
Co-Evolution in the Successful Learning of
Backgammon Strategy

Jordan B. Pollack & Alan D. Blair
Computer Science Department

Volen Center for Complex Systems
Brandeis University
Waltham, MA 02254

{pollack,blair}@cs.brandeis.edu

Abstract

Following Tesauro’s work on TD-Gammon, we used a 4000 parameter feed-for-
ward neural network to develop a competitive backgammon evaluation function.
Play proceeds by a roll of the dice, application of the network to all legal moves,
and choosing the move with the highest evaluation. However, no back-propaga-
tion, reinforcement or temporal difference learning methods were employed. In-
stead we apply simple hill-climbing in a relative fitness environment. We start
with an initial champion of all zero weights and proceed simply by playing the
current champion network against a slightly mutated challenger and changing
weights if the challenger wins. Surprisingly, this worked rather well. We investi-
gate how the peculiar dynamics of this domain enabled a previously discarded
weak method to succeed, by preventing suboptimal equilibria in a “meta-game”
of self-learning.

Keywords: coevolution, backgammon, reinforcement, temporal difference learn-
ing, self-learning

Running Head: CO-EVOLUTIONARY LEARNING

Pollack & Blair 2 Machine Learning

1. Introduction

It took great chutzpah for Gerald Tesauro to start wasting computer cycles on tem-

poral difference learning in the game of Backgammon (Tesauro, 1992). Letting a machine

learning program play itself in the hopes of becoming an expert, indeed! After all, the

dream of computers mastering a domain by self-play or “introspection” had been

around since the early days of AI, forming part of Samuel’s checker player

(Samuel, 1959) and used in Donald Michie’s MENACE tic-tac-toe learner (Michie, 1961);

but such self-conditioning systems had later been generally abandoned by the field due

to problems of scale and weak or non-existent internal representations. Moreover, self-

playing learners usually develop eccentric and brittle strategies which appear clever but

fare poorly against expert human and computer players.

Yet Tesauro’s 1992 result showed that this self-play approach could be powerful,

and after some refinement and millions of iterations of self-play, his TD-Gammon pro-

gram has become one of the best backgammon players in the world (Tesauro, 1995). His

derived weights are viewed by his corporation as significant enough intellectual prop-

erty to keep as a trade secret, except to leverage sales of their minority operating system

(International Business Machines, 1995). Others have replicated this TD result in back-

gammon both for research purposes (Boyan, 1992) and commercial purposes.

While reinforcement learning has had limited success in other areas (Zhang and

Dietterich, 1996, Crites and Barto, 1996, Walker et al., 1994), with respect to the goal of a

self-organizing learning machine which starts from a minimal specification and rises to

great sophistication, TD-Gammon stands alone. How is its success to be understood,

explained, and replicated in other domains?

Pollack & Blair 3 Machine Learning

Our hypothesis is that the success of TD-gammon is not principally due to the

back-propagation, reinforcement, or temporal-difference technologies, but to an inherent

bias from the dynamics of the game of backgammon, and the co-evolutionary setup of

the training, by which the task dynamically changes as the learning progresses. We test

this hypothesis by using a much simpler co-evolutionary learning method for backgam-

mon - namely hill-climbing.

2. Implementation Details

We use a standard feedforward neural network with two layers and the sigmoid

function, set up in the same fashion as (Tesauro, 1992) with 4 units to represent the num-

ber of each player’s pieces on each of the 24 points, plus 2 units each to indicate how

many are on the bar and off the board. In addition, we added one more unit which

reports whether or not the game has reached the endgame or “race” situation, making a

total of 197 input units. These are fully connected to 20 hidden units, which are then con-

nected to one output unit that judges the position. Including bias on the hidden units,

this makes a total of 3980 weights. The game is played by generating all legal moves,

converting them into the proper network input, and picking the position judged as best

by the network. We started with all weights set to zero.

Our initial algorithm was hillclimbing:

1. add gaussian noise to the weights

2. play the network against the mutant for a number of games

3. if the mutant wins more than half the games, select it for the next generation.

