 > 0 by definition of the game, the resulting derivative indicates a maximum

value of the function:

Eπt = w1

(
Ėt + Es − 2ĖtEs

)
+ w2

= w1

(
2Ėt − 2Ėt

2
)

+ w2

dEπt

dĖt

= 0 = w1

(
2− 4Ėt

)
Ėt = 0.5 (2.4.17)

In this case, the optimal strategy is to select challenges for which Ėt = 0.5, and so πt

is appropriateness-dominant.

On the other hand, if the Teacher believes that their own expectations will dif-

fer with those of the Student, we have Ėt 6= Ės. The Teacher has the opportunity

to out-perform the appropriateness strategy, by selecting the challenge that maxi-

mizes the anticipated difference between Ėt and Ės. In this case, either the Teacher

or the Student has provided a poor estimation of expectation, and the results from

the following accuracy assessment will lead that player’s expectations back in line.

In this case, the one-shot game may not be appropriateness-dominant, but the re-

peated game converges to an appropriateness-dominant payoff as the two players

independently converge on increasingly accurate expectation models. Feedback from

off-diagonal (Ėt 6= Es) challenges serve to sharpen either the Teacher’s student model

of the Student, the Student’s model of himself, or both.

In showing that the payoff functions for the expectation-based game could be
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restricted in such a way as to arrive at a Teacher’s Dilemma, we surpassed one of the

significant limitations of the difficulty-based game: the need for an existing difficulty

metric. We were able to organize the game in such a way as to obtain approximations

of this information from the players themselves. Errors in their estimations serve as

opportunities for learning, and dissipate as that learning occurs.

2.4.3 An equivalence-based Teacher’s Dilemma game

The third game that we introduce follows a different approach to motivating appro-

priate challenges. Where the previous two games leverage available proxies for ap-

propriateness (such as problem difficulty or player-stated expectations of accuracy),

the third game instead leverages available evidence of appropriateness. Recalling our

definition of challenge appropriateness as the probability that the student will be able

to learn from a challenge-response-feedback sequence, we can alternatively motivate

appropriateness by rewarding Teachers most when their Students show evidence of

learning. We do this by combining a simple technique for the assessment of learning

– identifying change in response accuracy between a pre-test and a post-test – with a

game-based reward structure. The key assumption for this model is one of challenge-

equivalence: For any challenge c, we must be able to generate another challenge c′

that requires all of the same skills to solve. For example, in a domain of mathemati-

cal word-problems, equivalent challenges may be generated by changing the values in

the original challenge. In a spelling domain (in which challenges are words to spell),

equivalent challenges may be other words that share the same root. The assumption

of challenge equivalence is suitable for at least some learning domains. Guzmán and

Conejo [35] discuss how the SIETTE web-based system for knowledge assessment can
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generate “isomorphic items,” and contextualizes this within a larger body of work on

automatically-generated problems for tutoring systems [9].

Given the ability to generate challenge equivalents, we allow the Teacher to select

a challenge, present it to the Student as a pre-test, provide the Student with feedback

on their response accuracy and information about the correct response, then present

the Student with the equivalent challenge as a post-test, and then reward both players.

Figure 2.7 shows this third Teacher’s Dilemma game. In this game, while the tutor’s

task still focuses on selecting appropriate challenges for their tutee, they are rewarded

directly for the observed learnability of skills in challenges posed. We will show that

the tutor’s reward is maximized for selecting challenges involving skills that the tutee

does not yet have but, given some feedback and an opportunity to attempt a similar

challenge, the tutee becomes able to solve. The tutee’s reward, again, motivates

best-effort responses for both attempts. Additionally, we note that if the players

are given the opportunity to communicate between the first and second challenges

(as is the case in the collaborative testing environment described by Barros, Conejo

and Guzman [8]), both players are motivated to try to help the tutee learn the skills

involved.

As with the expectation-based game above, this game (as shown in Figure 2.7) is

an instance of a more general game, defined in terms of w-parameters, which is shown

in Figure 2.8. The instance was derived from the generalized form by setting the w

parameters as follows: w1 = 2, w2 = 1, w3 = 3, w4 = 0, w5 = 1, and w6 = 1. In the

general case, the following constraints must hold:

w3 > w1 > (w2 = w5 = w6) > w4 = 0 (2.4.18)
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(0, 0)

Ar′c′

1
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Figure 2.7: An equivalence-based Teacher’s Dilemma game, in which the Teacher’s
payoff is a function of the response accuracies and changes in accuracy, and the
Student’s payoff is a function of the response accuracies. The Teacher first chooses
some challenge, c, from the space of legal challenges in the task domain, C. The
Student then chooses some response, r, from the space of legal responses in the task
domain, R. The accuracy of the response to the challenge is objectively assessed
by the game, Ar,c (where Ar,c = 1 for correct responses or Ar,c = 0 for incorrect
responses.) The student is then provided feedback on their performance: the accuracy
of their response is revealed, and information about the correct answer is presented.
The Student is provided with a second challenge, c′ ∈ C, which is an element in
the set of challenges equivalent to c, Ic. The student provides a response r′ to this
challenge, and the accuracy information is again shared. Finally, both players are
rewarded payoffs as specified above.
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Figure 2.8: The generalized form of the equivalence-based Teacher’s Dilemma.
Teacher-Student discussion is optionally included between the first and second chal-
lenges. Payoffs are parameterized based on six w-values, restricted as follows:
w3 > w1 > (w2 = w5 = w6) > w4 = 0.
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The payoff functions for the players are specified as follows:

πt = w1 |Ar′,c′ −Ar,c|+ w2(Ar,c) + w3(Ar′,c′) (2.4.19)

πs = w4 |Ar′,c′ −Ar,c|+ w5(Ar,c) + w6(Ar′,c′) (2.4.20)

We will show that the best-effort strategy is dominant for the Student (both when

selecting r and r′), the appropriate-challenge selection strategy is dominant for the

Teacher, and, given the opportunity to communicate between the first and second

challenges, both players are provided with strategic incentives to facilitate learning.

Best-effort strategies always dominate

In order establish whether a best-effort strategy is dominant, we follow the approach

taken for the previous games. Namely, we derive the Student’s expected utility func-

tion, and compare the expected utility of a “best-effort” and “less-effort” strategy.

We do this for all three Student responses in the game tree, starting with the two

second-response cases. For these analyses, we introduce the notation Ė ′s to indicate the

Student’s true expectation of response accuracy, Ar′,c′ . In choosing a second-response

strategy following an incorrect first response, expected utility is:

Eπs |¬Ar,c =
1∑

i=0

P [Ar′,c′ = i] (πs|Ar′,c′ = i)

=
(
1− Ė ′s

)
(0) +

(
Ė ′s

)
(w4 + w6)

=
(
Ė ′s

)
(w4 + w6) (2.4.21)
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Using the same approach as in the effort-dominance proof for the first two games,

we recall that a payoff function is strictly effort-dominant if the expected utility

associated with a “best-effort” response is greater than that associated with any non-

best-effort response (i.e. ∀c′∀r′BE∀r′LE [Eπs(r
′
BE, c′) > Eπs(r

′
LE, c′)].) For this to be the

case, it must hold that:

Eπs(r
′
BE, c′)|¬Ar,c > Eπs(r

′
LE, c′)|¬Ar,c(

Ė ′s
)

(w4 + w6) >
(
Ẽ ′s

)
(w4 + w6) (2.4.22)

By definition of these constraints (as stated in 2.4.18), w4 = 0 and w6 > 0, so

w4+w6 > 0. This reduces the inequality above to Ė ′s > Ẽ ′s, which is true, by definition

of Ẽ ′s. Thus, a best-effort strategy is dominant for the second response following an

incorrect first response.

Similarly, in choosing a second-response strategy to follow a correct first response,

the Student’s expected utility is:

Eπs |Ar,c =
1∑

i=0

P [Ar′,c′ = i] (πs|Ar′,c′ = i)

=
(
1− Ė ′s

)
(w4 + w5) +

(
Ė ′s

)
(w5 + w6)

=
(
1− Ė ′s

)
(w5) +

(
Ė ′s

)
(w5 + w6) (2.4.23)

For effort-dominance, it must hold that:

Eπs(r
′
BE, c′)|Ar,c > Eπs(r

′
LE, c′)|Ar,c(

1− Ė ′s
)

(w5) +
(
Ė ′s

)
(w5 + w6) >

(
1− Ẽ ′s

)
(w5) +

(
Ẽ ′s

)
(w5 + w6) (2.4.24)

Since w5 > 0 and w6 > 0 by definition of the constraints (as stated in 2.4.18), and
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since Ė ′s > Ẽ ′s by definition of Ẽ ′s, we can simplify this inequality:

(
Ė ′s − Ẽ ′s

)
(w5 + w6) >

(
Ė ′s − Ẽ ′s

)
(w5)

w5 + w6 > w5

w6 > 0 (2.4.25)

Again, as w6 > 0 is implied by definition of the constraints in 2.4.18, the conditions

necessary for best-effort to be a dominant strategy for the Student are always met.

Finally, when evaluating Student response strategies for the first response r, we

take advantage of the fact that we now know that the rational Student will provide a

best-effort response to the second question, regardless of her performance on the first.

Thus, the expected utility at the first step can be stated as follows (and simplified

since the parameter constraints dictate that w4 = 0):

Eπs =
1∑

i=0

1∑
j=0

P [Ar,c = i] P [Ar′,c′ = j] (πs|Ar,c = i,Ar′,c′ = j)

=
(
1− Ės

) (
Ė ′s

)
(w4 + w6) +

(
Ės

) (
1− Ė ′s

)
(w4 + w5) +

(
Ės

) (
Ė ′s

)
(w5 + w6)

= w6

(
1− Ės

) (
Ė ′s

)
+ w5

(
Ės

) (
1− Ė ′s

)
+

(
Ės

) (
Ė ′s

)
(w5 + w6)

= w5Ės + w6Ė ′s (2.4.26)

As before, for “best-effort” to dominate “less-effort”, the following must hold:

Eπs(rBE, c) > Eπs(rLE, c)

w5Ės + w6Ė ′s > w5Ẽs + w6Ė ′s
w5Ės > w5Ẽs (2.4.27)

This inequality holds true as long as w5 > 0, which is the case by game constraints.
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So we have now shown that a best-effort response strategy dominates all less-effort

response strategies game-wide. The rational Student will adopt such a strategy, and

the rational Teacher can expect the Student to do so.

Learnable-challenge strategies dominate

Given the pre- and post-testing built into this game, our discussion of appropriate

challenge can move from the realm of quantifying the probability of learning to quan-

tifying changes in accuracy, an indicator of learning itself. Thus, for this game, what

we show will not be the dominance of appropriate challenge strategies (based on the

probability of change in accuracy), but rather the dominance of learned challenge

strategies (based on the change in probability of accuracy). We wish for a payoff

function which rewards the Teacher based on how much more likely the Student is

to produce a correct response on the equivalent problem as compared to on the orig-

inal problem. For these problems, as before, we begin by identifying the Teacher’s

expected utility:

Eπt =
1∑

i=0

1∑
j=0

P [Ar,c = i] P [Ar′,c′ = j] (πt|Ar,c = i,Ar′,c′ = j)

=
(
1− Ėt

) (
Ė ′t

)
(w1 + w3) +

(
Ėt

) (
1− Ė ′t

)
(w1 + w2) +

(
Ėt

) (
Ė ′t

)
(w2 + w3)

= (w1 + w3) Ė ′t + (w1 + w2) Ėt − 2w1ĖtĖ ′t (2.4.28)

Figure 2.9 plots this expected utility, as a function of the Teacher’s true expecta-

tion for the first and second response accuracies.

The Teacher strategy that maximizes expected utility is to pose a question for

which the Teacher expects the Student to answer incorrectly the first time (i.e. Ėt =
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Figure 2.9: The Teacher’s expected utility, Eπt , is a function of the Teacher’s true
expectation for the first challenge, Ėt, and for the second challenge, Ė ′t.

0), but given feedback on their response, expects the Student to answer correctly on

the second (i.e. Ė ′t = 1). The expected utility corresponding to this strategy is:

Eπt = (w1 + w3) Ė ′t + (w1 + w2) Ėt − 2w1ĖtĖ ′t
= (w1 + w3) (1) + (w1 + w2) (0)− 2w1 (0) (1)

= w1 + w3 (2.4.29)

In general, we can use an approach similar to our effort-dominance proofs, by intro-

ducing notation to represent the amount of change in the Teacher’s true expectation

for the first and second attempts. Letting δ = Ė ′t − Ėt, we call a challenge that the

Teacher expects to yield a higher δ a “more-learning” challenge, and denote it as cML.

We call another challenge that the Teacher expects to yield a lower δ̃ a “less-learning”

challenge, and denote it as cLL. Based on these definitions, δ|(cML) > δ̃|(cLL). We
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wish to show that ∀cML∀cLL [Eπt(r, cML) > Eπt(r, cLL)]. For this to hold,

Eπt(r, cML) > Eπt(r, cLL)

(w1 + w3)
(
Ėt + δ

)
− 2w1Ėt

(
Ėt + δ

)
> (w1 + w3)

(
Ėt + δ̃

)
− 2w1Ėt

(
Ėt + δ̃

)
(w1 + w3) δ − 2w1Ėtδ > (w1 + w3) δ̃ − 2w1Ėtδ̃

(w1 + w3)
(
δ − δ̃

)
> 2w1Ėt

(
δ − δ̃

)
Ėt <

w1 + w3

2w1

(2.4.30)

Since the game constrains these w-parameters such that w3 > w1 > 0, w1+w3

2w1
> 1

must hold. Since probability Ėt ≤ 1, this Ėt < w1+w3

2w1
holds for all values of Ėt. Thus,

the rational Teacher will always prefer to pose a challenge for which they expect the

greatest possible learning gain to occur during the game.

Productive discussion strategies dominate

One important additional dynamic to recognize is that if the two players are provided

with the opportunity to communicate between the first and the second challenges –

such as is the case in the collaborative testing environment described by Barros,

Conejo and Guzman [8] – both players are motivated to use the opportunity to assist

the Student in learning the skills involved in solving the challenge posed. For the

Student, this follows from effort-dominance. If the Student is able to better learn the

skills involved, the Student can effectively increase their expectation for the accuracy

of their second response, Ė ′s. Within the framework of the effort-dominant strategy

that a rational Student adopts, communication effectively opens a venue for generat-

ing a better “best-effort” response. Similarly, when presented with the opportunity

to communicate between responses, the Teacher is motivated to assist the Student
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in learning the skills involved. In doing so, the Teacher can increase Ė ′t, and thereby

generate a preferable “more-learning” challenge. In no case is either player provided

with any incentive to discourage or undermine the Student in learning.

2.5 Summary

We introduce the concept of challenge appropriateness as a simple model of the like-

lihood of a student learning a particular challenge problem, and show how the class

of Teacher Dilemma games can be used as a mechanism for focusing peer study on

maximally appropriate challenges. We present three novel games, and show how each

meets the criteria of a Teacher’s Dilemma under a different set of assumptions. The

difficulty-based game serves as the foundation for the implemented web-based systems

that we discuss in future chapters. The expectation-based game provides a model for

adapting the difficulty-based game for task domains for which an adaptive difficulty

metric is not readily available. This effectively supports domains in which the space

of problems grows over time, as is the case with user-generated content. Finally, the

equivalence-based game offers a different approach that measures and rewards learn-

ing directly. Mid-game communication is introduced, the game motivates productive

student dialogue without undermining the Teacher’s Dilemma criteria. Using Teacher

Dilemma games, we offer a way to effectively motivate peer learners to provide one

another with appropriate challenges for practice.
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Simulating game dynamics

In the previous chapter, we presented a set of criteria for games that motivate appro-

priate challenge among peers, and we introduced three games that meet these criteria.

For each of these games, our proofs that the game is appropriateness-dominant and

effort-dominant rely on the standard game-theoretic assumption of player rationality.

While this assumption may be reasonable for game interactions among autonomous

agents [83], it is not necessarily appropriate for human players. Research in Evolu-

tionary Game Theory has shown that such results are often still meaningful if we

replace the assumption of strict rationality with a different assumption: that of re-

peated play over time [31]. Given repeated play, players may not select the optimal

strategy immediately, but may instead reach it eventually as the result of a series of

smaller strategic changes. Such repeated play dynamics offers a more realistic picture

of what we would expect to observe from students engaging in a Teacher’s Dilemma

game.

