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ABSTRACT

This paper explores the effect of initial weight selection on feed-forward
networks learning simple functions with the back-propagation technique. We
first demonstrate, through the use of Monte Carlo techniques, that the magnitude
of the initial condition vector (in weight space) is a very significant parameter in
convergence time variability. In order to further understand this result, addi-
tional deterministic experiments were performed. The results of these experi-
ments demonstrate the extreme sensitivity of back propagation to initial weight
configuration.
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Introduction

Back Propagation (Rumelhart, Hinton, & Williams, 1986) is the network training method
of choice for many neural network projects, and for good reason. Like other weak methods, it is
simple to implement, faster than many other "general" approaches, well-tested by the field, and
easy to mold (with domain knowledge encoded in the learning environment) into very specific
and efficient algorithms.

Rumelhart et al. made a confident statement: for many tasks, ‘‘the network rarely gets
stuck in poor local minima that are significantly worse than the global minima.’’(p. 536) Accord-
ing to them, initial weights of exactly 0 cannot be used, since symmetries in the environment are
not sufficient to break symmetries in initial weights. Since their paper was published, the con-
vention in the field has been to choose initial weights with a uniform distribution between plus
and minus ρ, usually set to 0.5 or less.

The convergence claim was based solely upon their empirical experience with the back
propagation technique. Since then, Minsky & Papert (1988) have argued that there exists no
proof of convergence for the technique, and several researchers (Judd 1988; Blum and Rivest
1988; Kolen 1988) have found that the convergence time must be related to the difficulty of the
problem, otherwise an unsolved computer science question (P =? NP) would finally be answered.

We do not wish to make claims about convergence of the technique in the limit (with vanishing
step-size), or the relationship between task and performance, but wish to talk about a pervasive
behavior of the technique which has gone unnoticed for several years: the sensitivity of back
propagation to initial conditions.

The Monte-Carlo Experiment

Initially, we performed empirical studies to determine the effect of learning rate, momen-
tum rate, and the range of initial weights on t-convergence (Kolen and Goel, to appear). We use
the term t −convergence to refer to whether or not a network, starting at a precise initial
configuration, could learn to separate the input patterns according to a boolean function (correct
outputs above or below .5) within t epochs. The experiment consisted of training a 2-2-1 net-
work on exclusive-or while varying three independent variables in 114 combinations: learning
rate, η, equal to 1.0 or 2.0; momentum rate, α, equal to 0.0, 0.5, or 0.9; and initial weight range,
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ρ, equal to 0.1 to 0.9 in 0.1 increments, and 1.0 to 10.0 in 1.0 increments. Each combination of
parameters was used to initialize and train a number of networks.1 Figure 1 plots the percentage
of t-convergent (where t = 50,000 epochs of 4 presentations) initial conditions for the 2-2-1 net-
work trained on the exclusive-or problem. From the figure we thus conclude the choice of ρ ≤ 0.5
is more than a convenient symmetry-breaking default, but is quite necessary to obtain low levels
of nonconvergent behavior.

Scenes From Exclusive-Or

Why do networks exhibit the behavior illustrated in Figure 1? While some might argue that
very high initial weights (i.e. ρ > 10) lead to very long convergence times since the derivative of
the semi-linear sigmoid function is effectively zero for large weights, this does not explain the
fact that when ρ is between 2 and 4, the non-t-convergence rate varies from 5 to 50 percent.

Thus, we decided to utilize a more deterministic approach for eliciting the structure of ini-
tial conditions giving rise to t-convergence. Unfortunately, most networks have many weights,
and thus many dimensions in initial-condition space. We can, however, examine 2-dimensional
slices through the space in great detail. A slice is specified by an origin and two orthogonal
directions (the X and Y axes). In the figures below, we vary the initial weights regularly
throughout the plane formed by the axes (with the origin in the lower left-hand corner) and col-
lect the results of running back-propagation to a particular time limit for each initial condition.
The map is displayed with grey-level linearly related to time of convergence: black meaning not
t-convergent and white representing the fastest convergence time in the picture. Figure 2 is a
schematic representation of the networks used in this and the following experiment. The
numbers on the links and in the nodes will be used for identification purposes. Figures 3 through
11 show several interesting ‘‘slices’’ of the the initial condition space for 2-2-1 networks trained
on exclusive-or. Each slice is compactly identified by its 9-dimensional weight vector and asso-
ciated learning/momentum rates. For instance, the vector (-3+2+7-4X+5-2-6Y) describes a net-
work with an initial weight of -0.3 between the left hidden unit and the left input unit. Likewise,
‘‘+5’’ in the sixth position represents an initial bias of 0.5 to the right hidden unit. The letters
‘‘X’’ and ‘‘Y’’ indicate that the corresponding weight is varied along the X- or Y-axis from
-10.0 to +10.0 in steps of 0.1. All the figures in this paper contain the results of 40,000 runs of
back-propagation (i.e. 200 pixels by 200 pixels) for up to 200 epochs (where an epoch consists
of 4 training examples).

