Order-theoretic Analysis of Coevolution Problems. Coevolutionary Statics

Anthony Bucci and Jordan B. Pollack
DEMO Laboratory, Computer Science Department, MS018
Brandeis University
Waltham, MA 02454
{abucci,pollack}@cs.brandeis.edu

Abstract

We present an order-theoretic framework for an-
alyzing coevolution problems. The framework
focuses attention on the underlying problem def-
inition, or statics of coevolution, as opposed to
the dynamics of search algorithms. We define a
notion of solution for coevolution which gener-
alizes similar solution concepts in GA function
optimization and MOO. We then define the ideal
test set, a potentially small set of tests which al-
low us to find the solution set of a problem. One
feature of the ideal test set is that we are able
to categorize problems by considering its cardi-
nality. We conclude by discussing three issues
which commonly arise in coevolution from the
point of view of coevolutionary statics, pointing
out analytical attacks on these issues.

1 Introduction

Over the past decade, the field of coevolutionary optimiza-
tion has developed tantalizing learning and optimization re-
sults in domains such as sorting networks [7], cellular au-
tomata [5, 8], game playing [11] and robotics [13]. How-
ever, to date the field has progressed using problem-specific
tricks and heuristics, leaving the field with a relative lack of
theory. One reason for the current state of affairs is that the
dynamics of coevolution can be complex and difficult to
understand. Because this difficulty, we propose a change
in point of view, approaching the study of coevolution in
terms of the static structure of the underlying problem def-
inition. We argue that by studying the problem definition,
prior to any algorithm choices, we might gain insight which
is not clear from studying algorithm dynamics alone.

Our tool for this study will be a mathematical framework
based on order relations over the sets of candidates and
tests, which we will detail in section 3. Our framework fo-

cuses attention on the definition of the coevolution problem
and reveals theoretical order relations which exist among
the candidate solutions and among the tests we are able to
apply to them.

We will consider a class of coevolutionary optimization
problems which can be expressed with a function of the
formp:Sx T — Rwhere Sand T are sets and R is an or-
dered set. We intend S to represent the candidate solutions
to the problem; these are also called students or learners
in the coevolutionary learning context. T represents tests
which can be applied to the candidates. The ordered set R
contains the outcomes of a candidate-test interaction. The
ordering tells us which outcomes are better than which oth-
ers. For example,

Example 1.1 Rock-paper-scissors

In this simple game, S = {rock, paper,scissors}, T =S and
R = {0 < 1}. According to the rules of the game, the result
of comparing rock with scissors, for example, is that rock
wins. We therefore give p : S x S — R as the matrix:

rock paper scissors
rock 1 0 1
paper 1 1 0
scissors 0 1 1

where we interpret the row entries as elements of S, col-
umn entries as elements of T. Notice how the intransitivity
of the rock-paper-scissors game is captured in this matrix,
even though R is transitive. O

Observe that, at this stage, it is not clear what the goal of
such a problem could be. The function p only tells us how
two individuals compare when they interact. We will as-
sume throughout this paper that the goal is to find “the
best” elements of S. For instance, if S contains possible
chess-playing strategies, and p represents what happens
when two such strategies are played against one another,
then the goal of such a problem might be to “find the best
chess-playing strategies.” A clear definition of “the best

strategies” is given in section 3.1.

Our formalization is motived by recent work in Pareto co-
evolution. Pareto coevolution has been used to coevolve
cellular automata rules [5] and poker-playing strategy [9].
It has also arisen in the abstract study of problem decom-
position; see [14]. The key idea behind Pareto coevolution,
articulated in [4], is to treat members of a population as
objectives; then the task of a coevolving individual is to re-
main non-dominated with respect to these objectives. Our
framework models these ideas in a formal way.

2 Mathematical Preliminaries

We will make extensive use of concepts and notation from
the theory of orders. In this section, we establish notation
and recall important definitions. We first define orders as
mathematical objects; we then examine some ways these
objects combine and relate. For an elementary introduction
to these concepts, see [12]; for more in-depth information
on concepts like pullbacks, see [2].

2.1 Orders

Recall the Cartesian product of two sets Sand T is the set
of ordered pairs Sx T = {(s,t) | s€ S,t € T}. A binary
relation on a set S is a subset R C Sx S. Givensy sy €S
and a binary relation R on S, we say s; and s, relate under
R, written s1Rs», when (s1,s2) € R. We also say that two
elements s; and sp which relate under R are comparable
according to R; otherwise, they are incomparable.