In this Chapter, we explore the question: What can we expect to happen when

two students repeatedly play a Teacher’s Dilemma game? We simulate two different
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Teacher’s Dilemma games, and use these simulations to offer insight into two issues

raised in Chapter 2. First, our previous analysis focused on the “asymmetric” form of

each game, in which each player was either a Teacher or a Student. The “symmetric”

form – in which two instances of the game are played simultaneously, with player roles

reversed in the two games – introduces additional complexity. We use the simulation

in Section 3.1 as an opportunity to observe if the symmetry introduces unexpected

collusive strategies. Second, our analysis in Section 2.4.2 of the expectation-based

game claimed that differences in the expectations of Teacher and Student could be

resolved with the passage of time. As we are now introducing a temporal component

to the game-play, we use the simulation in Section 3.1 as an opportunity to examine

if it is reasonable to expect player expectations to converge through repeated play.

3.1 Simulating repeated play in the symmetric difficulty-

based game

In constructing a simulation of repeated gameplay, we strive to offer more plausi-

ble support for the claim that the game will motivate the selection of appropriate

challenges and best-effort responses from players. As the results and interpretations

of any simulation depend on the implementation decisions made in constructing the

simulation, we will attempt to motivate and describe implementation decisions when-

ever possible. We begin with a discussion of these assumptions, and then move to a

discussion of the results of the simulation.
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3.1.1 Simulation assumptions

We make a number of assumptions about the game itself:

• We assume that the game is played exclusively between a pair of players. The

strategies that each player evolves is determined only by these games (i.e. nei-

ther player adjusts their strategies based on interactions with other players.)

• We assume that the game is iterated an infinite (or at least unknown) number

of times, so impending end-games do not affect player strategy.

• We assume that gameplay is symmetric. The implication for the players is that

a strategy must encompass a Teacher strategy and a Student strategy.

We also make several assumptions about each player:

• We assume that a one-parameter Rasch (Item Response Theory) Model [29]

is applicable. This model assumes that we can characterize every challenge

problem j according to a difficulty value βj, can characterize each student i by

some ability value θi, and can model the probability of an accurate response

Xij as follows:

Xij(βj, θi) =
exp(θi − βj)

1 + exp(θi − βj)
(3.1.1)

We modify this to allow the level of a student’s response effort γi to affect the

probability that a response is accurate. We therefore model effort-modulated

response accuracy as follows:

Xij(βj, θi) = γi
exp(θi − βj)

1 + exp(θi − βj)
(3.1.2)
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• We assume that a Teacher strategy consists of a level of problem difficulty, and

that a Student strategy consists of a level of effort exerted. Thus, a symmetric

game strategy must specify both a problem difficulty to pose and a level of effort

to exert in response.

• We assume that each student maintains a set of different strategies, and evolves

this set over time using a hill-climbing process. Once per iteration, a slight vari-

ation on each strategy is generated (in terms of challenge difficulty, response

effort, or both), and the player chooses between the original strategy and the

variation based on which performs better in games against the other player.

This is in contrast to the strategy-selection process assumed in Chapter 2, in

which we assumed that a player selects a strategy through an evaluation of all

possible strategies. Here, we simply assume that the player maintains some set

of strategies, and improves this set over time, as (randomly-generated) oppor-

tunities arise.

• We assume that player strategies are initially randomly distributed throughout

the two-dimensional space of effort and difficulty. We also randomly determine

the ability level of each player before the first round.

• We assume that the hill-climbing procedure for generating variations on strate-

gies consists of some probability that the generated strategy will vary in each

dimension, and some upper limit on how large these variations may be. (The

size and direction of each variation is randomly sampled within this limit.)

• We assume that student ability remains fixed over time.1

1We have performed simulations in which we assume that student ability increases at a constant
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3.1.2 Simulation Observations

We now turn to simulating the symmetric-role difficulty-based game. We discuss one

example to help clarify this discussion, which is illustrated in Figure 3.1.

In this example, we assume that strategy space is bounded. Specifically, we limit

the parameters ranges such that challenge difficulty is bound by −3 ≥ βj ≥ 3, student

ability is bound by −3 ≥ θi ≥ 3, and response effort is bound by 0 ≥ γi ≥ 1.

Each player maintains 40 strategies at each point in time. Initially, these strategies

are randomly selected (uniformly over the bounded space of challenge difficulty and

response effort.) The ability level of each player is also randomly determined, and

in the example illustrated, we note that Player 1 has an ability level of 0.835 and

Player 2 has an ability level of -1.788. At each iteration, a variation on each strategy

is generated. The probability of this variant changing the response effort level or

the challenge difficulty level of a strategy is 0.05, and each change adds somewhere

between -0.15 and 0.15 to the changed dimension.2 Every strategy-variant pair is

compared each iteration, and the “better” of the two is retained for the next iteration.

This decision is made based on which one out-scores the other against more of the

other player’s strategies: Against each of the other player’s 40 strategies, the current

strategy and the variant strategy each receive a certain number of points (the sum

of Teacher points and Student points from the difficulty-based game, as defined in

Section 2.4.1.) So in each of these 40 situations, one of the two is preferred.3 The

rate, and have performed others in which student ability increases at a rate proportional to challenge
appropriateness, but examine the simplest case here for clarity of interpretation. We note that in
the simulation detailed in Section 3.2, we look at a dynamic model in which student learning affects
the difficulty of a particular challenge (rather than the overall ability of the student.)

2The size of this change is randomly selected from within this range. A ceiling and floor are
imposed, to constrain the parameters within their ranges (−3 ≥ βj ≥ 3 and 0 ≥ γi ≥ 1.)

3Ties are awarded to the original strategy, rather than the variant.
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Figure 3.1: Snapshot sequence from simulation of the symmetric-role difficulty-based
Teacher’s Dilemma game. The ability levels of each player are represented by an arrow
pointing to the level of challenge difficulty at which the player has a 50% chance of
producing an accurate response. Strategies are initially generated randomly, and each
player evolves these strategies over time. We note that the evolved strategies of each
player consist of maximum effort and challenges at the other player’s level (i.e. at
which there is a 50% chance of response accuracy.)
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strategy with the majority of these preferences is retained for the next iteration.4

In Figure 3.1, we see that the strategies evolve roughly as anticipated. While the

process is slow and noisy, we note that the challenge difficulty levels of Player 1’s

strategies have all evolved to roughly the ability level of Player 2, and vice versa. For

both players, the level of response effort has increased over time, with the majority

of strategies specifying the maximum effort level. While the parameters specified in

the previous paragraph affect the speed and the amount of noise in this process, the

simulations consistently result in the same sort of dynamic. So while the strategies

adopted by the players in the first iterations do not match the optimal strategy of a

player who can simultaneously evaluate the entire space of strategies, as the analysis

in Chapter 2 assumes, the strategies adopted in later iterations do approximate this

optimal strategy.

3.2 Simulating repeated play in the expectation-

based game

Previously, when we analyzed the expectation-based game in Section 2.4.2, we claimed

that differences between the expectations of the Teacher and Student would be re-

solved with the passage of time. We now use a simulation of repeated play of that

game to support this claim. As in the previous section, we begin by stating the

assumptions underlying our simulated model, and then discuss a sample run of the

simulation.

4Again, if there are equal numbers of votes for both, the current strategy is retained.
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3.2.1 Simulation assumptions

We make a number of assumptions about the game itself:

• As before, we assume that the game is played exclusively between a pair of

players. The strategies that each evolves is determined only by these games.

• We assume that the game is iterated an infinite (or at least unknown) number

of times, so impending end-games do not affect player strategy.

• We assume that gameplay is asymmetric, and that player roles do not change

between iterations.

• The game consists of a fixed set of challenge questions, which are randomly

generated. At each iteration, the Teacher selects one of these questions to pose

to the Student.

We also make several assumptions about the players:

• Both players maintain expectations regarding response accuracy for each ques-

tion. These expectations are initially randomly generated, but are later based

on observed performance. As such, the Teacher’s expectation, Student’s expec-

tation, and true probability are entirely independent values at the beginning of

the game. In later iterations, players’ expectations are based (with some noise)

on their recent memory of the Student’s performance on the problem.

• The Student’s response accuracy on a challenge question is determined by a

probability associated with that question. This probability may increase over

time, given practice. The amount of learning that occurs is a function of the

notion of challenge appropriateness from the previous Chapter.
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• While we now allow for learning (as described in the following section), the

effect of learning is restricted to the learned problem, and does not transfer to

other problems.

• At each iteration, the Teacher poses the challenge with the greatest expected

utility (as illustrated in Figure 2.5.)

3.2.2 Simulation observations

As before, we provide a specific implementation of this model. Here we look at

a game repeated between two players that includes 100 possible challenge ques-

tions. We assume here that each player constructs their expectations on the Stu-

dent’s performance on up to five of the most recent attempts, when available, with

some noise added (up to 10% variation.) The amount of learning is proportional

to challenge appropriateness. Recalling Equation 2.1.4, we define appropriateness

as: APPRs(c) = P [Ar,c] (1− P [Ar,c]) The amount of learning (i.e. change in true

probability of an accurate response) is defined as 0.5APPRs(c).

We will again discuss one example simulation. Figures 3.2 illustrates the state

of the game at six different points in time, sampled at iterations 1, 50, 100, 150,

200, and 250. At each iteration, we plot the 100 challenge questions according the

Teacher’s expectation of response accuracy (along the x-axis), the Student’s expecta-

tion of response accuracy (along the y-axis), and the actual, determining probability

of response accuracy (as the color of each data point.)

From the iterations shown in this Figure, we see that the first challenges selected

were those that the two players disagreed on the most, with one player expecting

that the response was more likely to be correct than incorrect, and the other player
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Figure 3.2: Snapshot sequence from simulation of the asymmetric-role expectation-
based Teacher’s Dilemma game.
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expecting the opposite. As the two players’ initial (i.e. randomly-generated) expec-

tations for these challenges became increasing based on their common observations,

these challenges moved closer to the x = y diagonal line representing agreement. Be-

tween the illustrations of iteration 50 and iteration 100, we observe that the Teacher

primarily selects challenges in the center of the plot, on which both players expect to

be near the probability of 0.5. As the Student learns these problems, they migrate to

the upper right-hand corner, leaving only the challenges that both players agree to be

very difficult or very easy. Note the distribution of data point colors, indicating the

true probability of an accurate response. Over the course of the six iterations shown,

and continuing in unseen future iterations, the challenges in the upper right-hand

corner are increasingly light (indicating high true probability) and those in the lower

left-hand corner are increasingly dark. Thus, the Student and Teacher expectations

increasing align with the true probability of the challenges.

In Figure 3.3, we offer a second view of this type of simulation, in which we

show only the path that challenges travel over the course of a game. In this Figure,

an arrow is used to indicate changes in player expectations following a response to

the challenge being posed. By compiling all such arrows into a single plot, we see

that expectations of the two players have largely converged for most challenges, as

indicated by the concentration of arrows along the y = x line. This suggests that the

expectations of players repeatedly playing an expectation-based Teacher’s Dilemma

game do converge over time. Once these beliefs converge, the best strategy for the

Teacher is to select problems that both now agree to be of appropriate difficulty.

59



CHAPTER 3. SIMULATING GAME DYNAMICS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

St
ud

en
t’

s 
st

at
ed

 e
xp

ec
te

d

Teacher’s true expectation

Figure 3.3: Expectation convergence in the asymmetric-role expectation-based
Teacher’s Dilemma game. Arrows indicate how the location of a challenge, with
respect to the expectations of both players, changes over the course of a game.

3.3 Summary

In this Chapter, we designed a series of simple computer simulations, of Teacher’s

Dilemma games played repeatedly by a fixed pair of players. We used these simula-

tions as a means to conceptualize what we might expect to see from student players.

In these simulations, players varied their strategies over time in response to how

they were observed to have performed, rather than attempting to initially select a

globally optimal strategy (as was the case in the previous Chapter). In Section 3.1,

we observed that the strategies of players in a reciprocal difficulty-based Teacher’s

Dilemma game (determined by challenge difficulty levels and response effort levels)
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converged on maximizing response effort and posing appropriate challenges (i.e. for

which P [Ar,c] = 0.5). In Section 3.1, we observed that the strategies of players in

an expectation-based Teacher’s Dilemma game had the effect of first preferring chal-

lenges for which the two players disagreed most, then preferring challenges for which

the two players agreed were most appropriate, and only then preferring challenges for

which the two players agreed were less appropriate. Over the course of this process,

the Teacher’s true expectation and the Student’s stated expectation converged with

the true probability of an accurate response, and also converged with one another.

As such, discrepancies were primarily resolved early in the game (offering a means

for improving expectations), and attention quickly shifted to posing challenges based

on appropriateness, with the most appropriate challenges posed first. These simula-

tions suggest that Teacher’s Dilemma games can retain their motivational value even

if the players do not meet strict game-theoretic assumptions, if the players interact

repeatedly over time.
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Web-based systems for Teacher’s

Dilemma games

While the Teacher’s Dilemma games offer a theoretic basis for motivating learning

among pairs of players, the games themselves remain abstract constructs, offering no

specification of venue, implementation, or even domain content. In this chapter, we

describe several systems that we have built in order to incorporate these games into

web-based activities, and make them widely available to all learners with internet

access. To date, we have developed three such systems. Two are detailed in this

Chapter, and a third is discussed in Appendix A. The SpellBEE activity was the first

system built, designed specifically as a learning game for those interested in improving

their (American-English) spelling. The second system, the BEEweb, generalized the

architecture underlying the SpellBEE software into a platform on which we developed

and deployed Teacher’s Dilemma game-based activities for a variety of different task

domains. The third system, BEEmail, provides a minimal proof-of-concept that a

Teacher’s Dilemma game can be built using a decentralized peer-to-peer architecture
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(see Appendix A.) In this chapter, we discuss the design and implementation of each

of the SpellBEE and BEEweb systems.

SpellBEE and BEEweb both support a synchronous activity built on the difficulty-

based Teacher’s Dilemma game introduced in Section 2.4.1, played by a pairs of

users located in different places. In incorporating these abstract Teacher’s Dilemma

games into web-based activities, we have chosen to make player roles reciprocal and

game-play symmetric. We accomplish this by having the two players simultaneously

engaged in two instances of the game. Each player fills the “Teacher” role in one

game and the “Student” role in the other. By interleaving the active steps of these

games, players can participate in both games simultaneously, and experience these

as a single reciprocal tutoring experience. Figure 4.1 illustrates how the steps in

the difficulty-based games are arranged, and offers a picture of our TD game-based

model of reciprocal peer tutoring across the internet. This outlines the steps of a

single “turn,” and our activities are each based on several such turns during each

peer interaction.

Several other computer-based tutoring systems have also attempted to leverage

peer interactions as a context for, or basis of, learning. Where most intelligent tutoring

system designs focus on a computer tutor assisting a human learner, this arrangement

is but one of many ways to approach the overarching goal of learning. Chan and Chou

[14] map out a much larger space of options, based on the particular constellation

of number of participants involved (e.g. 2 or 3), roles each plays (i.e. teacher and

learner), type of player fulfilling these roles (i.e. real/human and virtual/machine),

types of support provided to these players (i.e. scaffolding), and symmetry of roles

(i.e. fixed or alternating). Of these options, we have focused on reciprocal tutoring

systems for two human learners. Several other recent research efforts have studied
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Figure 4.1: A web-based reciprocal tutoring activity, created by interleaving the steps
of two instances of the difficulty-based Teacher’s Dilemma game. The players engage
in each step simultaneously, and progress through the four steps sequentially.
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other tutoring system arrangements based on interactions among human learners.

Walker et al. [81, 82] have explored the effects of extending a Cognitive Tutor [2]

to incorporate peer tutoring. Wong et al. [86] have experimented with the effects of

incorporating various types of cognitive tools in a reciprocal tutoring system. Chang

et al. [18] have designed a system, Joyce, that seeks to motivate engagement through

games with peers. This work is similar to ours in the shared goals of using a game

to increase student motivation and of partially de-coupling a player’s outcome (i.e.

winning vs. losing) from their relative ability (i.e. more skilled vs. less skilled.) The

work differs in that the challenges seen in our systems are selected by one student for

the other student, while the challenges seen by students using Joyce system are always

selected by the system itself. Joyce relies on randomness1 in order to de-coupled the

relative outcome from the relative ability of competing players, whereas we base the

game scoring mechanism (for the Teacher) on the appropriateness of the challenges

posed.