Figures 12 and 13 present a closer look at the sensitivity of back-propagation to initial con-
ditions. These figures zoom into a complex region of Figure 11; the captions list the location of
the origin and step size used to generate each picture.

Sensitivity behavior can also be demonstrated with even simpler functions. Take the case
of a 2-2-1 network learning the or function. Figure 14 shows the effect of learning "or" on net-
works (+5+5-1X+5-1Y+3-1) and varying weights 4 (X-axis) and 7 (Y-axis) from -20.0 to 20.0 in
steps of 0.2. Figure 15 shows the same region, except that it partitions the display according to
equivalent solution networks after t-convergence (200 epoch limit), rather than the time to con-
vergence. Two networks are considered equivalent2 if their weights have the same sign. Since
hhhhhhhhhhhhhhh
1Numbers ranged from 8 to 8355, depending on availability of computational resources. Those
data points calculated with small samples were usually surrounded by data points with larger
samples.
2For rendering purposes only. It is extremely difficult to know precisely the equivalence classes of
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there are 9 weights, there are 512 (29) possible network equivalence classes. Figures 16 through
25 show successive zooms into the central swirl identified by the XY coordinate of the lower-left
corner and pixel step size. After 200 iterations, the resulting networks could be partitioned into
37 (both convergent and nonconvergent) classes. Obviously, the smooth behavior of the t-
convergence plots can be deceiving, since two initial conditions, arbitrarily alike, can obtain
quite different final network configuration.

Note the triangles appearing in Figures 19, 21, 23 and the mosaic in Figure 25 correspond-
ing to the area which did not converge in 200 iterations in Figure 24. The triangular boundaries
are similar to fractal structures generated under iterated function systems (Barnsley 1988): in this
case, the iterated function is the back propagation learning method. We propose that these
fractal-like boundaries arise in back-propagation due to the existence of multiple solutions
(attractors), the non-zero learning parameters, and the non-linear deterministic nature of the gra-
dient descent approach. When more than one hidden unit is utilized, or when an environment has
internal symmetry or is very underconstrained, then there will be multiple attractors correspond-
ing to the large number of hidden-unit permutations which form equivalence classes of func-
tionality. As the number of solutions available to the gradient descent method increases, the
more complicated the non-local interactions between them. This explains the puzzling result
that several researchers have noted, that as more hidden units are added, instead of speeding up,
back-propagation slows down (e.g. Lippman and Gold, 1987). Rather than a hill-climbing meta-
phor with local peaks to get stuck on, we should instead think of a many-body metaphor: The
existence of many bodies does not imply that a particle will take a simple path to land on one.
From this view, we see that Rumelhart et al.’s claim of back-propagation usually converging is
due to a very tight focus inside the ‘‘eye of the storm’’.

Could learning and momentum rates also be involved in the storm? Such a question
prompted another study, this time focused on the interaction of learning and momentum rates.
Rather than alter the initial weights of a set of networks, we varied the learning rate along the X
axis and momentum rate along the Y axis. Figures 26, 27, and 28 were produced by training a
3-3-1 network on 3-bit parity until t-convergence (250 epoch limit). Table 1 lists the initial
weights of the networks trained in Figures 26 through 31. Examination of the fuzzy area in Fig-
ure 26 shows how small changes in learning and/or momentum rate can drasticly affect t-
convergence (Figures 30 and 31).

Discussion

Chaotic behavior has been carefully circumvented by many neural network researchers
(e.g. through the choice of symmetric weights by Hopfield (1982)), but has been reported in
increasing frequency over the past few years (Choi and Huberman, 1983; Kurten and Clark,
1986; Babcock and Westervelt, 1987; Derrida and Meir, 1988; Riedal et al., 1988; Sompolinsky
et al., 1988). Connectionists, who use neural models for cognitive modeling, disregard these
reports of extreme non-linear behavior in spite of common knowledge that non-linearity is what
enables network models to perform non-trivial computations in the first place, All work to date
has noticed various forms of chaos in network dynamics, but not in learning dynamics. Even if
back-propagation is shown to be non-chaotic in the limit, this still does not preclude the exis-
tance of fractal boundaries between attractor basins since other non-chaotic non-linear systems
hhhhhhhhhhhhhhh
solutions, so we approximated.
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produce such boundaries (i.e. forced pendulums with two attractors (D’Humieres et al., 1982))

What does this mean to the back-propagation community? >From an engineering applica-
tions standpoint, where only the solution matters, nothing at all. When an optimal set of weights
for a particular problem is discovered, it can be reproduced through digital means. >From a
scientific standpoint, however, this sensitivity to initial conditions demands that neural network
learning results must be specially treated to guarantee replicability. When theoretical claims are
made (from experience) regarding the power of an adaptive network to model some phenomena,
or when claims are made regarding the similarity between psychological data and network per-
formance, the initial conditions for the network need to be precisely specified or filed in a
public scientific database.