A binary relation R on a set S is reflexive when, forall s € S,
sRs. For all s1,52,53 € S, if s1Rsz and spRs3z imply s;1Rs3,
then R is transitive. R is anti-symmetric if for all s1,s € S,
s1Rs2 and spRsg imply s3 = sa.

Definition 2.1 (Order) A binary relation R is a preorder
if it is both reflexive and transitive. If a preorder is also
anti-symmetric, it is a partial order. If, finally, all pairs of
individuals from S are comparable according to the partial
order R, then R is a total order or linear order. Note that,
in analogy with partial functions, a partial (or pre-) order
need not define relations between all pairs of members of
S, whereas a total order must. We will call R simply an
order when it is a pre-, partial, or total order.

A binary relation on a set S expresses the same information
as a directed graph with nodes S; the elements of R corre-
spond to the arrows of the graph. Moreover, we can think
about graphs in terms of their incidence matrices. Conse-
quently, one can think of these concepts in any of these
ways, as convenient.

Now that we know what an order is, we can talk about how
to combine two of them together:

Definition 2.2 (Cartesian Product of Preorders) Let S
and T be preorders. As sets, <sx <71 C SxSxTxT.
Hence, we can interpret <g x <t as a relation between
SxSand T x T, relating ordered pairs on S to ordered
pairs on T. <g x <t will be an order of some kind,
but as shown in the example below, the type of order
may change. Thus, to be precise we define the Carte-
sian product of two preorders (S,<s) and (T,<t) by
(S,<g) x (T,<7) = (Sx T,<s x <71). We will write this
product simply as S x T. If we take the Cartesian product
of a preorder S with itself, we write it as S? and the relation
in particular as <2. We define S" and <2 similarly.

Example 2.3 The set of real numbers R is totally ordered
by the usual order <. R? = R x R is the familiar Carte-
sian plane. The order on R? is < x <=<2. Unrolling
the definition, we arrive at the following relation on R?:
(X1,¥1) <? (X2,¥2) © X1 < Y1 A X2 <ya. Itis straightfor-
ward to verify <2 is a partial order. It is not a total order
because, for example, (0,1) and (1,0) are incomparable
with respect to <2, O

Finally, we can also talk about maximal elements in any
preorder:

Definition 2.4 (Maximal Elements in Preorders) A
maximum is an element “s such that forall s € S,s < 's. A
maximal element of the preorder S is any element §€ S
with the property that, for all other s € S, §<s = s <§
We will write S for the set of all maximal elements of the
preorder S. It is possible S = 0; consider R?, for example.

2.2 Functions into Preorders

Let Sand T be preorders, and let f : S — T be a function.
f is monotone, or monotonic, if s; <ssy = f(s1) <1 f(S2)
for all s1,52 € S. The intuition behind this definition is that
f preserves order; put differently, passage through the func-
tion f does not destroy any pairwise relations. If we regard
Sand T as graphs, then a monotone f is exactly a graph
homomorphism. f is an isomorphism of preorders if f is
a monotone bijection and f~? is also monotone. Two iso-
morphic preorders are “the same;” that is, they typify the
same order structure, possibly differing in how their ele-
ments are labelled. We will write S= T to indicate Sand T
are isomorphic preorders. Isomorphic preorders have “the
same” maximal elements; i.e., if f : S — T is an isomor-

~

phism of preorders, then f(S) = T.

An important operation which we will abuse often is that of
pullback [2]. The idea is that whenever one has a function
from a set into a structure like a preorder, it is often possible
to “pull” the structure back to the domain set “through” the
function. In our case, we often have functions from sets
into preorders, and so are able to pull the order structure

from the range back into the domain. Formally,

Definition 2.5 (Pullback Orders) Let S be a set, R a pre-
order, and let f : S — R be a function; we will call f a
function into the preorder R. Given such a function f, we
can pullback the order of R into S [2]. To be more pre-
cise, define a preorder on S, which we write <+, as follows:
51 <t S2 & f(s1) <R f(s2) forall s1,52 € S. We will write
the resulting preorder (S,<y) as S¢; we will refer to it as
the preorder induced on S by f . As defined, <s is the
largest preorder on S making the function f monotone.