The noise was set so each step would have a 0.05 RMS distance (which is the euclidean

distance divided by).3980

Pollack & Blair 4 Machine Learning

Surprisingly, this worked reasonably well. The networks so evolved improved rap-

idly at first, but then sank into mediocrity. The problem we perceived is that comparing

two close backgammon players is like tossing a biased coin repeatedly: it may take doz-

ens or even hundreds of games to find out for sure which of them is better. Replacing a

well-tested champion is dangerous without enough information to prove the challenger

is really a better player and not just a lucky novice. Rather than burden the system with

so much computation, we instead introduced the following modifications to the algo-

rithm to avoid this “Buster Douglas Effect”:1

Firstly, the games are played in pairs, with the order of play reversed and the same

random seed used to generate the dice rolls for both games. This washes out some of the

unfairness due to the dice rolls when the two networks are very close - in particular, if

they were identical, the result would always be one win each - though, admittedly, if

they make different moves early in the game, what is a good dice roll at a particular

move of one game may turn out to be a bad roll at the corresponding move of the paral-

lel game. Secondly, when the challenger wins the contest, rather than just replacing the

champion by the challenger, we instead make only a small adjustment in that direction:

champion := 0.95*champion + 0.05*challenger

This idea, similar to the “inertia” term in back-propagation (Rumelhart et al., 1986)

was introduced on the assumption that small changes in weights would lead to small

changes in decision-making by the evaluation function. So, by just “biting the ear” off

the challenger and adding it to the champion, most of the current decisions are pre-

1. Buster Douglas was world heavyweight boxing champion for 9 months in 1990.

Pollack & Blair 5 Machine Learning

served , and we would be less likely to have a catastrophic replacement of the champion

by a lucky novice challenger. In the initial stages of evolution, two pairs of parallel

games were played and the challenger was required to win 3 out of 4 of these games.

Although we would have liked to rank our players against the same players

Tesauro used - Neurogammon and Gammontool - these were not available to us.

Figure 1 shows the first 35,000 players rated against PUBEVAL, a moderately good pub-

lic-domain player trained by Tesauro using human expert preferences. There are three

things to note: (1) the percentage of wins against PUBEVAL increases from 0% to about

33% by 20,000 generations, (2) the frequency of successful challengers increases over

time as the player improves, and (3) there are epochs (e.g. starting at 20,000) where the

performance against PUBEVAL begins to falter. The first fact shows that our simple self-

playing hill-climber is capable of learning. The second fact is quite counter-intuitive - we

expected that as the player improved, it would be harder to challenge it! This is true with

respect to a uniform sampling of the 4000 dimensional weight space, but not true for a

sampling in the neighborhood of a given player: once the player is in a good part of weight

0 5 10 15 20 25 30 35
0

25

50

75

100

Figure 1: Percentage of wins of our first 35,000 generation players
against PUBEVAL. Each match consisted of 200 games.

Generation (x 103)

%
w

in

Pollack & Blair 6 Machine Learning

space, small changes in weights can lead to mostly similar strategies, ones which make

mostly the same moves in the same situations. However, because of the few games we

were using to determine relative fitness, this increased rate of change allows the system

to drift, which may account for the subsequent degrading of performance.

To counteract the drift, we decided to change the rules of engagement as the evolu-

tion proceeds according to the following “annealing schedule”: after 10,000 generations,

the number of games that the challenger is required to win was increased from 3 out of 4

to 5 out of 6; after 70,000 generations, it was further increased to 7 out of 8 (of course each

bout was abandoned as soon as the champion won more than one game, making the

average number of games per generation considerably less than 8). The numbers 10,000

and 70,000 were chosen on an ad hoc basis from observing the frequency of successful

challenges and the Buster Douglas effect in this particular run, but later experiments

0 20 40 60 80 100 0 20 40 60 80
0

25

50

75

100

Figure 2: Percentage of wins against benchmark networks 1,000
[upper], 10,000 [middle] and 100,000 [lower]. This shows a noisy
but nearly monotonic increase in player skill as evolution proceeds.

%
w

in

Generation (x 103)

Pollack & Blair 7 Machine Learning

showed how to determine the annealing schedule in a more principled manner (see

Section 3.2 below).

After 100,000 games using this simple hill-climb, we have developed a surprising

player, capable of winning 40% of the games against PUBEVAL. The networks were sam-

pled every 100 generations in order to test their performance. Networks at generation

1,000, 10,000 and 100,000 were extracted and used as benchmarks. Figure 2 shows the

percentage of wins for the sampled players against the three benchmark networks. Note

that the three curves cross the 50% line at 1, 10, and 100, respectively and show a general

improvement over time.

