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Abstract. Several of the major transitions in evolutionary history, such as the symbiogenic 
origin of eukaryotes from prokaryotes, share the feature that existing entities became the 
components of composite entities at a higher level of organisation. This composition of 
pre-adapted extant entities into a new whole is a fundamentally different source of 
variation from the gradual accumulation of small random variations, and it has some 
interesting consequences for issues of evolvability. Intuitively, the pre-adaptation of sets of 
features in reproductively independent specialists suggests a form of ‘divide and conquer’ 
decomposition of the adaptive domain. Moreover, the compositions resulting from one 
level may become the components for compositions at the next level, thus scaling-up the 
variation mechanism. In this paper, we explore and develop these concepts using a simple 
abstract model of symbiotic composition to examine its impact on evolvability. To 
exemplify the adaptive capacity of the composition model, we employ a scale-invariant 
fitness landscape exhibiting significant ruggedness at all scales. Whilst innovation by 
mutation and by conventional evolutionary algorithms becomes increasingly more difficult 
as evolution continues in this landscape, innovation by composition is not impeded as it 
discovers and assembles component entities through successive hierarchical levels.  

 
Keywords: symbiogenesis, major evolutionary transitions, evolutionary computation, 
evolutionary algorithms, Symbiogenic Evolutionary Adaptation Model, Hierarchical-if -
and-only-if, (HIFF). 

1 Introduction  

1.1 The major evolutionary transitions and symbiotic composition 

The major evolutionary transitions (Buss 1987, Maynard Smith & Szathmary 1995, Michod 
1999) involve the creation of new higher-level complexes of simpler entities. Summarised by 
Michod for example, they include the transitions “from individual genes to networks of genes, 
from gene networks to bacteria-like cells, from bacteria-like cells to eukaryotic cells with 
organelles, from cells to multicellular organisms, and from solitary organisms to societies”. 
There are many good reasons to be interested in the evolutionary transitions: they challenge the 
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Modern Synthesis preoccupation with the individual as the unit of selection, they involve the 
adoption of new modes of transmitting information, and they address fundamental questions 
about individuality, cooperation, fitness, and not least, the origins of life (Buss 1987, Maynard 
Smith & Szathmary 1995, Michod 1999). 

In several of the major evolutionary transitions “entities that were capable of independent 
replication before the transition can replicate only as part of a larger whole after it” (Maynard 
Smith & Szathmary 1995). Although Maynard Smith and Szathmary identify several transitions 
which do not fit what they describe as “symbiosis followed by compartmentation and 
synchronised replication”, several of the transitions do involve the quite literal joining of 
previously free-living entities into a new whole. We shall refer to this mechanism as ‘symbiotic 
composition’, or simply ‘composition’. Well known examples include the origin of eukaryotes 
from prokaryotes via symbiogenesis (the genesis of new species through the genetic integration 
of symbionts), (Margulis 1993a & 1993b), and the origin of chromosomes from independent 
genes (Maynard Smith & Szathmary 1993).  

Composition presents some obvious contrasts with how we normally understand the 
mechanisms of neo-Darwinist evolution. The ordinary (non-transitional) view of evolutionary 
change involves the accumulation of random variations in genetic material within a single 
lineage, whereas innovation by composition involves the union of different entities, each 
containing relatively large amounts of genetic material, that are independently pre-adapted as 
entities in their own right, if not in their symbiotic role. We will use the term ‘accretive 
adaptation’ to refer to the normal view of evolutionary change occurring by accumulating 
variations within one lineage.  

This paper, and our previous research (e.g. Watson et al. 1998, Watson & Pollack 1999b, 2000 
& 2001b), is directed toward an adaptational understanding of composition: What kind of 
adaptation does the formation of higher-level complexes from simpler entities afford in an 
evolutionary system? Following the conception of evolution as a combinatorial optimisation 
process on a fitness landscape (Wright 1967), we seek to understand the kind of adaptive 
domain, the kind of fitness landscape, for which composition is well suited, and to elucidate the 
adaptive potential of composition as contrasted with accretive adaptation. The model we develop 
is an abstract theoretical model of biological composition, and the major evolutionary transitions, 
complementing other abstract models such as the algebraic model of Nehaniv & Rhodes, (2000). 
It is also an algorithmic model motivated by, and contributing to, the concepts of modularity and 
abstraction in computational artificial evolution methods, i.e. evolutionary computation, (e.g. 
Holland 1975, Mitchell 1996, Spears et al. 1993).  

We acknowledge that the evolutionary transitions and compositional mechanisms do not 
necessarily have an adaptive role, and that the notion of an objective fitness landscape and the 
‘problem/solution’ metaphor are not necessarily appropriate for evolutionary processes in 
general (e.g. see Lewontin 2000 for discussion). Nonetheless, an examination of the potential for 
adaptive change offered by a biological phenomenon, and a better understanding of the 
circumstances, if any, where an adaptive advantage is conceivable, are likely to be a useful 
component of our understanding. More specifically, when a phenomenon has been involved in 
several major innovations in evolutionary history, we suggest an adaptational stance is one of 
those that should be investigated. Since we find in the following models, under certain 
circumstances, compositional mechanisms can enable the evolution of complex adaptations that 
are not evolvable via accretive mechanisms, it behoves us to examine these conditions and the 
kind of adaptations for which this is possible.  
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1.2 Composition and scalable evolvability 

Composition immediately suggests two complementary concepts that impact evolvability: a 
scaling-up in the ‘unit of selection’, and a scaling-up in the ‘unit of variation’. The creation of 
higher-level organizational units in the major evolutionary transitions is often associated with 
new units of selection, hence hierarchical selection, (e.g. Michod 1999). But we want also to 
point out that the entities created by a union may create a new higher-level unit of variation—a 
kind of ‘coarse graining’ for the formation of groups at the next level of organisation. That is, 
since the entities involved in a composition each contribute a number of features, variation in the 
space of their combinations constitutes a higher-level variation mechanism (than mutational 
change), and each new entity creates a new unit of variation for subsequent composition. Put 
from the viewpoint of each entity involved, a new partner introduces a large set of features 
simultaneously. Moreover, this is not an entirely arbitrary set of features but a set that has been 
pre-adapted by parallel adaptation in (semi-)independent lineages. Thus the results of selection at 
one level of organisation provide the components for variation at a higher level of organisation. 
Our intuition is therefore that composition permits an adaptive scaling-up in the mechanism of 
adaptation. Algorithmically, the unit of variation impacts modularity—the identification of 
meaningful components that can be re-used to make subsequent variation more ‘informed’,—and 
the unit of selection impacts division of labour—the decomposition of a complex adaptation into 
simpler adaptations such that each can be evolved by semi-independent processes. 

We can view the entities involved in composition as an abstraction of the feature space into 
higher-level units—thus enabling variation to search in the space of successful combinations of 
organisms rather than combinations of the original ‘atomic’ features. Naturally, most 
combinations of organisms do not make a successful composite—but then, neither do most 
mutations, for example. The point is whether combinations of entities, that are themselves 
successful combinations of features, are more likely to produce a viable variant than the ‘raw’ 
combinations of features provided by mutational events. The fact that the component entities are 
pre-adapted in separate lineages provides a ‘divide and conquer’ treatment of the feature set. 
Intuitively, an example might be provided by the notion of a generalist entity, utilising two 
different niches, resources, or habitats, that can be formed by the composition of two specialist 
entities each independently adapted to one of these niches, resources or environments. Thereby, 
the problem of being well-adapted to the general environment is divided into the sub-problems of 
being well-adapted to component environments. This decomposition of a problem into smaller 
problems is know as ‘divide and conquer’ (e.g. Cormen et al. 1991); so named because of the 
significant algorithmic advantage it offers when applicable. Such divide and conquer advantage 
is not available to a process that optimises systems monolithically and thus is not available to 
natural selection when features are adapted within a single unit of selection. 

1.3 Models, and paper structure 

To illustrate these concepts we devise an abstract algorithmic model which we call “The 
Symbiogenic Evolutionary Adaptation Model”, or “SEAM”, to invoke the notion of symbiotic 
union or joining. Our intent is to provide a model in which the combinatorics of composition can 
be clearly seen, showing a concrete illustration of a mechanism that scales-up the unit of 
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variation and enables a divide-and-conquer algorithmic advantage. To contrast with this model 
we use the regular Genetic Algorithm, GA, (Holland 1975) as a model of accretive adaptation.  

