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ABSTRACT
The use of genotypic populations is necessary for adapta-
tion in Evolutionary Algorithms. We use a technique called
form-invariant commutation to study the immediate effect
of evolutionary operations on populations of genotypes. This
technique allows us to understand compositional changes
induced by evolutionary operations in terms of constraints
between populations. Deep insight into the population-level
effect of some evolutionary operation is possible when mul-
tiple constraints can be derived for all pairs of pre and post
operative populations; for each such pair of populations the
constraints between them are then said to hold simultane-
ously. When selection is fitness proportional we show that
any coarse-graining of the genotype set can be used to sys-
tematically derive single constraints between between all
pairs of pre and post selection populations. Matters are
not so simple in the case of variation. We develop an ab-
stract condition called ambivalence and show that when a
coarse-graining and a variation operation satisfy this condi-
tion then a systematic derivation of single constraints be-
tween all pairs of pre and post variation populations is pos-
sible. Finally we show that it is possible to use schema par-
titions to systematically derive simultaneous constraints for
any combination of variation operations that are commonly
used in GAs.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelli-
gence—Problem Solving, Control Methods, and Search; F.2
[Theory of Computation]: Analysis of Algorithms And
Problem Complexity—Miscellaneous
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1. INTRODUCTION
The use of genotypic populations is necessary for adap-

tation in Evolutionary Algorithms (EAs)— this is evident
from the degradation in the performance of a typical evolu-
tionary algorithm as its genotypic population size tends to
one. So, in order to understand how evolutionary algorithms
perform adaptation, it is important to understand the effect
of the evolutionary operations — selection and variation —
on populations of genotypes.

One might well question whether there is anything to
really understand about the effect of evolutionary operations
on genotypic populations; after all, the subroutines that im-
plement these operations are quite simple and readily un-
derstandable. What is missed by this question is that the
simplicity of the subroutines only allows one to grasp their
effect on any individual genotype, or on any pair of par-
ent genotypes, not on some population of genotypes. One
might then contend that the effect of evolutionary operators
on populations of genotypes is just the “sum of parts”, i.e.
that one will not learn anything new about adaptation in
EAs by focusing one’s attention on populations as opposed
to individual genotypes. As will be seen, this contention is
false. In this paper we derive adaptation relevant theoreti-
cal results about the population level effects of evolutionary
operations; these results are not immediately apparent from
the action of evolutionary operations on individual geno-
types or pairs of genotypes.

Vose pioneered the use of mathematical operators to
express the effects of evolutionary operations on genotype
populations. He used these operators to study the long term
behavior of the Simple Genetic Algorithm (SGA). The re-
sults of this study, which is presented in [11] and summarized
in [12], showed that, given the fixed points of an infinite
population model of an SGA, in the long-term the finite
population of some SGA ‘hovers in the vicinity’ of one of
the fixed points, making an occasional (i.e. low probability)
transition to the ‘vicinity’ of some other fixed point, and so
on, ad infinitum.

We have found Vose’s technique of using mathematical
operators to express the effect of evolutionary operations on



populations of genotypes to be quite useful (the use of this
technique is essential to the analysis in this paper), however,
because the analytical approach taken in [11] focuses on the
long-term behavior of a GA, we find it improbable that it
will yield insight into how GAs adapt phenotypes. Holland
has criticized the approach taken in [11] for similar reasons.
In [5] he says, “Standard mathematical approaches, such as
Markov processes and statistical mechanics, typically offer
little insight into the dynamics of processes that involve the
nonlinearities inherent in coadaptations”.

Adaptation occurs during the transient behavior of an
EA [6]. Hence, to understand how this adaptation occurs, it
is important to understand the immediate changes in com-
position that evolutionary operations induce in genotypic
populations. We show that we can understand these changes
in terms of simultaneous constraints on the composition of
populations.

Studies of the inter-generational effects of evolution-
ary operations on the frequencies of mathematical objects
called schemata are described in [4, 3, 7]. In these stud-
ies schemata are said to be “processed in parallel” by the
evolutionary operations of a GA. This language gives the
impression that evolutionary operations implicitly imple-
ment some form of parallel computation in the platonic
realm of schemata. From an adaptation standpoint what
ultimately matters is the evolving population of phenotypes
and, indirectly, the composition of the evolving population
of genotypes. Thus the “schemata processing” view posited
by these studies begs the (almost philosophical) question
“How does ‘processing’ in the platonic realm of schemata
impact changes in the composition of an evolving population
of genotypes?”. We avoid this question entirely by keeping
our focus firmly fixed on the compositional changes occur-
ring in the evolving population of genotypes — we interpret
each theoretical result about some evolutionary operation
as a statement about how a population, after the operation
(post-operative population), is related to the population be-
fore the operation (pre-operative population). These state-
ments describe inter-population constraints that the evolu-
tionary operations induce on the composition of these pop-
ulations.