The end-game of backgammon, called the “bear-off,” can be used as another yard-

stick of the progress of learning. The bear-off occurs when all of a player’s pieces are in

their home board, or first 6 points, and then the dice rolls can be used to remove pieces

from the board. To test our network’s ability at the end-game, we set up a racing board

with two pieces on each player’s 1 through 7 point and one piece on the 8 point. The

0 20 40 60 80 100
18

19

20

21

22

R
ol

ls

Generation (x 103)

Figure 3: Average number of rolls to bearoff by each generation, sampled with 200 dice-streams.
PUBEVAL averaged 16.6 rolls for the task.

Pollack & Blair 8 Machine Learning

graph in Figure 3 shows the average number of rolls to bear-off for each network playing

itself using a fixed set of 200 random dice-streams. We note that PUBEVAL is stronger at

16.6 rolls, and will discuss its strengths and those of Tesauro’s 1992 results in Section 5.

3. Analysis

3.1. Learnability and Unlearnability

Learnability can be formally defined as a time constraint over a search space. How

hard is it to randomly pick 4000 floating-point weights to make a good backgammon

evaluator? It is simply impossible. How hard is it to find weights better than the current

set? Initially, when all weights are random, it is quite easy. As the playing improves, we

would expect it to get harder and harder, perhaps similar to the probability of a tornado

constructing a 747 out of a junkyard. However, if we search in the neighborhood of the cur-

rent weights, we will find many similar players which make mostly the same moves but

which can capitalize on each other’s slightly different choices and exposed weaknesses

in a tournament. Note that this is a different point than Tesauro originally made - that

the feedforward neural network could exploit similarity of positions.

Figure 4: Distance versus probability of random challenger winning
against champions at generation 1,000, 10,000 and 100,000.

0 0.05 0.1
0

25

50

75

100

RMS distance from champion

100k

10k
1k

%
 w

in
s

fo
r

ch
al

le
ng

er

Pollack & Blair 9 Machine Learning

Although the setting of parameters in our initial runs involved some guesswork,

now that we have a large set of “players” to examine, we can try to understand the phe-

nomenon. Taking the champion networks at generation 1,000, 10,000, and 100,000 from

our run, we sampled random players in their neighborhoods at different RMS distances

to find out how likely is it to find a winning challenger. A thousand random neighbors at

each of 11 different RMS distances played 8 games against the corresponding champion,

and Figure 4 plots the fraction of games won by these challengers, as a function of RMS

distance. This graph shows that as the players improve over time, the probability of find-

ing good challengers in their neighborhood increases, which accounts for why the fre-

quency of successful challenges goes up.2 Each successive challenger is only required to

take the small step of changing a few moves of the champion in order to beat it. The

hope, for co-evolution, is that what was apparently unlearnable becomes learnable as we

convert from a single question to a continuous stream of questions, each one dependent

on the previous answer.

3.2. Replication Experiments

After our first successful run, we tried to evolve ten more players using the same

parameters and the same annealing schedule (10,000 and 70,000), but found that only

one of these ten players was even competitive. Closer examination suggested that the

other nine runs were failing because they were being annealed too early, before the fre-

quency of successful challenges had reached an appropriate level. This premature

2. But why does the number of good challengers in a neighborhood go up, and if so, why does our algo-
rithm falter nonetheless? There are several factors which require further study. It may be due to the general
growth in weights, to less variability in strategy among mature players, or less ability simply to tell expert
players apart with a few games.

Pollack & Blair 10 Machine Learning

annealing then made the task of the challengers even harder, so the challenger success

rate fell even lower. We therefore abandoned the fixed annealing schedule and instead

annealed whenever the challenger success rate exceeded 15% when averaged over 1000

generations. All ten players evolved under this regime were competitive (though not

quite as good as our original player, which apparently benefitted from some extra induc-

tive bias due to having its own tailor-made annealing schedule). Refining other heuris-

tics and schedules could lead to superior players, but was not our goal.

3.3. Relative versus Absolute Expertise

Does Backgammon allow relative expertise or is there some absolutely optimal

strategy? Theoretically there exists a perfect “policy” for backgammon which would

deliver the minimax optimal move for any position, and this perfect policy could exactly

rate every other player on a linear scale, in practice it seems there are many relative

cycles. Figure 5 shows a graph of the “food chain” over every 5000th player in our

sequence of 100,000. By playing them 1000 games against each other and showing the

25

30

35

15

20

55

40

10

60

50

45

5

65

70

75

80

85

100

95

90

Figure 5: A partial graph of “who eats who”, showing for
each 5000th player, the immediate dominance relationships.