An important complementary part of our model is a characterisation of an adaptive landscape 
to which composition is well suited. To this end we introduce an adaptive landscape that is 
‘composition-easy’ but very difficult for accretive adaptation. The landscape results from a 
system of interdependent variables that have a hierarchically clustered structure. This 
interdependency structure produces a fractal fitness landscape exhibiting significant ruggedness 
at all scales. The purpose of using this landscape for our experiments is not to suggest that all 
adaptive problems encountered in nature have this structure. Our purpose is to exemplify the 
kind of adaptation that is enabled by composition and contrast this with that which is possible 
under accretive adaptation. That said, this kind of scale-invariant problem structure does have 
some interesting properties that are quite general and potentially related to scale-invariance often 
found in natural self-organised dynamical systems (Bak 1996). 

In our experiments using our scale-invariant fitness landscape we investigate the ability of 
both a mutation only algorithm and the GA to cross fitness saddles of increasing size. More 
exactly, as adaptation continues and the distance to the next-best optimum increases, we would 
expect that adaptation by these methods would become increasingly difficult. In contrast, we will 
use SEAM to investigate whether composition is able to overcome the epistasis structure in the 
landscape by searching combinations of coevolved entities through many hierarchical levels. On 
this class of adaptive landscape, we expect that evolvability under mutation and sexual 
recombination within the accretive model of adaptation will be inherently limited, whereas 
innovation by composition offers the possibility of inherently scalable, open-ended evolvability. 

The remainder of the paper is structured as follows. In the following section we outline some 
related evolvability issues in both evolutionary biology and evolutionary computation. These 
provide a larger context for the concepts introduced above and detailed in the remaining sections. 
In Section 3 we describe the Symbiogenic Evolutionary Adaptation Model, as a simple abstract 
model of composition that we use to explore the ideas we have introduced. Section 4 notes some 
comparisons between this model and well known evolutionary computation algorithms. In 
Section 5 we describe the scale-invariant adaptive landscape we will use for our experiments. 
The experimental results are described in Section 6. Section 7 concludes. 

2 Related issues in biological and computational models 

In this section we outline some related evolvability issues in both theoretical evolutionary 
biology and evolutionary computation. These provide a larger context for the theoretical 
concepts introduced above and detailed in the remaining sections of the paper. 

2.1 Some related models impacting biological evolvability 

Sewell Wright (1931) stated that “the central problem of evolution... is that of a trial and error 
mechanism by which the locus of a population may be carried across a saddle from one peak to 
another and perhaps higher one.”  This conception of evolutionary difficulty, and the now 
familiar concept of evolution as a combinatoric optimisation process on a rugged landscape 
(Wright 1967), are central in issues of evolvability. In keeping with this view, there are many 
models of how evolvability can be enhanced by increasing the ability of adaptation to escape or 
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otherwise avoid local optima—configurations of features where no small change in features will 
produce a fitter variant.  

Some models suggest that local optima are not as prevalent as might be expected naively. For 
example, neutral networks (Huynen et al. 1996) are pathways through genotype space that enable 
neutral variation (Kimura 1983) to arrive at configurations that are genotypically close to a large 
number of different phenotypes. By this means, the number of fitter phenotypes that are 
reachable (without passing through phenotypes that are less fit) is increased with respect to a 
substrate without such pathways. Extra-dimensional bypass (Conrad 1990), recognises that the 
number of features an entity exhibits changes over evolutionary time, and put crudely, although 
an entity might be stuck on a local optimum in 4-feature space, it might be able to move around 
the impasse in the extra ‘degree of freedom’ provided by a 5-feature space.  

Other issues impacting evolvability include the fact that although there may be local optima in 
phenotype space, small variations in genotype can provide large changes in phenotype. 
Sophisticated ontogenic processes (e.g. Waddington 1942) provide a complex mapping from 
genotype to phenotype and the structure of this mapping is critical to understanding how small 
random changes in genotype might enable large changes in phenotype. Exaptation (Gould & 
Vrba 1982) refers to cases where a collection of features adapted for some purpose is co-opted 
for some other purpose or function; with respect to the function of interest, a large set of 
phenotypic features may be introduced simultaneously. 

Each of these models/issues has some impact on the ability of adaptation to ‘tunnel across’, 
‘by-pass’, ‘jump over’, or otherwise traverse fitness saddles and escape local optima. Some of 
them even offer the potential for a mechanism of variation that improves adaptively. For 
example, the structure and effect of ontogenic processes are subject to selection, so the large 
changes in phenotype that they facilitate are not arbitrary and could conceivably scale-up 
adaptively as they are ‘tuned’ by further selection. But, none of these models involve a scaling-
up in the reproductive unit. The ontogenic mechanisms, neutral networks, extra-dimensions, and 
exapted features occur within single lineages, and do not involve (in and of themselves) sets of 
features being adapted in parallel in different reproductive lineages and or being subsequently 
combined or assembled together into a new reproductive unit. Algorithmically, this means that 
they do not afford any opportunity for divide and conquer algorithmic advantage. Biologically, 
this means that these models apply to adaptation between transitions, not to transitional changes 
themselves.  

Nonetheless, it is quite possible that all of the advantages and possibilities that these 
mechanisms offer can be multiplied by the opportunity to compose entities together during a 
transition. The model of composition we present here does not include these mechanisms—we 
use a direct one-to-one map between genotype and phenotype that does not allow the possibility 
of neutral networks, or ontogenic processes, for example. However, the model is quite 
compatible with these possibilities—these non-transitional issues are mostly orthogonal to the 
possibility of composition, changing the unit of selection, and divide and conquer algorithmic 
advantage. 

2.2 Biological mechanisms relating to composition 

Unlike the above mechanisms, there is a family of mechanisms that copy, or otherwise re-use, 
pre-adapted feature sets—e.g. gene duplication (Ohno 1970), horizontal gene-transfer (Mazodier 
& Davies 1991, Smith et al. 1992), and sexual recombination. Clearly, these mechanisms involve 
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variations in higher-level aggregations of genetic material (with respect to mutation). And 
arguably, to the extent that a gene, or a section of chromosome, can be duplicated, or be 
propagated through reproductive events, without the whole chromosome being reproduced, these 
mechanisms do involve a unit of selection smaller than the individual (Dawkins 1976). If we 
accept a two-level model of selection for these mechanisms—the sub-organismic level (e.g. gene 
or subsection of chromosome) and the organismic level—then these mechanisms constitute a 
limited form of composition. That is, the components at the organism level have been pre-
adapted in parallel (semi)-independently and subsequently brought together.  

Allopolyploidy (having chromosome sets from different species) (Werth et al. 1985) is also a 
form of composition; limited only in the sense that it usually occurs between closely related 
species. 

However, these mechanisms do not provide a clear hierarchical model moving through many 
successive levels. Moreover, gene duplication, horizontal gene-transfer, and sexual 
recombination also depend on a specific effect to maintain the coherence of lower level 
components, or modules—namely, genetic linkage. That is, if the nucleotides of a gene were 
somehow distributed along the chromosome then they could not maintain their integrity through 
sexual recombination events, they would not be likely to be copied as a unit, nor be transferred 
horizontally as a unit. The usefulness of modules represented in sections of chromosome depends 
on the correspondence of genetic linkage with epistatic linkage (Watson & Pollack 1999c, 
Wagner and Altenberg 1996)—which must not be taken for granted. 

In the work we present here we wanted to present an open-ended multi-level model where 
there is no a priori definition of different levels of units/modules, and we did not want assume 
favourable genetic linkage. Accordingly, we do not include gene duplication, horizontal gene 
transfer, or polyploidy explicitly in our model—but, as stated, we view composition as a general 
form of these mechanisms. Previous work has explored the operation of sexual recombination 
with and without the assumption of favourable genetic linkage (Watson and Pollack 2000, see 
also, Watson 2002). For the purposes of contrast, we include experiments using sexual 
recombination (without the assumption of favourable genetic linkage) in our experimental 
section.  

2.3 Modularity and credit assignment in artificial evolution 

Concepts of modularity are familiar in artificial evolution methods. The notion of ‘building-
blocks’—aggregations of features that form useful components for subsequent adaptation—has 
been present since the inception of Genetic Algorithms, GAs, (Holland 1975). We will not 
attempt to provide a comprehensive review here, but we mention that there are many methods 
and techniques used in artificial evolution models that address modularity and division of labour.  

For example, modularity is addressed implicitly by the use of variable-length, moving-locus, 
non-linear, and generative encodings—for example, Messy GA (Goldberg et al. 1989), Linkage 
learning GA (Harik & Goldberg 1996), Genetic Programming (Koza 1992), and cellular 
encoding (Gruau 1994). And modularity is addressed explicitly in mechanisms that ‘encapsulate’ 
subsets of features for subsequent re-use during the search process—for example, ‘Automatic 
module acquisition’ (Angeline and Pollack, 1993), ‘automatically defined functions’ (Koza 
1994), and ‘adaptive representation’ (Rosca 1997). The advantage of these explicit methods is 
that “the modularization of representational components and their protection from mutation 
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[/internal variation] can be viewed as removing unnecessary dimension[s] from the search 
space…” (Angeline and Pollack, 1993).  