In this chapter, we discuss two of our own systems, presenting the goals of each,

and describing the design and implementation decisions involved.

4.1 SpellBEE: A two-person spelling game

The SpellBEE system represents our first attempt to build a web-based activity

based on a Teacher’s Dilemma game, applied to the task domain of American-English

spelling. The activity is currently accessible online at http://SpellBEE.org/, and

since we publicly released it four years ago, we have collected data from over 25,000

1This is done in a variety of ways common in board games: random “dice rolls,” path “shortcuts,”
and position “bumping” are three components incorporated into the dynamics of this game.
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completed (i.e. fourteen-question) sessions. With this activity, we want the student

to improve her ability to spell various words, after hearing the word spoken in the con-

text of a full sentence and reading that sentence. Given the opportunity to attempt a

words again at a later point in time, we would like the student to then be more likely

to succeed on the later attempt. The extent to which spelling knowledge is transfer-

able remains debatable – as we will discuss in Section 4.1.2 – but we do wish students

to attempt to transfer knowledge of how certain sounds (e.g. phonemes or syllables)

are written in the context of different words. Peer tutoring has been applied suc-

cessfully to the spelling domain in classroom environments [26], where a game-based

approach to collaboration was found to be easy to implement, inexpensive, and quite

effective. Research on the difficulties involved in teaching and learning spelling has

been ongoing for the past century [12], offering a rich background to draw on for the

present study.

By organizing the spelling activity around the model illustrated in Figure 4.1, we

provide the student with several opportunities for learning. In the challenge-selection

step, the student is motivated to reflect on a set of seven words, and attempt to

reason about the likelihood that their partner will be able to correctly answer each

of these words. In doing so, the student may compare the structure of these words to

that of other words that their partner has attempted in the past. If, for instance, one

of the seven options is the word “perceive” and the student knows that their partner

has recently attempted to spell “receive”, the student may leverage this recognized

similarity in their decision-making process. Next, in the second step, the student

hears a sentence spoken and sees the sentence on the screen. In reading along with

the spoken sentence, the student is exposed to the (correct) spelling of several other

words. When the student then attempts to spell the challenge word, they type in
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their response, and presumably examine and approve that response before submitting

it. This generate-and-test process may occur several times for a particular response,

until the student believes the response reflects their best effort (or until the student

runs out of time.) Finally, the student is presented with feedback on the accuracy of

their response. If correct, the feedback can reinforce their knowledge. If incorrect,

the feedback presents the correct answer, which the student may then study briefly

before the entire process repeats.

4.1.1 Applying the Teacher’s Dilemma model

The SpellBEE software architecture enforces the structure of the difficulty-based

Teacher’s Dilemma game (introduced in Section 2.4.1) as follows: The space of legal

challenges – the C in Figure 2.1 – is based on a list of about 3,000 words drawn

from the word-list published in Greene’s “New Iowa Spelling Scale” (NISS) study

[33]. Each challenge problem is based on one of these words, and consists of an

audio presentation of a sentence that contains the word2, and the sentence itself,

with the challenge word blanked-out, displayed visually on the student’s computer

screen. (The sentences were culled from a selection of children’s books now in the

public domain3.) The space of legal responses – the R in Figure 2.1 – includes all

strings of length up to twenty characters. Response accuracy – Ar,c in Figure 2.1

– is a case-insensitive string matching test, with 1 indicating a match between the

2Initially, approximately 300 sentence audio files were recorded while being read aloud by a
person. We later added several thousand additional sentence audio files, generated automatically
using commercial text-to-speech software.

3SpellBEE sentences were parsed from de Saint-Exupery’s The Little Prince, and from several
books accessed through Project Gutenberg [38]: Aesop’s Fables (EText-No. 28), Peter Pan in
Kensington Gardens (EText-No. 1332), Dorothy and the Wizard of Oz (EText-No. 420), Alice in
Wonderland (EText-No. 11), The Jungle Book (EText-No. 236), and Treasure Island (EText-No.
120).
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challenge word string and the typed response string, and 0 indicating some mismatch

between the two. Finally, the difficulty metric for challenges – Dc – is also based on

the data collected in Greene’s study, as is described in detail in Section 4.1.2.

4.1.2 On problem difficulty in the spelling domain

English spelling, the learning domain addressed by SpellBEE, is known to be a chal-

lenging one. Cahen, Craun, and Johnson [12] offer an overview of earlier efforts to

understand and predict spelling difficulty. One focus has been on the regularity in the

mapping between phonemes (units of sound) and graphemes (the written form of each

phoneme.) Hanna et al. [37] tested the performance of a model for predicting spelling

based on phonetic information, and reported 49% whole-word spelling accuracy based

on a 200-rule model. Simon and Simon [72] noted that at this accuracy level, mem-

orizing these 200 rules would negligibly improve the spelling performance of fourth

grade students. While more recent attempts have attained much better results, such

as the Damper et al. [24] approach based on the expectation-maximization algorithm

achieving 82.3% whole-word accuracy, American-English spelling remains an irregular

and challenging task, both for researchers to model and for young students to learn.

Greene’s 1954 New Iowa Spelling Scale study began with an effort to generate a

core list of words that were widely used in written communication, primarily drawn

from prior studies, resulting in a list of about 5500 words. Using this list of words,

Greene launched a nationwide study in order to estimate the spelling difficulty of each

of these words. This involved approximately 230,000 students in 8,800 classrooms

across 645 school systems, with each student spelling 100 words, for a total of over

23 million word spellings [33]. The resulting data reports the percentage of students,
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Table 4.1: Data from Greene’s 1954 study is shown for the first 20 words in the
SpellBEE dictionary. The table lists the percentage of students in the grade level
specified in the columns who correctly spelled each of the words in the rows. Blank
spaces indicate word-grade combinations for which no data was collected.

Grade 2 3 4 5 6 7 8
abandon 2 3 10 18 34 43 49
ability 1 2 6 19 30 57 71
able 2 21 56 76 86 95 97
about 9 51 78 91 97 97 99
above 4 29 59 76 84 94 97
abroad 10 13 37 54 69 86
absence 4 6 14 28 49 50
absent 1 2 6 13 25 41 56
absolute 1 2 6 13 25 41 56
absolutely 1 2 3 11 16 41
abstract 3 8 16 34
abundant 3 4 14 20 34 47
abuse 1 7 27 40 56 68 80
accept 1 4 20 42 60 61
acceptable 3 5 21 39 48
acceptance 1 2 3 6 11 25 44
accepted 3 5 13 33 52 65
accepting 2 3 3 6 22 38 49
accident 2 5 21 44 60 76
accidents 1 8 14 41 54 66

for each grade level from 2 to 8, who spelled each word correctly. Table 4.1 presents

a subset of the resulting data set.

While Greene’s study was published over 50 years ago, our analysis suggests that

it remains a relatively good predictor of American-English spelling difficulty [5]. In

SpellBEE, challenge difficulty is calculated based on the NISS data. For a student

in grade level g, the difficulty of challenge word c is defined as the probability that

a student in the NISS study at the specified grade level did not correctly spell the
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challenge word:

Dc = 1− NISS[g][c]

100
(4.1.1)

For example, based on the data included in Table 4.1, we say that the difficulty of

the challenge word “absolutely” is 0.99 for a third grade student, but only 0.69 for

an eighth grade student.

4.1.3 Design goals

Now that each of the variables and functionality necessary to implement the Teacher’s

Dilemma game has been established, we must provide a system in order to enable

players to initiate and interact with these games. Two overarching goals informed

the design of this system:

• The system should enable synchronous games between users’ computers with as

few computer configuration requirements as possible. We adopted a web-based

client-server architecture to avoid requiring that the user has permission to

download and run applications on their machine. The client portion of the code

is contained in an unsigned Java applet, so a Java Virtual Machine must be

installed, configured, and enabled within the web browser. As most browsers

are already configured as such upon installation, this generally requires no ad-

ditional effort on the part of the user, and as the Java applet is platform in-

dependent, we make no requirements about which browser, operating system,

or machine type. As unsigned Java applets can only communicate with the

server from which they were loaded, messages are routed between players via a

centralized server. This connection does occur on a non-standard port, and so
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we do introduce the requirement that any firewall software must enable commu-

nication over this port with the SpellBEE server.4 Finally, browser cookies are

often used to keep track of a user’s session, but if cookies are disabled we instead

maintain session information within the URL query string. By implementing

our system in these ways, we are able to provide users with easy access to the

game from any computer, included those offering limited control over configu-

ration settings, as is often the case with computers in schools and after-school

programs.

• The system should protect the personal safety and data privacy of the student

participants. Our student users are primarily minors, and so we are very con-

servative on safety issues. As a general rule, we don’t allow any form of direct

communication between users: There is no part of the game in which one player

can type a message that is displayed on the screen of another player.5 There

is no chat-like client incorporated into the game environment and there are no

message boards or other venues for asynchronous communications on the web-

site. Interactions between players are strictly limited to the game-play itself,

such as creating and solving challenges. These limited actions are, themselves,

limited: The selection of a challenge word is made from among a sampling of

pre-approved words in Greene’s list (rather than being typed in by the players

themselves), and instead of sharing responses directly with the tutor in the feed-

4Also implied is the requirement that the user has network access to connect to the SpellBEE
server.

5Arguably, the one exception to this rule is that players see the login name of other players. Each
names consists of a unique alphanumeric string of up to 10 digits in length. After being validated as
both unique and not containing any obscenities, the username is immutable, and so cannot effectively
serve as a venue for communicating messages.
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back step, only the response accuracy (i.e. true or false) is shared.6 In limiting

the activity in these ways, we are able to allow anyone to participate (rather than

restricting participation to classroom teachers and their pre-approved list of stu-

dents), without compromising student safety. We have also taken a conservative

approach to data privacy. We collect no personally-identifying information from

students.7 All players select a unique pseudonym8 and a password when reg-

istering a user account, and all subsequent self-reported user data collected –

grade level, location, and gender – are associated only with this pseudonym.

In designing the SpellBEE system around these two overarching goals – to enable

synchronous games between users’ computers with as few computer configuration

requirements as possible, and to protect the personal safety and data privacy of the

student participants – we have attempted to design a system for use primarily by

elementary school students. In the following section, we look at the set of specific

implementation decisions that define what the student sees when they participate in

the SpellBEE activity.

6In the future, we could offer a finer-grained view of response accuracy by noting the accuracy of
each sub-problem within the challenge. We will offer a detailed discussion of sub-problem accuracy in
Section 5.5, and the concepts developed there could be applied here. For example, a word response
could be labeled in such a way as to indicate the spelling accuracy of each syllable or grapheme
within that word. We should note that while the response accuracy report is limited for the tutor,
it is not limited for the tuteee. The tutee sees their own response, the accuracy of that response,
and the correct response.

7The student may identify, during the registration process, the username and/or email address
of a teacher or parent. The teacher or parent username specified is then granted access to view the
spelling history of the student.

8Each names consists of a unique alphanumeric string of 3–10 digits in length. The server validates
whether selected names are of the right length, are unique, and do not contain any obscenities.
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4.1.4 User interface implementation decisions

After creating an account and using it to log into the SpellBEE website, the user is

able to choose a partner with whom to begin a match. In order to guarantee that

players are satisfied with the matches made, both parties must approve a match. We

do this by presenting each user with an interface through which they may extend and

rescind offers, and accept or ignore offers extended by other players. Figure 4.2 shows

SpellBEE’s player-matching interface for performing these actions. The interface

is non-blocking, as the player need not wait for a response to one action before

performing another. Once an offer is extended by one player and accepted by the

other, both players are removed from all players’ lists, and a game between the two is

initiated. In order to bound the number of messages sent to all players being matched,

the server imposes a maximum limit on the number of other players displayed on any

one player’s screen. This is achieved server-side: All available players (i.e. logged in

and not currently in a match) are randomly assigned to a node in an ordered list (e.g.

i), and for a limit of 2k, each player is only made aware of – and sent notification

messages regarding – the 2k other players whose node indices range from i − k to

i + k.

Once the game begins, the player is presented with a user interface for selecting a

challenge for their partner, shown at the top of Figure 4.3. Seven words are randomly

selected from the dictionary of about 3,000 words, and the user is prompted to click

to choose one of them. Next to each word choice is a pair of point values, indicating

the number of points that the player will receive if their partner provides an incorrect

response (shown at left, in red) or a correct response (shown at right, in green.)9

9This color and bar interface is not ideal, but did remain consistent throughout all testing.
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Figure 4.2: The player-matching interface in SpellBEE. Each available player (i.e.
logged in, but not currently matched in a game) is listed. The checkbox next to each
name can be used to extend an offer for a match (by checking the box) or rescind a
previously-extended offer (by un-checking the box). When an offer is received from
another player, their name is highlighted in yellow. By checking a box associated
with one such player, a game is initiated.

The response interface is shown at the bottom of Figure 4.3. A sentence containing

the challenge word is displayed, with the challenge blanked-out. An audio recording

of the sentence being spoken is played (the user can re-play the audio recording, if

desired.) The user types their response into a text field at the bottom. In both the

challenge and response screens, a 30-second timer (in the upper-right corner) imposes

a time limit on taking action.

Finally, two screens are used to provide feedback on performance. One tells the

tutee if their response was correct (and, if not, what the correct response was). The

second tells the tutor if their tutee correctly answered the challenge problem that

they posed. This provides the tutor with a basis for revising their challenge-selection

process for future questions. We note that learning about a tutee from this type of

interactive feedback can be a slow process, and the end of the game may approach
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Figure 4.3: The challenge selection interface (top) and response interface (bottom)
screens in the SpellBEE activity.
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before the tutor has constructed a picture of their tutee’s abilities. In order to speed

up this process, we provide tutors with their tutee’s recently-spelled word list, in

which response accuracy is noted for up to 20 recent problems. Figure 4.4 shows the

information that we show players about their partner.

A number of additional implementation decisions affect game play.

• Matches are repeated games. We note that while the difficulty-based Teacher’s

Dilemma game was presented as a one-shot game, we implement it in SpellBEE

as a repeated game. During each two-player match, seven rounds of challenge-

response-feedback occur before the game concludes and the players are returned

to the matching screen.

• Challenge selections are sampled. As the space of challenges in the SpellBEE

activity encompasses about 3,000 different words, we limit the tutor’s task to

that of selecting from a much shorter list of choices. The challenge selection

screen includes seven different words, randomly selected from the 3,000. The

difficulty values associated with each of these words is used to calculate and

show the tutor how many points they will receive if the response is correct or

incorrect.

• Payoff values are scaled. The scores for both the Teacher and the Student

range from 0–10 (rather than from 0–1, as defined in the abstract difficulty-

based game.) Additionally, the points that a player earns in each of the seven

rounds and both of the player roles (i.e. Teacher, Student) are accumulated

into a single score.

• Actions are time-limited. The challenge and response interfaces are each lim-

76



CHAPTER 4. SYSTEMS FOR TEACHER’S DILEMMA GAMES

Figure 4.4: A tutee’s recent history is shared with their tutor, in order to provide the
tutor with a starting point for assessing the tutee’s abilities and choosing appropriate
challenges. The words displayed in bold type in green signify correct responses, and
the words in red signify incorrect responses. The “time taken” is counted from when
the student begins typing11 until when they submit their response.
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Figure 4.5: Screenshot of the high score lists in SpellBEE. These lists help to encour-
age active participation.
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ited to 30 seconds of activity (at which point challenges are randomly selected,

responses are submitted as-is.) This bounds the amount of time a player ever

has to wait for their partner before the game will continue.

The SpellBEE system design goals and implementation decisions described served

to inform the development of a second system, the BEEweb.

4.2 BEEweb: A platform for developing Teacher’s

Dilemma games

In order to demonstrate that the Teacher’s Dilemma game-based approach can be suc-

cessfully applied to other task domains, the BEEweb was developed as a general plat-

form on which to build web-based tutoring activities for various task domains. The

BEEweb platform itself provides much of the functionality common to all of the hosted

activities: an application programming interface provides game developers with a

way to take advantage of the platform’s relational databased-based persistent stor-

age mechanism, intra-client messaging system, and player matching facilities. Each

BEEweb activity is accessible through a unique URL (e.g. http://PatternBEE.org,

http://MoneyBEE.org, http://GeograBEE.org), but all share the same rich web in-

frastructures (outside of the game client applet): account-based access supports both

users and classroom groups, providing users with the ability to review their own his-

torical activity, and providing teachers with the ability to manage groups and track

progress for individual students.