We call the analytical technique that we use to obtain
these constraints form-invariant commutation. This type of
technique (which has been previously used in [11, 10, 13])
uses a ‘tool’ that is commonly used in Physics, especially sta-
tistical mechanics, called coarse-graining. Coarse-graining
is widely applied in Physics to “solve for” certain statistical
properties of a system. The idea there is that by projecting
the microscopic level equations of a system over the orig-
inal high dimensional state space to an appropriate lower
dimensional state-space it becomes possible — by solving
the coarse-grained (i.e. macrosopic level) equations — to
obtain some statistical property of the system (e.g. temper-
ature). Coarse-graining has been applied in the same spirit
to genetic algorithms in [11, 10, 13, 8, 2]. In these works
the statistical property sought (but only obtained for a very
specific fitness function — unitation — in [2]) is a transition
matrix specifying the exact or approximate evolutionary dy-
namics in the coarse-grained space. In this paper we will be
using coarse-graining in a different spirit; our aim is not so
much to “solve” for some statistical property of an evolu-
tionary system, as to understand how, for each evolutionary
operation, the composition of some post-operative popula-

tion is constrained by the composition of the pre-operative
population.

The rest of this paper is organized as follows: in Sec-
tion 2 we introduce mathematical operators that model the
effects of evolutionary operations on populations of geno-
types. The technique of form-invariant commutation that
we use to study these effects is introduced in Section 3.
Specifically we discuss how coarse-grainings of the genotype
set can be used derive inter-population constraints that are
induced by some evolutionary operation — one constraint
per coarse-graining. We argue that deep insight into the
effect of some operation is possible only when one can sys-
tematically derive multiple simultaneous constraints over all
pairs of pre and post-operative populations. In Section 4 we
show that any coarse-graining of the genotype space can be
used to systematically derive single constraints over all pairs
of pre and post selection populations. Thus deriving simul-
taneous constraints for any such pair is easy. Matters are
not so simple in the case of variation. An important contri-
bution of this paper is the development, in Section 5, of an
abstract condition called ambivalence. We show that when
some coarse-graining meets this condition with respect to
some specific kind of variation, then it can be used to sys-
tematically derive single constraints between all pairs of pre
and post variation populations. Finally in Sections 6 and 7
we show that when genotypes are bitstrings of fixed length
and variation is performed by some combination of common
GA variation operations — ‘canonical’ mutation, n-point
crossover, and uniform crossover — then we can use coarse-
grainings that induce schema partitions over the genotype
set to obtain multiple simultaneous constraints over all pairs
of pre and post variation populations.

2. MATHEMATICAL PRELIMINARIES
For some sets X,Y , and some function β : X → Y , we

use the notation 〈y〉β to denote the preimage of y, i.e. the

set {x ∈ X |β(x) = y}.
As in [9], for any set X we use the notation ΛX to

denote the set of all distributions over X, i.e. ΛX denotes
set {f : X → [0, 1] |

P
x∈X f(x) = 1}. For any set X, let

0X : X → {0} be the constant zero function over X. Even
though 0X is not strictly speaking a distribution, we will find
it very useful in this paper to call it the null distribution over
X. We use the notation ΩX to denote the set of all null and
non-null distributions over X, i.e. ΩX = ΛX ∪ {0X}.

2.1 Transmission Functions
The idea of a transmission function was used in [1] to

model the behavior of a recombination operator that takes
two parents as input and produces one child as output. We
make a minor extension of this idea in order to be able to
model variation operators with arbitrary numbers of par-
ents. For any set X, an m-parent transmission function
over X is an element of the set

�
T :

m+1Y
1

X → [0, 1]

���� ∀x1, . . . , xm ∈ X,

X
x∈X

T (x, x′1, . . . , x
′
m) = 1

�

Extending the notation introduced above, we denote
this set by ΛXm. A transmission function is simply a condi-



tional distribution, so following [9], we use conditional prob-
ability notation to denote transmission functions. Thus an
m-parent transmission function T (x, x1, . . . , xm) is denoted
T (x|x1, . . . , xm). Suppose a variation operator takes m ‘par-
ent’ genotypes as arguments and stochastically outputs a
single ‘child’ genotype, then this composition is modelled by
an m-parent transmission function T such that for any m
genotypes g1, . . . gm, T (g|g1, . . . , gm) is the probability that
variation will produce the child g when acting on parents
g1, . . . , gm.

Let 0Xm :
Qm+1

1 X → {0} be the constant zero func-

tion over
Qm+1

1 X. Though 0Xm is not strictly speaking a
transmission function, we find it useful to call it the null m-
parent, transmission function over X. We use the notation
ΩXm to denote the set of all null and non-nullm-parent, trans-
mission functions over X, i.e. ΩXm = ΛXm ∪ {0Xm}. For any
x1, . . . , xm ∈ X and for any transmission function T ∈ ΩXm,
T (· |x1, . . . , xm) ∈ ΩX denotes the distribution over X ob-
tained by conditioning T with x1, . . . , xm.

Given this definition of a transmission function, it can
be used to model a mutation operation (which operates on
one parent and produces one child), and indeed any variation
operation which operates on any numbers of parents and
produces one child.