Following the convention in domain theory (e.g., [1]), write
[S — R] for the set of all functions from StoR. If R is
a preorder, we can order [S — R] in two ways. First, we
consider the pointwise order:

Definition 2.6 (Pointwise Order) Two functions f,g €
[S — R] lie in order pointwise, which we write f <pw g
or just f <g, if forall se€S, f(s) 2r9(s). In other
words, whenever f(s) and g(s) are related, it must be that
f(s) <rg(s). The pointwise order is the default order on
[S — R]; when we speak of [S — R] as if it were ordered,
we assume it has the pointwise order.

Example 2.7 LetS={1,...,n},R=R Then[S = R] =
[{1,...,n} — K] =2 R" under the isomorphism f(g) =
(9(1),9(2),...,9(n)), for any g € [{1,...,n} = R]. The
isomorphism expresses the fact that even though they ap-
pear different on the surface, [{1,...,n} — K] and R" are
expressing the same order structure. O

The second order we consider on [S — R] is via suborder:

Definition 2.8 (Suborder Order) Recall that an element
f € [S — R] corresponds to a preorder on S, namely the
pullback order St defined above. Given two functions f
and g, we can ask whether S¢ C Sq. Therefore, we write
f C gwhen St CSq. Explicitly, f C g holds when, for all
51,52 € S, f(s1) <r f(s2) = g(s1) <R Y(S2).

Example 2.9 <y and C are distinct orders on [S — R].

Let S={a,b},R={0< 1< 2}. In Table 1 we give three
elements of [S — R] such that , f1 <pw f2, but f1 Z fo; and,
fo C f3, but fo Lpw f3. O

fi f2 fa
a 0 2 1
b 1 1 0

Table 1: <pw and C can be distinct orders on [S — R].

3 The Statics of Coevolution

We are now in a position to describe our framework. First,
here are some illustrative, running examples:

Example 3.1 Coevolving sorting networks [7]

Hillis’ seminal paper contains an example when S #T. Ig-
noring the details of Hillis’ representation and algorithm,
S = {16—linesorting networks} and T = {0,1}!®. R is
{0 < 1}, and the function p expresses whether a sorting
network sorts a given test case correctly. O

Example 3.2 Genetic Algorithm (GA) function optimiza-
tion

In many GA problems, we are given a function f : S — R,
and our task is to find one or more elements in S which
maximize f. If we use the information in f as an objec-
tive function, we can compare two individuals s1,S2 € S via
their difference in fitness f(s1) — f(s2). Consequently, it is
reasonable to define a comparison function p:SxS — R
by the formula p(s1,s2) = f(s1) — f(s2). O

Example 3.3 Multiobjective Optimization (MOO) [6]

Similarly, in many MOO problems, we are given a set
of objective functions f; : S — R, for i in some fixed
range 1 <i < n. We can combine these objectives into
one function f = (f1, f,...,fn) : S = R", which is de-
fined by (f1, f2,..., fn) (S) = (f1(5),..., fn(S)). As we ob-
served in section 2.2, R" is a partial order. Furthermore,
we know how to subtract in R" using pointwise subtrac-
tion: (ai,...,an) — (b1,...,bn) = (a1 —by,...,an — bp).
Therefore, we can proceed as we did in the GA example
and define p: Sx S — R" by p(s1,s2) = f(s1) — f(s2) =
(fo(s1) = fa(s2),- -+, fn(s1) — fn(s2)). O

3.1 Solution As Set of Maximal Candidates

Generalizing from GA function optimization and MOO, we
define a solution concept for coevolutionary problems. The
following proposition suggests a connection:

Proposition 3.4 (MOO as Maximization) The Pareto
non-dominated front of a set of objectives fi : S — R
(1<i<n)is Sy, .) the set of maximal elements of the
preorder induced on S by the function (fy,..., f,) into the
partial order R".

Proof The Pareto non-dominated front consists of those
§ e S which are not dominated by any other s € S. Define
the preorder < on S as follows: s <s' < Vi, fi(s) < fi(s)
for all s,s' € S. s <5’ expresses that s’ is not dominated
by s. Observe thats <'s' <> s </, 1S’ (see section 2.5).
The non-dominated frontisthen F = {S€ S| Vs € S, s <§}.