Methods explicitly addressing the division of labour include Learning Classifier Systems 
(Holland & Reitman 1978), Cooperative Coevolution (Potter 1997), and Evolutionary Divide 
and Conquer (Rosca 1997), as well as techniques embedded in the modularity methods listed 
above. In all these methods, the same question re-occurs: How do we evaluate the value of a 
module? We want to promote modules because they are useful ‘building-blocks’ even though 
they may not necessarily be valuable in isolation. Since the module is not a complete solution but 
a partial solution it must be evaluated in some context—for example, an assembly of modules. If 
it is evaluated in an assembly of modules then how do we apportion fitness to the modules 
involved? This is known as the ‘credit assignment problem’. In genetic algorithms using 
crossover, (where the implicit modules are sections of chromosome and the context is the 
individual), the credit assignment problem is manifest in ‘parasites’ (Goldberg et al. 1989) and 
‘hitch-hiking’ (Forrest & Mitchell 1993).  

Different methods take different approaches to the credit assignment problem; for example, in 
previous work we have used fitness sharing methods to successfully evolve modular solutions to 
Genetic Programming problems (Juille & Pollack 1996). In the model presented here, we attempt 
to find a principled way to make selection over different sized entities provide the characteristics 
of modularity and division of labour hierarchically and in a principled fashion following from the 
inspiration of the evolutionary transitions. Some comparisons between the Messy GA and 
composition are given in (Watson & Pollack 2000, Watson & Pollack 1999c). 

Related computational models specifically addressing symbiosis and compositional 
mechanisms include (Bull 1999a & 1999b, Bull & Fogarty 1995). These models offer important 
insights into compositional mechanisms and their role in the evolutionary transitions, and the 
subject of our models is closely aligned with these. Our work also contrasts with these previous 
works in several respects: we address the serial application of the relevant mechanisms through 
several hierarchical levels in a unified model; we place an emphasis on the composition of 
lineages that are not genetically related (or similar); we model the interaction of more than two 
lineages; and we do not pre-define the identity of possible groups. Dumeur (1995) offers an 
algorithmic model that is conceptually allied with ours, but of quite a different procedural style. 
An additional distinction from previous work comes from our work on characterising the class of 
adaptive landscape that exemplifies the adaptive capacity of compositional mechanisms. This 
landscape is an important part of our computational model and helps us to understand the 
potential impact of compositional mechanisms on the evolvability of adaptive processes. 

Some additional, brief comparisons with existing evolutionary computation methods are given 
in Section 4, after our composition model is introduced. 

3 The Composition model 

3.1 Overview of the composition model 

In this section we examine a simple abstraction of composition which we call the Symbiogenic 
Evolutionary Adaptation Model, or “SEAM”, to invoke the idea of symbiotic unions or joins (see 
Watson & Pollack 2000). This model is a population based computer simulation sharing some 
characteristics with Evolutionary Algorithms, (EAs), and in particular, Genetic Algorithms, 
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(GAs). For example, the model uses a population of entities, a variation operator to create new 
entities, and a ‘fitness function’ to select between variants.  

However, there are important differences. The entities in the population of an EA are usually 
interpreted as variants of the same species, but in SEAM the set of entities represent an 
ecosystem of different species. This has implications for how we perform selection, outlined 
below. The variation operator is the central component of the model and is based on an 
abstraction of composition. Instead of the usual genetic operators of mutation or sexual 
recombination, the variation operator in SEAM can be thought of as a means for joining two 
(randomly picked) entities in a symbiotic union. The use of this operator asserts the possibility of 
mechanisms that support the creation of a union between two entities, e.g. the formation of cell 
membranes, or the instantiation of an endosymbiotic relationship; the critical remaining factor is 
to determine whether such a union, if it should occur, would be selected for.1 

The fitness function is a mapping from a set of feature values to some scalar value that 
represents the ‘adaptive utility’ of a variant. As in most EAs, this fitness value goes through 
some manipulation, at least scaling, to determine the number of offspring a variant will have. But 
in SEAM, the treatment of fitness is quite different from normal EAs. The central question that 
our fitness assessments need to answer is whether an entity is fitter when composed with some 
symbiont or when it is alone. We will assume that a join between two entities is ‘unstable’ if 
either of the component entities is fitter alone than when joined with the proposed symbiotic 
partner. In this case, the composition will be dismantled, otherwise the pair will always co-occur 
in future and thereby become a new higher-level entity that may participate in subsequent joins.  

Of course, the benefit of a symbiotic composition is dependent on what environment it is in, or 
what alternative environments each component entity might occupy. Accordingly, a fundamental 
aspect of the model must be that the fitness of an entity changes in different environments, and 
we need to assess the fitness of an entity, not in isolation, but in some ‘environmental context’. 
For the purposes of our model, we will not consider adaptation to static environmental factors 
but rather focus on the interaction with the biotic environment provided by other coevolving 
entities, since it is changes in their biotic associations, if any, that are the subject of interest. In 
short, the environmental contexts will be formed from transient groups of other individuals in the 
ecosystem. The ‘overall fitness’ of an entity will then be some function of many ‘context 
sensitive’ fitness measures. 

However, determining such an overall fitness will require knowledge of the ‘weighting’ of 
each context for each entity, (for example, the probability with which each entity may occupy 
each environment). Such weightings are the effect of many complex ecosystem factors that are 
beyond the scope of what we want to model here. Nonetheless, we make some conservative 
simplifications that, in some cases, allow the determination of fitness superiority even without 
the knowledge of environmental weightings. Our method borrows ideas from multi-objective 
optimisation (e.g. Fonseca and Fleming 1995), and particularly the concept of ‘Pareto 
dominance’, which is specifically developed for determining superiority where the weighting of 
a number of objectives is unknown. This enables us to determine the preference for a symbiotic 
join in a way that is fundamentally sensitive to environmental context, yet we can do this using a 

                                                 
1  There are two complementary views concerning the mechanisms of the major evolutionary transitions: a) organisms cooperate 

because they have been encapsulated by some mechanism into a single reproductive unit (e.g. co-dispersal (Frank 1997), 
shared genetic transmission mechanisms (Dawkins 1976)), b) organisms become encapsulated as a single reproductive unit 
because this is a canalisation (Waddington 1942) of an existing cooperative relationship. In a sense, our model follows the 
latter view since entities do not have an opportunity to change their behaviour after encapsulation. But the hypothetical pay-off 
matrices we will introduce could be conditioned on the effects of co-dispersal or co-transmission, for example. Accordingly, 
the distinction is not essential in an abstract model such as ours.  
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simple and abstract model that does not explicitly contain complex factors of environmental 
structure.  

In overview, the composition model, SEAM, that we will use in our experiments develops as 
follows. The ecosystem is initialised with many different small entities. Pairs of entities are then 
picked at random to see if they might form a stable symbiotic join. If the overall fitness of either 
entity alone could be, dependent on environmental contexts, greater than the fitness of the entity 
with the proposed symbiotic partner then the composition is deemed unstable and the original 
entities are returned to the ecosystem. Otherwise the composition is deemed stable and the two 
entities always co-occur together in future. The process of building and selecting compositions of 
entities is repeated, eventually building larger and larger composite entities.  

Three main features of SEAM are depicted in Figure 1. Frames (a) through (c) in the figure 
loosely correspond to variation, evaluation, and selection, respectively. These processes, outlined 
in the figure, are detailed in the subsequent subsections. 

Figure 1: A caricature of processes in SEAM. a) New entities are created from the composition 
or joining of two randomly selected extant entities (Section 3.2, Figure 2). b) The fitness of any 
entity (possibly the result of a previous join) has dependencies with its environmental context, 
i.e. a random selection of other entities from the ecosystem (Section 3.4, Figures 3 & 4). c) The 
new pairing is subject to many such contexts. If there is some environment of other entities in 
which either component of the join is fitter individually than when it is with its proposed partner, 
then the join is deemed unstable and is dismantled. This follows the assumption that the 
partnership must be in the ‘selfish’ interest of the partners involved. In our implementation, the 
stability of a proposed join is tested in many contexts and is immediately undone if found to be 
unstable. This models the assumption that competition between joined and non-joined variants of 
an entity occurs rapidly such that only reliably successful joins persist long enough to be 
involved in a subsequent join (Section 3.3, Eq. 3). A join that persists through (c) is treated as a 
new entity that may participate in further joins as the cycle of the model repeats. 