For some genotype set G, let T1 ∈ ΛGm and T2 ∈ ΛGn be
transmission functions that model m and n-parent variation
operations respectively. Then the effect of applying these
two operations one after the other can be modelled by a
third transmission function: suppose the m-parent variation
operation is applied to the output of the n-parent operation,
then the transmission function that models the effect of the
composite variation is given by T1 ◦ T2, where composition
of transmission functions is defined as follows:

Definition 1. (Composition of Transmission Func-
tions) For any T1 ∈ ΩXm, T2 ∈ ΩXn , we define the compo-
sition of T1 with T2, denoted T1 ◦ T2, to be a transmission
function in ΩXn given by

(T1 ◦ T2)(x|y1, . . . , yn) =

X
(x1,...,xm)∈Qm

1 X

T1(x|x1, . . . , xm)

mY
i=1

T2(xi|y1, . . . , yn)

2.2 Dynamics Related Operators
Genotypic populations in an EA are modelled as non-

null distributions over the genotype set. The effect of evo-
lutionary operations on populations is modeled by the ap-
plication of mathematical operators to distributions.

Definition 2. (Expectation Operator) Let X be
some countable set, and let f : X → R+ be some bounded
function. We define the expectation operator Ef : ΩX →
R+ ∪ {0} as follows:

Ef (p) =
X
x∈X

f(x)p(x)

Allowing the domain of the expectation operator to
include a null-distribution in this definition, and also in the
following definitions of the selection operator, transmission
operator, evolution epoch operator, and projection opera-
tor is a mathematical trick which makes the proofs of the
theorems in this paper simpler.

The selection operator, defined below, can be used to
model the effect of fitness proportional selection on a popu-
lation of genotypes.

Definition 3. (Selection Operator) Let X be some
set and let f : X → R+ be some bounded function. We
define the Selection Operator Sf : ΩX → ΩX as follows: if
Ef (p) = 0, then Sf (p) = 0X . Otherwise,

(Sfp)(x) =
f(x)p(x)

Ef (p)

Observe that that for any non-null distribution p ∈
ΛX , (Sfp)(x) > p(x) if and only if f(x) > Ef (p); also observe
that (Sfp)(x) < p(x) if and only if f(x) < Ef (p). Thus, se-
lection rewards (i.e. increases the distribution mass of) any
instantiated element of X whose fitness is higher than the
weighted average fitness of all elements of X, and penalizes
(i.e. decreases the distribution mass of) any instantiated el-
ement of X whose fitness is lower than the weighted average
fitness of all elements of X.

Definition 4. (Variation Operator1) Let X be a set,
and for any m ∈ N+, let T ∈ ΩXm be a transmission function

over X. We define the variation operator VT : ΩX → ΩX

as follows:

(VT p)(x) = T (x|x1, . . . , xm)

mY
i=1

p(xi)

The variation operator can be used to model the effect
of the application of the variation operators of an EA to
some population of genotypes.

2.3 Projection Related Definitions
The next definition describes the projection operator

(previously used in [11] and [9]). A projection operator
‘projects’ a distribution that is defined over the domain of
some function, ‘through’ that function, to the co-domain.
It does this by assigning to each element in the co-domain
the sum of the distribution mass of all the members of the
preimage of that element. As the function that the projec-
tion operator projects ‘through’ is not always the same, we
make this function explicit in our notation by parameteriz-
ing the operator with it.

Definition 5. (Projection Operator) Let X,Y be
some sets and let β : X → Y be a function. We define
the projection operator, Ξβ : ΩX → ΩY as follows:

(Ξβp )(y) =
X

x∈〈y〉
β

p(x)

and call Ξβp the β-projection of p.

Let p ∈ ΛX be some distribution and let β : X → K
be some function. For any k ∈ K, the next definition allows
us to create a new distribution over 〈k〉β by normalizing the

probability masses of all elements in 〈k〉β . We call this new

distribution the (β, k)-conditional of p. Formally,

1also called the Mixing Operator in [11] and [9]



Definition 6. ((β, k)-conditional of a distribu-
tion) Let X, K be sets and let β : X → K be a function.
Let p ∈ ΩX be some distribution. For any k ∈ K, we define

the (β, k)- conditional of p to be a distribution q ∈ Ω
〈k〉

β s.t.

if (Ξβp)(k) = 0, then q = 0
〈k〉

β . Otherwise,

q(x) =
p(x)

(Ξβp)(k)

2.4 Some Function Related Terminology
A coarse-graining is just a function from a genotype

set to some other set. For any coarse-graining the following
definition introduces terminology that makes it convenient
to talk about the coarse-graining’s co-domain, the elements
in it’s codomain, the partition that it induces over the do-
main, and the equivalence classes of this partition.

Definition 7. (β-Theme Set, β-Themes β-class, β-
partition) Let X, K be sets and let β : X → K be a
coarse-graining. We call the co-domain K the β-theme set,
call an element in K a β-theme, call the preimage 〈k〉β of

some k ∈ K, the β-class of k, and call the set of (clearly non-
intersecting) β-classes of k, for all k ∈ K, the β-partition.

