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Abstract

Despite achieving compelling results in engineering and optimization problems, coevo-
lutionary algorithms remain difficult to understand, with most knowledge to date coming
from practical successes and failures, not from theoretical understanding. Thus, explain-
ing why coevolution succeeds is still more art than science. In this paper, we present a
theoretical framework for studying coevolution based on the mathematics of ordered sets.
We use this framework to describe solutions for coevolutionary optimization problems,
generalizing the notion of Pareto non-dominated front from the field of multi-objective
optimization. Our framework focuses attention on the order structure of solution and test
sets, which we argue is a key source of difficulty in coevolutionary optimization problems.
As an application of the framework we show, in the special case of two-player games, that
Pareto dominance is closely related to intransitivities in the game.

1 Introduction

Coevolutionary algorithms progress from a simple intuition: evolve the fitness function together with
the evolving individuals. By adjusting the challenge put to evolving individuals, we hope algorithms
might tune the fitness function to push individuals into continually increasing their capabilities. There
have been a number of compelling successes in the field over the past decade, in domains such
as cellular automata [6, 9], game playing [10], sorting networks [8] and robotics [12], suggesting
coevolution holds great potential to produce further useful and interesting results. Karl Sims’ work in
particular offers the hope that, besides being successful at engineering problems, coevolution might



also support open-ended dynamics in which evolving entities increase in capability and complexity
indefinitely, as species in nature evidently do.

Unfortunately, the price paid for varying the fitness function during search is that coevolutionary
dynamics can be complex and difficult to understand. Several well-known, though imperfectly-
understood, issues threaten any application of a coevolutionary algorithm. The Red Queen Effect [3]
can obscure progress in coevolving systems, rendering it difficult or impossible to tell if the algorithm
has accomplished something useful. Mediocre stable states [5] arise when collusion permits subopti-
mal individuals to appear better than they are. Intransitive superiority cycles, and the related problem
of overspecialization [14], can cause coevolutionary dynamics to cycle through a set of suboptimal
individuals without making progress. These issues are apparently related. Indeed, it is unclear how
one can even reasonably discuss notions like “goodness” or “progress” in a coevolutionary setting.
Understanding these issues in a common framework is the motivation behind our work. We will see,
particularly in section 3, that intransitivities are closely related to the underlying payoff structure
of a problem. While this statement is intuitively clear, our framework makes this intuition precise,
exposing methods for approaching the issue of intransitivity systematically.

One noteworthy theoretical approach which has already made strides in this direction is Ficici et
al.’s Simple Coevolutionary Algorithm [4]. The Simple Coevolutionary Algorithm is an extension
of Vose’s Simple Genetic Algorithm [13] to model the dynamics of coevolution . An advance latent
in this work and later articulated in [6] is Pareto coevolution. Borrowing ideas from multi-objective
optimization [7], Pareto coevolution treats each possible individual as an objective against which
other evolving individuals are optimizing themselves. The relevant measure of individuals in this
case is then Pareto dominance: an individual is dominated if there is some other individual which
does at least as well as it does against all others, and better against at least one. Pareto dominance
offers us a notion of “goodness” and “progress” in a coevolutionary domain.

In this paper, we formalize the ideas behind Pareto coevolution, building a mathematical framework
in which to study coevolution as an optimization procedure. We consider a class of coevolutionary
optimization problems represented with a function of the form p : S � T � R, where R is a preordered
set [11]. As a mnemonic device, we think of the function p as payoff, S as the set of candidate
solutions, T as tests, and R as results (outcomes). p is encoding all possible interactions between
candidate solutions and tests. The results preorder R is encoding which outcomes are better than
others.

Such a function resembles the payoff matrices found in game theory.1 However, in contrast to payoff
matrices, the function p indexes values by what might be distinct and infinite sets; furthermore, the
entries of the matrix come from an arbitrary ordered set R instead of a particular one like

�
. We will

call these problems coevolutionary optimization problems. Part of our aim is to explore what might
be optimized in such problems.

To this end, in section 2 we will define a notion of solution for coevolutionary optimization problems
of this form, generalizing common solution concepts used in genetic algorithm function optimization
(GA) and multi-objective optimization (MOO). We will also introduce a dual notion, the set of
maximally-informative tests, which tells us something about the structure and difficulty of the
problem. As an application of the framework, in section 3 we consider the special case of two-
player, two-outcome games, showing the Pareto dominance relation offers new information exactly

1Indeed, game-theoretic payoff matrices provide ready examples of such functions.



when the game is intransitive. In section 4 we return to issues of coevolutionary dynamics, discussing
how they might be understood in terms of our framework.