 

a)  New entities are created by joining 
two existing entities together. 

b)  The fitness of an entity is dependent 
on its environmental context. 

c)  An entity is placed in many contexts 
to test the stability of a new join. 
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3.2 Entities and their composition 

SEAM is an abstract representation of an ecosystem incorporating many different entities. These 
entities may be interpreted as genes, bacterial cells, more complex cells, or any other higher level 
of organization—the intent is to model transitions between these levels in an integrated model of 
‘entities’. We will use the word ‘species’ to refer to types of entity at any level. Entities are 
represented only by their features values, and for now, species are simply the set of entities with 
identical feature values. These features may be interpreted as genes, as phenotypic features 
corresponding to genes, or as higher level features of an organism such as resource usage or a 
behavioural strategy. In general, they are the set of characteristics that affect the fitness of an 
entity and the fitness-sensitive interactions of the entity with its environment and other entities. 
Our model abstracts away all population dynamics within a species and therefore the ecosystem 
will only incorporate one representative entity of each species. 

The basis of our composition model will be that a composite is created from the joining of 
features from two different species of entity. Accordingly, it is necessary that different entities 
will specify different subsets of features (not just different values of the same set of features). To 
provide a simple example: let each feature take one of two values, “0” or “1”, and let the features 
be identified by an index, Fn. Then one species might specify features F3=0, F7=0, F12=1, and a 
second species might specify F1=1, F9=0, F10=1, F15=0. Then their join may create the new species 
with features F1=1, F3=0, F7=0, F9=0, F10=1, F12=1, F15=0.  

We will use a large finite set of possible features for simplicity in the implementation of the 
model,2 but the number of features could be flexible in alternate implementations. The number of 
features specified by any one entity may be anything from one to the full set. In this way it is 
simple to write the specification of a species using a fixed length string. For example, working in 
a 16-feature space, we may write the two entities given in the example above as A and B in the 
left of Figure 2 below, and their composition may be written as A+B. 

The ‘null features’, “-”, in this representation are ‘placeholders’ for features that are not 
(currently) specified by an entity. We will refer to the ‘size’ of an entity to mean the number of 
non-null features—for example, the entities used above have sizes 3, 4 and 7, respectively. 
Figure 2 also illustrates how we will deal with conflicting specifications when they arise.  

                                                 
2  Note that in the GA individuals also generally use a finite set of binary features, ‘genes’, but unlike the entities in SEAM, 

individuals in the GA must generally specify a value for every possible gene. This is natural for a model of evolution within a 
single lineage where every individual has basically the same features but varies in the values of these features. The ‘null’ value 
used in the implementation of SEAM, detailed shortly, cannot reasonably be characterised as a third allele since it is not 
heritable in the same way as non-null values (see Figure 2). 
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 A: --0---0----1----    A: ----1----00-1-- 

 B: 1-------01----0-    
 B: --1-0---0-1---- 

 A+B: 1-0---0-01-1--0-   
 A+B: --1-1---000-1-- 

Figure 2: ‘Symbiotic composition’ (an abstraction of Figure 1, (a)). Left) Composition of 
two variable size entities, A and B, produces a composite, C, that is twice the size of the 
donor entities with the union of their features. Here we represent unspecified features by 
“-”. The composite is created by taking specified (i.e. non-null) features from either 
donor where available. Right) Where conflicts in specified features occur we resolve all 
conflicts in favour of one donor, e.g. the first. 

Algebraically, we define the composition of two entities A and B, as the superposition of A on 
B, below. A=(A 1,A2,…An), is the entity where feature Fi takes value A i. S(A,B) is the 
superposition of entity A on entity B, and s(a,b) is the superposition of two individual feature 
values, as follows: 

 S(A,B)= S((A1,A2,…An),(B1,B2,…,Bn)) = (s(A1,B1),s(A2,B2),…,s(An,Bn)), Eq.1. 

where, s(a, b) = {  
a, if a ≠ null, 
b, otherwise. 

 
This composition will be the only mechanism of variation in our model. The intent is that the 

model will start from ‘atomic’, i.e. single-feature, entities and compose them together into larger 
composites, and compose these together, and so on. When small entities are composed with 
relatively large entities, their effect is like single-feature mutations, but as entities become larger, 
their composition enables variations that scale-up with their size. 

Note that the way we use species in this model has no implication of restricting possible 
unions based on type—in principle, new entities may be created by the composition of any two 
existing entities regardless of their species, i.e. regardless of the features they represent. 

3.3 ‘Pareto dominance’ to determine whether a symbiotic composition is preferred 

Having defined a variation operator that defines a join of two entities, we need to determine 
whether such a join would be adaptive. Our basic assumption is that the symbiotic relationship 
must be in the ‘selfish’ interest of both the component entities involved. That is, if the fitness of 
either component entity is greater without the proposed partner than it is with the proposed 
partner then the composite will not be selected for. If, on the other hand, the fitness of both 
component entities is greater when they co-occur then the relationship is deemed stable and will 
persist. However, the fitness of any entity is dependent on its environmental context; possibly, in 
one environment an entity may be fitter when co-occurring with the proposed symbiont, and in 
another context the symbiosis may depreciate its fitness. Thus whether a symbiotic relationship 
is preferred or not depends on what environmental contexts are available. 

For our purposes, the set of possible environmental contexts is well defined: an environmental 
context is a complete set of features (in which some partially specified entity, which may be the 
result of many joins, can be assessed). See Figure 3. 
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---0-11---110--- x, an entity specifies a partial set of feature values. 

0110101100010011 θθ,  an ‘environmental context’ is a complete set of feature values. 
0110111100110011 S(x,θθ), the entity x superimposed on the context θθ. 
 

Figure 3: A partially specified entity must be assessed in a context. 

 
We assume that the overall fitness of the entity will be a sum of its fitness over different 

environmental contexts weighted by the frequency with which each environment is encountered. 
But, we would not generally suppose that the frequencies with which different environments are 
encountered by one type of entity would be the same as the frequencies relevant to a different 
type of entity. That is, we imagine that different species have different distributions over possible 
environments. Let us assume that we have a measure of the ‘context sensitive fitness’, csf(x,θθ), 
of an entity, x, in any given environmental context, θθ, and that the overall fitness of the entity x, 
will be F(x) which is the sum of its fitness over all environments weighted by the frequency of 
that environment for that species, as below.  

 ∑ λ
∈θ

θ



 θ=
Contexts

)p,(
),p(csf)p(F  Eq.2. 

where ),( pθλ ≥ 0 is the weighting of the environmental context θ, for entity p.  
Now, whether a symbiotic relationship is preferred or not depends on the relative weighting of 

each context to each entity involved, and many factors could influence this. For example, a 
biased distribution over environmental contexts may be ‘inherited’ by virtue of the collocation of 
parents and offspring, or affected by the behavioural migration of organisms during their 
lifetime, or the selective displacement of one species by another in short term population 
dynamics. We did not wish to introduce such factors and accompanying assumptions into our 
model. Fortunately, the concept of Pareto dominance is specifically designed for application in 
cases where the relative importance of a number of factors is unknown (e.g. see Fonseca & 
Flemming 1995). Put simply, this concept states intuitively that, even when the relative 
weighting of dimensions is not known, the overall superiority of one candidate with respect to 
another can be confirmed in the case that it is non-worse in all dimensions and better in at least 
one. More exactly, ‘x Pareto dominates y’ is written ‘x >> y’, and: 

x >> y ⇔ (∀ θθ : csf(x,θθ) ≥ csf(y,θθ)  AND  ∃ θθ : csf(x,θθ) > csf(y,θθ). 
or equivalently, given that x and y are different in at least one dimension: 

x >> y ⇔ θθ : csf(y,θθ) > csf(x,θθ). 
In cases where there is some θθ such that csf(x,θθ) > csf(y,θθ) and some other θθ such that 

csf(x,θθ) < csf(y,θθ), we say that x and y are non-sorted. And in cases where ∃ x: x >> y we say that 
y is dominated, else y is non-dominated. For our ecological domain, these simple rules are easily 
interpreted. In the case where x is better in some environments than y, and y is better in some 
environments than x, then we do not know which is fitter overall unless we know the relative 
weighting of the environments for each entity. But, if x is always fitter (or at least as fit as) y, 
then regardless of the weightings of the environments for each entity, we know that the overall 
fitness of x is greater than that of y (assuming x and y are different in at least one dimension).  