For any x ∈ X and k ∈ K when β(x) = k, we say that
x β-instantiates k.

3. INTER-POPULATION CONSTRAINTS
In this section we introduce the technique that we use

to derive the inter-population constraints that are induced
by evolutionary operators. We call this technique Form-
Invariant Commutation. It was first used in [11] and has
since been used in [10] and [13]. In all of these works how-
ever, the goal with which this technique was applied — to
solve for the asymptotic behavior of GAs — differs from our
goal, which is, to understand the immediate compositional
changes in genotypic populations that are induced by evo-
lutionary operations.

The gist of the technique is as follows: consider some
sets G,K, and some function β : G → K. Suppose W is a
well understood parameterizable operator (like say the se-
lection operator or the variation operator from the previous
section) such that when parameterized by the object x, W
models some algorithmic operation over populations of ob-
jects in G. For any population pG ∈ ΛG, let p′G = WxpG,
let pK = ΞβpG be the population of β-themes that is ob-
tained by projecting pG through β, and let p′K = Ξβp

′
G be

a population of β-themes that is obtained by projecting p′G
through β. If we derive an “understandable” object y such
that the following diagram commutes

pG
Wx //

Ξβ
''OOO p′G

Ξβ
wwo o o

pK Wy

//______ p′K

then we have succeeded in deriving a single “understand-
able” constraint that illuminates how the composition of
population p′G is constrained by the composition of pG. This
constraint is depicted by the dashed arrows in the diagram
above. In line with the terminology used in chapter 17 of [11]
we call y the quotient parameter of the constraint. A single
constraint by itself is of limited use in understanding the

effect of Wx. Deeper insight into how an evolutionary oper-
ator changes the composition of some population is possible
if one can find multiple coarse-grainings β1 . . . βn such that
each coarse-graining in this set induces a different partition
over the genotype set and the following diagram commutes:

pG
Wx //

Ξβ1

%%K
K

K

Ξβ2

��9
9

9
9

9
9

Ξβn

##

�
�
�

%

+

3
<

F

p′G

Ξβn

{{

'
%

�

�

�

�
�

x

Ξβ1

yys
s

s

Ξβ2

���
�

�
�

�

pK1
Wy1

//______ p′K1

pK2
Wy2

//______ p′K2

...
...

...

pKn Wyn

//______ p′Kn

If one is able to find such a set of coarse-grainings then
one can derive several constraints each of which provides
different information about how the composition of p′G is
constrained by the composition of pG. We say that these
constraints hold simultaneously.

4. SELECTIONAL CONSTRAINTS
For any bounded fitness function f : G→ R+, and any

pair of populations pG, and p′G such that p′G = SfpG, the
following theorem gives us simultaneous constraints between
pG and p′G. Remarkably it says that any coarse-graining of
G can be used to derive a selectional constraint between pG
and p′G.2

Theorem 1 (Selectional Constraints Theorem).
Let G and K be countable sets, let β : G → K be any
coarse-graining of G, and let f : G → R+ be some bounded
function, let pG ∈ ΩG be a distribution. For all k ∈ K,

let p〈k〉
β

∈ Ω
〈k〉

β be the (β, k)-conditional of pG. Let

F(β,p
G

) : K → R+ be defined as F(β,p
G

)(k) = Ef (p〈k〉
β
).

Then for all k ∈ K,

(Ξβ ◦ SfpG)(k) = (SF(β,p
G

)
◦ ΞβpG)(k)

i.e. letting p′G = SfpG, pK = ΞβpG and p′K = ΞβpK , the
following diagram commutes

pG
Sf //

Ξβ
''OOO p′G

Ξβ
wwo o o

pK SF
(β,p

G
)

//______ p′K

As F(β,p
G

) assigns to each β-theme k ∈ K the expected

fitness of genotypes that β-instantiate k, we call F(β,p
G

) the

β-theme fitness function given pG. For any β-theme k ∈ K
we call F(β,p

G
)(k) the β-theme fitness of k given pG

For any pair of populations pG, p′G such that p′G =
SfpG the constraint corresponding to some coarsegraining
β : G → K is as follows: if any β-theme k has β-theme

2Due to space restrictions proofs have been omitted. They
can be found in the full version of this paper which is posted
on the first author’s website



fitness given pG that is greater than (or less than) the ex-
pected β-theme fitness given pG then there will be ‘more’
(or correspondingly, ‘fewer’) genotypes that β-instantiate k
in p′G.

Form-invariant commutation of the selection operator
has been studied in [11, 10, 13] using coarse-grainings that
map fixed length strings to schemata. In these studies the
authors succeeded in ‘forcing’ form-invariant commutation
to obtain a quotient parameter for the selection operator.
What we call theme fitness in this paper was called the ‘util-
ity’ of a schema in [10]. The authors of these works do not
however show that the utility of a schema relative to some
population is simply the expected fitness of the genotypes
of the population that instantiate the schema.