Notice that the condition Vs € S, s < §'is logically equiva-
lent to the condition Vs € S,§ < s = s < §. Consequently,
we have that F = {S€ S| Vs€S,§<s=>5<8} ={SeS|
Vs€S,5<ss=5<s 8}, where f = (fq,..., fn). However,
the last set in the chain of equalities is St, whence we have
shown F = §f. O

The importance of proposition 3.4 is that it shows how we
can think about MOO problems as maximization problems.
In that respect, MOO problems are a generalization of the
maximization problems attacked with GAs. It is fair, then,
to think of a GA function optimization problem as a MOO
problem with a single objective. While this statement is
intuitively clear, proposition 3.4 formalizes the intuition.

With a bit of work, we can continue the process of gener-
alization and also view coevolution problems as maximiza-
tion problems. Start with a coevolution problem expressed
with a function p: Sx T — R, and curry this function on
T to produce a function At.p: S — [T — R]. As we ob-
served, we can preorder [T — R]. Proposition 3.4 suggests
the order we should use is <pw. Consequently, At.p is a
function into a preorder, [T — R], meaning we can pull the
order back to S as in definition 2.5. We now have a pre-
order on S, the set of candidate solutions. We propose the
set of maximal elements of this preorder as a solution to the
problem p:Sx T — R. Formally,

Definition 3.5 (Maximal Candidates) The set of maxi-
mal candidates of the coevolution problem p:SxT — R
is Sp = Sy.p- Explicitly, Sp = {s € S| Vs € S,[Vt €
T,p(s,t) 2r p(s',t)] = s’ =s}. We will call S, C S a so-
lution set of the problem p.

Here are some examples illustrating the definition:

Example 3.6 Rock-paper-scissors, revisited

The rock-paper-scissors incidence matrix s
given in example 1.1 Then the func-
tions At.p(s) are just the rows of the matrix. Com-
paring these rows pointwise, we see they are all in-
comparable. Consequently, in rock-paper-scissors, Sp =
{rock, paper,scissors} =S. O

Example 3.7 GA and MOO, revisited

Consider GA optimization or MOO problems where
we have objectives fi : S — R for 1 < i < n. Treat-
ing the objectives “objectively” vyields the compari-
son p(s,s’) = f(s) — f(s'), where f = (f1,..., fn). Now ob-
serve that in R", f(s3) — f(s') <" f(s2) — f(5) &
f(s1) <" f(s2), for all s3,52,8 € S, sim-
ply by adding f(s') to both sides of the inequal-

ity. It follows, therefore, that § is a maximal ele-
ment with respect to Sy, if and only if § is non-

dominated. As a result, the solution set Sp is ex-
actly the non-dominated front of S (see proposition 3.4). [

In light of the observation that definition 3.5 generalizes
common solution concepts used in MOO and GA, it is a
natural notion of solution for coevolution as well. Observe
that this particular solution concept is distinct from other,
common ones, such as “maximize average fitness.”

3.2 Test Sets

In this section we consider preorders on the test set T. One
possibility is to value tests which produce many distinc-
tions among candidates [5]. A good test is one which can
tell us which candidates are better than other candidates.
We will formalize this intuition of ideal test set in defini-
tion 3.9 and justify it by showing, in theorem 3.10 that the
ideal test set induces the same set of maximal candidates as
the full test set T.

The suborder order on [S — T] almost captures what we
seek. If <; and <, are two orders on a set S such that
<31 C <y, then <, gives the same relations on S that <;
does, plus possibly more. However, there is the flaw that
the suborder order has a trivial maximum, namely equality.
In other words, the trivial relation R = S x S which says
that all elements of S are equal to all others, is such that
< C R for any other order <. More generally, any order
which “adds equalities” looks better according to C, even
though for our purposes it tells us less information because
it reveals fewer distinctions.

In order to repair this problem, we will define an informa-
tiveness order <. First, let < be an order on a set S. Define
the set <= {(s,5') | 5,5’ € S, s <s'As' <s}. Recall that in
a partial order, (s,s') e<==s =, but this need not be the
case in a preorder. The set <= tells us which elements in S
look “equal” according to <. We can now use this notion
to define a new relation among the orders on S. Roughly
speaking, to be informative, an order should have neither
incomparable elements nor equal elements. Formally,

Definition 3.8 (Informativeness) Let <; and <, be two
orders on S. Say <5 is more informative than <3, writ-
ten <1 X<, iF <1 C <o and <5 C <7 Ifwe write <3 CF
<5 for the latter condition, we see <=C x C~.