What about the future of back-propagation? We remain neutral on the issue of its ultimate
convergence, but our result points to a few directions for improved methods. Since the slow-
down occurs as a result of global influences of multiple solutions, an algorithm for first factoring
the symmetry out of both network and training environment (e.g. domain knowledge) may be
helpful. Furthermore, it may also turn out that search methods which harness "strange attractors"
ergodically guaranteed to come arbitrarily close to some subset of solutions might work better
than methods based on strict gradient descent. Finally, we view this result as strong impetus to
discover how to exploit the information-creative aspects of non-linear dynamical systems for
future models of cognition (Pollack 1989).
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Figure 1: Percentage T-Convergence vs. Initial Weight Range
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 Figure  2 : Schematic Network
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 Figure  3 : (-5-3+3+6Y-1-6+7X) η=3.25 α=0.40

 Figure  4 : (+4-7+6+0-3Y+1X+1) η=2.75 α=0.00  Figure  5 : (-5+5+1-6+3XY+8+3) η=2.75 α=0.80

 Figure  6 : (YX-3+6+8+3+1+7-3) η=3.25 α=0.00  Figure  7 : (Y+3-9-2+6+7-3X+7) η=3.25 α=0.60
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 Figure  8 : (-6-4XY-6-6+9-4-9) η=3.00 α=0.50  Figure  9 : (-2+1+9-1X-3+8Y-4) η=2.75 α=0.20

 Figure  10 : (+1+8-3-6X-1+1+8Y) η=3.50 α=0.90  Figure  11 : (+7+4-9-9-5Y-3+9X) η=3.00 α=0.70

 Figure  12 : (-9.0,-1.8) step 0.018  Figure  13 : (-6.966,-0.500) step 0.004
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 Figure  14 : (-20.00000, -20.00000) step 0.200000  Figure  15 : Solution Networks

 Figure  16 : (-4.500000, -4.500000) step 0.030000  Figure  17 : Solution Networks

 Figure  18 : (-1.680000, -1.350000) step 0.002400  Figure  19 : Solution Networks
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 Figure  20 : (-1.536000, -1.197000) step 0.000780  Figure  21 : Solution Networks

 Figure  22 : (-1.472820, -1.145520) step 0.000070  Figure  23 : Solution Networks

 Figure  24 : (-1.467150, -1.140760) step 0.000016  Figure  25 : Solution Networks
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 Figure  26 : η=(0.0,4.0) α=(0.0,1.25)
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 Figure  27 : η=(0.0,4.0) α=(0.0,1.25)
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 Figure  28 : η=(0.0,4.0) α=(0.0,1.25)
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 Figure  29 : η=(3.456,3.504) α=(0.835,0.840)
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 Figure  30 : η=(3.84,3.936) α=(0.59,0.62) 
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Figure 26
Figure 29
Figure 30 Figure 27 Figure 28

0
W
Weight 1 -0.34959000 -0.34959000 -0.3495900

eight 2 0.00560000 0.00560000 0.00560000
5

W
Weight 3 -0.26338813 0.39881098 0.6506070

eight 4 0.75501968 -0.16718577 0.75501968
1

W
Weight 5 0.47040862 -0.28598450 0.9128171

eight 6 -0.18438011 -0.18438011 -0.19279729
3

W
Weight 7 0.46700363 -0.06778983 0.5618107

eight 8 -0.48619500 0.66061292 0.20220653
9

W
Weight 9 0.62821201 -0.39539510 0.1120194

eight 10 -0.90039973 0.55021922 0.67401200
5

W
Weight 11 0.48940201 0.35141364 -0.5497887

eight 12 -0.70239312 -0.17438740 -0.69839197
4

W
Weight 13 -0.95838741 -0.07619988 -0.1965984

eight 14 0.46940394 0.88460041 0.89221204
0

W
Weight 15 -0.73719884 0.67141031 -0.5687974

eight 16 0.96140103 -0.10578894 0.20201484

Table 1: Network Weights for Figures 26 through 30