∃  
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This pair-wise comparison of two entities over a number of contexts will be used to determine 
whether a symbiotic join produces a stable composite. If we write the composition of entities a 
and b as a+b, then, using the notion of Pareto dominance, a+b is stable iff a+b >> a, and a+b >> 
b. In other words, a+b is unstable if there is any context in which either a or b is fitter than a+b. 

i.e. stable(a+b, a, b) ≡ a+b >> a AND a+b >> b, 
i.e. unstable(a+b, a, b) ⇔ ∃ θθ∈ Contexts: (csf(a,θθ) > csf(a+b,θθ) OR csf(b,θθ))> csf(a+b,θθ)) 

 where Contexts is a set of complete feature specifications. 
We should note that there is a subtle distinction between ‘the fitness of an entity in an 

environment’ and ‘the fitness of the entity and environment together’ i.e. csf(x,θθ) ≠ f(S(x,θθ)). 
However, our method precludes the need to separate the former from the latter because the pair-
wise comparison of two entities in the same environmental context implicitly ‘differences away’ 
the contribution of the environment. That is, csf(x,θθ) > csf(y,θθ) ⇔ f(S(x,θθ)) > f(S(y,θθ)), where 
f(w) is the objective fitness of the complete feature set w as given by the fitness function. This 
assumes that although we can only measure the fitness of a complete feature specification 
(organism and environment together) we can determine the information we need by differencing 
away the fitness contributions coming from the environment by including them in both sides of 
the inequality.  

Thus our condition of instability becomes: 
unstable(a+b, a, b) ⇔ ∃ θθ∈ Contexts: (f(S(a,θθ)) > f(S(a+b,θθ)) OR f(S(b,θθ))> f(S(a+b,θθ))) 

           Eq.3. 

Equation 3 becomes our abstraction for Figure 1 (c). 

3.4 Building environmental contexts 

In our model, the environmental contexts, used in determining Pareto dominance and the 
stability of a proposed composition, will be formed entirely from other members of the 
ecosystem. The intent here is that the assessment of a new composition involves selecting 
between being in permanent association with some particular member of the ecosystem or being 
in transient association with members of the ecosystem. If we were to employ the naive 
alternative, selecting between being in permanent association with some particular member of 
the ecosystem or remaining in entirely random environmental contexts, then it would be likely 
that many more proposed associations would be preferred. This would result in many sub-
optimal associations. Additionally, if entities are evaluated in transient groups of other entities 
then there is the potential that they may become co-adapted to one-another, and thereby ‘primed’ 
to make successful permanent joins by composition. Figure 4 illustrates how to build a context 
from a randomly selected set of entities. 
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 a: --0---1- 
 b: 01------ 
 c:  -0---0-- 
 d:  ----1-0- 
 e:  ------10 
  f:  ---0-00- 

  Resultant context 01001010  

Figure 4: Building a context from other entities, (an abstraction for Figure 1 (b)). In this 
example, six entities a through f, are needed to complete a fully -specified feature set of 
eight features. Where specified features conflict, the specifications of the topmost entity 
take precedence, as in Figure 2.  

Algebraically, we define a context, using the recursive function S*, from an ordered set of n≥2 
entities X1, X2,… Xn, as follows: 

S*( X 1, X2,… Xn) = {  
S(X1, S*(X 2,… Xn)),  if n>2, 
S(X1, X2),  otherwise. Eq.4. 

 where S(X1, X2) is the superposition of two entities as per Eq.1 above. 
 
Some contexts may require more or fewer entities to provide a fully -specified feature set. In 

principle, we may use all entities of the ecosystem, in random order, to build a context—but, 
after the context is fully -specified, additional entities will have no effect. This allows us to write 
a context as S*(E), where E is all members of the ecosystem in random order. 
Implementationally, we may simply add entities until a fully-specified set is obtained.  

3.5 The Symbiogenic Evolutionary Adaptation Model (SEAM) 

We may now put together the components we have introduced above to provide a complete 
model. To summarise, the model includes the following features:  

•  Variable size entities and a variation operator based on composition.  

•  Building environmental contexts from other co-adapting entities in the ecosystem. 

•  Testing (in)stability of compositions by testing for Pareto dominance of the 

composition over the component entities. 

Although each of these features is conceptually somewhat involved, the overall simulation 
model is not that complicated. Figure 5 overviews the operation of SEAM.  
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Figure 5: Pseudocode for a simple implementation of SEAM. 

4 Comparisons of SEAM with Genetic Algorithms 

4.1 Comparison of Pareto dominance with selection in Genetic Algorithms  

The use of Pareto dominance in SEAM explicitly respects the multi-dimensional nature of 
fitness: That is, the fitness of an entity is different in different environments, and each 
environmental context provides a dimension of its fitness. In a multi-dimensional view of fitness 
we immediately lose the notion of an absolute ‘best’ individual—‘best’ is undefined without 
specifying a context, i.e. one individual might be the best in some context, and some other may 
be best in some other context. Interestingly, we may instead use the notion of a Pareto optimal 
set (e.g. see Fonseca & Fleming 1995) of individuals which are optimal in the sense that no 
individual in the set can be improved in any context without necessarily being degraded in some 
other context.  

In contrast, selection in the simple GA assumes a one-dimensional fitness metric against 
which all entities will be compared. The usual method of dealing with a context sensitive fitness 
measure is to average its performance over a number of sample contexts.3 But, this immediately 

                                                 
3  The notion of 'schema fitness' in genetic algorithm theory is the average fitness of a partial specification over all possible 

contexts, and when the fitness of an individual is dependent on coevolving individuals, as in coevolved players of a game, an 
overall fitness is usually acquired from an average score against many opponents (see Watson & Pollack 2001). 

•  Initialise ecosystem, E, to random, single-feature, entities.(1)  

•  Repeat until stopping condition: 

- Remove two entities at random from the ecosystem →→ a & b. 

- Produce a+b=S(a,b), using composition (see Eq.1). 

- If unstable(a+b, a, b) return a and b to ecosystem, else add a+b to ecosystem. 

 

where  unstable(a+b, a, b) ⇔   

  ∃ θθ∈ Contexts: (f(S(a,θθ)) > f(S(a+b,θθ)) OR f(S(b,θθ))> f(S(a+b,θθ))) 

where Contexts is a random set of contexts each built by composing together 

other members of the current ecosystem, E, using S*(E) (see Eqs. 3 & 4). 

 
(1)  

Initialisation needs to completely cover the set of single-feature ‘atoms’ so that all values for all features are available 

in the ecosystem. 
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collapses the multi-dimensional information back to a single dimension i.e. ‘how fit is the entity 
on average’. Repeated selection in a single dimension of fitness has the consequence that the 
population will tend to converge to the variants of the ‘best on average’ individual found. Thus it 
is not surprising that the problem of maintaining diversity in EAs and premature convergence of 
the population is ubiquitous (e.g. Mahfoud 1995).  

Since SEAM utilises a multi-dimensional treatment of fitness, and accepts a partial ordering of 
the entities, it can apply useful selection to converge toward the Pareto set without converging 
immediately to a single type. By using Pareto domination over a number of contexts as a 
selection criteria, rather than an equally weighted sum of fitnesses over a number of contexts, 
SEAM provides exactly the balance of competition and coexistence that we were looking for to 
maintain an ecosystem of complementary specialists, while still permitting selection for good 
joins in a principled manner. 

4.2 Comparison of ecosystem contexts with evaluation in Genetic Algorithms 

In the Messy GA, (Goldberg et al. 1989), partially specified individuals are evaluated with the 
use of a ‘template’ having the role of the context in SEAM. Goldberg et al. correctly suggest that 
‘locally optimised templates’ are useful in revealing the epistatic interactions of a partial feature 
set, and that a sample of random templates would be problematic because: a) they would not be 
likely to encounter all the important epistatic interactions with features of the environment (the 
required number of templates/contexts is exponential in the number of unspecified features); and 
b) the ‘signal to noise ratio’ is low in templated context measures (most fitness differentiation 
would come from the ‘background noise’ of the template). 

The use of other entities to provide contexts in SEAM is an important heuristic for reducing 
the number of contexts we need to sample. The entities that are used for building contexts 
include some that are about the same size as the entities being tested and thereby they have the 
potential to provide templates that are optimised to an appropriate level at all stages of the 
process. Thus using other members of the ecosystem to build contexts is an important part of the 
scalable mechanism of SEAM. The issues of background noise are avoided in our method since 
assessment is carried out in pairwise comparisons of entities over the same set of contexts.   

The use of group evaluation in SEAM is similar to the use of a ‘shared domain model’ in 
‘cooperative coevolution’ (Potter 1997). However, cooperative coevolution is essentially like a 
single level of the problem decomposition used in SEAM. 