We can use < to order [S — R]. Given f,g € [S — R], write
f < gwhen Ss < Sy; i.e., when the order induced on S by
g is more informative than the order induced on S by f.

Now we are in a position to describe the ideal test set. In
words, it is the set of maximal elements in T with respect
to the pullback of the informativeness order on [S — R].
Formally,

Definition 3.9 (Ideal Test Set) Letp:Sx T — R be aco-
evolution problem, and let As.p : T — [S — R] be the cur-
ried form of p. Let [S — R] have the informativeness order
<. Pull this order back through As.p into T, and write the
resulting order on T as T<. Then the ideal test set for this
problemis Ty = 'T'; C T, the set of maximally-informative
tests.

That definition 3.9 is useful is borne out by the following:

Theorem 3.10 Let p:Sx T — R be a coevolution prob-
lem, and consider p |Tp: S x Tp = R, the restriction of
p to the maximally-informative tests. For brevity, write g
for p |Tp. Then Sp =2 Sq; in other words, the maximally-
informative set of tests induces the same order on S as the
full set of tests T. Consequently, it also induces the same
set of maximal candidates.

Proof See Appendix A. O

Here are some examples:

Example 3.11 Rock-paper-scissors, revision 3

In the rock-paper-scissors incidence matrix (see
example 1.1), the columns are the As.p(t). Read-
ing left to right, the induced orders are {scissors < rock =
paper}, {rock < paper = scissors}, and { paper < rock =
scissors}. None of these orders is a suborder of an-
other; it follows that T, = {rock, paper,scissors} =T. O

Example 3.12 Consider the formal game where S=T =
{a,b,c},R={0< 1}, and p is given by the matrix

O o

b
1
0

o oo

a
b
c 111

The orders induced on S are, left toright, {a<b=c}, {b<
a=c}, and {a=Db < c}. None of these is a suborder of
another,so Ty = {a,b,c} =T. Notice that S, = {c}, so this
example shows Sp and T, can be distinct; i.e., solutions
need not make good tests.

Theorem 3.10 shows that we do not need to use the full set
of tests T in order to distinguish individuals in S. In fact,
the ideal test set T will induce the same order on S and so
the same maximal candidates. If T is a strict subset of T,
then we can solve the same problem p using fewer tests.

Call the cardinality of T the dimension of the problem p.
Then we have the following:

Theorem 3.13 GA optimization and MOO problems are 1-
dimensional when the objectives are treated as in example
33

Proof Letn>1and f; : S — R for 1 <i < n. The obser-
vation in example 3.7 that fi(s1) — f(s') < f(s2) — f(§') &
f(s1) < f(s2) leads to the result, because all tests s’ are
equivalent (i.e., are in <<). O

Remark A MOO problem with n objectives looks like it
should be n-dimensional. However, in theorem 3.13 we
are using the objectives to compare pairs of individuals.
Then the individuals are the tests, not the objectives. In
that case, any individual will do as a test, making the MOO
problem 1-dimensional. If we were to treat the objectives
themselves as tests, then a MOO problem with n objectives
would be n-dimensional.

The content of theorem 3.13 is that “difficult” coevolu-
tion problems appear to have dimension > 1. Rock-paper-
scissors is 3-dimensional, for example. By inspecting the
structure of the tests for a problem p, we are able to say
whether the problem is coevolutionary, independently of
any search algorithms we might employ. In other words,
theorem 3.13 is a tool for categorizing problems. Al-
gorithm choices might make the fitness of an individual
dependent on the constituents of the current population,
which is clearly coevolutionary. Nevertheless, we are able
to distinguish problems on the basis of their test set struc-
ture alone, prior to any algorithm choices. Problems with
simple test set structure are likely to be simpler to solve in
practice; see, for instance, Juillé’s discussion of the cellular
automaton majority function problem in [8].

4 Discussion: Coevolution | ssues

We conclude by examining three common coevolution is-
sues from the perspective offered by coevolutionary statics.