Pollack & Blair 11 Machine Learning

dominance relations with arrows, we can see many relative expertise cycles such as

[45,000 beats 70,000 beats 85,000 beats 45,000].

In cellular studies of iterated prisoners dilemma following (Axelrod, 1984) a stable

population of “tit for tat” can be invaded by “all cooperate” which then allows exploita-

tion by “all defect”. This kind of relative expertise dynamics, which can be seen clearly in

the simple game of rock/paper/scissors (Littman, 1994) might initially seem very bad

for self-play learning, because what looks like an advance might actually lead to a cycle

of mediocrity. A small group of champions in a dominance circle might arise and hold a

temporal oligopoly preventing further advance. On the other hand, it may be that such a

basic form of instability prevents the formation of sub-optimal oligopolies and allows

learning to progress.

4. Discussion

We believe that our evidence of success in learning backgammon using simple hill-

climbing in a relative fitness environment indicates that the reinforcement and temporal

difference methodology used by Tesauro in his 1992 paper which led to TD-Gammon,

while providing some advantage, was not essential for its success. Rather, a major contri-

bution came from the co-evolutionary learning environment and the dynamics of back-

gammon. Our result is thus similar to the bias found by Mitchell et al in Packard’s

evolution of cellular automata to the “edge of chaos” (Packard, 1988, Mitchell

et al., 1993).

Obviously, we are not suggesting that 1+1 hillclimbing is an advanced machine

learning technique which others should bring to many tasks! Without internal cognition

Pollack & Blair 12 Machine Learning

about an opponent’s behavior, co-evolution usually requires a population. Therefore,

there must be something about the domain itself which is helpful because it permitted

both TD learning and hill-climbing to succeed through self-play, where they would

clearly fail on other problem-solving tasks of this scale. In this section we discuss some

issues about co-evolutionary learning and the dynamics of backgammon which may be

critical to learning success.

4.1. Evolution versus Co-evolution

TD-Gammon is a major milestone for a kind of evolutionary machine learning in

which the initial specification of the model is far simpler than expected because the

learning environment is specified implicitly, and emerges as a result of the co-evolution

between a learning system and its training environment: the learner is embedded in an

environment which responds to its own improvements - hopefully in a never-ending

spiral, though this is an elusive goal to achieve in practice. While this co-evolutionary

effect has been seen in population models, it is completely unexpected for a “1+1” hill-

climbing evolution. Co-evolution has been explored on the sorting network problem

(Hillis, 1992), on tic-tac-toe and other strategy games (Angeline and Pollack, 1994, Rosin

and Belew, 1995, Schraudolph et al., 1994), on predator/prey games (Cliff and

Miller, 1995, Reynolds, 1994) and on classification problems such as the intertwined spi-

rals problem (Juille and Pollack, 1995). However, besides Tesauro’s TD-Gammon, which

has not to date been viewed as an instance of co-evolutionary learning, Sims’ artificial

robot game (Sims, 1994) is the only other domain as complex as backgammon to have

had substantial success.

Pollack & Blair 13 Machine Learning

Since a weak player can sometimes defeat a strong one, it should in theory be pos-

sible for a network to learn backgammon in a static evolutionary environment (playing

against a fixed opponent) rather than a co-evolutionary one (playing against itself). Of

course this is not as interesting an acheivement as learning without an expert on hand,

and if TD-gammon had simply learned from Neurogammon, it wouldn’t have been as

startling a result. In order to further isolate the contribution of co-evolutionary learning,

we had to modify our training setup because our original algorithm was only appropri-

ate to self-play. In this new setup the current champion and mutant both play a number

of games against the same opponent (called the foil) with the same dice-streams, and the

weights are adjusted only if the champion loses all of these games while the mutant wins

all of them. The number of pairs of games was initially set to 1 and incremented when-

ever the challenger success rate exceeded 15% when averaged over 1000 generations.

The lower three plots in Figure 6, which track the performance of this algorithm with

each of the three benchmark networks from our original experiments acting as foil, seem

to show a relationship between learning rate and probability of winning.