79



CHAPTER 4. SYSTEMS FOR TEACHER’S DILEMMA GAMES

4.2.1 BEEweb learning activities

To date, three learning activities have been built on top of the BEEweb platform.

Each of these activities shares the interaction flow illustrated in Figure 4.1, but differs

on how each of the Teacher’s Dilemma game variables are defined, including C (the

space of challenges), R (the space of responses), Ar,c (the response accuracy function),

Dc (the challenge difficulty function), and the user interface toolkits for interacting

with the challenges and responses. Thus, we will describe each activity in terms of

how these variables are defined.

PatternBEE

PatternBEE – publicly accessible at http://PatternBEE.org – focuses on spatial

reasoning, with an activity that is loosely based on Tangram puzzles. The task is,

given a set of geometric tiles and an outline of a larger geometric shape, to fit the

tiles into the outline without any tiles overlapping other tiles or extending outside

of the outline. In making this a two-person activity, we ask the first participant,

the Teacher, to create an outline (i.e. the challenge for the Student). The challenge

toolkit that we provide for the Teacher to use in doing this allows them to select

between one and six tiles, and to drag, rotate, and flip these as desired into a non-

overlapping arrangement.12 We then ask the second participant, the Student, to

attempt solve this challenge by arranging tiles into a pattern that shares the outline

of the challenge. The response toolkit shows this outline, and provides the Student

with tiles to drag, rotate, and flip into position.13 Response accuracy is computed

12We note that while SpellBEE challenge selection involved choosing from a list of seven items,
challenge selection in PatternBEE is a much less restrictive, more open-ended, activity.

13Only those tiles used by the Teacher in forming the challenge are included, so every available
tile will appear in the solution.
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by comparing the outlines created by the tile patterns of both players. If they match

exactly, the response is considered correct. If not, it is considered incorrect. We note

that there are always several tile arrangements that cast the target outline, and any

one of these is considered correct. Finally, the challenge difficulty in PatternBEE

is estimated roughly, as no equivalent of Greene’s study is available for this spatial-

reasoning domain. Based on the observation that angular outlines reveal more about

their makeup than smooth-edged outlines, we base our challenge difficulty estimates

on the “edginess” of outlines. We estimate challenge difficulty based on the number of

tiles used and the length of the perimeter of the overall outline. Figure 4.6 shows the

toolkits for interacting with challenges and responses in PatternBEE, and Figure 4.7

shows a screenshot of part of the interface for reviewing past activity.

MoneyBEE

MoneyBEE (online at http://MoneyBEE.org) is a game that uses coins to create

simple math problems of a particular form (e.g. “I’m thinking of 5 coins that sum to

55 cents, what are they?”) A challenge is a tuple, specifying the combined value and

count of some assortment of coins. A response is a 4-tuple, specifying the quantity of

each type of coin (i.e. quarter, dime, nickel, penny). The challenge toolkit consists of

an interface to add and remove up to 5 quarters, 5 dimes, 5 nickels, and 10 pennies

from the assortment of coins. The response toolkit is similar, but also includes a

statement of the challenge (in terms of number of coins and combined value.) Both

toolkits are displayed in Figure 4.8. In this activity, challenge difficulty estimates are

based on the number of steps required for a heuristic search algorithm to identify the

solution. We note that, based on the constraints on the number of each type of coin,

this domain includes 2376 unique challenges.
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Figure 4.6: The challenge selection interface (top) and response interface (bottom)
for the PatternBEE activity.
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Figure 4.7: Screenshot of historical view of a PatternBEE challenge. Note that
although the challenge and response were not identical, the solution is considered
accurate.
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Figure 4.8: The challenge selection interface (top) and response interface (bottom)
for the MoneyBEE activity.
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Figure 4.9: After selecting a state (top), the tutor selects one of three types of ques-
tions for the GeograBEE activity. This determines which of the three challenge se-
lection interfaces (middle) and corresponding response interfaces (bottom) are used.

GeograBEE

GeograBEE (online at http://GeograBEE.org) focuses on a geographical knowledge

domain, in which challenges are each questions about one U.S. state. Three different

challenges types are available for the Teacher to choose among. The GeograBEE

challenge toolkit, displayed in Figure 4.9, is broken into two steps: the Teacher first

selects a state from a map and then selecting one of three types of questions to ask
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about that state. These involve:

• Identifying the capital city of the specified state, from among a list of five U.S.

cities (multiple choice question).

• Locating the specified state on a U.S. map.

• Identifying a state (by name) based on an illustration of its geographical shape,

from among a list of five possible states (multiple choice question).

The response toolkit for the identification-based questions displays the question in

multiple-choice form, from which the tutee must make a selection. The response

toolkit for the location-based questions displays the question and presents the user

with a map, upon which they click on a state to respond. Challenge difficulty es-

timation in GeograBEE takes into account the tutee’s location, and the category,

and the relative locations of the answer options: The distance from the user’s home

state to the challenge state affects difficulty, with challenges “closer to home” marked

as less difficult than those further away. Additionally, for the capital identification

questions, the geographical distance between the incorrect answers and the correct

answers affect difficulty, so a multiple choice question with five cities in one state has

a higher difficulty rating that one with five cities in five different states.

4.2.2 Design decisions

In developing a system for students to use either out-of-school, during free time, or in

school as part of a teacher-directed classroom activity, we faced several unique design

challenges. We present two of them here, and discuss the solutions that we designed

and implemented as part of the system.

86



CHAPTER 4. SYSTEMS FOR TEACHER’S DILEMMA GAMES

In designing the BEEweb platform, we sought to provide teachers with tools to

view their student’s participation and progress. While SpellBEE offers only rudimen-

tary tools, the BEEweb provides teachers with a hierarchical set of views of their

classroom groups, summary statistics and progress visualizations, and question-by-

question challenge and response reports for each student match. In making student

data available to their classroom teacher, we faced a usability problem. As user

accounts are purely pseudonymous, teachers cannot necessarily recognize which user-

name corresponds to which student. We solve this identity-mapping problem by

implementing a modified sign-up process for classroom usage: After selecting their

pseudonym, each student is prompted to write both this username and their own real

name on their instruction sheet, and then to hand this sheet back to their teacher.

This process generates an offline, paper-based mapping between student names and

game pseudonyms for the teacher to refer to later, as needed. Figures 4.10-4.11 shows

this process in action, after the completed forms have been re-collected.

A second challenge that we faced, indicated by user feedback from the SpellBEE

activity, is that users were frustrated when they logged into the game and found no

one else with whom to play. In response, the BEEweb provides access to “practice

rounds” in this situation. This option becomes available only if no other players

are present, and offers the user with a challenge to solve, drawn randomly from the

database of challenges previously constructed by players in past games. Practice

rounds are only available as long as other players are not present, and disappear once

other players arrive. The goal here is both to lower user frustration and to increase

the amount of time that players wait for a partner before giving up and logging out. A

second technique that we have adopted to assist users in successfully starting a game

with another player is to make game activity information (i.e. active player counts)
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Figure 4.10: When using the activity in a classroom, the teacher distributes cus-
tomized instruction sheets to the students (top.) After registering a new account,
each student is prompted to fill out the form with their name and new pseudonym
(after it is approved by the system.) The teacher collects the completed forms, and can
refer to these paper records later. This allows the teacher to associate the pseudonyms
with students, without these names ever being entered into our system.

available outside of the game itself. By publishing a feed of this information that

updates several times a minute, we enable other software (e.g. desktop applications,

browser add-ons, widgets, other websites) to keep users informed about game activity.

These tools can then serve to inform the user about when to log in to play. Figure 4.12

shows a screenshot of one such tool, that always remains visible in the user’s desktop,
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Figure 4.11: Once the students have completed the process shown in Figure 4.10,
their accounts are linked to their teacher’s account (bottom.) This shows the teacher’s
screen for one of their classroom groups. The teacher can view the history of their
students at various granularities (via the “Profile” links at right.) The most granular
view is shown in Figure 4.5.

and provides one-click access to the player-matching screen for each game.

4.3 Summary

In this chapter we have detailed the goals, design, and implementation of two dif-

ferent systems for incorporating a Teacher’s Dilemma game into a web-based system

designed for peer tutoring across a variety of task domains. Since we first released
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Figure 4.12: An optional download of an application displays an up-to-date feed of
system activity (i.e. active user counts) in the operating system menu bar. This
allows a user to visit the game website only when they know that others are currently
online. When the menu is not open, the color of the bee icon and the accompanying
number indicate overall system activity as follows: When some players are online, the
icon turns yellow and the number of players are displayed; when no players are online,
the icon turns black; and when the server is unreachable (i.e. if the user’s computer is
disconnected from the internet) the icon turns gray. When opened, per-game active
user counts are visible. Clicking on a game menu item launches a web browser and
loads the player-matching interface in a browser window.

SpellBEE four years ago, we have collected data on over 25,000 completed peer tu-

toring sessions. In Chapter 5, we will use this data to probe our model and explore

its effect on participating tutors and tutees.
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Chapter 5

Empirical Analysis of SpellBEE

and BEEweb data

The game theoretic analysis presented in Chapter 2 and the simulations presented

in Chapter 3 both suggest that a Teacher’s Dilemma game will motivate peer tutors

to provide their tutees with appropriate challenges. Using data collected from the

SpellBEE and BEEweb systems discussed in Chapter 4, we now examine the effects

of the Teacher’s Dilemma on the activity of real students.

In this Chapter, we pose four research questions. First, we explore a core assump-

tion of our model, that a game can be used to affect how peer tutors select challenges,

by asking: “Does the game’s payoff structure significantly affect the challenge selec-

tion strategies of tutors?” Second, we examine the collective student-modeling ability

of the tutors in predicting the probability of a correct response from their tutees (i.e.

the Ėt from Chapter 2) by asking: “How does the predictive performance of tutors,

on the aggregate, compare to NISS-based performance expectations?” Third, we ask

whether tutor or tutee grade levels (as a rough indicator of ability) affect the level of
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difficulty of the challenges posed: “Do the main effects of tutor grade or tutee grade

(or the interaction effect of both) significantly affect the difficulty level of challenges

posed?” Fourth, we examine if and where tutees improve at the task domain with use

of our systems: “Does the response accuracy of tutees collectively improve with use

of the system?” These four questions provide an empirical basis for evaluating the

effectiveness of our web-based systems built on a difficulty-based Teacher’s Dilemma

game.

5.1 Summary of SpellBEE and BEEweb usage

We begin by presenting summary statistics about the usage of these systems, in order

to provide an overall picture of how much data has been collected, who participates,

and for how long.

When a student creates an account on the SpellBEE and BEEweb system, certain

information is collected during the registration process, including the student’s grade

level, gender, and location. We use this self-reported grade level as the basis for

grouping students when calculating certain summary statistics.1

Summary statistics on the SpellBEE and BEEweb activities are based on the num-

ber of active users2 is displayed in Table 5.1, and the number of questions answered

by these students is included in Table 5.2.3 The numbers for the SpellBEE activity

1As we will discuss shortly, some students participate at the direction of a classroom teacher. For
these students, grade level and location is not self-reported, but is instead specified by the classroom
teacher.

2We note our definition of “active” players here: We consider users who register for an account
and complete one or more (seven-question) games to be active, as distinguished from those users
who register but never complete a game.

3We note that some students may be active players in more than one BEEweb activity, so while
totals are summed within activity across grades, we do not tally totals within grade across activities.
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Table 5.1: Active BEEweb and SpellBEE game users, counted by grade level.

Grade GeograBEE MoneyBEE PatternBEE SpellBEE
2 9 9 14 628
3 54 38 137 1,166
4 325 41 280 2,110
5 143 88 307 3,371
6 72 58 187 2,960
7 132 112 172 1,612
8 79 53 99 2,508

Total 814 400 1,196 14,355

Table 5.2: BEEweb and SpellBEE questions answered, counted by player grade level.
(Note that this includes questions from incomplete games.)

Grade GeograBEE MoneyBEE PatternBEE SpellBEE
2 96 80 245 15,258
3 1,877 360 2,480 36,262
4 12,265 436 10,310 62,910
5 2,447 1,039 9,072 110,989
6 1,349 733 3,643 102,535
7 2,587 1,176 4,960 46,528
8 1,016 529 1,853 69,676

Total 21,637 4,365 32,563 444,158

are the highest, with over 14,000 active users completing over 400,000 challenges. The

numbers for the SpellBEE activity are higher than those for the other three activities

primarily because it was online first, and has been active for the longest period of

time. SpellBEE was first released in November 2003, PatternBEE was first released

in February 2005, MoneyBEE in May 2005, and GeograBEE in January 2006.4

By grouping and plotting users by the number of players that completed various

4The data presented in this section includes SpellBEE system usage from 2/1/2004–2/1/2008
and BEEweb system usage from the initial game release dates until 2/12/2008.
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Figure 5.1: Log-log plot of SpellBEE system usage, based on the number of users that
completed various numbers of games. (The first data point in the upper left-hand
corner indicates that 5,818 players completed only one game, while the data point in
the bottom right-hand corner indicates that one player completed 313 games.)

numbers of games, we gain a sense of how overall system activity is distributed among

users. Figure 5.1 graphs SpellBEE usage in this way, on a log-log plot.

One factor hindering game play in SpellBEE was that a player could only par-

ticipate if a second player was available and willing to start a match. When the

BEEweb system was developed, it was designed to allow for “practice rounds”, in

which a lone participant could solve challenges stored in the database of previously

posed problems. By adding such functionality, we hoped to increase the length of time

that a lone player would remain on the site, and thereby increase the likelihood that

a second player would arrive before the first logged out. BEEweb practice rounds

are included in Table 5.3 and Figure 5.2. Table 5.3 tallies the number of practice

rounds completed in each activity, and the number of subsequent games started (and

94



CHAPTER 5. ANALYSIS OF SPELLBEE AND BEEWEB DATA

 1

 10

 100

 1000

 1  10  100

N
um

be
r o

f p
la

ye
rs

Number of practice questions completed per session

GeograBEE
MoneyBEE
PatternBEE

Figure 5.2: BEEweb practice round completion, by game. The data point in the
upper-left-most corner indicates that there were 912 cases in which a player completed
only 1 PatternBEE practice round during the session, while the data point in the
lower-right-most corner indicates 1 case in which a player completed 134 GeograBEE
practice rounds during the session.

Table 5.3: BEEweb practice rounds: the number of rounds completed and the number
of subsequent games initiated by players following practice rounds.

Activity Practice Questions Subsequent Games
GeograBEE 4,905 437
MoneyBEE 3,079 99

PatternBEE 6,772 641
Total 14,756 1,177
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Table 5.4: Active classroom-based SpellBEE users, by player grade level.

Grade Classroom groups Students
Multiple 83 (counted below)

2 16 223
3 15 412
4 24 907
5 29 1,246
6 17 642
7 10 347
8 10 216

Total 204 3,993

presumably enabled by) these practice rounds. Figure 5.2 shows how many players

completed how many practice rounds per session5, to give a sense of how practice

round participation was distributed among players.

As described in Section 4.1.3, SpellBEE and BEEweb were designed to accommo-

date classroom-based usage. Table 5.4 summarizes the extent of teacher adoption of

the SpellBEE activity in an organized group setting, listing the number of classroom

groups participating and the number of active student users in those groups.6 From

this, we see that almost 4,000 students participated at the direction of one of about

200 classroom teachers.

Since the SpellBEE and BEEweb systems support both individual usage and

classroom-based usage, we implicitly enable games between members of different

classrooms, or between a classroom student and an out-of-classroom user. Figure 5.3

displays a visualization of student participation and partner matching for one day

5We consider a session to be a single day.
6For teachers that participated with groups of students spanning multiple grade levels, the stu-

dents are tallied by grade level, and the teachers are tallied separately, under “Multiple.”
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Figure 5.3: Visualization of one day of activity (4/11/2005) in the SpellBEE commu-
nity. Pushpins represent participants (colored by grade level and located within their
reported home state), and lines connect game partners from that day.

(within the continental United States).7 Clusters within a state generally indicate

classroom group usage, and the bundles of lines connecting clusters suggest cross-

classroom usage. (Closer inspection would make visible a large number of within-

classroom activity.)

One question on our minds early on in the study was whether there would be any

relationship between a student’s cumulative success at the activity and the duration

of that student’s active participation in the activity. Does a high response accuracy

rate correspond with a long participation duration? In Figure 5.4, we plot each

7Student locations on the map are not precise, and indicate only their state.
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Figure 5.4: Students are plotted, based on the number of challenges attempted since
registering (through March 2008), and on the percentage of these responses that were
accurate.

student according to their cumulative percentage of correct responses and the number

of challenges that they have attempted to date. This scatterplot provides a simple

picture of this relationship.