In order to discuss well-known issues which arise in coevo-
lution, we will need to reconsider coevolutionary dynam-
ics. To remain within the content of coevolutionary statics,
we will consider a fixed point in time during coevolutionary
search. If the overarching problemis p:Sx T — R, then
what we have been able to examineis p |gx1:S' xT' =R,
where S’ C Sand T’ C T. In other words, we assume that
up to this point in search, we have encountered the candi-
dates in S’ and the tests in T’, and have been able to assess
the value of p for all pairs in S’ x T’. The task of an algo-
rithm is to use this information to decide how to update S’
and T’ in such a way that we ultimately find Sy, or some
subset thereof.

The problem of collusion (e.g., [10]) occurs when S’ and T’
are updated in a way which increases the apparent payoff
for both candidates and tests, but does not move S’ closer
to Sp. Collusion might occur if the algorithm implicitly
treats the function p: Sx T — R objectively. By “ob-
jectively” we mean the algorithm searches for pairs (s,t)
which maximize p. Clearly, updating in this way is prob-

lematic, because a pair (s,t) with an easy, uninformative
test t will have a high value for p, regardless of where
s lies with respect to Sp. Nevertheless, “naive coevolu-
tion” which gives an individual fitness based on its average
score against a population, often implicitly favors colluding
pairs; see, for instance, the discussion of the meta-game of
learning in [10].

The Red Queen Effect [3] is related to collusion. The
essence of the Red Queen Effect is that we are unable to
tell the difference between collusion and true progress on
the basis of fitness values alone. The reason is essentially
that p(s,t) = p(s’,t') could occur for two reasons: s is bet-
ter than s’ and t is a harder test than t’; or, s and s’ are
equals, as are the tests t and t’. Values of p alone do not al-
low us to see progress. Coevolutionary statics offers some
hope in this case. As we have emphasized, the important
function to consider is the curried form of p, At.p, in par-
ticular the order Sy , which this function induces on the
candidate set S. The “goal” of coevolution is then to climb
that order to arrive at the maximal elements Sp. To track
progress, we must make observations which allow us to
see if the algorithm really is climbing Sy ,. Even better,
we should arrange our algorithms to guarantee, as much as
possible, progress up the order Sy ,. Pareto coevolution
involves heuristics for achieving this goal.

Finally, focusing [15] refers to the ability of coevolving op-
ponents to challenge one another by testing weak dimen-
sions of performance. An issue which arises in this context
is overspecialization. In the language of our framework, T’
is well-focused when the tests in T’ are informative, mean-
ing they indicate many discriminations among the candi-
dates in S’. Otherwise, we say that S’ and T' are disen-
gaged. Heuristically, it appears that if we update the tests
in T’ so that they become more informative relative to the
candidates §', then we minimize the risk that the candidates
and tests will become disengaged.

Acknowledgements

The authors wish to thank the members of the DEMO lab
for their support and encouragement. In particular, this pa-
per benefited inestimably from long conversations with Se-
van Ficici, Edwin de Jong and Richard Watson. We also
wish to thanks the reviewers for their useful comments.

A Appendix

Proof of theorem 3.10

Letp:SxT — R;currythistoAt.p:S— [T — R], and con-
sider the restriction At.p |1,: S — [Tp — R]. The theorem is
equivalent to showing At.p(S) = At.p |, (S). This isomor-
phism is identical to the equivalence Vsi,sz € S,51 <jt.p

Sp & 51 SAt-plTp Sp. This equivalence is in turn equivalent
to At.p(s1) <pwAt.p(s2) < At.pr, (s1) <pwAt.p |1, (S2),
by definition of <f. We finally have the equivalence with
VteT, p(slat) ZR p(Sz,t) evte Tpa (Sla) ZR p(sza)
by definition of <pw. To sum up, proving theorem 3.10 is
equivalent to proving this last equivalence.

The forward implication holds trivially, because T, C T.
Consequently, we focus our attention on showing Vt €
Tpa (Sla) ZR p(SZJ) =>VteT, p(sl:t) ZR p(Sz,t), for
all s1,s2 € S. If we can show this implication, we have the
result. So, lett € T. By definition of Tp, 3t € Tp, such
thatt < T. In particular, t Ct. Assume p(sl,) >R p(s2,t));
then it follows p(s1,t) >r p(s2,t, because T is more infor-
mative than t. This is a contradiction; thus, it must be that

p(s1,t) 2r p(S2,t). The latter holds for any t € T; there-
fore, we have our result. O

References

[1] Samson Abramsky and Achim Jung. Domain theory.
In S. Abramsky, D. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science Vol-
ume 3, pages 1-168. Oxford University Press, 1994.