We assume the reader is familiar with discrete mathematics. We give relevant background material
and establish notational conventions in appendix A. We will freely use the notions of pullback order
(definition A.9) and currying a function (definition A.12).

2 The Framework

In this section we develop a theoretical ordering of individuals in a coevolutionary optimization
problem. The order allows us to rank individuals in such a way that we can express a solution as
the set of maximal candidates. When applied to the special case of function optimization, the set of
maximal candidates is the set of maxima of the objective function. When applied to multi-objective
optimization, the set of maximal candidates is exactly the Pareto front.

Dually, we can order tests by informativeness, and define the set of maximally-informative tests.
A key result, expressed in theorem 2.7, is that the maximally-informative tests induce the same set
of maximal candidates as the full set of tests. Thus, we see the same information about ranking
candidate solutions using just the maximally-informative tests, a set which might be much smaller
than the full set T . Reducing the number of tests required to solve a problem will have an impact on
the efficiency of practical algorithms.

We conclude the section by arguing the difficulty of a coevolutionary problem relates directly to the
order structure of the set of maximal candidates and the set of maximally-informative tests.

Throughout this section we will consider coevolutionary optimization problems which are expressed
with a function p : S � T � R. The only constraints we place on p is that R be a preordered set. We
will write the order on R as � R.

2.1 Solution As Set of Maximal Candidates

A common class of problems attacked with GAs start with a function f : S �
�

, with the task of
finding elements of S which maximize f . Similarly, in a common class of MOO problems, one starts
with a set of functions fi : S �

�
, and the task is to find the Pareto front of the fi. In fact, the Pareto

front is a type of maximum too:

Proposition 2.1 (MOO as Maximization) The Pareto front of a set of objectives fi : S �
���

1 � i �
n � is �S � f1 � � � � � fn � , the set of maximal elements of the preorder induced on S by the function 	 f1 
����
 fn �
into the partial order

� n .

Proof The Pareto front consists of those �s � S which are not dominated by any other s � S. Define
a preorder � on S as follows: s � s ����� i 
 fi

�
s ��� fi

�
s ��� for all s 
 s ��� S. s � s � expresses that s �

dominates or is equal to s. Observe that s � s � � s � � f1 � � � � � fn � s � (see definition A.9). The non-
dominated front is then F ��� �s � S ��� s � S 
 s � �s � . The condition � s � S 
 s � �s is logically equivalent
to the condition � s � S 
 �s � s � s � �s. Consequently, we have that F ��� �s � S �� s � S 
 �s � s � s �
�s � ��� �s � S �!� s � S 
 �s � f s � s � f �s � , where f �"	 f1 
����
 fn � . However, the latter set is �S f . Thus,

we have shown F � �S f . #
As a result of this proposition, we can view MOO as a form of maximization. Likewise, we can also
view coevolutionary optimization problems as maximization problems. The critical step is to curry



the function p : S � T � R on T to produce a function λt � p : S ��� T � R � . This function precisely
expresses the association between a candidate, which is an element s � S, and its “vector” of objective
values λt � p � s � , which is an element of � T � R � .
We can order the range � T � R � using the pointwise order � pw.2 Furthermore, we can pull the
order on � T � R � back through the curried function λt � p to produce an order on S. This pulled back
order expresses the practice in multi-objective optimization of ordering two individuals s1 
 s2 � S by
comparing their vectors of objective valued. Namely, s1 � s2 exactly when λt � p � s1 � � pw λt � p � s2 � .
Now that we have a preorder on S, we propose the set of maximal elements as a solution to the
problem p : S � T � R. Formally,

Definition 2.2 (Maximal Candidates) The set of maximal candidates of the coevolutionary opti-
mization problem p : S � T � R is � p �"�Sλt � p. Explicitly, � p � � ŝ � S � � s � S 
 � � t � T 
 p � ŝ 
 t ���� R
p
�
s 
 t ��� ��� � t � T 
 p � s 
 t �	�� R p

�
ŝ 
 t �
� � . We will call � p � S the solution set of the problem p.