5 A scale-invariant fitness landscape 

A proper account of the evolutionary adaptation of an entity must fundamentally involve a 
description of the structure and nature of the interdependency of the variables that affect its 
survival. It must be stated which variables, which genes, environmental properties, and 
characteristics of other organisms, etc., are dependent on which other variables. Although it is 
difficult to see how we might attempt to investigate this structure in a specific case, perhaps it is 
possible to give some general qualitative description of the interdependency structure. For 
example, we might suppose that the dependency matrix is essentially random and hopefully 
sparse, as in N-K landscapes (Kauffman 1993).  In this section, we describe a dependency 
structure that is more specific and which makes a significant difference to how adaptation may 
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take place. Specifically, the interdependency structure is hierarchically clustered in groups, and 
sub-groups of variables, through many levels. This structure is closely related to the ideas of 
Simon (1969) on ‘nearly decomposable systems’. The resulting fitness landscape exemplifies the 
adaptive potential of the composition model. Of interest to issues of evolvability is the fact that 
this landscape is scale-invariant, in the sense that it has fitness saddles at all scales, or 
resolutions, resulting from its hierarchical construction. 

5.1 Two-feature epistasis 

Ruggedness in a fitness landscape is introduced by the frustration of adaptive features, or 
epistasis when referring to the interdependency of genes – that is, it occurs when the ‘selective 
value’ of one feature is dependent on the configuration of other features. Fitness saddles are 
created between local optima. The simplest illustration is provided by a model of two features, 
each with two possible discrete states, a and b, creating four possible configurations: F1a/F2a, 
F1a/F2b, F1b/F2a, F1b/F2b. Table 1, below, gives four exemplary cases for selective values, or 
fitnesses, for these four combinations. The overlayed arrows in each case show possible paths of 
adaptation that improve in fitness by changing one feature at a time. 

 
 Case 1  Case 2  Case 3  Case 4  Case 4b 
 F2a F2b  F2a F2b  F2a F2b  F2a F2b  F2a F2b 
F1a 1 3  1 3  1 4  3 2  1 0 

F1b 
2 4  2 5  2 3  1 4  0 1 

 

Table 1: Example fitness contributions for combinations of two features. 

 
Case 1 shows no epistasis: the difference in selective value between F1a and F1b is the same 

regardless of the value of F2; and the difference in selective value between F2a and F2b is the 
same regardless of the value of F1. Cases 2, 3 and 4 each show some epistasis but with different 
effects. In Case 2, although the landscape is not planar, the possible routes of single-feature 
variation are the same as in Case 1, and the landscape still only has one optimum. In Case 3, the 
preference in selective value between F1a and F1b is reversed depending on the value of F2. This 
forces adaptation into different routes through the landscape, but there is still only one optimum. 
Only in Case 4, where preference in selective value between F1a and F1b is reversed depending 
on the value of F2, and the preference in selective value between F2a and F2b is reversed 
depending on the value of F1, does epistasis create two optima and a resultant fitness saddle. 
Changing from F1aF2a to F1bF2b without going through a lower fitness configuration requires 
changing two features at once. Lewontin (2000, p84) identifies this same problematic case (for 
two diploid loci) in a concrete biological example. Accordingly, this form of epistasis provides 
the base case for the landscape we will use, but for the sake of further simplification, we make 
the fitness values symmetric (Case 4b), so the change in the sign of preference is retained 
without a change in magnitude, and the resultant local optima have equal value. 
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5.2 Scaling-up recursively 

Having established an appropriate two-feature epistasis model, we need an appropriate way to 
extend it to describe epistasis between a larger number of features. In particular, we want to re-
use the same structure at a higher level so as to create the same kind of epistasis between sets of 
features as we have here between single features; in this way, we can create a principled method 
for producing fitness saddles of larger scales. Our approach is to describe the interaction of four 
features F1, F2, F3, F4, using the interaction of F1 with F2 in one pair, as above, the interaction of F3 
and F4 as a second pair similarly, and then, at a higher level of abstraction, describe the 
interaction of these two pairs in the same fashion. To do this abstraction we treat the two possible 
end states of the F1/F2 subsystem, i.e. its two local optima (labelled c and d, in Table 2), as two 
discrete states of an ‘emergent variable’, or ‘meta-feature’, MF1. Similarly, the two possible end 
states of the F3/F4 subsystem (e and f) form two states for MF2. If the original, ‘atomic’ features 
are interpreted as low-level features of an entity, then a meta-feature may be interpreted as a 
higher-level phenotypic feature of an entity, or some higher-level property of an entity that 
determines its interaction with other entities and/or its environment.  

In this manner we may describe the interaction of the two subsystems as the additional fitness 
contributions resulting from the epistasis of MF1 and MF2. Since each meta-feature includes two 
‘atomic’ features, we double the fitness contributions in the inter-group interaction. Table 2 
illustrates. 

  F1/F2   F3/F4   MF1/MF2 

  F2a F2b   F4a F4b   MF2e MF2f 

 
F1a 

1 0  
F3a 

1 0  
MF1c 

2 0 

 
F1b 0 1  

F3b 
0 1  

MF1d 
0 2 

Table 2: Abstracting the interaction of two pairs of features, F1/ F2 and F3/F4, 
into the interaction of two ‘meta-features’ MF1/MF2. 

 
The fitness landscape resulting from this interaction at the bottom level, together with the 

interaction of pairs at the abstracted level, produces four optima altogether. Using a=0 and b=1, 
these are 0000 and 1111, which are equally preferred optima, and the local optima 0011 and 
1100, which are equally preferred but less so. All other configurations are not local optima.  

Naturally, we can take the two best-preferred configurations from the F1F2F3F4 system and 
describe a similar interaction with an F5F6F7F8 system, and so on. Equation 1 below, describes the 
fitness of a string of bits (corresponding to binary feature states, as above) using this 
construction. This function, which we call Hierarchical If -and-Only-If (HIFF), was first 
introduced in (see Watson et al. 1998) as a building-block test function for genetic algorithms; 
specifically, providing an alternative to functions such as ‘The Royal Roads’ (Forrest & Mitchell 
1993) and ‘N-K landscapes’ (Kauffman 1993). In contrast to Royal Roads, HIFF has difficult 
epistasis between blocks at all levels in the hierarchy, and in contrast to the N-K landscapes the 
epistatic structure of HIFF is modular. 

c 

d 

e 

f 
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F(B) = 
î




 

1, 
|B| + F(BL) + F(BR), 
F(BL) + F(BR), 

if |B|=1, 
if |B|>1 and (∀ i:bi=0 OR ∀ i:bi=1) 
otherwise. Eq.5. 

where B is a set of features, (b1,b2,...bk), |B| is the size of the set=k, bi is the i th element 
of B, BL and BR are the left and right subsets of B, i.e. BL=(b1,...bk/2), BR=(bk/2+1,...bk).  
The length of the string evaluated must equal 2p where p is an integer (the number of 
hierarchical levels). 

5.3 The resultant landscape 

A 128-feature landscape using HIFF (as used in our experiments) has 264≈1019 local optima (for 
adaptation that can change one feature at a time) (Watson 2001), only two of which are global 
optima. If an adaptive mechanism can jump fitness saddles by changing two features at once it 
still has 232 local optima, and so on. To guarantee that an algorithm can escape from any local 
optimum to a position of higher fitness requires a variation mechanism that can change N/2=64 
features at once. Thus, an algorithm using only mutation cannot be guaranteed to succeed in less 
than time exponential in the number of features (Watson 2001). A particular section through the 
fitness landscape is shown in Figure 6—the section runs from one global optimum to the other at 
the opposite corner of the hyperspace (see Watson and Pollack 1999a). As is clearly seen in the 
fractal nature of the curve in Figure 6, the local optima create fitness saddles that are scale-
invariant in structure: that is, the nature of the ruggedness is the same at many successive scales. 
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Figure 6: A section through a 64-feature HIFF landscape. The two global optima 
(fitness 448 for 64-feature landscape) are seen at opposite extremes of the space. 

 
The modular structure of the HIFF landscape makes the problem recursively decomposable. 

For example, a 128-feature problem is composed of two interacting 64-feature problems, each of 
which has two optima. If both of these optima can be found for both of these subproblems then a 
global optimum will be found in 2 of their 4 possible combinations. Thus, if this decomposition 
is known, then the search space that must be covered is at most 264 + 264 + 4 ≈ 265 configurations. 
Compared with the original 2128 configuration space, even this two-level decomposition is a 
considerable saving. In addition, each size-64 problem may be recursively decomposed giving a 
further reduction of the search space. In (Watson 2001) we describe how an algorithm having 
some bias to exploit the decomposition structure (using the adjacency of features on the string) 
can solve HIFF in polynomial time. Here however, we are interested in the case where the 
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decomposition structure is not known to the adaptive mechanism. We call this the ‘Shuffled-
HIFF’ landscape (Watson et al. 1998) because this preferential bias is prevented by randomly re-
ordering the position of features on the string such that their genetic linkage does not correspond 
to their epistatic structure (see Watson & Pollack 1999c).   