[2] Michael Barr and Charles Wells. Category Theory for
Computing Science. Prentice Hall International Series
in Computer Science. Prentice Hall, New York, 1st
edition, 1990.

[3] Dave Cliff and Geoffrey F. Miller. Tracking the red
queen: Measurements of adaptive progress in co-
evolutionary simulations. In European Conference on
Artificial Life, pages 200-218, 1995.

[4] S. G. Ficici and J. B. Pollack. A game-theoretic ap-
proach to the simple coevolutionary algorithm. In
Hans-Paul Schwefel Marc Schoenauer, Kalyanmoy
Deb, Ginter Rudolph, Xin Yao, Evelyne Lutton,
Juan Julian Merelo, editor, Parallel Problem Solving
from Nature - PPSN VI 6th International Conference,
Paris, France, 16-20 2000. Springer Verlag.

[5] Sevan G. Ficici and Jordan B. Pollack. Pareto opti-
mality in coevolutionary learning. In European Con-
ference on Artificial Life, pages 316-325, 2001.

[6] Carlos M. Fonseca and Peter J. Fleming. An overview
of evolutionary algorithms in multiobjective opti-
mization. Evolutionary Computation, 3(1):1-16,
1995.

[7] W. Daniel Hillis. Co-evolving parasites improve sim-
ulated evolution as an optimization procedure. In
Christopher G. Langton, Charles Taylor, J. Doyne
Farmer, and Steen Rasmussen, editors, Artificial Life

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

I1, volume X, pages 313-324. Addison-Wesley, Santa
Fe Institute, New Mexico, USA, 1990 1992.

Hugues Juille and Jordan B. Pollack. Coevolving the
ideal trainer: Application to the discovery of cellular
automata rules. In John R. Koza, Wolfgang Banzhaf,
Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max H. Garzon, David E. Goldberg,
Hitoshi Iba, and Rick Riolo, editors, Genetic Pro-
gramming 1998: Proceedings of the Third Annual
Conference, pages 519-527, University of Wiscon-
sin, Madison, Wisconsin, USA, 22-25 1998. Morgan
Kaufmann.

Jason Noble and Richard A. Watson. Pareto coevo-
lution: Using performance against coevolved oppo-
nents in a game as dimensions for pareto selection.
In L. Spector, E. Goodman, A. Wu, W.B. Langdon,
H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. Garzon, and E. Burke, editors, Proceedings of the
Genetic and Evolutionary Computation Conference,
GECCO0-2001, pages 493-500, San Francisco, CA,
2001. Morgan Kaufmann Publishers.

Jordan B. Pollack and Alan D. Blair. Co-evolution
in the successful learning of backgammon strategy.
Machine Learning, 32(3):225-240, 1998.

Christopher D. Rosin. Coevolutionary search among
adversaries. PhD thesis, University of California, San
Diego, San Diego, CA, 1997.

Edward R. Scheinerman. Mathematics: A Discrete
Introduction. Brooks/Cole, Pacific Grove, CA, 1st
edition, 2000.

Karl Sims. Evolving virtual creatures. Com-
puter Graphics, 28(Annual Conference Series):15-
22,1994,

R. A. Watson and J. B. Pollack. Symbiotic combina-
tion as an alternative to sexual recombination in ge-
netic algorithms. In Hans-Paul Schwefel Marc Schoe-
nauer, Kalyanmoy Deb, Gunter Rudolph, Xin Yao,
Evelyne Lutton, Juan Julian Merelo, editor, Paral-
lel Problem Solving from Nature - PPSN VI 6th In-
ternational Conference, Paris, France, 16-20 2000.
Springer Verlag.

Richard Watson and Jordan Pollack. Coevolution-
ary dynamics in a minimal substrate. In L. Spector,
E. Goodman, A. Wu, W.B. Langdon, H.-M. \oigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Gar-
zon, and E. Burke, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO-
2001, San Francisco, CA, 2001. Morgan Kaufmann
Publishers.