Here are two examples illustrating the definition:

Example 2.3 Rock-paper-scissors

In this simple game, S ��� rock 
 paper
 scissors � , T � S and R � � 0 � 1 � . According to the rules of
the game, the result of comparing rock with scissors, for example, is that rock wins. We therefore
give p : S � S � R as the matrix:

rock paper scissors

rock 1 0 1

paper 1 1 0

scissors 0 1 1

Then the functions λt � p � s � are the rows of the matrix. Comparing these rows point-
wise, we see they are all incomparable. Consequently, in rock-paper-scissors, � p �
� rock 
 paper
 scissors � � S. #
Example 2.4 GA optimization and MOO

Consider optimization problems in which we have objectives fi : S �
�

for 1 � i �
n. We can use these objectives to define a payoff function p

�
s 
 s � � � f

�
s �� f

�
s � � , where f �

	 f1 
����
 fn � . For all s1 
 s2 
 s � � S, f
�
s1 �� f

�
s � � � n f

�
s2 �� f

�
s � � � f

�
s1 � � n f

�
s2 � by adding f

�
s � � to both sides of the in-

equality. It follows, therefore, that �s is a maximal element with respect to Sλt � p if and only if �s is a max-
imal element of the function f . As a result, the solution set � p is exactly the Pareto front of f (see propo-
sition 2.1). #
In light of the observation that definition 2.2 generalizes common solution concepts used in MOO
and GA optimization, it is a natural notion of solution for coevolution as well. This particular solution
concept is independent of algorithm choices, in the same way that the problem statement “find the
maxima of the function f : S �

�
” is independent of which flavor of genetic algorithm one uses

to solve it. In that respect, this notion of solution lies at a more abstract level than other solution
concepts in common use such as “maximize average fitness over the population.”

2Proposition 2.1 suggests � pw really is the appropriate order to use.



2.2 Maximally-Informative Test Set

Now we define the informativeness order among tests. The impact of the definition is expressed in
theorem 2.7, where we show the maxima of this informativeness relation are sufficient for inducing
the solution set. Finally, we discuss the structure of the maximally-informative test set as a measure
for categorizing coevolutionary optimization problems.

Let � be an order on a set S. Recall the similarity relation � , defined a � b � a � b
�

b � a, tells us
which elements in S look “equal” according to � . We can now define a relation among the possible
orders on S.

Definition 2.5 (Informativeness) Let � 1 and � 2 be two orders on S, and let � 1 and � 2 be
the corresponding similarity relations. Say � 2 is more informative than � 1, written � 1 � � 2, if
� 1 � � 2 and � 2 � � 1. If we write � 1 � � � 2 for the latter condition, then � � ��� � � .

Roughly speaking, to be informative, an order should have neither incomparable elements nor equal
elements. The idea behind the definition is that a test which shows two candidates to be incomparable,
or shows them to be equal, does not give us any information about how they relate to one another.
The relation � tells us when one order has fewer incomparable elements; the relation � � tells us
when an order has fewer equal elements. Therefore, the intersection ��� � � tells us about both
incomparability and equality.

We can use � to order � S � R � . Given f 
 g � � S � R � , write f � g when S f � Sg. Now we are in a
position to describe the maximally-informative test set. In words, it is the set of maximal elements in
T with respect to the pullback of the informativeness order on � S � R � . Formally,

Definition 2.6 (Maximally-Informative Test Set) Let p : S � T � R represent a coevolutionary
optimization problem, and let λs � p : T � � S � R � be the curried form of p. Let � S � R � have the
informativeness order � . Pull this order back through λs � p into T , and write the resulting ordered set
as T� . Then the maximally-informative test set for this problem is � p �

�
T� � T .

That definition 2.6 is useful is borne out by the following theorem:

Theorem 2.7 Let p : S � T � R be a coevolutionary optimization problem, and consider p � 	 p
:

S � � p � R, the restriction of p to the maximally-informative tests. For brevity, write q for p � 	 p
.

Then Sλt � p �� Sλt � q; in other words, the maximally-informative set of tests induces the same order on
S as the full set of tests T . Consequently, it also induces the same set of maximal candidates.

Proof We must show Sλt � p �� Sλt � q. Explicitly, this isomorphism is equivalent to the following: for
all s1 
 s2 � S, λt � p � s1 � � pw λt � p � s2 � � λt � p � 	 p

�
s1 � � pw λt � p � 	 p

�
s2 � . Unrolling still further, this

equivalence translates into: for all s1 
 s2 � S 
 � � t � T 
 p � s1 
 t � �� R p
�
s2 
 t � � � t �
� p 
 p

�
s1 
 t � �� R

p
�
s2 
 t ��� .