Together these statistics suggest that the systems that we have built, and the

activities supported by these systems, have been used by thousands of student, pri-

marily accessed from out-of-classroom environments. As the number of participants

and quantity of data collected from the SpellBEE activity is larger than from the

three BEEweb activities combined, the research questions explored in the subsequent

sections will look primarily at this game’s data.
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5.2 On tutor sensitivity to the game payoff func-

tion

In constructing a learning activity based on an abstract game-theoretic formulation of

a participant behavior, we assume that the basic tools of this approach are applicable

and relevant. The payoff functions, for example, were carefully designed to motivate

students to adopt certain types of game-play strategies. While we recognize that the

game-theoretic assumptions of perfect knowledge and rationality are not appropriate

to expect from elementary school-aged students playing a game during their free time,

we wish to understand if the reward-based motivational structure has any effect,

whatsoever, on the students. If the reward structure were to change, would the

challenge selection strategies of the tutors also change? In order to establish whether

or not students exhibited any sensitivity to the game’s payoff function, we organized a

simple experiment in which students (in a classroom setting) were randomly assigned

to one of four experimental conditions, differing only in the function used to determine

the Teacher’s payoff. As this experiment was performed using an early SpellBEE

prototype, a number of variations existed from the game as described in the previous

chapter: First, instead of including a fixed number of rounds, the game progressed

for as many rounds as necessary for one player to accumulate 100 points. Second,

the difficulty metric used in this prototype was based not on Greene’s NISS data, but

rather on the normalized “Scrabble score” of the various word options.8 Participating

8A Scrabble score is the sum of the point value of the word’s letters in the English-language
editions of the board game “Scrabble.” Namely, 1 point for the letters E, A, I, O, N, R, T, L, S,
U; 2 points for letters D, G; 3 points for the letters B, C, M, P; 4 points for the letters F, H, V,
W, Y; 5 points for the letter K; 8 points for the ltters J, X; and 10 points for the letters Q, Z. The
Scrabble score of each option presented to the Teacher is calculated, and these scores are normalized
to generate difficulty values (i.e. Dc = 0 for the option with the lowest Scrabble score, Dc = 1 for
the option with the highest Scrabble score.)
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classrooms were assigned to one of four groups: MotivateEasy, MotivateAppropriate,

MotivateDifficult, and MotivateSkewedAppropriate. As players change their challenge

selection strategies over time, we look only at challenge selection data from a point

in time: each player’s second game completed. All player matches included pairs of

players within the same group. In all four groups, the reward function for the Student

was the same, with the Student receiving 10 points for a correct response and 0 for

an incorrect response (note that all rewards are scaled by a factor of 10):

πs =

0 if Ar,c = 0

1 if Ar,c = 1
(5.2.1)

The reward function for the Teacher varied by group. The 20 students in the Moti-

vateEasy group were rewarded for asking easy questions, regardless of the accuracy

of the tutee’s response:

πtMotivateEasy
=

1−Dc if Ar,c = 0

1−Dc if Ar,c = 1
(5.2.2)

The 24 students in the MotivateAppropriate group were rewarded for asking difficult

questions that the student gets right and easy questions that the student gets wrong,

as in the SpellBEE and BEEweb activities:

πtMotivateAppropriate
=

1−Dc if Ar,c = 0

Dc if Ar,c = 1
(5.2.3)
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The 44 students in the MotivateDifficult group were rewarded for asking difficult

questions, regardless of the accuracy of the tutee’s response:

πtMotivateDifficult
=

Dc if Ar,c = 0

Dc if Ar,c = 1
(5.2.4)

The 11 students in the MotivateSkewedAppropriate group were rewarded for asking

difficult questions that the student gets right, but rewarded more for asking easy

questions that the student gets wrong:

πtMotivateSkewedAppropriate
=

2−Dc if Ar,c = 0

Dc if Ar,c = 1
(5.2.5)

While there are many potential ways to identify group-wide differences in challenge

selection strategy, we explored two: First, we use a Kruskal-Wallis (non-parametric)

one-way analysis of variance by ranks. This lets us determine if the four groups

differed in terms of the relative difficulty of the challenges selected. The results

show that the data from the groups does, in fact, differ significantly (H(3) = 31.549,

p < 0.001), suggesting that the payoff function does affect the challenge-selection

strategies adopted by the students when playing the games. Second, we classify each

person according to whether the majority of the challenges that they posed were

among the two most difficult options (Asks Hard), were among the three middle-

difficulty options (Asks Medium), were among the two least difficulty options (Asks

Easy), or none of the above (Other). Table 5.5 tabulates the distribution over these

observed strategies for each group. We note that, among the four groups, a higher

proportion of students in group MotivateAppropriate (for which the Teacher payoff

function was the same as that of the difficulty-based Teacher’s Dilemma game) were
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Table 5.5: Distribution of students’ observed challenge-selection strategies, by group.

Asks Asks Asks
Group Hard Medium Easy Other

MotivateEasy 25% 10% 45% 20%
MotivateAppropriate 33% 29% 0% 38%

MotivateDifficult 70% 9% 7% 14%
MotivateSkewedAppropriate 46% 27% 0% 27%

observed to fit the Asks Medium challenge selection strategy.

So while the tutors do appear to alter their challenge selection strategies based

on the payoff function of the game, these adopted strategies are not as clear as we

would have expected, based on what strategies maximize these payoff functions. We

note that across all groups, tutors seemed to have a bias towards posing the relatively

difficult challenges.

5.3 On tutor student-modeling abilities

A second assumption of our model is that the peer tutor is capable of forming predic-

tions about the likelihood that their tutee will be able to correctly answer the problem

posed. While this assumption plays a much more significant role in the expectation-

based Teacher’s Dilemma game, it does form a part of the difficulty-based game (as

used in the SpellBEE and BEEweb activities), as tutors weigh the value of different

challenges on both the stated payoff and their own prediction regarding response ac-

curacy. Given that these predictions (Ėt) are held privately and never explicitly stated

during the game, we can examine these predictions only indirectly. Another indirect

exploration of the aggregate perception of those posing questions to students was
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described by Hadjidemetriou [36], in which the teachers’ awareness of their students’

knowledge is measured. Here, we take a slightly different approach, and examine the

aggregate performance of students (at various levels of problem difficulty) in order to

assess strategic biases in problem selection.

We begin by noting that in the difficulty-based game, as detailed in Section 2.4.1,

the tutor calculates the expected utility associated with selecting a particular problem

as follows:

Eπt =
(
1− Ėt

)
(1−Dc) +

(
Ėt

)
(Dc) (5.3.1)

If the tutor is able to identify a hard problem that the difficulty function overestimates

in difficulty for the tutee (i.e. for which Dc > 0.5 and Dc >
(
1− Ėt

)
) or an easy

problem that the difficulty function underestimates in difficulty for the tutee (i.e.

for which Dc < 0.5 and Dc <
(
1− Ėt

)
), the tutor’s expected utility will be greater

than if the difficulty function were accurate. Furthermore, there are two sets of

discrepancies for which the tutor’s expected utility would exceed that corresponding to

any accurately-measured (i.e. Dc =
(
1− Ėt

)
) challenge: when Dc > 0.5 >

(
1− Ėt

)
and when Dc < 0.5 <

(
1− Ėt

)
. Thus, tutors can leverage their own insights about

their tutee’s abilities to perform better than expected, if these insights are correct.

If these insights turn out to be flawed or otherwise incorrect, the tutee will perform

worse than expected. Thus, by comparing the performance of tutors to the expected

performance of tutors, we are able to see if their insights regarding tutee abilities

were, on the whole, more accurate than the student model as predicted by the NISS

data.

Figure 5.5 illustrates, for each student grade level and NISS-based difficulty group-
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ing, the percentage of accurate responses observed within the SpellBEE data. The

NISS-predicted level of response accuracy is also included, so that the observation

summaries may be compared to the expected outcome. In this figure, we see that the

seven grade levels produce similar patterns. In each case, the percentage of accurate

responses observed decreases as NISS-based difficulty increases. We note that in each

grade, the students correctly answered the easiest challenges less often than expected,

and correctly answered the most difficult challenges more often than expected. We

believe that this observation supports our claim that Teachers strategically bias the

selection of challenges posed to their Students. In the next paragraph, we shall see

that this particular bias does, in fact, reward the Teachers, in that it leads to higher-

than-expected payoffs within the game.

Figure 5.6 presents five graphs plotting tutor data covering four years of challenges

posed in the SpellBEE system.9 The top-left graph (TL) plots the percentage of

correct student responses as a function of the (NISS-based) problem difficulty. The

top-right graph (TR) plots the percentage of incorrect student responses as a function

of the problem difficulty. In both of these graphs, observed student response levels

are compared to the (NISS-based) expected response levels. The middle-left graph

(ML) plots the payoff awarded to a teacher, if the response is correct, as a function

of the problem difficulty. The middle-right graph (MR) plots the payoff awarded to a

teacher, if the response is incorrect, as a function of the problem difficulty. Finally, the

bottom graph (B) combines the four graphs above it into a single view, quantifying

payoffs awarded (both observed and expected) to tutors: B = (TL×ML) + (TR ×

MR).

9To simplify the interpretation of this Figure, we will not distinguish among the grade levels of
students, and will instead provide a unified plots covering all students together.
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Figure 5.5: Expected vs. observed response accuracy in SpellBEE. For each grade
level, the percentages of accurate observed responses are displayed by difficulty
(rounded to the nearest 0.1). Data points are omitted for cases in which less than 50
samples were available.

In graph B, we observe that for challenges with a difficulty below 0.26 and for

challenges with a difficulty above 0.5, the participants, on aggregate, earned more

Teacher points than was expected based on NISS-predicted response accuracy. As

such, the student participants predicted the likelihood of response accuracy better
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Figure 5.6: Expected vs. observed tutor payoff data in SpellBEE. The top graphs
plot response accuracy, the middle graphs plot accuracy-dependent payoffs, and the
bottom graph plots actual payoffs.
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than expected likelihoods based on the grade-level NISS data. For challenges with

difficulty values between 0.26 and 0.5, the peer tutors predicted slightly worse than

the NISS-based model.

Alternatively, we can return to the observation at the beginning of this section

that there are two sets of conditions for which a discrepancy between the stated

problem difficulty and the Teacher’s expected problem difficulty is particularly valu-

able: if the Teacher can identify a problem for which Dc > 0.5 >
(
1− Ėt

)
or if

Dc < 0.5 <
(
1− Ėt

)
, the Teacher’s expected utility will be higher than that corre-

sponding to any problem without a discrepancy. While we cannot know a Teacher’s

true expectation, Ėt, we can use a contingency table to explore the relative frequency

of challenges that likely represent a true expectation satisfying one of these two sets of

conditions. In Table 5.6, we group and count the number of challenges posed accord-

ing to the a dichotomous version of the NISS-based difficulty metric, and according to

the observed accuracy of the response. In doing so, we find a surprising large number

of “easy” challenges (i.e. Dc < 0.5) for which the response was incorrect, and an

even larger number of “difficult” challenges (i.e. Dc > 0.5) for which the response

was correct. Among all challenges posed for which the NISS data suggests that an

incorrect response is more likely than a correct response (i.e. Dc > 0.5), almost 48%

of the responses observed were actually correct. That such a sizable fraction of these

outcomes defied expectations suggests the degree to which participating students were

able to productively model the abilities of their partners.

There are at least two alternative explanations that may potentially account for

the differences between the data observed and expected. First, the differences may

be attributed to errors in the self-reported grade levels of students. Second, the dif-

ferences may be attributed to changes in the relevance or accuracy of the NISS data
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Table 5.6: Contingency table tabulating the NISS-based challenge difficulty and the
observed response accuracy for each response submitted within the SpellBEE activity.

Difficulty (NISS)
Dc < 0.5 Dc > 0.5

Accuracy (Observed)
Ar,c = 0 52,598 132,061 184,659
Ar,c = 1 138,188 121,227 259,415

190,786 253,288 444,074

since it was first collected over 50 years ago. We can assess the relevance of the first

alternative explanation by exploring a subset of data for which grade level informa-

tion was not self-reported: classroom usage. For these students, the grade level was

reported by their classroom teacher, and so can be considered to be accurate. In Fig-

ure 5.7, we plot the response accuracy data for only this subset of users, comprising

a total of 57,857 responses. We note that the trend in this subset of observed data

reflects that of the larger set, suggesting that the self-reporting of grade level did

not noticeably affect the results. In response to the second alternative explanation –

that the trends observed might only reflect a now-outdated difficulty metric (i.e. the

expected outcomes plotted above are no longer appropriate) – we note that the dif-

ferences between the observations and expectations are not uniformly skewed in one

direction. It is not the case that SpellBEE students performed better than expected

across all difficulty levels. Instead, we find that the students tended to do better than

expected on the difficult problems while simultaneously doing worse than expected

on the easy problems. These two contradictory trends cannot be explained simply by

changes over time in overall spelling abilities. If, for example, we suspect that stu-

dent spelling abilities have slipped over time due to the prevalence of spell-checking

functionality in computer software, this change would support one of the trends, but
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Figure 5.7: Expected vs. observed response accuracy among classroom users of Spell-
BEE, for whom grade level was specified by a classroom teacher.

would contradict the other. As such, we believe that the trends observed support

the idea that peer tutors are capable of forming predictions regarding the response

accuracy of their tutees, and that these predictions are, by and large, more accurate

than predictions based on the grade-specific NISS study data.
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5.4 On the effect of tutor and tutee age on chal-

lenge difficulty

Given that cross-age partnerships occur in the SpellBEE and BEEweb activities, we

would like to see if the Teacher’s Dilemma is effective in motivating cross-age tutors

to adapt the difficulty of the problems that they pose to the skill level of their tutee.

More specifically: Does the grade level of the tutee predict differences in difficulty of

problems posed by tutors of varying grade levels? Additionally, we will examine the

converse (whether tutor grade level can explain the difference in problem difficulties

posed to tutees of varying grade levels) and the interaction (whether the effects of

different tutor grades is the same for different tutee grades).

We use the SpellBEE data for this investigation, as the difficulty metric is more

meaningful than those of the BEEweb activities. In order to provide a consistent

measure of problem difficulty across all tutee grades, we use a metric derived from

the NISS data: the word’s “location” (used by Wilson and Bock [84], among others).

This metric indicates the (fractional) grade level at which a student would have

exactly 50% likelihood of a correct response, based on a piecewise linear interpolation

of the graded NISS data.10 Figure 5.8 illustrates how the grade-specific difficulty data

is combined to derive this grade-independent statistic for two different words.

We note that in the SpellBEE activity, players are not made aware of the grade

level (or age) of their partner, and learn about the ability level of their partner

through the interactive process of the game itself. A facility exists in SpellBEE to

show a player the last twenty questions attempted by their partner and whether each

10Wilson and Bock calculate the 50% threshold based on a logistic model fit to the discrete grade-
level data, while we calculate the threshold slightly differently, based on a linear interpolation of the
grade-level data.
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Figure 5.8: Examples of the grade-independent word location statistic.

response was correct or incorrect, which can provide an indication of ability before

the game begins.

For each combination of tutor grade level and tutee grade level, Table 5.7 tallies

the total number of challenges posed, and Figure 5.9 plots the distribution of word

location (rounded to the nearest integer) among those challenges. The shape of these

distributions suggests that challenge difficulty varies primarily with tutee grade. In

order to examine this directly, we use a two-factor between-subjects 7x7 factorial

ANOVA, in which the first factor is the grade of the tutor (varying from 2 – 8)

and the second factor is the grade level of the tutee (also varying from 2 – 8). We

found all three effects to be statistically significant at the α = 0.05 level: The main

effect of tutee grade level yielded an F ratio of F (6, 38.84) = 141.221, p < 0.001, the

main effect of the tutor grade level yielded F (6, 38.84) = 6.990, p < 0.001, and the
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Table 5.7: Cross-grade challenges posed in SpellBEE. For each combination of tutor
grade and tutee grade, the total number of challenges posed is tallied.