0 20 40 60 80 100
0

25

50

%
w

in

Generation (x 103)

Figure 6: Performance against PUBEVAL of players evolved by playing benchmark networks from our original
run at generation 1k, 10k and 100k, compared with a co-evolutionary variant of the same algorithm. Each of these
plots is an average over four runs. The performance of our original algorithm is included for comparison.

original

co-ev

100k

10k

1k

Pollack & Blair 14 Machine Learning

Against a weak foil (1k) learning is fast initially, when the probability of winning is

around 50%, then tapers off as this probability increases. Against a strong foil (100k)

learning is very slow initially, when the probability of winning is small, but speeds up as

it increases towards 50%. All of these evolutionary runs were outperformed by a co-evo-

lutionary version of the foil algorithm (co-ev) in which the champion network itself

plays the role of the foil. Co-evolution seems to maintain a high learning rate throughout

the run by automatically providing, for each new generation player, an opponent of the

appropriate skill level to keep the probability of winning near 50%. Moreover, weak-

nesses in the foil are less likely to bias the learning process because they can be automat-

ically corrected as the co-evolution proceeds (see also Section 4.3).

4.2. The Dynamics of Backgammon

In general, the problem with learning through self-play discovered repeatedly in

early AI and ML is that the learner could keep playing the same kinds of games over and

over, only exploring some narrow region of the strategy space, missing out on critical

areas of the game where it would then be vulnerable to other programs or human

experts. This problem is particularly prevalent in deterministic games such as chess or

tic-tac-toe. Tesauro (1992) pointed out some of the features of backgammon that make it

suitable for approaches involving self-play and random initial conditions. Unlike chess,

a draw is impossible and a game played by an untrained network making random

moves will eventually terminate (though it may take much longer than a game between

competent players). Moreover the randomness of the dice rolls leads self-play into a

much larger part of the search space than it would be likely to explore in a deterministic

game. We have worked on using a population to get around the limitations of self-play

Pollack & Blair 15 Machine Learning

(Angeline and Pollack, 1994). Schraudolph et al., 1994 added non-determinism to the

game of Go by choosing moves according to the Boltzmann distribution of statistical

mechanics. Others, such as Fogel, 1993, expanded exploration by forcing initial moves.

Epstein, 1994, has studied a mix of training using self-play, random testing, and playing

against an expert in order to better understand these aspects of game learning.

We believe it is not enough to add randomness to a game or to force exploration

through alternative training paradigms. There is something critical about the dynamics

of backgammon which sets its apart from other games with random elements like

Monopoly - namely, that the outcome of the game continues to be uncertain until all con-

tact is broken and one side has a clear advantage. In Monopoly, an early advantage in

purchasing properties leads to accumulating returns. What many observers find exciting

about backgammon, and what helps a novice sometimes overcome an expert, is the

number of situations where one dice roll, or an improbable sequence, can dramatically

reverse which player is expected to win.

In order to quantify this “reversibility” effect we collected some statistics from

games played by our 100,000th generation network against itself. For each n between 0

and 120 we collected 100 different games in which there was still contact at move n, and,

for n>6, 100 other games which had reached the racing stage by move n (but were still in

progress). We then estimated the probability of winning from each of these 100 positions

Pollack & Blair 16 Machine Learning

by playing out 200 different dice-streams. Figure 7 shows the standard deviation of this

probability (assuming a mean of 0.5) as a function of n, as well as the probability of a

game still being in the contact or racing stage at move n. Figure 8 shows the distribution

in the probability of winning, as a function of move number, symmetrized and smoothed

out by convolution with a gaussian function.

These data indicate that the probability of winning tends to hover near 50% in the

early stages of the game, gradually moving out as play proceeds, but typically remaining

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Move Number

St
an

d
ar

d
 D

ev
ia

ti
on

0 20 40 60 80 100 120
0

0.5

1

Move Number

contact
racing

game over

Pr
ob

ab
ili

ty

Figure 7: (a) Standard deviation in the probability of
winning for contact positions and racing positions.

contact

racing

Figure 7: (b) Probability of a game still being
in the contact or racing stage at moven.

Figure 8: Smoothed distributions of the probability of winning as a function of move number,
for contact positions (left) and racing positions (right).