The forward implication holds trivially, because � p � T . Consequently, we focus our attention on
showing � t ��� p 
 p

�
s1 
 t � �� R p

�
s2 
 t � � � t � T 
 p � s1 
 t � �� R p

�
s2 
 t � , for all s1 
 s2 � S. If we can

show this implication, we have the result. Let t � T . By definition of � p 
 � �t �� p such that t � �t.
Assume p

�
s1 
 t � � R p

�
s2 
 t � ; then it follows p

�
s1 
 �t � � R p

�
s2 
 �t � , because �t is more informative than t.

Consequently, we have that t � t̂ and p
�
s1 
 t̂ � �� R p

�
s2 
 t̂ � imply p

�
s1 
 t � �� R p

�
s2 
 t � . The latter holds

for any t � T and s1 
 s2 � S; therefore, we have our result. #



Theorem 2.7 shows that we do not need to use the full set of tests T in order to distinguish individuals
in S. In fact, the maximally-informative test set � p will induce the same order on S and so the same
maximal candidates. If � p is a strict subset of T , then we can in theory solve the same problem p
using fewer tests.

Here are some illustrative examples:

Example 2.8 Rock-paper-scissors, revisited

In the rock-paper-scissors incidence matrix (see example 2.3), the columns are the λs � p � t � . Read-
ing left to right, the induced orders are � scissors � rock � paper � , � rock � paper �
scissors � , and � paper � rock � scissors � . None of these orders is a suborder of another. It fol-
lows that � p � � rock 
 paper
 scissors � � T . #
Example 2.9 Consider the formal game where S � T � � a 
 b 
 c � and R � � 0 � 1 �
2 
 x � , where the outcome x is incomparable to 0, 1 and 2. p is given by the matrix

a b c

a 0 1 0

b 1 0 1

c 2 1 x

The orders induced on S are, left to right, � a � b � c � , � b � a � c � , and � a � b 
 c � . Observe that
c � a, so � p � � a 
 b � �� T . Notice also that � p �"� c � , so this example shows � p and � p can be
distinct. That is, solutions need not make good tests. #

2.3 Categorizing Problems Using Tests

� p is too big. It could be there are tests t1 
 t2 �� p such that t1 � t2, where we are taking � with
respect to the informativeness order. In that case, we really only need one representative from each
equivalence class of � . This observation leads us to:

Definition 2.10 The value � � p
�
� � is the test-dimension of the problem p.

Then we have the following:

Theorem 2.11 Let n
�

1, and let the function f : S �
� n be an optimization problem. Define p :

S � S �
� n by p

�
s 
 s � � � f

�
s �  f

�
s � � for all s 
 s � � S. Then p has test-dimension 1.

Proof The observation in example 2.4 that fi
�
s1 �  f

�
s � � � f

�
s2 �  f

�
s � � � f

�
s1 � � f

�
s2 � leads to

the result, because all tests s � are equivalent. #
Remark A MOO problem with n objectives looks like it should have test dimension n. However, in
theorem 2.11 we are using the objectives to compare pairs of individuals. Then the individuals are
the tests, not the objectives themselves. In that case, any single individual will do as a test. If we were
to treat the objectives themselves as tests, then a MOO problem with n objectives would indeed have
test dimension n.

We interpret theorem 2.11 as saying that “difficult” coevolutionary optimization problems have test-
dimension � 1. Rock-paper-scissors has test-dimension 3, for example. Therefore, we can categorize
problems on the basis of the test set structure, independently of any search algorithms we might



employ. Furthermore, problems with simple test set structure are likely to be simpler to solve in
practice. For instance, rock-paper-scissors has an intransitive cycle which is reflected in its test set
structure. As we saw, multi-objective optimization problems, by contrast, have a particularly simple
test set structure. Indeed, this structure is spelled out explicitly in the definition of the problem,
whereas in the typical coevolution application, the test set structure is not known in advance but is
implicit in the function p : S � T � R. See Juillé’s discussion of the cellular automaton majority
function problem in [9]. The test-dimension is a simple numerical measure of the test set structure
which gives us some information about the difficulty of a problem.

3 Pareto Dominance and Intransitivity

As an application of the concepts in section 2, we consider the special class of problems represented
by functions p : S � S � � 0 � 1 � . Functions of this form arise in the problem of learning deterministic
game-playing strategies through self-play, or in perfect-information, zero-sum games encountered in
game theory.