Tutee Grade Level
2 3 4 5 6 7 8

Tutor Grade Level

2 7,289 1,280 1,145 1,888 1,410 598 1,957
3 1,264 22,766 2,660 3,369 2,524 1,176 2,779
4 1,065 2,578 42,081 6,464 4,356 1,945 4,122
5 1,818 3,275 6,506 78,560 9,016 2,958 8,551
6 1,334 2,415 4,341 8,959 71,892 4,334 8,630
7 571 1,181 1,943 2,948 4,314 30,841 4,451
8 1,902 2,744 4,133 8,656 8,710 4,497 42,335

Figure 5.9: For each combination of tutor grade and tutee grade, the distribution of
challenge difficulty is plotted. In these plots, difficulty is denoted by word location (as
a grade-independent consistent measure of difficulty), rounded to the nearest integer.
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interaction effect of the tutor and tutee grade levels yielded F (36, 483844) = 17.329,

p < 0.001. The magnitude of the effect of the tutee’s grade level (partial η2 = 0.956)

was much higher than that of the tutor’s grade level (partial η2 = 0.519) and that of

the interaction (partial η2 = 0.001). So while the problems posed by cross-age tutors

may be affected by all three factors, the factor with the largest effect on the challenge

difficulty of problems posed was the grade level of the tutee.

5.5 On tutee learning at multiple grain sizes

Given the peer-driven nature of this design, we wish to validate that students using

the SpellBEE and BEEweb systems are indeed learning, and improving at the skills

involved in the task domain. An evaluation of student learning is complicated by

two factors, however. First, as our activities are designed to be played voluntarily

by students during their free time, we chose not to incorporate static pre- and post-

tests in the games, opting, instead, to base evaluations on data collected during

student interactions. Second, we note that the sampling of data collected during

these interactions is biased by strategic use of challenge-selection. So, in order to

measure learning given these constraints, we focus our attention on cases in which a

single student faces the same problem at two different points in time. In a sense, these

two time-separated responses act as a very narrowly-defined pre-test and post-test,

and by looking only at relative performance between the two (rather than the actual

performance on either), we are able to look past biases in challenge selection. Here, we

use McNemar’s test [1, 59], a non-parametric statistical method that tests for change

in a dichotomous trait for a group of subjects before and after an intervention, to

examine student data from the SpellBEE activity. We perform several tests of student
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learning by identifying and aggregating this repeated-attempt data in various ways.

Based on these tests, we see that students are, indeed, learning, and are able to map

how this learning is distributed over challenges and sub-problems in the task domain.

In Chapter 2, we defined response accuracy in terms of the challenge c and the

response r:

Ar,c =

{
0 if response r is not the correct solution to challenge c

1 if response r is the correct solution to challenge c
(5.5.1)

When a student sees some challenge c at time ti and again later at time tj, we can

compare the accuracy of their earlier response, Ari,c, to the accuracy of their later

response, Arj ,c. As response accuracy is binary, all repeated attempts fall into one of

four categories:

(A) Ari,c = 0 and Arj ,c = 0

(B) Ari,c = 0 and Arj ,c = 1

(C) Ari,c = 1 and Arj ,c = 0

(D) Ari,c = 1 and Arj ,c = 1

By ignoring the students in categories A and D, we are able to set aside challenge-

selection strategy bias. Letting ∆ count the number of students in B, and letting

∇ count the number of students in C, McNemar’s test uses ∆ and ∇ to test the

association between SpellBEE usage and response accuracy, using the statistic:

χ2
McNemar =

(|∆−∇| − 1)2

∆ +∇
(5.5.2)
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We include in this tally only pairs of attempts with a minimum time-span (tj− ti)

of one day and a maximum time span of one year. For students represented more

than once in this tally, we include the pair of attempts with the longest time-span

(tj−ti) separating them. Using this approach, we found that, based on data collected

prior to February 2008, Yates’ continuity-corrected χ2 = 58.4551, df = 1, p < 0.001,

odds ratio = 2.030. 11 We reject the null hypothesis that the marginal frequencies

are homogenous (i.e. that ∆ and ∇ are equally likely), and conclude that there is a

statistically significant association between student spelling accuracy and SpellBEE

usage. Since ∆ > ∇, this association represents an increase in spelling accuracy with

SpellBEE usage.

In order to gain a richer understanding of the nature of student improvements

within the spelling domain, we can analyze spelling accuracy at a finer grain. Hanna

et al. [37] thoroughly detailed the role and regularity of phoneme-grapheme12 corre-

spondences in American-English spelling, and we draw upon this work by examining

spelling accuracy at the levels of graphemes and syllables.

We begin by extending our notion of response accuracy so that it may be applied

to sub-problems. Intuitively, sub-problem accuracy is a measure of the correctness of

a particular part or aspect of a response, irrespective of the accuracy of other parts

(or the accuracy of the response as a whole.) For example, consider the case in which

the tutor poses the word “accommodation” as a spelling challenge, and the tutee

types in the string “acomodation” as their response. While the whole-word accuracy

of this response is 0, if we consider only the sub-problem accuracy of the spelling

11Alternatively, if students are represented by the pair of attempts with the shortest time elapsed,
Yates’ continuity-corrected χ2 = 48.3532, df = 1, p < 0.001, odds ratio = 1.980.

12A phoneme is the smallest unit of sound in a language (e.g. /f/), and a grapheme is a written
form of a phoneme (e.g. “ph”).
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of the syllable “tion”, the sub-problem response is 1. In general, we define sub-

problem accuracy with respect to some sub-problem structure s (such as a grapheme

or syllable):

A∗
r,c,s =

{
0 if sub-problem s of challenge c was not correctly solved in r

1 if sub-problem s of challenge c was correctly solved in r

The value of a notion of sub-problem accuracy is that a particular sub-problem ap-

pears in the context of many challenge problems, and by allowing repeated-attempt

instances to compare the sub-problem accuracy across different challenge problems,

a much larger set of instances is available:

(A) A∗
ri,ci,s

= 0 and A∗
rj ,cj ,s = 0

(B) A∗
ri,ci,s

= 0 and A∗
rj ,cj ,s = 1

(C) A∗
ri,ci,s

= 1 and A∗
rj ,cj ,s = 0

(D) A∗
ri,ci,s

= 1 and A∗
rj ,cj ,s = 1

Counting students in these A∗-based groups, we can again use McNemar’s test. As

a much larger number of instances are available when examining sub-problems, we are

able to look for evidence of learning on each individual syllable or grapheme (rather

than the single analysis used across all repeated word-grained repeated spellings.)13

We compare the number of discordant pairs (i.e. groups B and C) for each

grapheme in the English language. We used a list of 170 graphemes in American-

English spellings, drawn from Dewey [27], based on the list used by Hanna et al. [37].

For each grapheme in this list, we identified all words containing the grapheme sub-

string. We then identify all cases in which a student attempted two of these words.

13McNemar’s test is only appropriate if sufficient data is available, specifically, that ∆ +∇ > 10.
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Table 5.8: Each grapheme is classified, using McNemar’s test, according to how
spelling accuracy changed over time (and SpellBEE usage.) Dashes occur in non-
contiguous graphemes, for which some (unspecified) letter occurs in place of the dash.

Improved — Worsened

(p < 0.05) (p ≥ 0.05) (p < 0.05)

A, C, CC, CE, CQ, CQU, CT, D, DG, A-E, AI, AI-E, AL, AU, AW, AY, B, CH, CI, none

E, ED, EI-E, EIGH, EN, ES, F, G, GH, CK, DD, DI, E-E, EA, EA-E, EE, EE-E, EI,

GI, H, I, I-E, IA, IA-E, IGH, IN, J, K, EL, EO, ET, EW, EY, –EY, FF, FT, GG, GN,

KN, L, M, N, NG, O, OL, ON, OO, GU, GUE, IE, IE-E, IL, LD, LE, LL, LV, MB,

OW, OW-E, P, PP, PT, Q, QU, R, S, SI, MM, MN, NN, O-E, OA, OI, OU, OUGH,

SSI, ST, T, TH, TI, U, U-E, W, WH, OWE, RR, SC, SCI, SH, SL, SS, SW, TCH,

X, Y TT, UE, UI, UI-E, V, WR, Z

Letting s represent the grapheme “sub-problem”, and letting ci represent the word

challenge that the student tried first and cj the word challenge attempted second, we

calculate grapheme sub-problem accuracies A∗
ri,ci,s

and A∗
rj ,cj ,s based on whether the

grapheme occurs in the student’s response string.14 We then categorize the response

pair based on these values.

Using this approach to examine data collected as of April 2006, we found 58

graphemes upon which student spelling accuracy, based on McNemar’s test, signifi-

cantly changed (for the better) after practice (p < 0.05); 63 graphemes upon which

no significant change was observed (i.e. p ≥ 0.05); and 0 graphemes for which student

spelling accuracy significantly changed (for the worse) after practice (p < 0.05)15 Ta-

ble 5.8 groups graphemes according to the statistical significance and directionality of

the results of these McNemar tests. Similarly, we treat syllables as sub-problems and

look at learning on each individual syllable. Using the same techniques as described

above (e.g. syllable sub-problem accuracy is based on the existence of the syllable in

14A more nuanced sub-problem accuracy function would take into account the location of the
grapheme within the response typed. We simply test for its presence.

15For the 50 remaining graphemes, ∆ + ∇ ≤ 10, so not enough data was available to apply the
test.
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the response, regardless of its exact location), we find that, at the α = 0.05 level, 79

syllables for which spelling accuracy significantly changed for the better, 304 sylla-

bles for which no significant change was observed, and 0 syllables for which spelling

accuracy significantly changed for the worse.

Thus, for repeated words, we observed students improving at the spelling task, and

for individual syllable- and grapheme-level sub-problems, all significant changes were

in the direction of spelling improving. While student assessment is complicated by

the inappropriateness of formal testing in a game and by the sampling bias introduced

by the strategic selection of problems, we see the approach taken in this experiment

as one suitable technique to test for student learning over time.

5.6 Summary

In this Chapter, we described SpellBEE and BEEweb activity participation in terms

of the number of active users for each activity, and the grade level breakdowns among

these users. We detailed how many questions these users answered, and how this

usage was distributed among the population of users. We offered statistics on BEEweb

practice rounds, and discussed the value of such rounds in subsequent player matching.

We discussed and quantified teacher-directed classroom participation. We offered a

geographical visualization of matches among players during a single day.

Based on this usage data, we examined four research questions. The first tested

a core assumption of our model: that Teacher strategies for selecting challenges were

sensitive to changes in the Teacher payoff function. We found that while there was

a bias towards selecting difficult questions regardless of the payoff function, Teacher

strategies were, in fact, sensitive to changes in the function, establishing the effec-
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tiveness of the game-based approach for influencing peer-tutoring strategies. The

second question sought to test whether this strategic responsiveness was being lever-

aged productively by participants. We found that, on the aggregate, peer tutors did

strategically bias their selection of challenges, and were effectively able to leverage

knowledge about their tutees to perform better than expected in the game. While the

majority of games were played among peers in the same grade level, the third ques-

tion tested whether the game-based approach retained its value for cross-age student

pairs. We found that the age of the tutee is a much stronger indicator of the difficulty

of posed challenges than the age of the tutor, with the focus on challenges that are

tutee-appropriate (rather than tutor-appropriate.) Finally, the fourth question ex-

amined if and when tutees improved at the spelling task with use of our system. We

explored this at three levels of problem granularity, and all three analyses support the

conclusion that students did improve with use of the system. Together, the results

of these four inquiries support our argument that a Teacher’s Dilemma game retains

its motivational value when implemented in software and played by students.
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Conclusion

In exploring the idea of a game as a mechanism for motivating the selection of appro-

priate challenges for learning, and in then constructing and evaluating several systems

to support games based on this idea, we have raised many issues that have yet to

be resolved. Several of these issues offer opportunities for future research, and we

discuss these here.

6.1 Discussion

While the Teacher’s Dilemma offers a simple approach to structuring game-based

learning, we observed discrepancies between the expected behavior of a “rational”

player and the observed behavior of actual students using the SpellBEE and BEEweb

activities. Understanding the nature of these gaps and identifying techniques that

may close them provide one opportunity for improving learning outcomes. Real play-

ers do not act strictly rationally, for example. Perhaps a game could be constructed

such that it converges on appropriate challenge given a different set of assumptions
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(i.e. other than Expected Utility theory) about player behavior.1 Since, for example,

Teachers seem to consistently overestimate the likelihood of accurate responses to

very difficult challenges (from their Students), the game payoffs may be pre-adjusted

to compensate. Subsequently, even though tutors still overestimate this likelihood,

the frequency with which they choose these challenges may remain at their intended

(i.e. low) level. One can conceive of a system in which this process – of observing

aggregate student biases and adjusting the game payoffs to compensate – takes place

automatically, forming the basis for a motivational meta-structure that adapts to

the collective decision-making processes of its users. While this system may no longer

meet the Teacher’s Dilemma criteria under the assumption of rationality, it could still

effectively meet the Teacher’s Dilemma criteria assuming the observed non-rational

decision-making strategies of the actual players in the game.

In Chapter 2, we introduced the notion of appropriate challenge, and constructed

a probabilistic definition for which an optimal challenge yields an accurate response

from the tutee with probability P [Ar,c] = 0.5. We stress here that the core value

of the model is derived from the goal being defined in terms of the probability of

response accuracy, and the actual value of this probability may be varied if needed.

In domains for which an incorrect response carries additional persistent cost (e.g.

in a domain with physical challenges, an incorrect response may lead to physical

injury), a higher probability may be preferable. In order to satisfy this new notion of

appropriateness, we simply adjust the game to match. If we define appropriateness

at the P [Ar,c] = 2
3

level, the only adjustment necessary to the difficulty-based game

compatible is to alter one payoff value: we change the Teacher’s reward for a correct

response fromDc to Dc+1
2

. All proofs in Section 2.4.1 still hold, and the game meets the

1Kahneman and Tversky’s Prospect Theory [45] offers one such alternative.
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c ∈ C

r

Teacher

r ∈ R

Student

1

(Dc+1
2 , 1)

0

(1 −Dc, 0)

Ar,c

Figure 6.1: A modified difficulty-based Teacher’s Dilemma game, in which the change
to the Teacher’s payoff for a correct responses to make it motivate a new notion of
appropriateness, which is maximized when P [Ar,c] = 2

3
.

Teacher’s Dilemma criteria under this new definition of appropriateness. Figure 6.1

illustrates this modified game. This flexibility suggests that the Teacher’s Dilemma

game-based approach can be applied to any task domains for which appropriateness

can be expressed in terms of the probability of response accuracy. Experimenting

with the model in such domains offers the opportunity to generalize this approach to

learning domains for which P [Ar,c] 6= 1
2
.

Both the SpellBEE and BEEweb systems are built on a synchronous activity

model. While the synchronicity adds immediacy and excitement to the game-play, it

also brings with it a number of limitations that must be acknowledged. First, for a

game to be initiated, two players must simultaneously be logged in and ready to be
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matched. Given the short span of time that a lone student is willing to wait for another

player to arrive (generally less than a minute), that student will likely exit before the

next player enters. We explored a variety of techniques to get players to arrive at the

same time, ranging from implementing a daily tournament that begins at a specific

time every afternoon, to suggesting to lone users to call a friend and ask them to login,

to implementing a “practice round” mode in the BEEweb activities, to providing users

with desktop status-bar applications to provide them with the information to log in

only when they know they can be matched. Beyond this complication added to player

matching, synchronicity places limits on the type of domain that can be used. By

making the activity symmetric, both players are simultaneously occupied with the

same step, either selecting challenges, constructing responses, or viewing feedback.

One player may be faster than the other at completing the step, and must then wait

for their partner to finish. By adding a time limit to each step (e.g. 30 seconds for

challenge selection in SpellBEE), we effectively put a limit on the maximum length

that a fast player may have to wait. But while this may limit the wait, it also limits

the complexity of the problems that we may reasonably ask a student to attempt

to solve. One viable alternative, which we have only recently begun to explore, is

to embed a Teacher’s Dilemma game into an asynchronous activity. The BEEmail

system, as described in Appendix A, represents our first attempt at doing this. Players

need not use the game simultaneously, games can be initiated by anyone with anyone

(regardless of whether or not they have played before) and the task domain is not

limited by the amount of time that users need to solve (or select) a challenge problem.

We anticipate that, while the game may lose some of the excitement of a race, the

rates of game activity, new user adoption, and participant retention would all be

higher for an asynchronous activity.
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While the expectation-based TD game and the equivalence-based TD game were

each designed to provide certain advantages over the original difficulty-based TD

game formulation, we have yet to observe how any of them perform in practice.