0
20

40
60

80 0

0.5

1

0

1

2

3

4

5

0

20

40

60

80 0
0.5

1

0

1

2

3

4

5

D
en

si
ty

D
en

si
ty

Probability of Winning
Move Number

MoveProbabilit
y

Pollack & Blair 17 Machine Learning

within the range of about 15% to 85% as long as there is still contact, thus allowing a rea-

sonable chance for a reversal. These numbers could be different for other players, less

reversability for stronger players perhaps and more for weaker ones, but we believe the

effect remains an integral part of the game dynamics regardless of expertise. Our conjec-

ture is that these dynamics facilitate the learning process by providing, in almost every

situation, a nontrivial chance of winning and a nontrivial chance of losing, therefore

potential to learn from the consequences of the current move. This is in deep contrast to many

other domains in which early blunders could lead to a hopeless situation from which

learning is virtually impossible because the reward has already become effectively unat-

tainable. It seems this feature of backgammon may also be shared by other tasks for

which TD-learning has been successful (Zhang and Dietterich, 1996, Crites and

Barto, 1996, Walker et al., 1994).

4.3. Avoiding Suboptimal Equilibria in the Meta-Game of Learning

A learning system can be viewed as an interaction between teacher and student in

which the teacher’s goal is to expose the student’s weaknesses and correct them, while

the student’s goal is to placate the teacher and avoid further correction.

 We can build a model of this teacher/student interaction as a formal game, which

we will call the Meta-Game of Learning (MGL) to avoid confusion with the game being

learned. In this meta-game, the teacher T presents the student S with a sequence of ques-

tions Qi prompting responses Ri from the student. (In the backgammon domain, all the

questions and responses would be legal positions, rolls and moves). S and T each receive

payoffs in the process, which they attempt to maximize through their choices of ques-

tions and answers, and their limited abilities at self-modification.

Pollack & Blair 18 Machine Learning

We generally assume the goal of learning is to prepare the student for interaction

with a complex environment E that will provide an objective measure of its perfor-

mance.3 E and T thus play similar roles but are not assumed to be identical. The ques-

tion then is: Can we find a payoff matrix for S and T which will enable the performance

of S to continually improve (as measured by E)? If the rewards for T are too closely corre-

lated with those for S, T may be tempted to ask questions that are too easy. If they are

anti-correlated (for example if T=E), the questions might be too difficult. In either case it

will be hard for S to learn (see Section 4.1).

An attractive solution to this problem is to have two or more students play the role

of teacher for each other, or indeed a single student act as its own teacher, thus providing

itself with questions that are always at the appropriate level of difficulty. The dynamics

of the MGL, under such a self-teaching or co-evolutionary situation, would hopefully

lead to a continuing spiral of improvement but may instead get bogged down by antago-

nistic or collusive dynamics, depending on the payoff structure.

In our hillclimbing setup we may think of the mutant (teacher) trying to gain

advantage (adjustment in the weights) by exploiting weaknesses in the champion, while

the champion (student) is trying to avoid such an adjustment by not allowing its weak-

nesses to be exploited. Since the student and teacher are of approximately equal ability, it

is to the advantage of the student to narrow the scope of the search, thus limiting the

domain within which the teacher is able to look for a weakness. In most games, such as

chess or tic-tac-toe, the student could achieve this by aiming for a draw instead of a win,

3. For a general theory of evolution or self-organization, E is not necessary.

Pollack & Blair 19 Machine Learning

or by always playing a particular style of game. If draws are not allowed, the teacher and

student may figure out some other way to collude with each other - for example, each

“throwing” alternate games (Angeline, 1994) by making a suboptimal sequence of early

moves. These effects in self-learning systems, which may appear as early convergence in

evolutionary algorithms, narrowing of scope, drawing or other collusion between

teacher and student, are in fact Nash equilibria in the MGL, which we call Mediocre Stable

States.4

Our hypothesis is that certain features of backgammon operate against the forma-

tion of mediocre stable states in the MGL: backgammon is ergodic in the sense that any

position can be reached from any other position5 by some sequence of moves, and the

dice rolls apparently create enough randomness to prevent either player from following

a strategy that narrows the scope of the game appreciably. Moreover, early suboptimal

moves are unlikely to provide the opponent with an easy win (see Section 4.2), so collu-

sion by the throwing of alternate games is prevented.

Mediocre stable states can also arise in human education systems, for example

when the student gets all the answers right and rewards the teacher with positive teach-

ing evaluations for not asking harder questions. In further work, we hope to apply the

same kind of MGL equilibrium analysis to issues in human education.

5. Conclusions

TD-Gammon remains a tremendous success in Machine Learning, but the causes

for its success have not been well understood. The fundamental research in Tesauro’s

4. MSS follows Maynard Smith’s ESS (Maynard Smith, 1982)
5. with the exception of racing situations and positions with some pieces out of play.