In this setting, we can view p as representing a relation on S. To be specific, the relation is the subset
p �

1 � 1 � � S � S. In other words, a relates to b exactly when p
�
a 
 b � � 1. We will write this relation

aRpb. Intuitively, we interpret aRpb as “a loses or draws to b.” If p represents a game, the usual
notion of transitivity for a game is equivalent to the transitivity of the relation Rp. A critical problem
which arises in the dynamics of coevolutionary algorithms stems from intransitive superiority cycles.
Such a cycle always occurs when p is not transitive because, in that case, there is a finite set of players
ai � S such that p

�
ai

�
1 
 ai � � 1 and p

�
ai 
 ai

�
1 ��� 0 for 1 � i � n  1, but p

�
an 
 a0 ��� 1. Transitivity

would dictate p
�
a0 
 an � � 1. Coevolutionary dynamics operating on such a game can become stuck

cycling amongst the ai without ever making “real” progress. See [14] for a discussion of this issue.

One of the promises of Pareto coevolution is that it can help with intransitive cycles by revealing the
true relationship among the individuals in a cycle.3 We will show there is a close relationship between
the transitivity of p and the Pareto dominance relation. In particular, we will show in theorem 3.3
that Rp is a preorder if and only if Pareto dominance over p is equal to Rp itself. In other words,
Pareto dominance gives us different information than the payoff function p exactly when the latter
is intransitive.4 One conclusion we can draw from this fact is that Pareto coevolution can detect
intransitive cycles. Another conclusion, corollary 3.6, is a potentially useful negative result. At first
glance, one might think multiple iterations of the Pareto relation construction (definition 3.1) would
provide ever more information about a problem. Corollary 3.6 shows this is not the case. Applying
Pareto dominance to a relation once sometimes produces a new relation, but applying the construction
twice is always equivalent to applying it once.

We will prove all results with respect to any relation R on a set S, Rp then being a special case. We
begin by constructing a new relation over S from R which captures the Pareto dominance relation:

Definition 3.1 (Pareto Relation) The Pareto relation over R, written � R, is defined as follows. For
all a 
 b � S, a � R b if and only if xRa � xRb for all x � S.

3We would like Pareto dominance to reveal they are incomparable.
4It is worth emphasizing that these results apply only in this specific context, not in general. We make critical

use of the symmetry in roles between candidates and tests, and the fact that R contains only two comparable
outcomes.



Remark The Pareto relation over Rp corresponds to our usual notion of Pareto dominance. Intu-
itively, the definition says “b dominates, or is equal to, a if, whenever x draws or loses to a, then x
draws or loses to b as well.”

The following proposition will be useful:

Proposition 3.2 � R is a preorder.

Proof Clearly xRa � xRa for all x � S; thus, a � R a, making � R reflexive. If a � R b and b � R c for
some a 
 b 
 c � S, we want to show a � R c. But this follows from the transitivity of � : a � R b means
xRa � xRb, while b � R c means xRb � xRc, for all x � S. So if we have xRa � xRb and xRb � xRc,
it follows xRa � xRc, in other words, a � R c. � R is thus transitive, so is a preorder. #
Now we have the theorem:

Theorem 3.3 R ��� R if and only if R is a preorder

Proof The theorem is a consequence of the following two lemmas:

Lemma 3.4 R is reflexive if and only if � R � R.

Proof To prove the forward implication, assume R is reflexive, and imagine a � R b. We must show
aRb. By definition, a � R b means xRa � xRb for all x � S. In particular, since aRa, it follows aRb.
Thus, � R � R.

For the reverse implication, assume � R � R. Since � R is a preorder (proposition 3.2), it is reflexive;
it follows at once R must be also. #

Lemma 3.5 R is transitive if and only if R � � R.

Proof First consider the forward implication. Assume R is transitive; we must show R � � R � Let
aRb. By transitivity of R, we know that for any s � S, xRa and aRb imply xRb. It follows a � R b.
Thus we have shown R � � R.

Now to the reverse implication. Assume R � � R. We want to show R is transitive. So, let aRb and
bRc. Because R � � R, the latter implies b � R c, or equivalently, xRb � xRc. Coupled with the
assumption that aRb, we have immediately that aRc. In other words, we have shown R is transitive,
as needed. #
An important consequence of theorem 3.3 is that iterating the Pareto relation construction “tops out”
after two applications. Formally,

Corollary 3.6 The mapping R �� � R is idempotent; i.e., for any relation R on a set S, � � R � � R.