The expectation-based game, for example, offers a mechanism for assessing challenge

appropriateness that is designed to be dynamic and self-correcting (i.e. by basing it on

the tutors’ expectations), but we have yet to assess how accurate tutors’ expectation

statements are or how flexibly these expectations change in response to observed

tutee performance. By deploying systems based on these newer games, we can begin

to assess and compare their various affects on tutor challenge selection and tutee

learning.

In keeping with our goal of protecting student safety as described in Section 4.1.3,

we have allowed no open lines of communication between game players. If we were

able to guarantee that communications would not compromise student safety, adding

a facility for student dialogue could be very productive, as it has the potential to

enhance a tutor’s ability to help their tutee learn (subject to the limits of the tutors

abilities). The equivalence-based Teacher’s Dilemma game offers one example of how

a game can motivate productive dialogue. While we can never guarantee that in-game

communication cannot affect student safety, we can provide a weaker guarantee that

may be sufficient in many contexts. Namely, we guarantee that the game poses no

additional risk to student safety, if we require players to prove that they are already

in contact before enabling any in-game communication between them. Such a proof

might consist of an offline message-passing task (e.g. each player is provided with a

different password that they must convey to the other, in person or by phone, and both

must type in the other password in order to enable the chat functionality.) If suitably

defined, such a proof is sufficient to enable dialogue without introducing any new
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risks to personal safety. In doing so, we can enable the type of collaborative dialogues

discussed by Graesser et al. [32], as has been incorporated in several tutoring systems

built for use in controlled classroom settings among trusted users [47, 82, 86].

6.2 Summary

We have organized the chapters of this dissertation to reflect our five main contribu-

tions:

In Chapter 2, we introduced a model of appropriate challenge to reflect the prob-

ability of learning, define the Teacher’s Dilemma as set of a criteria for games that

motivate appropriate challenges, and provided three examples of games that meet

the Teacher’s Dilemma criteria. We provided proofs for each of these games. In

Chapter 3, we illustrated, via computer simulations, that symmetric repeated play

of one of these games, under certain assumptions, converges to player strategies in

which the tutor poses the tutee with challenges of appropriate difficulty and the tutee

replies with a best-effort response, consistent with the Teacher’s Dilemma criteria. In

Chapter 4, we described two separate systems we have built in order to allow pairs of

students to engage in a Teacher’s Dilemma game across the internet. We described

the design goals and implementation decisions involved in constructing each of these

systems. In Chapter 5, we summarized and analyzed the data collected from several

thousand students using two of these activities over the course of several years, and

found that students were generally responsive to the Teacher’s Dilemma mechanism

(even in cross-age matches), that peer tutors were able to strategically leverage their

own knowledge of the domain and of the tutee when selecting challenges to pose, and

that tutees improved at the learning task over time with use of the game (at three
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levels of measurement granularity).

The game-theoretic analysis establishes the possibility for a game-based mecha-

nism for motivating appropriate challenges, the simulations support the plausibility of

this approach given non-optimal players, the implemented software systems demon-

strate the scalability of this model, and the data analysis supports the real-world

applicability of this approach. Together, these contributions suggest that Teacher’s

Dilemma games – and the two-person learning activities built upon them – offer a

mechanism for motivating peer learners to provide one another with challenges of

appropriate difficulty for learning.
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BEEmail: Proof-of-concept of a

decentralized architecture for an

asynchronous game

Where the SpellBEE activity and the BEEweb platform have both been released pub-

licly, a third system architecture for Teacher’s Dilemma games has been implemented

but not yet tested or released. This “BEEmail” system serves as a proof-of-concept

of a decentralized architecture for an asynchronous1 Teacher’s Dilemma game. The

primary advantage of a decentralized system architecture is in increasing scalabil-

ity: If we can increase the number of concurrent active users without increasing the

computational resources that we must provide to support those users, our resource

limitations will not limit how many users can simultaneously participate. In demon-

strating that this architecture can support activities, we support our claim that a

Teacher’s Dilemma game-based model is highly scalable, theoretically capable of sup-

1The game we describe is asynchronous in that the two players do not act at the same time.
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porting large numbers of simultaneous users.

The centralized server in the SpellBEE and BEEweb architectures fills a variety

of roles:

• match-making services allow players to find and initiate games with one another.

• message-passing services allows game messages to flow between matched play-

ers, where it would otherwise be restricted (based on the Java applet security

policy.)

• game-state persistence maintains the coherence of a turn-taking game.

In abandoning the centralized server model, alternatives must be provided to fulfill

each of these roles. With BEEmail, we do this in a somewhat novel way: we piggy-

back on an existing asynchronous decentralized communication network that, we

assume, our players are already using: email. As most web browsers are configured to

process mailto URLs in the default email client2 and most email clients are configured

to open clicked http URLs in the default web browser3, we can treat email as a semi-

automated mechanism for message-passing among web-based game clients. We note

that, for the average user, this requires no additional software installation or network

configuration. In the following section, we discuss how we designed a system for

Teacher’s Dilemma games based on this architecture.

2Through the mailto URL scheme [39], web browsers offer a mechanism for composing a new
email message and auto-filling certain fields of that message (e.g. the recipient’s email address, the
message subject, the message body.)

3Email clients (with some exceptions) render all URLs within plain-text emails as click-able links
that open in the default web browser.
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A.1 Implementing a decentralized architecture for

an asynchronous game

The game may still be played within a browser, but actions that would have initiated

a message being sent to the server will now instead auto-compose an email message,

with the relevant data encapsulated in a specially-formed URL. A message can thus

be passed from one client browser to another as follows: The first browser auto-

generates an email message addressed to the user of the second browser, with the

message encoded and appended as the query string portion of a URL. When this

message is received, clicking on that URL opens a browser window, and visits the

specified URL, which can, upon loading, decode the original message from the query

string of that URL. Figure A.1 shows a sample BEEmail message, as it appears in

the recipient’s email inbox.

Figure A.2 provides a sketch of the client-side Javascript functions for encoding

game state in a mailto URL, and decoding game state from the query string of a http

URL. In this code, the sendState() function is invoked when a player completes

their turn. This function first serializes the current state of the game into a URL-

encoded string, then composes a new email message using the browser-specified email

client. The email is automatically addressed to the other player, the message subject

is set, and a basic message body is generated. This body includes the URL necessary

for the other player to continue the game in their own preferred game client. The

renderState() function is invoked after the game client HTML page finishes loading.

This function first extracts the serialized game state string from the query string of

the current URL. That string is then deserialized, and the resulting game state is

rendered in the browser window.
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Figure A.1: A sample BEEmail message, as it appears in the recipient’s email inbox.
Clicking on the included link opens a web browser and renders the current state of
this game.
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function sendState() {
queryString = serializeState(gameState);
stateLink = pathToPartnersGameClient + "?" + queryString
message = myName + " created a new BEEmail problem for you"

+ " to solve. To view this challenge, go to: " + stateLink;
location.href = "mailto:" + partnersEmail + "?subject=" + myName +

" sent you BEEmail&body=" + message
}

function renderState() {
queryString = location.search;
gameState = deserializeState(queryString);
renderUI(gameState);

}
window.onload = renderState;

Figure A.2: A Javascript code sketch for the message-passing and message-receiving
functionality in BEEmail.

While this email-based mechanism may be somewhat cumbersome, it is an entirely

sufficient basis upon which to construct a decentralized approach to asynchronous

message-passing. The game client simply consists of a web page (rendered by any

modern web browser) that uses an available scripting language (such as JavaScript)

to parse a URL in order to decode and render game state and to encode game state

in a mailto URL. If the game client HTML page is written in a domain-independent

manner (e.g. in which all URLs are relative), it will behave consistently regardless

of which site hosts the page or even the filename of the game client itself. Assuming

the game client HTML has been written in this domain-independent manner, it can

even function properly when hosted locally on the user’s own PC, and accessed in

the browser via the file protocol, specifying the local path of the HTML document.

If both players cache a copy of the game client locally and access it in this way,

no web server is necessary at all. Alternatively, since no server-side processing is
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required, a third party could host a game client simply by placing the HTML file in

any web-accessible directory.

The technique of encapsulating an application entirely within an HTML file that

can be relocated (and even hosted locally) has been used in other contexts. The

TiddlyWiki “reusable non-linear personal web notebook” [70] offers one powerful

example of this technique. This wiki works when hosted online, run from the user’s

desktop, or plugged in and run from a USB “thumb drive.” Installation involves

simply moving a file.

The idea of piggy-backing communications on an existing distributed message

protocol has been used previously in a tutoring system, as the EduBingo program

[53] relies on the Extensible Messaging and Presence Protocol (XMPP), “an open

XML technology for presence and real-time communication” [71]. XMPP-based game

messaging enables transparent communications (i.e. the user does not ever have to

send or receive messages manually), but in this case we chose email for the simplicity

of the integration and the opportunity to experiment with asynchronous game play.

Where the SpellBEE and BEEweb systems are both designed around synchronous

play, asynchronous games have a unique set of characteristics that are worth exploring

for Teacher’s Dilemma games. First, asynchronicity simplifies player matching, as

anyone can initiate a game with anyone else at any time simply by using the game

client to send a specially-formatted email. The recipient need not have participated

before, whereas the recipient of a game request in the synchronous SpellBEE and

BEEweb activities must have registered for an account and be logged in at the same

time as the requesting player. Second, the time limits on each step of the synchronous

game – imposed to bound the amount of time that a player might have to wait

before being able to move to the next step – may be eliminated if desired. In doing
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so, we can experiment with task domains that require 5–10 minutes (or more) to

respond to a challenge, where such a game would not be feasible within a fast-pace

synchronous game framework. The slower pace may, however, have a negative affect

on engagement, and we would need to examine and understand an such relationship.

A.2 Issues with email-embedded messaging and dis-

tributed client architecture

We note that in implementing BEEmail, we faced several issues specific to email-

embedded messaging and a distributed client architecture. We mention briefly how

we addressed five of these issues:

• Game state can be manipulated in transition. If the serialization process for

encoding game state into a URL does not encrypt or obfuscate the game state,

the game state may be easily altered. If the URL includes the correct answer

in plain-text, for example, by simply viewing the URL, the recipient may un-

dermine the activity. If the URL includes the players’ scores, a player can

alter these scores before visiting the URL. In BEEmail, we avoid these issues

by obfuscating the game state before appending it to the game client URL, as

illustrated in Figure A.1. We believe that removing the human-readability of

the game state should be sufficient to prevent most such abuses.

• Game-state messages persist after play. Given that the game state is entirely

encapsulated in the email messages sent and received by players, if an outdated

email-embedded link is clicked, game-play reverts to that outdated game state.

In order to detect when this happens, we cache time-stamped copies of game’s
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state (one per partner) locally in a browser cookie, and refer to these cookies

upon rendering a game state, to identify stale links and notify the user.

• Email clients may alter long URL links with line-wrapping. Some email clients

limit the length of links, and others insert spaces when line-wrapping. We

identify partial links (and notify the user), by appending a special token to the

end of every game URL, and checking for this token before rendering a game

page. Another approach is to generate HTML emails rather than plain-text

emails, since links are never broken and are handled more consistently. As

there is no mechanism for composing HTML emails via a mailto URL, HTML

emails must be sent indirectly, through a server-hosted script.4

• Two players may have different versions of the game client. We embed the game

client version number as part of the game state, and if the version numbers of

the two players in a game do not agree, the user running the older version is

prompted to update to the latest version. A game can successfully be initiated

only once both players are running the same version of the game client.

• Game state messages must embody both of the Teacher-Student games. In order

for each game to have a single score per player in our model in which the

complete game state is embodied in the messages sent between users, both of

the simultaneously-played Teacher’s Dilemma games must be encapsulated in

the game state. We do this by aggregating the challenge, response, and feedback

activities so that each player interaction incorporates activities from both of the

games. Specifically, once the game is underway, each turn involves four such

4In this case, the game client would submit a GET or POST request to the server that encap-
sulated the game state, and the server would compose and send an HTML email on behalf of the
player.
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activities: the player is presented with feedback on how they performed on the

previous challenge, the player solves a new challenge, the player is presented

with feedback on how their partner performed on the last challenge posed, and

the player poses a new challenge for their partner.5 Once all four parts of

the turn are completed, a game state message is sent to the other player. In

aggregating turn activity in this way, a single message can encapsulate game

state from the two simultaneous Teacher’s Dilemma games.

By integrating a locally-hosted web application with an email-based distributed

technique for maintaining game state, we demonstrate a proof-of-concept of a decen-

tralized, scalable architecture for an asynchronous Teacher’s Dilemma game.

5In the first few rounds, the steps for which no data is yet available are skipped.
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SpellBEE Misspelling Data

We wish to make public to the research community two sets of data that we have

collected, both from the SpellBEE system, and both related to American English

spelling errors. Both data sets are described, and sample data (for one word) is

included for each. The data sets in their entirety, covering all SpellBEE words, are

available online at http://www.cs.brandeis.edu/~ari/dissertation/.

When examining the SpellBEE data, we can distinguish among different categories

of spelling errors. Here, we use two tools – the Porter2 word stemmer [66] and the

GNU Aspell spell-checking program (version 0.60.4) [4] – to assist in classifying each

spelling error into one of four groups. The stemmer is used to determine if the

challenge word and the response string share a common word stem, and the spell-

checker is to see if the response string is “close” to the challenge word.1 The categories

are determined as follows:

• Category 1 : includes all correct responses, and is not included in this data.

1For each incorrect spelling, Aspell generates a list of possible words and we check if the challenge
word appears in that list. Specifically, we use the “bad-spellers” mode of suggestion generation for
American English.
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• Category 2 : includes incorrect responses for which the response is a valid

spelling of an English word other than the challenge word, which bears no

resemblance to the challenge word, according to the two tools used.2 This may

indicate that the student did not understand the instructions or could not hear

the audio, and entered their response based on appropriate part of speech only.)

• Category 3 : includes incorrect responses for which the response is not a valid

spelling of any English word, but is similar to the challenge word, based on the

spell-checker. This likely indicates the student understood the challenge, but

was not able to respond accurately.

• Category 4 : includes incorrect responses for which the response is not a valid

spelling of any English word and is not similar to the challenge word. This likely

indicates that the student did not try, for some reason, to answer the challenge

posed.

• Category 5 : includes incorrect responses for which the response is a valid

spelling of an English word other than the challenge word, and this word bears

a resemblance to the challenge word, according to one of the two tools used.3

This may indicate that the student could not clearly hear the word spoken.

While this classification scheme may suggest the source of the error, we have not

verified the categorization of individual errors with the students who made them.

Thus, we offer two different views of our collected data, one filtered by classification,

2Since the spell-checker does not generate suggestions for valid English words, we first break the
spelling of the typed word by duplicating the last letter, and then use the spelling suggestion facility.

3Like in Category 2, the response word is first broken by duplicating the final letter. But, in this
case, the spell-checker includes in its list of suggestions the challenge word.
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and the other filtered by frequency. In the first data set, we include only Category-

3 errors, providing a data on the relative frequencies of true misspellings. In the

second data set, we include (and label) misspellings from all categories, but omit

those misspellings that were observed only once.

We omit correct spellings (Category-1 responses) from both data sets, as the

relative frequency of these spellings is directly affected by the payoff structure of the

game. As suggested by the analysis in Section 5.3, the number of correct responses to

the most difficult challenges is disproportionately high, and the number of incorrect

responses to the least difficult challenges is disproportionately low. In setting aside

accurate responses, we believe that the relative frequencies among the remaining (i.e.

incorrect response) data are not biased by the challenge selection process resulting

from the Teacher’s Dilemma.

B.1 Dataset 1: Category-3 errors

Table B.2 includes an excerpt from the spellbee errors1.txt file online. This

dataset lists, for each word in the SpellBEE dictionary, every student response to it

that is classified in Category-3. Frequency data is included for each challenge-response

combination, in descending order. In total, this data set details 99,498 instances of

44,450 Category-3 misspellings of 2,984 words.