Pollack & Blair 20 Machine Learning

1992 paper which was the basis for TD-Gammon, reportedly beat Sun’s Gammontool 60-

65% of the time (depending on number of hidden units) the best network achieved par-

ity against Neurogammon 1.0. The best expert preference (EP) networks reportedly

achieved 59% against Gammontool.

Following this seminal 1992 paper, Tesauro incorporated a number of hand-crafted

expert-knowledge features, eventually engineering a network which achieved world

master level play (Tesauro, 1995). These features included concepts like existence of a

prime, probability of blots being hit, and probability of escape from behind the oppo-

nent’s barrier. The evaluation function was also improved using multiple ply search.

However, a careful reading of the 1992 paper reveals several other facts:

“Performance on the 248-position racing test set reached about 65%. (This is sub-
stantially worse than the racing specialists described in the previous section.)” (p.
271)

“The training times ...were on the order of 50,000 training games for the networks
with 0 and 10 hidden units, 100,000 games for the 20-hidden unit net, and 200,000
games for the 40-hidden unit net.” (p. 273)

In the paper on comparison training (Tesauro, 1989), a symbolically multiplexed set

of linear networks trained on a very small game library achieved 64% against Gammon-

tool, and 5% better than the EP nets. Thus these appear equal in performance with the

1992 TD nets. PUBEVAL reportedly used this comparison method of training, but on a

larger human encyclopedic database, and thus may be a stronger player than the 1992

TD-networks result. But it is not clear how much stronger, since they were never rated

against each other. The best players we’ve been able to evolve can win about 45% of the

time against PUBEVAL. There is one more element from Tesauro’s paper which is critical

in evaluating these claims:

Pollack & Blair 21 Machine Learning

“the testing procedure is to play out the game with the network until it becomes a
race, and then use Gammontool’s algorithm to move for both sides until the end.
This also does not penalize the TD net for having learned rather poorly the racing
phase of the game.”(p 272)

When we compare our network’s performance to PUBEVAL in the absense of

availability of either the weights from Neurogammon 1.0, the 1992 TD results, or the

code from SUN’s Gammontool, it must be noted that we use our network’s own (weak)

endgame, rather than substituting in a much stronger expert system like Gammontool.

Given that PUBEVAL is a stronger release than the 1989 comparison networks and

thus stronger than the 1992 TD network, and furthermore, that the 1992 TD network was

not rated using its own endgame code, and that we observe all of the same phenomena

in training, endgame, and convergence, we believe our players have achieved close to

parity with Tesauro’s 1992 result, without any advanced learning algorithms.

We do not claim that our 100,000th generation player is anywhere near as good as

the current enhanced versions of TD-Gammon, ready to challenge the best humans, but

it is surprisingly good considering its humble origins from hill-climbing with a relative

fitness measure. Tuning our parameters or adding more input features would make

more powerful players, but that is not the point of this study.

We also do not claim there is anything wrong with TD learning, or that hillclimbing

is just as good in general! Of course it isn’t! Our point is that once an environment and

representation have been refined to work well with a machine learning method, it

should be benchmarked against the weakest possible algorithm so that credit for learn-

ing power can be properly distributed.

Pollack & Blair 22 Machine Learning

We have noticed several weaknesses in our player that stem from the training

which does not yet reward or punish the double and triple costs associated with severe

losses (“gammoning” and “backgammoning”) nor take into account the gambling pro-

cess of “doubling.” We are continuing to develop the player to be sensitive to these

issues in the game. Interested players can challenge our evolved network using a web

browser through our home page at:

http://www.demo.cs.brandeis.edu

In conclusion, replicating some of Tesauro’s 1992 TD-Gammon success under a

much simpler learning paradigm, we find that the reinforcement and temporal differ-

ence methods are not the primary cause for success; rather it is the dynamics of back-

gammon combined with the power of co-evolutionary learning. If we can isolate the

features of the backgammon domain which enable co-evolutionary learning to work so

well, it may lead to a better understanding of the conditions necessary, in general, for

complex self-organization.

Acknowledgments

This work was supported by ONR grant N00014-96-1-0418 and a Krasnow Founda-

tion Postdoctoral fellowship. Thanks to Gerry Tesauro for providing PUBEVAL and sub-

sequent means to calibrate it, Jack Laurence and Pablo Funes for development of the

WWW front end to our evolved player, and comments from the Brandeis DEMO group,

the anonymous referees, Justin Boyan, Tom Dietterich, Leslie Kaelbling, Brendan Kitts,

Michael Littman, Andrew Moore, Rich Sutton and Wei Zhang.