Proof Follows directly from proposition 3.2 and theorem 3.3. #
Corollary 3.6 tells us that repeating the Pareto dominance construction does not reveal any new
information. For instance, if R represents the rock-paper-scissors game, then � R is the identity
relation I since each strategy is incomparable to each other. � I � I, as well, so � � R � � R.



4 Discussion and Future Work

Our framework was aimed at understanding the static features of a class of coevolutionary opti-
mization problems, prior to any algorithm choices. Nonetheless, the insights gained from our static
analysis informs our understanding of coevolutionary dynamics. By separating the definition of a
coevolutionary optimization problem from the dynamics of search algorithms, we have gained in-
sight into issues which plague coevolutionary dynamics. In particular, we can state in a precise way
what it means for a coevolutionary algorithm to make progress: if, at time t2 
 the algorithm has found
individuals which Pareto dominate the individuals at time t1 
 then the algorithm has made progress.
We stated, in definition 2.2, what it means for an algorithm to solve a coevolutionary optimization
problem: it has solved the problem if it has found the set of maximal candidates � p. In general, we
cannot know for certain if we have made progress or found the solution set if we are observing only
subsets of S and T , as a real algorithm would . However, these ideas do offer approximations which
may work in many practical situations. It would be worthwhile to examine in more depth when such
approximations are meaningful.

We introduced and motivated our work with the observation that intransitivities produce difficult
issues for coevolutionary algorithms. We subsequently observed, in section 3, that the Pareto dom-
inance relation is closely tied to the transitivity of the underlying payoff structure. It is possible to
extend this result to a wider class of payoff structures. More importantly, we feel there is important
information to be found in considering local views of a payoff function p : S � T � R. For instance,
imagine Si

� S and Ti
� T are the populations at time i in the run of a coevolutionary algorithm.

The act of testing all candidates in Si against all tests in Ti exposes a restricted view of p; mathe-
matically, this information can be written p � Si

� Ti . A critical question arising in any coevolutionary
optimization algorithm is: can we use the information in p � Si

� Ti to deduce properties of p itself in a
way which leads us to the solution set � p? A preliminary result in this direction would be to show
that any two incomparable (non-dominated) individuals in the Pareto dominance relation must lie in
a cycle in the underlying game. Theorem 3.3 goes part way towards this result. This result would be
useful to algorithms because it is possible to deduce Pareto non-dominance with respect to p using
only the local information in p � Si

� Ti ; in other words, once we had found that two individuals were
non-dominated, we would know they lie in a cycle and we should be cautious until we have found a
candidate dominating them.

The results in section 3 are specific to the outcome order R � � 0 � 1 � . If we include more outcomes
in R, we lose theorem 3.3 and in particular corollary 3.6. Apparently, when the outcome order has
more than two elements the situation becomes more complicated. Puzzling out what that might be is
a topic of current research.

Finally, our formulation of coevolutionary optimization problems using a function of form p : S �

T � R excludes multi-player games and cooperative coevolution. We are also currently investigating
how to extend the framework to include these more complicated approaches.
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A Notation and Mathematical Background

Here we briefly recall some definitions from discrete mathematics, particularly from the theory of
ordered sets, also establishing notational conventions we will use. We first define ordered sets as
mathematical objects; we then examine some ways these objects combine and relate. See [11] for an
elementary introduction to ordered sets, and [2] for information on more advanced concepts such as
pullbacks.

A.1 Ordered Sets

Recall the Cartesian product of two sets S and T is the set of ordered pairs S � T � � � s 
 t � � s � S 
 t �
T � . A binary relation on a set S is a subset Q � S � S. Given s1 � s2 � S and a binary relation Q on S,
we say s1 and s2 relate under Q, written s1Qs2, when

�
s1 
 s2 � � Q. We also say that two elements s1

and s2 which relate under Q are comparable according to Q; otherwise, they are incomparable.

A binary relation Q on a set S is reflexive when, for all s � S, sQs. Q is transitive if, for all s1 
 s2 
 s3 � S,
s1Qs2 and s2Qs3 imply s1Qs3. Q is anti-symmetric if for all s1 
 s2 � S, s1Qs2 and s2Qs1 imply s1 � s2.