Moreover upon finding that the utility of each schema
is always dependent on a population the authors deemed the
results of their analyses to be unuseful because population-
independent transition matrices that describe the effect of
the selection operator on schemata are unobtainable, and
because in the absence of such transition matrices one is
unable to perform a Markov chain analysis to solve for the
asymptotic coarse-grained behavior of an EA.

Our goal is to understand the transient behavior of
an EA by studying the constraints on the composition of
populations that are induced by evolutionary operations.
Given this purpose, the dependence of the quotient parame-
ter on the pre-selection population is not problematic pro-
vided that the nature of this dependence is well understood.

5. VARIATIONAL CONSTRAINTS
We have shown that we can use any coarse-graining

to systematically derive constraints on the composition of
any pair of pre and post selection populations. A system-
atic derivation of constraints for all pairs of pre and post
variation populations is not as simple. In the following we
introduce a condition on coarse-grainings and transmission
functions called ambivalence. We show that if this condi-
tion is met by some coarse-graining β and some transmis-
sion function T , then, for all pairs of populations pG and p′G
such that p′G = VT pG, we can use β to systematically derive
single constraints between the populations in these pairs.

To illustrate the idea of ambivalence consider a coarse-
graining β which partitions a genotype set into three sub-
sets. Fig 5 depicts the behavior of a two-parent variation
operation that is ambivalent under β3. Given some child
that is produced by this variation operation, the probabil-
ity that the child will belong to some theme class depends
only on the theme classes of the parents and not on the
specific parent genotypes. Hence the name ‘ambivalent’ –
when the behavior of the variation operaion is viewed from
the coarse-grained level of the theme classes, the variation
operation ‘does not care’ about the specific genotypes of the
parents or the child.

Definition 8 (Ambivalence). A transmission func-
tion T ∈ ΩXm is ambivalent under some coarse-graining
β : X → K if for all k, k1, . . . , km ∈ K and for all

3Formally the notion of ambivalence is defined for trans-
mission functions, however we will also use it to qualify the
variation operations of an EA; a variation operation is am-
bivalent under some coarse-graining if it can be modeled
by a transmission function that is ambivalent under that
coarse-graining.
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Figure 1: Let β : G → K be a coarse-graining
which partitions the genotype set G into three thme
classes. This figure depcts the behavior of a two-
parent variation operator that is ambivalent under
β. The small dots denote specific genotypes and the
solid arrows denote the recombination of these geno-
types. A dashed arrow denotes that a child from a
recombination may be produced ‘somewhere’ within
the theme class that it points to, and the label of
a dashed arrow denotes the probability with which
this might occur. As the diagram shows the prob-
ability that the child of a variation operation will
belong to a particular theme class depends only on
the theme classes of the parents and not on their
specific genotypes

x1, y1 ∈ 〈k1〉, . . . , xm, ym ∈ 〈km〉,
X

x∈〈k〉
β

T (x|x1, . . . , xm) =
X

y∈〈k〉
β

T (y|y1, . . . , ym)

Observe that the concept of ambivalence can also
be defined in terms of the projection operator as follows:
T ∈ ΩXm is ambivalent under β : X → K if for all
k1, . . . , km ∈ K and for all x1, y1 ∈ 〈k1〉β , . . . , xm, ym ∈
〈km〉β , Ξβ(T (· |x1, . . . , xm)) = Ξβ(T (· |y1, . . . , ym)).4

As the following definition shows, given a transmis-
sion function with domain X that is ambivalent under some
coarse-graining β : X → K, there is a ‘natural’ way to define
a transmission function over the theme set K by ‘projecting’
the transmission function through β onto the theme set K.

Definition 9. (Projection of an Ambivalent
Transmission Function) Let T ∈ ΩXm be a transmission
function that is ambivalent under some coarse-graining
β : X → K . We define the β-projection of T , de-

noted T
−→
β ∈ ΩKm to be a transmission function in

ΩKm such that for all k, k1, . . . , km ∈ K and for any

4Ambivalence is related to the concept of compatibility de-
fined in chapter 17 of [11]. Theorem 17.5 in [11] and Theo-
rem 2 of this paper can be used to show that if some trans-
mission function T is ambivalent under some coarse-graining
β : G→ K then VT is compatible with the equivalence class
relation over G that is induced by β.



x1 ∈ 〈k1〉β , . . . , xm ∈ 〈km〉β ,

T
−→
β (k|k1, . . . , km) =

X
x∈〈k〉

β

T (x|x1, . . . , xm)

As T is ambivalent, T
−→
β is well-defined.

Once again the projection of an ambivalent trans-
mission function can be defined in terms of the projec-
tion operator: given that T ∈ ΩXm is ambivalent under
some β : X → K, for all k, k1, . . . , km ∈ K, and any

x1 ∈ 〈k1〉β , . . . , xm ∈ 〈km〉β , T
−→
β (k|k1, . . . km) is given by

(Ξβ(T (· |x1, . . . , xm)))(k).
From the definitions given above, it is clear that

for any transmission function T and any function β, T is

ambivalent under β if and only if T
−→
β is well defined.