In summary, this landscape exhibits local optima at all scales, which makes it very challenging 
to accretive adaptation, and fundamental to the issues of saddle-crossing and scalable 
evolvability. Yet, it is amenable to a ‘divide and conquer’ approach if the decomposition of the 
problem can be discovered and sub-solutions can be manipulated and recombined appropriately.  

5.4 Dissolving the distinction between epistasis and multi-player evolutionary games 

An alternative interpretation of the two-feature epistasis model above is obtained by viewing the 
two different features as two different players in a symmetric two-player game, and the feature 
values as their possible strategies. In this view, the fitness contributions become the values of a 
pay-off matrix and the salient characteristic of Case 4 is that the optimal strategy for player one 
is dependent on the behaviour of player two, and vice versa. The particular matrix we arrive at in 
Case 4b is analogous to the ‘mutual benefit’ matrix from (Maynard Smith and Szathmary 1995, 
p.262), but here there is not yet any distinction between the two attractors of the system i.e. 
which is the ‘defect’ and which is the ‘cooperate’ strategy, because we assign them equal value. 

As we recursively re-apply the two-feature model we apply the two-player matrix in a 
recursive fashion to define a four-player game. Note that now, in the context of F1aF2a, F3bF4b is 
a ‘defect/defect’ result for players 3 and 4, because it is in their selfish interest for each player 
not to change from this strategy, but if they both changed to F3aF4a, this would provide a higher 
payoff. Conversely, in the context of F1bF2b, F3aF4a is ‘defect/defect’ and F3bF4b is 
‘cooperate/cooperate’. In other words, whether a strategy provides mutual benefit or not depends 
on the context in which the game is played. 

Thus HIFF describes a hierarchical cooperate/defect game. The nature of the pay-off values is 
such that maximising the payoff for all (e.g. 128) players is achieved when two-subgroups (of 
64) players are compatible. Other attractors in the evolutionary game occur when particular 
subsets of players are compatible intra-group but not inter-group. Accordingly, optimising HIFF 
requires the induction of hierarchical cooperation. The pay-off values at every level of resolution 
help to identify good combinations of strategies—but, which of the two optima at every level is 
best does not become clear until the context of other players is stabilised. HIFF deliberately 
dissolves the distinction between epistasis (the interdependency of genes within an individual) 
and multi-player evolutionary games (the interdependency of features of one entity with those of 
another) as is required from a model incorporating changes in the unit of selection.  

HIFF may be contrasted with previous models of landscapes designed to model the interaction 
of coevolving species, for example, the NKC models of Kauffman (1993), as used in (Bull 
1999). First, whereas the NKC model represents a modular landscape with a single level of 
modular organisation (composed of two coupled semi-independent landscapes, or several in 
‘NKCS’ models), HIFF depicts a hierarchically modular landscape defined recursively. Second, 
whereas the NKC model (like other N-K models) uses random epistatic interactions between 
variables, HIFF uses a specific, and difficult, kind of epistatic dependency (Case 4b) that enables 
us to control what the consequences of these dependencies are in terms of local optima, and the 
width of fitness-saddles. 
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5.5 The HIFF landscape and natural hierarchy 

HIFF is used in our experiments to exemplify the class of adaptive landscape in which the 
evolvability of composition can be contrasted with the evolvability of accretive evolution. We do 
not claim that HIFF is representative of the structure of adaptive landscapes in general. However, 
the problem of defining appropriate models for adaptive landscapes is an open one and, in 
passing, we note that HIFF exhibits some interesting landscape characteristics with respect to 
hierarchy in natural systems (Simon 1969). In particular, dynamical systems exhibiting an 
interdependency structure that is similar at many scales might be a natural product of self-
organized dynamical systems—as evidenced by ‘power law’ signatures in their dynamics (e.g. 
Bak 1996). Then, to the extent that natural adaptive landscapes are the result of such systems—
scale-invariant fitness landscapes, such as that which HIFF defines, might not be entirely 
hypothetical. 

6 Experimental Results 

In this section we show empirical results of SEAM applied to a 128-bit Shuffled HIFF. Our 
intent is to illustrate the qualitative difference in the way that composition operates in this scale-
invariant problem as compared to the operation of ordinary (non-transitional) evolutionary 
change. Accordingly, we contrast the operation of SEAM with the results of a mutation only 
algorithm, Random Mutation Hill -Climbing, (RMHC), and a genetic algorithm, GA, using 
sexual recombination.  

6.1 Experiments 

RMHC repeatedly applies mutation to the features of a single binary string (a fully specified 
feature set) and accepts a variant if it is fitter (Forrest & Mitchell 1993). We conducted 
experiments with various mutation rates (probability of assigning a new random state {0,1} to 
each feature)—specifically, mut = 1/128, 2/128, 4/128, 6/128, 8/128, 12/128, 16/128, 24/128, 
32/128 and 40/128. In the following results we show the performance of RMHC with 
mut=16/128=0.125 which gives the best maximum average maximum fitness over all these 
values. (See Oates & Corne, 2001, for an investigation of the mutation landscape for HIFF).  

The genetic algorithm is a steady state algorithm, using deterministic crowding, (DC), 
(Mahfoud 1995) to maintain diversity in the population—Figure 7. Previous work (Watson & 
Pollack 2000) indicates that DC is very effective at maintaining diversity in this problem, and 
this method provides the best performance of the GA we have found. (A GA using fitness 
proportionate selection or rank selection with no diversity maintenance method gives 
significantly inferior performance.) Notice that deterministic crowding has some algorithmic 
characteristics in common with SEAM.  
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•  Initialize population.  

•  Repeat until stopping condition: 

•  Pick two parents, p1 & p2, at random from the population. 

•  Produce a pair of offspring, c1 & c2, using recombination, and mutation. 

•  Pair-up each offspring with one parent according to the pairing rule below. 

•  For each parent/offspring pair, if the offspring is fitter than the parent then replace 
the parent with the offspring.  

 
Pairing rule: if H(p1,c1)+H(p2,c2) <H(p1,c2)+H(p2,c1) then pair p1 with c1, and p2 with 
c2, else pair p1 with c2, and p2 with c1, where H gives the genotypic Hamming distance 
between two individuals. 4 
 

Figure 7: Pseudocode for a simple form of a GA using deterministic crowding. 

 
The GA is tested using uniform and one-point crossover.5 A population size of 2000 is used; 

crossover is applied with probability 0.7. We tested mutation rates of mut=0/128, 1/128, 2/128, 
4/128, 8/128, and 16/128. The best performance for uniform crossover was with mut=0 because 
(since DC maintains diversity appropriately) the mixing of bits from strings that disagree on 
building-blocks provides appropriate variation. The best performance of one-point crossover was 
with mut=4/128=0.031.  

The pseudocode for SEAM was given in Figure 5. The parameters we use are: number of 
features, N=128, alphabet of features, S={0,1}, initial population size 256 one-feature entities 
covering all alleles at all loci6, number of contexts used for dominance test, t=200, (empirically, 
on average less than 10 of these are required to reveal the instability of a proposed join). The 
stopping condition is that 3·106 calls to the fitness function have been used. f, the fitness 
function, is provided by Shuffled HIFF with 128 binary features.  

6.2 Control experiments 

Recall that the three main conceptual features of SEAM are: the use of variable size entities and 
a variation operator based-on composition; testing (in)stability of compositions by testing for 
Pareto dominance of composition over the component entities; and, building environmental 
contexts from other co-adapting entities in the ecosystem. 

                                                 
4  Deterministic crowding explicitly uses genotypic similarity as a metric for similarity. This is fortuitously appropriate for  

maintaining diversity in HIFF. In contrast, SEAM makes no such assumption and uses no such measure on genotypic 
similarity. 

5  One-point crossover takes genes from parent 1 on the left of a single randomly positioned crossover point, and from parent 2 
on the right of this crossover point, or vice versa. Uniform crossover takes each gene from either parent with equal probability 
independent of position. One-point crossover is a model of strong genetic linkage, and uniform crossover models no genetic 
linkage (see Watson 2002 for discussion). 

6  This may be done systematically for practical purposes, but may in principle be done without knowledge of the encoding 
dimensions by ‘over-generating’ the initial population and then removing duplicates—more specifically, by removing entities 
that behave the same (produce identical fitness changes) over a sample of random contexts (see Watson & Pollack 2001b).  
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RMHC and the GA provide some controls for the first of these. That is, they use a fully -
specified feature set for each entity/individual, and use mutation and sexual recombination 
instead of composition. In preliminary work we also tested the operation of an algorithm that is 
the same as SEAM except that instead of using the Pareto dominance test, the second feature of 
SEAM, it simply determines that the join is unstable if the average fitness of either component is 
greater than the average fitness of the composite over the set of equally weighted environmental 
contexts. We also tested a control for the third feature of SEAM, by using an algorithm that is the 
same as SEAM except that it uses random feature sets for the contexts instead of contexts built 
from other members of the ecosystem. In both these latter two controls, sub-optimal associations 
are made and the entities ‘fill -up’, or ‘bloat’, with sub-optimal feature values—thus defeating the 
composition operator (Watson & Pollack 1999c). Overall, their performance is much like that of 
RMHC. A number of variations on SEAM, related experiments, and discussion are provided in 
(Watson 2002). 