A binary relation Q is a preorder if it is both reflexive and transitive. If a preorder is also anti-
symmetric, it is a partial order. If, finally, all pairs of individuals from S are comparable according to
the partial order Q, then Q is a total order or linear order. Note that, in analogy with partial functions,
a partial (or pre-) order need not define relations between all pairs of members of S, whereas a total
order must. We will call S a preordered set or simply an ordered set when it is equipped with a
relation which is a pre-, partial, or total order. We will write the order � S when we need to refer to it
directly.

A binary relation Q on a set S expresses the same information as a directed graph with vertices S; the
elements of Q correspond to the edges of the graph. Moreover, we can think about graphs in terms
of their incidence matrices. Consequently, one can think of these concepts in any of these ways, as
convenient.

Two ordered sets can be combined in a number of ways. For our purposes, the two most useful are
Cartesian product and intersection.

Definition A.1 (Cartesian Product of Preordered Sets) Let S and T be preordered sets. As sets,
� S

� � T
�

S � S � T � T . Hence, we can interpret � S
� � T as a relation between S � S and T � T ,

relating ordered pairs on S to ordered pairs on T . � S
� � T will be an order of some kind, but as shown

in the example below, the type of order may change. Thus, to be precise we define the Cartesian
product of two preordered sets

�
S 
 � S � and

�
T 
 � T � by

�
S 
 � S � � � T 
 � T � � � S � T 
 � S

� � T � . We
will write this product simply as S � T . If we take the Cartesian product of a preordered set S with
itself, we write it as S2 and the relation in particular as � 2

S. We define Sn and � n
S similarly.

Example A.2 The set of real numbers
�

is totally ordered by the usual order � .
� 2 � � � �

is
the familiar Cartesian plane. The order on

� 2 is � � � � � 2. Unrolling the definition:
�
x1 
 y1 � � 2�

x2 
 y2 � � x1 � y1
�

x2 � y2. It is straightforward to verify � 2 is a partial order. It is not a total order
because, for example,

�
0 
 1 � and

�
1 
 0 � are incomparable with respect to � 2. #

Definition A.3 (Intersection of Preordered Sets) Let S and T be preordered sets. As a set, � S

� � T
� �

S � T � � � S � T � . Thus � S � � T is a relation on S � T which can be verified to be an or-



der. Consequently, we define the intersection of two orders S and T to be
�
S � T 
 � S � � T

� . As with the Cartesian product, we will write this intersection as S � T or � S � � T .

Whereas a total order can have at most one maximum, a partial or preorder can have many maxima,
referred to as maximal elements.5

Definition A.4 (Maximal Elements in Preordered Sets) A maximal element of the preordered set
S is any element �s � S with the property that, for all other s � S, �s � S s � s � S �s. We will write �S for
the set of all maximal elements of the preordered set S. It is possible �S � /0 or �S � S.

The following two relations can be derived from any order.

Definition A.5 (Strict Relation) Let S be an ordered set. Define � S as follows: for all a 
 b � S,
a � S b if and only if a � S b and b �� S a.

Definition A.6 (Similarity Relation) Let S be an ordered set. Define the equivalence relation � S on
S as follows: for all a 
 b � S, a � S b if and only if a � S b and b � S a.

In a partial order, the similarity relation is the same as equality because of anti-symmetry. However,
the same is not the case in a preordered set, and therein lies the difference between the two concepts.
We can rephrase definitions x and y in more familiar terms using � R. For instance, a maximal element
is a ŝ � S such that for all s � S, ŝ � S s � ŝ � S s. Also, a � S b if and only if a � S b and a �� S b.

We can make any preorder into a partial order by taking the quotient with respect to � S:

Definition A.7 (Quotient Order) Let S be an ordered set. Let S
�
� S, read “S modulo (the equiva-

lence) � S” be the set of equivalence classes of S under � S. Given an a � S, write � a � for the equiva-
lence class of a under � S; in particular, � a � � � a ��� S � a � � S a � . We define an order on S

�
� S, which

we will also write � S, as follows. If � a � and � b � are two equivalence classes in S
�
� S, then � a � � S � b �

in S
�
� S if and only if a � S b in S.

The following proposition shows definition A.7 is reasonable:

Proposition A.8 The order � S on S
�
� S is well-defined; furthermore, it is a partial order.