An Example from Genetic Programming: Let β be a
coarse-graining that maps each S-expression to it’s shape,
i.e. its tree structure. Consider a crossover operator
(modeled by some transmission function T ) that randomly
picks a cut point in each of two parent S-expressions and
creates a child by splicing the part of the first S-expression
that lies above it’s cut point onto the part of the second
S-expression that lies below it’s cut point. This operator is
ambivalent under β because, given the shapes of two-parent
S-expressions, the distribution over the shapes of child

S-expressions is well defined, i.e. T
−→
β is well defined.

For any transmission function T and any coarse-
graining β, if T is ambivalent under β, then, for each pair
of populations pG, p′G such that p′G = VT pG, the following
theorem gives us a single constraint between pG and p′G.

Theorem 2 (Variational Constraints Theorem).
Let G be some set, let T ∈ ΩGm be a transmission function
and let β : G → K be some function such that T is
ambivalent under β. Then T is ambivalent under β if and
only if for all distributions pG ∈ ΩG, and all k ∈ K,

(Ξβ ◦ VT pG)(k) = (V
T
−→
β ◦ ΞβpG)(k)

i.e. if and only if for any pG ∈ ΩG, letting p′G = VT pG, pK =
ΞβpG, and p′K = Ξβp

′
G, the following diagram commutes:

pG
VT //

Ξβ
''OOO p′G

Ξβ
wwo o o

pK
V

T
−→
β

//______ p′K

Connecting back with the example introduced above,
the coarse-graining that maps each S-expression to it’s shape
gives us single constraints between all pairs of pre and
post crossover populations. As mentioned earlier, a sin-
gle constraint is of limited use in understanding composi-
tional changes induced by some variation operation. What
is needed is a systematic way of deriving simultaneous con-
straints between all pairs of pre and post variation popula-
tions. In Section 7 we show that this is possible when the
genotypes are fixed length bitstrings and the variation oper-
ators are the common variation operators of a GA - ‘canon-
ical mutation’, n-point crossover and uniform crossover. In
preparation for this we derive some additional results about
ambivalence in the following section .

6. THE ALGEBRA OF AMBIVALENCE
Given several transmission functions T1, . . .Tn that

are all ambivalent under some coarse-graining β we show
two ways of combining T1, . . .Tn to create a new trans-
mission function that is also ambivalent under β. Also,
given a single transmission function T and several coarse-
grainings β1, . . . , βn such that T is ambivalent under each of
these coarse-grainings, we show how, if a certain condition is
met, the coarse-grainings can be combined to create a new
coarse-graining such that T will be ambivalent under this
new coarse-graining.

6.1 Combining Transmission functions
Given several ambivalent transmission functions over

some set, the following two lemmas give us two ways to
create new ambivalent transmission functions — firstly by
taking a weighted sum, and secondly by composition.

Lemma 1. , (The Weighted sum of Ambivalent
Transmission Functions is Ambivalent) For any set
X, any function β : X → K, and any n ∈ N+, let
T1, . . . , Tn ∈ ΩXm be ambivalent transmission functions. Let
p ∈ Ω{1,...,n} and let T ∈ ΩXm be defined as follows:

T (x|x1 . . . , xm) =

nX
i=1

p(i)Ti(x|x1, . . . , xm)

Then T is ambivalent under β with β-projection T
−→
β given

as follows:

T
−→
β (k|k1, . . . , km) =

nX
i=1

p(i)T
−→
β
i (k|k1, . . . , km)

Lemma 2. (The Composition of Ambivalent Trans-
mission Functions is Ambivalent) For any T1 ∈
ΩXm, T2 ∈ ΩXn , if T1 and T2 are both ambivalent under some
coarse-graining β : X → K. Then T1 ◦ T2 is ambivalent
under β with β-projection given as follows:

(T1 ◦ T2)
−→
β (k|j1, . . . , jn) =

X
(k1,...,km)
∈Πm

1 K

T
−→
β

1 (k|k1, . . . , km)

mY
i=1

T
−→
β

2 (ki|j1, . . . , jn)

6.2 Combining Coarse-Grainings
Given several coarse-grainings with the same domain,

the following definition allows us to create a new coarse-
graining which induces a finer partition over the domain.

Definition 10. (Cartesian Product of Coarse-
Grainings) For any n ∈ N+ and any functions β1 : X →
K1,. . . , βn : X → Kn, which share the same domain we
define the cartesian product of β1, . . . , βn to be the function
β1 × . . .× βn : X →

Qn
i=1Ki as follows:

(β1 × . . .× βn)(x) = (β1(x), . . . , βn(x))

For notational convenience we will denote some cartesian
product β1 × . . .× βn as

Qn
i=1 βi.