References
Angeline, P. J. and Pollack, J. B. (1994). Competitive environments evolve better solutions for complex

tasks. In Forrest, S., editor, Genetic Algorithms: Proceedings of the Fifth Inter national Conference.
Angeline, P. J. (1994). An alternate interpretation of the iterated prisoner’s dilemma and the evolution of

non-mutual cooperation. In Brooks, R. and Maes, P., editors, Proceedings 4th Artificial Life Conference,
pages 353–358. MIT Press.

Pollack & Blair 23 Machine Learning

Axelrod, R. (1984). The evolution of cooperation. Basic Books, New York.
Boyan, J. A. (1992). Modular neural networks for learning context-dependent game strategies. Master’s

thesis, Computer Speech and Language Processing, Cambridge University.
Cliff, D. and Miller, G. (1995). Tracking the red queen: Measurements of adaptive progress in co-evolution-

ary simulations. In Third European Conference on Artificial Life, pages 200–218.
Crites, R. and Barto, A. (1996). Improving elevator performance using reinforcement learning. In

Touretzky, D., Mozer, M., and Hasselmo, M., editors, Advances in Neural Information Processing Systems,
volume 8, pages 1024–1030.

International Business Machines (Sept. 12, 1995). IBM’s family funpak for OS/2 warp hits retail shelves.
Juille, H. and Pollack, J. (1995). Massively parallel genetic programming. In Angeline, P. and Kinnear, K.,

editors, Advances in Genetic Programming II. MIT Press, cambridge.
Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Machine

Learning: Proceedings of the Eleventh International Conference, pages 157–163. Morgan Kaufmann.
Maynard Smith, John (1982). Evolution and the Theory of Games, Cambridge: Cambridge University Press
Michie, D. (1961). Trial and error. In Science Survey, part 2, pages 129–145. Penguin.
Mitchell, M., Hraber, P. T., and Crutchfield, J. P. (1993). Revisiting the edge of chaos: Evolving cellular

automata to perform computations. Complex Systems, 7.
Packard, N. (1988). Adaptation towards the edge of chaos. In Kelso, J. A. S., Mandell, A. J., and Shlesinger,

M. F., editors, Dynamic patterns in complex systems, pages 293–301. World Scientific.
Reynolds, C. (1994). Competition, coevolution, and the game of tag. In Proceedings 4th Artificial Life Confer-

ence. MIT Press.
Rosin, C. D. and Belew, R. K. (1995). Methods for competitive co-evolution: finding opponents worth beat-

ing. In Proceedings of the 6th international conference on Genetic Algorithms, pages 373–380. Morgan Kauf-
man.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations by back-propagating errors.
Nature, 323:533–536.

Samuel, A. L. (1959). some studies of machine learning using the game of checkers. IBM Journal of Research
and Development.

Schraudolph, N. N., Dayan, P., and Sejnowski, T. J. (1994). Temporal difference learning of position evalua-
tion in the game of go. In Advances in Neural Information Processing Systems, volume 6, pages 817–824.
Morgan Kauffman.

Sims, K. (1994). Evolving 3d morphology and behavior by competition. In Brooks, R. and Maes, P., editors,
Proceedings 4th Artificial Life Conference. MIT Press.

Sutton, R. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3:9–44.
Tesauro, G. (1989). Connectionist learning of expert preferences by comparison training. In Touretzky, D.,

editor, Advances in Neural Information Processing Systems, volume 1, pages 99–106, Denver 1988. Morgan
Kaufmann, San Mateo.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning, 8:257–277.
Tesauro, G. (1995). Temporal difference learning and td-gammon. Communications of the ACM, 38(3):58–68.
Walker, S., Lister, R., and Downs, T. (1994). Temporal difference, non-determinism, and noise: a case study

on the ‘othello’ board game. In International Conference on Artificial Neural Networks 1994, pages 1428–
1431, Sorrento, Italy.

Zhang, W. and Dietterich, T. (1996). High-performance job-shop scheduling with a time-delay td(lambda)
network. In Touretzky, D., Mozer, M., and Hasselmo, M., editors, Advances in Neural Information Process-
ing Systems, volume 8.