Proof Let a1 
 a2 
 b1 
 b2 � S be such that a1 � S a2, b1 � S b2 and a1 � S b1. To show well-definedness
of � S on S

�
� S, it suffices to show a2 � S b2. By similarity, we know a2 � S a1 and b1 � S b2. We

therefore have the following chain: a2 � S a1 � S b1 � S b2. Then a2 � S b2 by transitivity, and � S is
a well-defined relation on S

�
� S . The reflexivity and transitivity of � S on S

�
� S are clear from the

definition. What remains is to show this relation is antisymmetric. However, if a � S b and b � S a
in S, then a � S b, and it follows immediately that � a ��� � b � . Consequently, � a � � S � b � and � b � � S � a �
imply � a � � � b � . Thus � S is a partial order on S

�
� S. #

A.2 Functions into Ordered Sets

Let S and T be preordered sets, and let f : S � T be a function. f is monotone, or monotonic, if
s1 � S s2 � f

�
s1 � � T f

�
s2 � for all s1 
 s2 � S. The intuition behind this definition is that f preserves

5There is also a definition of maximum in partial and preorders which must be larger than all other elements
in the set. However, for our purposes maximal elements are much more useful.



f1 f2 f3

a 0 2 1

b 1 1 0

Figure 1 � pw and � can be distinct orders on � S � R � . Let S � � a 
 b � , R � � 0 � 1 � 2 � . Observe
that f1 � pw f2, but f1 �� f2; and, f2 � f3, but f2 �� pw f3.

order; put differently, passage through the function f does not destroy any pairwise relations. If we
regard S and T as graphs, then a monotone f is exactly a graph homomorphism. f is an isomorphism
of preordered sets if f is a monotone bijection and, additionally, f �

1 is monotone. Two isomorphic
preordered sets are “the same;” that is, they typify the same order structure, possibly differing in how
their elements are labeled. We will write S �� T to indicate S and T are isomorphic preordered sets.
Isomorphic preordered sets have “the same” maximal elements; i.e., if f : S � T is an isomorphism
of preordered sets, then f

� �S � � �T .

Let S be a set, R a preordered set, and let f : S � R be a function; we will call f a function into the
preordered set R. Given such a function f , we can pullback the order of R into S [2]. To be more
precise,

Definition A.9 (Pullback Orders) Let f : S � R be a function into the preordered set R. Define the
preorder � f on S as follows: s1 � f s2 � f

�
s1 � � R f

�
s2 � for all s1 
 s2 � S. We will write the resulting

preordered set
�
S 
 � f � as S f ; we will refer to it as the preorder induced on S by f 6. As defined, � f

is the largest preorder on S making the function f monotone.

Following the convention in domain theory [1], write � S � R � for the set of all functions from S to R.
If R is a preordered set, we can order � S � R � in several ways. First, we consider the pointwise order:

Definition A.10 (Pointwise Order) Two functions f 
 g � � S � R � lie in order pointwise, which
we write f � pw g or just f � g, if for all s � S, whenever f

�
s � and g

�
s � related, it must be that

f
�
s � � R g

�
s � . Note that another way to state this condition is that for all s � S, f

�
s � �� R g

�
s � . The

pointwise order is the default order on � S � R � . When we speak of � S � R � as if it were ordered, we
assume it has the pointwise order.

The second order we consider on � S � R � is via suborder.:

Definition A.11 (Suborder Order) Recall that an element f � � S � R � corresponds to a preorder
on S, namely the pullback order S f defined above. Given two functions f and g, we can ask whether
S f � Sg. Therefore, we write f � g when S f � Sg. Explicitly, f � g holds when, for all s1 
 s2 � S,
f
�
s1 � � R f

�
s2 ��� g

�
s1 � � R g

�
s2 � .

Figure 1 shows � pw and � are distinct orders in general.

The action of currying a function, borrowed from the lambda calculus.7 will be useful:

6Occasionally we will use the same symbol for the induced preorder on S. In other words, if � R is the order
on R, we will sometimes write s � R s

�

instead of s � f s
�

. The context will make clear what we mean by this abuse
of notation.

7Take note that lambda application comes from the adjunction between the Cartesian product functor and the
exponential functor in any Cartesian closed category; see [2] for details.



Definition A.12 (Currying) Given any function f : A � B � C, there is an associated curried
function A � �B � C � . The lambda calculus makes heavy use of this association; thus, we will
suggestively write this function λb � f : A � � B � C � and call it f curried on B. It is defined as
follows. For any a � A, the function λb � f � a � maps b � B to f

�
a 
 b � � C. λa � f is defined similarly.
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