Given two coarse-grainings with the same domain
β1 : X → K1 and β2 : X → K2 and some transmission func-
tion T ∈ ΩXm, we say that β1 and β2 are independent with
respect to T if for any choice of m parents x1, x2, . . . , xm,



the mutual information between Ξβ1(T (·|x1, . . . , xm)) and
Ξβ2(T (·|x1, . . . , xm)) is zero. In other words knowing some-
thing about the distribution Ξβ1(T (·|x1, . . . , xm)) gives no
information about the distribution Ξβ2(T (·|x1, . . . , xm)).
Formally, for all k1 ∈ K1, k2 ∈ K2

Ξβ1×β2(T (·|x1, . . . , xm))(k1, k2) =

Ξβ1(T (·|x1, . . . , xm))(k1)Ξβ2(T (·|x1, . . . , xm))(k2)

The following definition extends this idea of indepen-
dence to multiple coarse-grainings. Unfortunately it defines
independence in a form that is more suited for use in proofs
than for understandability. The proposition that follows
shows that this form is equivalent to the more intuitive form
that we used above.

Definition 11. For any set X and any functions β1 :
X → K1,. . . , βn : X → Kn, and any T ∈ ΩXm, we say
that β1,. . . ,βn are independent with respect to T if for all
x1, . . . , xm ∈ X and all k1 ∈ K1, . . . , kn ∈ Kn,

X
x∈

〈k1〉β1
∩...∩〈kn〉βn

T (x|x1, . . . , xm) =

� X
x∈〈k1〉β1

T (x|x1, . . . , xm)

�
. . .

� X
x∈〈kn〉βn

T (x|x1, . . . , xm)

�

Proposition 1. For any set X and any functions β1 :
X → K1,. . . , βn : X → Kn, and any T ∈ ΩXm, β1,. . . ,βn
are independent with respect to T if and only if for all
x1, . . . , xm ∈ X and all k1 ∈ K1, . . . , kn ∈ Kn,

ΞQn
i=1 βi

(T (· |x1, . . . , xm))((k1, . . . , kn)) =

Ξβ1(T (· |x1, . . . , xm))(k1) . . .Ξβn(T (· |x1, . . . , xm))(kn)

The next lemma shows that given some transmission
function T and some coarse-grainings β1, . . . , βn that are
independent with respect to T , if T is ambivalent under
each of the coarse-grainings, then T will also be ambivalent
under the cartesian product of the coarse-grainings.

Lemma 3. For any n ∈ N+ let β1 : X → K1,. . . , βn :
X → Kn be functions which share the same domain. For
any m ∈ N+ let T ∈ ΩXm be a transmission function such that
β1, . . . , βn are independent with respect to T and such that
for all i ∈ {1, . . . , n}, T is ambivalent under βi. Then T is

ambivalent under
Qn
i=1 βi with

Qn
i=1 βi-projection T

−−−−−→Qn
i=1 βi

given as follows,

T
−−−−−→Qn

i=1 βi((k1, . . . kn)|(k1
1, . . . , k

n
1 ), . . . , (k1

m, . . . , k
n
m)) =

T
−→
β1(k1|k1

1, . . . , k
1
m) . . . T

−→
βn(kn|kn1 , . . . , knm)

7. SIMULTANEOUS VARIATIONAL CON-
STRAINTS IN GENETIC ALGORITHMS
Recall that a schema partition over some set of fixed

length bitstrings partitions the set into schemata which all
have ‘wildcards’ (denoted by ∗) at the same locii. For exam-
ple, if the genotype set is the set of all bitstrings of length 8,
then the schema partition ∗ ∗ ∗## ∗ ∗∗ partitions the geno-
type set into the schemata ∗∗∗00∗∗∗, ∗∗∗01∗∗∗, ∗∗∗10∗∗∗,
and ∗ ∗ ∗11 ∗ ∗∗. We call any coarse-graining that induces a

schema partition over some a set of fixed-length bitstrings a
schema partitioning.

The cartesian product structure of the genotype set
and the nature of the variation operations commonly used
in GAs makes it possible to systematically derive simulta-
neous variational constraints for all pairs of pre and post
variation populations. We show, that a transmission func-
tion that models any combination of common GA variation
operations — ‘canonical’ mutation, n-point crossover, and
uniform crossover — is ambivalent under any schema parti-
tioning.

Let B` be the set of all bitstrings of length `. For any
x ∈ B`, and any i ∈ {1, . . . , `}, let xi denote the ith locus
of x.

Let n ∈ N+. For any i ∈ N+ such that i ≤ n let
βi : Bn → {0, 1} be a coarse-graining such that βi(x) = xi,
i.e. βi maps a bitstring to the value of its ith locus.

Let I be the power set of {1, . . . , n}, let I ∈ I be some
index set {a1, . . . , a|I|} where a1 < . . . < a|I| and let βI :
Bn → B|I| be the coarse-graining βa1 × . . . × βa|I| . For
each I ∈ I, βI is a schema partitioning. To see this formally,
for any index set I ∈ I observe that the schema partition
induced by βI is given by the concatenation ξI(1) . . . ξI(n),
where for any j ∈ {1, . . . , n}, ξI(j) is given by

ξI(j) =

�
# if j ∈ I
∗ otherwise

7.1 Ambivalence of Canonical Mutation
Let us call a mutation operation that flips each bit

independently with some fixed probability α canonical mu-
tation and let M ∈ ΛBn

1 be a transmission function that
models this operation. Observe that for any i ∈ {1, . . . , n},
M is ambivalent under βi with M