B.2 Dataset 2: Non-unique errors

Table B.2 includes an excerpt from the spellbee errors2.txt file online. This

dataset lists, for each word in the SpellBEE dictionary, every incorrect response with
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a frequency greater than 1. The category and frequency of each response is listed,

ordered descending by frequency. In total, this data set details 102,181 instances of

18,150 non-unique misspellings of 2,764 words.
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Table B.1: Category-3 misspellings of the word “accommodation”, listed by response
frequency.
Misspelling Freq.
accomidation 66
accomadation 44
accomodation 38
accomodations 37
acomidation 36
comidation 32
acomadation 26
accomidations 16
accomadations 14
acommadation 11
accomedation 9
comadation 8
commadation 5
acomadations 5
acomination 5
acomedation 5
commidation 5
acomodation 4
acombination 4
acomanation 3
ocomidation 3
comodation 3
accommidation 3
acommedation 2
acamadation 2
acommidation 2
acommodation 2
accodimation 2
commodations 2
comedation 2
accomination 2
acomidashion 2
accomidashin 2
ecomidations 2
acomidations 2
comidashin 1
comidashon 1
comidatoin 1
comindation 1
commadations 1
commadionshon 1
commedatio 1
commedition 1
commidatassion 1
commidattion 1
commodation 1
coumiedashaon 1
echomonation 1

Misspelling Freq.
ecomidation 1
ecomondonation 1
icomidation 1
icomination 1
ocamadation 1
occomidation 1
ocomadashion 1
ocomidations 1
ocommedition 1
ocommination 1
accomodation 1
aaccomination 1
acamadshons 1
acamidation 1
accmoidations 1
accodamation 1
accodamedation 1
accoidation 1
accomaddition 1
accomadiction 1
accomadition 1
accomaditions 1
accomadtion 1
accomanation 1
accombidation 1
accomdadation 1
accomdation 1
accomdations 1
accomedations 1
accomedatoin 1
accomeedation 1
accomendation 1
accomendations 1
accomidak 1
accomidashions 1
accomidassion 1
accomidat 1
accomidatio 1
accomidatiom 1
accomidatons 1
accomidfation 1
accomindation 1
accomitdation 1
accommadation 1
accommendation 1
accommodati 1
accommodatoin 1
accommondation 1

Misspelling Freq.
accommondition 1
accomondation 1
acodimation 1
acoidashon 1
acomadacoin 1
acomadaitoin 1
acomadaon 1
acomadashons 1
acomadasion 1
acomadatin 1
acomadayshen 1
acomadtion 1
acomantion 1
acombatoin 1
acombdation 1
acombitation 1
acombnation 1
acomdiation 1
acomdition 1
acomedashon 1
acomedations 1
acomedaytion 1
acomedtion 1
acomendation 1
acometion 1
acomidaion 1
acomidaition 1
acomidaiton 1
acomidashone 1
acomidatoin 1
acomidayshen 1
acommadtion 1
acommdions 1
acommendations 1
acommitation 1
acommonation 1
acondimation 1
akomidesion 1
camadation 1
comadashon 1
comadtion 1
combadation 1
combidation 1
comedashin 1
comedashon 1
comedatoin 1
comeddation 1
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Table B.2: Non-unique misspellings of the word “accommodation”, listed by response
frequency and error category.
Misspelling Category Freq.
accomidation 3 66
accomadation 3 44
accomodation 3 38
accomodations 3 37
acomidation 3 36
comidation 3 32
acomadation 3 26
accomidations 3 16
accomadations 3 14
acommadation 3 11
accommodations 5 11
combination 2 10
accomedation 3 9
comadation 3 8
commadation 3 5
acomadations 3 5
acomination 3 5
acomedation 3 5
commidation 3 5
comination 4 4
acomodation 3 4
comadations 4 4
acombination 3 4
acomanation 3 3
place 2 3
ocomidation 3 3
comodation 3 3

Misspelling Category Freq.
accommidation 3 3
comadasons 4 2
com 2 2
acommedation 3 2
acamadation 3 2
acommidation 3 2
co 2 2
accom 4 2
acommodation 3 2
water 2 2
accodimation 3 2
acc 4 2
finest 2 2
food 2 2
commodations 3 2
acomad 4 2
acom 4 2
acomida 4 2
comenation 4 2
comedation 3 2
accomination 3 2
acomidashion 3 2
accomidashin 3 2
ecomidations 3 2
acomidations 3 2
combanation 4 2
a 4 2
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De-La-Cruz, and Antonia Ŕıos. Siette: A web-based tool for adaptive testing.
International Journal of Artificial Intelligence in Education, 14:29–61, 2004.

[23] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience. Harper
& Row, New York, 1990.

[24] R.I. Damper, Y. Marchand, J.D.S. Marsters, and A.I. Bazin. Aligning text
and phonemes for speech technology applications using an EM-like algorithm.
International Journal of Speech Technology, 8(2):147–160, 2005.

[25] Mathew Davies and Elizabeth Sklar. Modeling human learning as a cooperative
multi agent interaction. In AAMAS Workshop on Humans and Multi-Agent
Systems, at the Second International Joint Conference on Autonomous Agents
and Multi-Agent Systems, 2003.

[26] Joseph C. Delquadri, Charles R. Greenwood, Kathleen Stretton, and R. Vance
Hall. The Peer Tutoring Spelling Game: A Classroom Procedure for Increasing
Opportunity to Respond and Spelling Performance. Education and Treatment
of Children, 6(3):225–239, Summer 1983.

[27] Godfrey Dewey. Relative Frequency of English Spellings. Teachers College Press,
New York, 1970.

[28] John W. Fantuzzo, Judith Alperin King, and Lauren Rio Heller. Effects of
reciprocal peer tutoring on mathematics and school adjustment: A component
analysis. Journal of Educational Psychology, 84(3):331–339, 1992.

[29] Gerhard H. Fischer and Ivo W. Molenaar, editors. Rasch Models: Foundations,
Recent Developments, and Applications. Springer-Verlag, New York, 1995.

[30] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, Cambridge, MA,
1998.

[31] Herbert Gintis. Game Theory Evolving. Princeton University Press, Princeton,
New Jersey, 2000.

[32] Arthur C. Graesser, Natalie K. Person, and Joseph P. Magliano. Collaborative
dialogue patterns in naturalistic one-to-one tutoring. Applied Cognitive Psychol-
ogy, 9:495–522, 1995.

144



BIBLIOGRAPHY

[33] Harry A. Greene. New Iowa Spelling Scale. State University of Iowa, Iowa City,
1954.

[34] Charles R. Greenwood. Monitoring, improving, and maintaining quality imple-
mentation of the classwide peer tutoring using behavioral and computer technol-
ogy. Education & Treatment of Children, 16(1):19–48, February 1993.

[35] Eduardo Guzmán and Ricardo Conejo. A library of templates for exercise con-
struction in an adaptive assessment system. Technology, Instruction, Cognition
and Learning (TICL), 2(1-2):21–32, 2004.

[36] Constantia Hadjidemetriou. Using rasch models to reveal countours of teachers’
knowledge. Journal of Applied Measurement, 5(3):243–257, 2004.

[37] Paul R. Hanna, Jean S. Hanna, Richard E. Hodges, and Jr. Edwin H. Rudorf.
Phoneme-grapheme correspondences as cues to spelling improvement. Research
Report OE-32008, Office of Education / U.S. Department of Health, Education,
and Welfare, 1966.

[38] Michael Hart. Project Gutenberg. http://www.gutenberg.org/.

[39] P. Hoffman, L. Masinter, and J. Zawinski. The mailto URL scheme. http:

//www.ietf.org/rfc/rfc2368.txt.

[40] Robin Hunicke and Vernell Chapman. AI for dynamic difficulty adjustment in
games for dynamic difficulty adjustment in games. In In Proceedings of the
Challenges in Game AI Workshop, Nineteenth National Conference on Artificial
Intelligence (AAAI ’04), San Jose, 2004. AAAI Press.

[41] Jeff Johns, Sridhar Mahadevan, and Beverly Woolf. Estimating student profi-
ciency using an item response theory model. In M. Ikeda, K. Ashley, and T.-W.
Chan, editors, Proceedings of the 8th International Conference on Intelligent
Tutoring Systems (ITS-2006), pages 473–480, 2006.

[42] David W. Johnson and Roger T. Johnson. Learning together and alone: cooper-
ative, competitive, and individualistic learning. Allyn & Bacon, Boston, 1994.

[43] D.W. Johnson and R.T. Johnson. Cooperation and Competition: Theory and
Research. Interaction Book Company, Edina, Minnesota, 1989.

[44] Roger T. Johnson, David W. Johnson, and Mary Beth Stanne. Effects of co-
operative, competitive, and individualistic goal structures on computer-assisted
instruction. Journal of Educational Psychology, 77(6):668–677, December 1985.

145

http://www.gutenberg.org/
http://www.ietf.org/rfc/rfc2368.txt
http://www.ietf.org/rfc/rfc2368.txt


BIBLIOGRAPHY

[45] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision
under risk. Econometrica, 47(2):263–292, March 1979.

[46] Alison King. ASK to THINK-TEL WHY: A Model of Transactive Peer Tutor-
ing for Scaffolding Higher Level Complex Learning. Educational Psychologist,
32(4):221–235, 1997.

[47] Alison King. Transactive peer tutoring: Distributing cognition and metacogni-
tion. Educational Psychology Review, 10(1):57–75, March 1998.

[48] Alison King. Structuring peer interaction to promote high-level cognitive pro-
cessing. Theory into Practice, 41(1):34–41, Winter 2002.

[49] John Kirriemuir and Angela McFarlane. Literature review in games and learning.

[50] Raph Koster. A Theory of Fun for Game Design. Paraglyph Press, 2004.

[51] V.S. Kumar, G.I. McCalla, and J.E. Greer. Helping the peer helper. In Pro-
ceedings of the International Conference on AI in Education, pages 325–332,
1999.

[52] Mark R. Lepper. Motivational considerations in the study of instruction. Cog-
nition and Instruction, 5(4):289–309, 1988.

[53] Hui-Chun Liao. EduBingo: A bingo-like game for skill building. Master’s thesis,
National Central University, Jhongli, Taiwan, 2005.

[54] Frederic M. Lord. Applications of Item Response Theory to practical testing
problems. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1980.

[55] Larry Maheady, Barbara Mallette, and Gregory F. Harper. Four classwide peer
tutoring models: similarities, differences, and implications for research and prac-
tice. Reading and Writing Quarterly, 22:65–89, 2006.

[56] M. Mayo and A. Mitrovic. Optimising ITS behaviour with Bayesian networks
and decision theory. International Journal of Artificial Intelligence in Education,
12(3), 2001.

[57] BM McLaren, E. Walker, K. Koedinger, N. Rummel, H. Spada, and M. Kalch-
man. Improving Algebra Learning and Collaboration through Collaborative Ex-
tensions to the Algebra Cognitive Tutor. Poster Presented at CSCL-05, Taipei,
Taiwan, 2005.

146



BIBLIOGRAPHY

[58] Bruce M. McLaren, Lars Bollen, Erin Walker, Andreas Harrer, and Jonathan
Sewall. Cognitive tutoring of collaboration. In Proceedings of the 2005 conference
on Computer support for collaborative learning, 2005.

[59] Quinn McNemar. Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika, 12(2):153–157, June 1947.

[60] Janet Metcalfe and Nate Kornell. The dynamics of learning and allocation of
study time to a region of proximal learning. Journal of Experimental Psychology:
General, 132(4):530–542, 2003.

[61] Nolan Miller, Paul Resnick, and Richard Zeckhauser. Eliciting information
feedback: The peer-prediction method. Management Science, 51(9):1359–1373,
September 2005.

[62] Noam Nisan. Algorithmic mechanism design. Games and Economic Behavior,
35:166–196, 2001.

[63] Noam Nisan. Introduction to mechanism design (for computer scientists). In
E. Tardos N. Nisan, T. Roughgarden and V. Vazirani, editors, Algorithmic Game
Theory. Cambridge University Press, Cambridge, 2007.

[64] Angela M. O’Donnell and Alison King, editors. Cognitive Perspectives on Peer
Learning. Lawrence Erlbaum Associates, Mahwah, New Jersey, 1999.

[65] Jordan B. Pollack and Alan D. Blair. Co-evolution in the successful learning of
backgammon strategy. Machine Learning, 32(3):225–240, 1998.

[66] Martin Porter. The English (Porter2) Stemming Algorithm, 2002. http://

snowball.tartarus.org/algorithms/english/stemmer.html.

[67] Georg Rasch. Probabilistic Models for Some Intelligence and Attainment Tests.
The University of Chicago Press, Chicago, 1980.

[68] Robert Rieber and Aaron Carton, editors. The collected works of L. S. Vygotsky,
volume 1: Problems of General Psychology. Plenum Press, 1978.

[69] Jack Robertson and William Webb. Cake-Cutting Algorithms. A K Peters, Ltd.,
Natick, Massachusetts, 1998.

[70] Jeremy Ruston. TiddlyWiki. http://www.tiddlywiki.com/.

[71] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core.
http://www.ietf.org/rfc/rfc3920.txt.

147

http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://www.tiddlywiki.com/
http://www.ietf.org/rfc/rfc3920.txt


BIBLIOGRAPHY

[72] Dorothea P. Simon and Herbert A. Simon. Alternative uses of phonemic in-
formation in spelling. Review of Educational Research, 43(1):115–137, Winter
1973.

[73] E. Sklar and S. Parsons. Towards the Application of Argumentation-Based Di-
alogues for Education. International Conference on Autonomous Agents: Pro-
ceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems-, 3:1420–1421, 2004.

[74] R.E. Slavin. Co-operative learning. The Social Psychology of the Primary School,
1990.

[75] Robert E. Slavin. Research on cooperative learning and achievement: What we
know, what we need to know. Contemporary Educational Psychology, 21(1):43–
69, January 1996.

[76] H. Steinhaus. The problem of fair division. Econometrica, 16(1):101–104, 1948.

[77] K. VanLehn. The Behavior of Tutoring Systems. International Journal of Arti-
ficial Intelligence in Education, 16(3):227–265, 2006.

[78] Luis von Ahn. Human Computation. PhD thesis, Carnegie Mellon University,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213,
December 2005.

[79] Luis von Ahn and Laura Dabbish. Labeling images with a computer game. In
CHI ’04: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 319–326, New York, NY, April 2004. ACM Press.

[80] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1947.

[81] E. Walker, K.R. Koedinger, B.M. McLaren, and N. Rummel. Cognitive Tutors
as Research Platforms: Extending an Established Tutoring System for Collab-
orative and Metacognitive Experimentation. 8th international conference on
intelligent tutoring systems, Jhongli, Taiwan, pages 26–30, 2006.

[82] E. Walker, N. Rummel, B.M. McLaren, and K.R. Koedinger. The student be-
comes the master: Integrating peer tutoring with cognitive tutoring. In Proceed-
ings of the Conference on Computer-Supported Collaborative Learning, 2007.

[83] Gerhard Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, 1997.

148



BIBLIOGRAPHY

[84] Mark Wilson and R. Darrell Bock. Spellability: A linearly ordered content
domain. American Educational Research Journal, 22(2):297–307, Summer 1985.

[85] R. L. Winkler. Scoring rules and the evaluation of probabilities. Test, 5(1):1–60,
1996.

[86] W.K. Wong, T.W. Chan, C.Y. Chou, J.S. Heh, and S.H. Tung. Reciprocal
tutoring using cognitive tools. Journal of Computer Assisted Learning, 19:416–
428, 2003.

[87] F.Y. Yu, L.J. Chang, Y.H. Liu, and T.W. Chan. Learning preferences to-
wards computerised competitive modes. Journal of Computer Assisted Learning,
18:341–350, 2002.

149


	Abstract
	Introduction
	Context and Prior Work
	Outline
	Contributions

	Games as a mechanism for learning
	Appropriate Challenge
	Game Theoretic Concepts and Definitions
	The Teacher's Dilemma criteria
	Three Teacher's Dilemma games
	Summary

	Simulating game dynamics
	Simulating repeated play in the symmetric difficulty-based game
	Simulating repeated play in the expectation-based game
	Summary

	Systems for Teacher's Dilemma games
	SpellBEE: A two-person spelling game
	BEEweb: A platform for developing Teacher's Dilemma games
	Summary

	Analysis of SpellBEE and BEEweb data
	Summary of SpellBEE and BEEweb usage
	On tutor sensitivity to the game payoff function
	On tutor student-modeling abilities
	On the effect of tutor and tutee age on challenge difficulty
	On tutee learning at multiple grain sizes
	Summary

	Conclusion
	Discussion
	Summary

	BEEmail: An alternative system architecture
	Implementing a decentralized architecture for an asynchronous game
	Addressing five implementation issues

	SpellBEE Misspelling Data
	Dataset 1: Category-3 errors
	Dataset 2: Non-unique errors