6.3 Results  

Performance is measured by the fitness of the best string evaluated (in the preceding 1000 
evaluations) averaged over 30 runs for each algorithm. For SEAM the strings evaluated are the 
groups of entities (i.e. an entity with its contextual environment), forming a complete feature 
specification. The problem size of 128 bits gives a maximum fi tness of 1024. The performance 
curve for SEAM is truncated when 95% of runs (29/30) have found either of the two global 
optima.  

As Figure 8 shows, the results for SEAM are clearly qualitatively different from the other 
algorithms: Whereas innovation by mutation and by conventional evolutionary algorithms 
becomes increasingly more difficult as evolution continues in this problem, innovation by 
composition is not impeded, and actually shows an inverted performance curve compared to all 
other methods tested. SEAM finds both global optima in all 30 runs. None of the other methods 
find either global optimum in any of the 30 runs. 
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Figure 8: Performance of SEAM, GA with Deterministic Crowding (using one-point 
and uniform crossover), and Random Mutation Hill-Climbing, on Shuffled HIFF.

 
In Figure 9 we show the size of the largest correct sub-block discovered by each method. The 

‘group’ curve for SEAM is the size of the largest correct building-block in any group of entities 
when they are evaluated together as a contextual environment, (this corresponds to the fitness 
curve in Figure 8). The ‘indiv.’ curve for SEAM is the size of the largest correct building-block 
in any stable individual entity. We use a log scale on the size axis—thus, if the increase in size is 
proportional to extant size the curve would appear as a straight line. We can see clearly in this 
figure that unlike the conventional evolutionary algorithms, innovation by composition continues 
steadily in this problem, approaching a scale-invariant increase in size of correct building-blocks 
in individual entities. 
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Figure 9: Size of largest correct building-block of features evolved (log scale) using 
SEAM, GA with Deterministic Crowding (using one-point and uniform crossover), and 
Random Mutation Hill-Climbing, on Shuffled HIFF. 

6.4 Discussion 

The SEAM model provides a concrete illustration of changing the unit of variation, and 
changing the unit of selection—as new entities are created they are selected for their abilities at 
that level of organisation and provide the components for entities at the next level of 
organisation. Clearly, the SEAM model operates by using a variation mechanism that scales-up 
with the size of extant entities, as illustrated in Figure 2. The model also illustrates how 
composition provides a divide and conquer problem decomposition of this class of problem by 
combining together solutions to small sets of features to find solutions to larger sets of features. 
Our RMHC results, and proofs in previous work (Watson 2001), show that no degree of random 
variation can provide continued innovation in this problem class. This indicates that the units of 
variation discovered by SEAM are not merely larger but are usefully informed by prior 
adaptation. Additionally, in the genetic algorithm experiments, the features of the individuals 
were subject to selection but not as independent entities—only as parts of a larger fully -specified 
feature set. This means that the subsets of features exchanged in sexual recombination are 
arbitrary, and accordingly do not provide meaningful modules. In contrast, because the entities in 
SEAM permit the unit of selection to scale lock-step with the unit of variation, the sets of 



 

 

 26 

features provided by composition are not arbitrary, they are subject to selection as an integral 
whole, and provide meaningful units of variation.  

In summary, the results show that mutation and sexual recombination are unable to exploit the 
decomposable structure of Shuffled HIFF or otherwise overcome the large-scale fitness saddles 
in the landscape. In contrast, the variables-sized entities in SEAM are able to each identify and 
represent a correct assembly of compatible features forming a useful building-block for the next 
hierarchical level. In evolutionary computation terms, SEAM describes an evolutionary 
algorithm where schemata of all sizes coevolve with one another, as if in a multi-player game, 
and cooperative groups are found incrementally from individual features through larger and 
larger schemata. With respect to the biological analogues, SEAM describes an ecosystem of 
entities that coevolve with one another, finding stable symbiotic relationships that satisfy their 
fitness dependencies with one another, and progress through successive evolutionary transitions, 
each occurring via the composition of simpler extant entities into more complex organisations. 

6.5 Canalisation of successful groups 

There is an interesting analogy between SEAM, the Baldwin effect (Baldwin 1896), and 
‘Symbiotic Scaffolding’ (Watson & Pollack 1999b, Watson et al. 2000). That is, these scenarios 
have in common the feature that rapid non-heritable variation (lifetime learning or the temporary 
groups formed for contexts) guides a mechanism of relatively slow heritable variation (genetic 
mutation or composition, respectively). In other words, evaluation of entities in contextual 
groups ‘primes’ them for subsequent joins, or equivalently, solutions found first by groups are 
later canalised (Waddington 1942) by composite entities (see also Bull 1995). In Figure 9, the 
‘indiv .’ curve shows how the discovery of correct building-blocks by individuals follows behind 
the discovery of correct building-blocks by groups. 

7 Conclusions 

Heritable variation is one of the fundamental axioms of evolutionary theory. However, it is a 
familiar irony that random variation is the source of new innovation but also inherently opposed 
to the heritability of extant complexity. Evolution has created mechanisms, such as enzymatic 
repair, that reduce the error rate (Nowak & Schuster 1989) and increase reproductive fidelity, 
but still, the question remains: How can it be the case that variation may be suppressed (by 
whatever mechanism) without also suppressing the opportunity for innovation? Differential 
reproduction is also not such a simple concept as it might first appear. Specifically, it requires us 
to delineate the entities involved—to identify the entities whose reproduction could be 
differentiated. There are many biological cases where the relevant reproductive units are not so 
obvious—more importantly, it may be in principle inaccurate to draw such boundaries. 

Symbiotic composition offers an intriguing perspective on these issues. It is perfectly 
reasonable that a number of entities may each be individually stable and yet, via the discovery of 
successful compositions of these entities, there is still opportunity for innovation at a higher-level 
of organisation. Thus, composition presents no opposition between the stability or heritability of 
the component entities, and the opportunity for innovation in entities at the next level of 
organisation. And significantly, this view is enabled by a willingness to repeatedly re-define the 
boundary of the entities involved. 
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More concretely, the separation of a local optimum from the next best configuration of 
features is a fundamental limiting characteristic of adaptive landscapes, and saddle-crossing is a 
useful way to conceptualise the ability of an adaptive mechanism. But, what scale of fitness-
saddle should we expect in a natural adaptive landscape? Intuitively, we might suspect that as 
one scale of ruggedness is overcome, a larger scale of ruggedness becomes the limiting 
characteristic of the adaptive landscape. If this is so then there is no fixed scale of saddle-
crossing ability that is sufficient, and open-ended evolvability requires an adaptive mechanism 
that scales-up as evolution continues, enabling larger and larger ‘jumps’ in feature space.  

In our experiments using a scale-invariant fitness landscape, we find that, as expected, both a 
mutation only algorithm and the GA have a limit to the size of fitness saddle that they can cross. 
More exactly, as adaptation continues and the distance to the next-best optimum increases, 
adaptation by these methods becomes increasingly difficult. In contrast, SEAM is able to 
discover the epistasis structure in the problem, use collections of features in different entities to 
represent it explicitly, and by searching combinations of these entities is able to continue to find 
successful combinations of features through many hierarchical levels. Accordingly, these 
experiments show that on this class of adaptive landscape, evolvability under mutation and 
sexual recombination within the accretive model of adaptation is inherently limited, whereas 
innovation by composition offers the possibility of inherently scalable, open-ended evolvability. 

The Symbiogenic Evolutionary Adaptation Model provides a concrete illustration of one way 
to realise a scaling-up of the units of variation and selection characteristic of the major 
evolutionary transitions. SEAM abstracts away all population dynamics and uses a simple multi-
context test to determine whether a composite will be stable. Resulting compositions are 
compatible with a selfish model of the entities, and the mechanism has appealing analogies with 
natural ecosystems, but the appropriateness of this model for multi-species competition in an 
ecosystem needs to be qualified. Also, scale-invariance is a property observed in many natural 
systems, but whether the natural adaptive environment has characteristics like those of the 
particular model that we developed in HIFF is an empirical matter. 

In the meantime, we suggest that this algorithmic perspective on the formation of higher-level 
entities from the composition of simpler entities provides a useful facet in our understanding of 
the impact of the major evolutionary transitions. 
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