−→
βi ∈ Λ

{0,1}
1 given as fol-

lows:

M
−→
βi(k| l) =

�
α if k 6= l

1− α otherwise

Observe that for any I ∈ I, such that I = {a1, . . . , a|I|}
and a1 < . . . < a|I|, βa1 , . . . , βa|I| are independent with
respect to M as M models a mutation operator that flips
bits independently of each other. Hence, by lemma 3, M is

ambivalent under βI with M
−→
βI ∈ Λ

B|I|
1 given by

M
−→
βI (k| l) = M

−−→
βa1 (k1| l1) . . .M

−−−→
βa|I| (k|I| | l|I|).1

Multiplication by 1 at the end of the right hand side of this
expression is necessary to account for the case when I is the
empty set.

7.2 Ambivalence of Uniform and n-point
Crossover

Let Ψ be the set of all masks for length n bitstrings,
i.e. Ψ is itself a set of bitstrings in Bn. For any mask
ψ ∈ Ψ let the 2-parent transmission function Tψ ∈ ΛBn

2 be
defined as follows:

Tψ(x|y, z) =

{
1 if ∀i ∈ {1, . . . , n, },

(xi = yi ∧ ψi = 0) ∨
(xi = zi ∧ ψi = 1)

0 otherwise

Note that for any parents y, z Tψ(·|y, z) is a discrete



delta function which concentrates all its distribution mass
on one child. In other words, Tψ is ‘deterministic’.

For all ψ and for all i ∈ {1, . . . , n}, see that Tψ is

ambivalent under βi with T
−→
βi
ψ ∈ Λ

{0,1}
2 given as follows:

T
−→
βi
ψ (k| l,m) =

{
1 if (k = l ∧ ψi = 0) ∨

(k = m ∧ ψi = 1)
0 otherwise

Observe that for any I ∈ I, such that I =
{a1, . . . , a|I|} and a1 < . . . < a|I|, βa1 , . . . , βa|I| are in-
dependent with respect to Tψ because for any two par-
ents y, z the mutual information between the distributions
Ξβa1

(Tψ(·|y, z)), . . . ,Ξβa|I|
(Tψ(·|y, z)) is zero. (This is be-

cause the distribution Ξβi(Tψ(·|y, z)) depends only on the
values yi, zi, and ψi). Hence, by lemma 3, Tψ is ambivalent

under βI with T
−→
βI
ψ given as follows:

T
−→
βI
ψ (k| l,m) = T

−−→
βa1
ψ (k1| l1,m1) . . . T

−−−→
βa|I|
ψ (k|I| | l|I|,m|I|).1

Multiplication by 1 at the end of the right hand side of this
expression is once again necessary to account for the case
when I is the empty set.

For some choice of distribution over the set of all masks
q ∈ ΛΨ, let T ∈ ΛBn

2 be given as follows:

T (x|y, z) =
X
ψ∈Ψ

q(ψ)Tψ(x|y, z)

As stated above, for all ψ ∈ Ψ, Tψ is ambivalent under
βI . Therefore by lemma 1, T is ambivalent under βI with

T
−→
βI ∈ Λ

B|I|
2 given by

T
−→
βI (k| l,m) =

X
ψ∈Ψ

q(ψ)T
−→
βI
ψ (k| l,m)

By appropriately choosing q, T can be made to model any
n-point or uniform crossover operation [13], so any n-point
or uniform crossover operation is ambivalent under βI .

Finally, by lemma 2 any composition of n-point or
uniform crossover operations with the canonical mutation
operation, in any order, is ambivalent under βI .

Given this result one can use schema partitionings
and the variational constraints theorem to systematically
derive simultaneous constraints for all pairs of pre and post
variation populations for any GA with common variation
operations.

8. CONCLUSION
In order to understand how EAs adapt phenotypes it is

important to study the immediate effect of evolutionary op-
erations on populations of genotypes. This paper has made
the following contributions towards such a study.

1) We described how the technique of form-invariant
commutation allows us to understand the immediate effect
of evolutionary operations on genotypic populations in terms
of inter-population constraints. We argued that deep insight
into this population-level effect is possible when one can
systematically derive simultaneous constraints over all pairs
of pre and post operative populations.

2) In section 4 we showed that the fitness proportional
selection operator is quite remarkable because any coarse-
graining induces single constraints over all pairs of pre and

post selection populations. Moreover we succeeded in deriv-
ing these constraints in a form that is easy to understand.
The results obtained are clearly important to an understand-
ing of how EAs adapt phenotypes.

3) We developed an abstract condition called ambiva-
lence and showed that when a transmission function (that
models some variation operation) is ambivalent under some
coarse-graining then it is possible to systematically derive
single constraints over all pairs of pre and post variation
populations.

4) Finally we showed that when the evolutionary
system is a GA that uses some combination of ‘common’
variation operations, it is possible to use schema partition-
ings to derive simultaneous constraints over all pairs of
pre and post variation populations. In future work we will
examine how knowledge about these constraints contributes
to an understanding of adaptation in genetic algorithms.
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