
Chapter 1

A Scalable Divide-and-Conquer Parallel Algorithm

for

Finite State Automata and Its Applications�

Z. George Mouy Sevan G. Ficiciy

Abstract

Finite state automata (FSA) have been used to model dynamic sys-
tems found in many areas. They are also the building blocks of cellular
automata. We present a new scalable divide-and-conquer alogrithm for
the parallel simulation of FSAs that is fast and e�cient, regardless of
the relation between input size and the number of processors, and dis-
cuss its application to sequential circuit and queuing system analysis.

1 Description

The input string to a FSA is, by de�nition, read sequentially. The insight

needed to overcome this seemingly inherent limitation is that each input

symbol can be viewed as a function, mapping one state to another, thus

reducing the problem to one of applying a parallel reduction or scan using

functional composition as the binary operator [1], [4]. To simulate a �nite

state automatonM operating on input string I of length n by p processors,

I is �rst evenly partitioned over the p processors. The algorithm proceeds

in three stages.

Assuming n >> p, each processor �rst applies a serial scan to its lo-

cal segment of n=p input symbols. This requires O(nm=p) parallel time,

where m is the number of states of M , and no inter-processor communi-

cation. Next, the resultant p composite functions are further composed by

�This work was partially supported by NSF grant CCR-89 43333.
yDept. of Comp. Science, National Center for Complex Systems, Brandeis University,

Waltham, MA.

1

2 Mou and Ficici

divide-and-conquer (DC) [3]. The computation for this global scan takes

O(m log(p)) time on any parallel machine, whereas the communication time

depends on the topology of the machine. Optimal DC mappings exist such

that commumication cost is exactly equal to the diameter of the network

[5], which in the case of a k dimensional mesh is k(p1=k � 1). Finally, each

processor accumulates the composite functions applied to it during the DC

scan, and adjusts the �rst (n=p)�1 composite functions of its local segment

accordingly. If one is concerned only with the �nal state and output of the

FSA, this third step is omitted and a reduction is substituted for the scan

in stages one and two. The total complexity of the algorithm is thus:

T (n) = O(nm=p+m log(p) + k(n1=k � 1))(1)

Switching between optimal serial and parallel methods gives our algo-

rithm superior performace compared to the use of recursive doubling or

odd-even reduction throughout, neither of which have optimal mappings on

any k � 2 dimensional mesh [2]. Particularly, when n = O(p), odd-even

reduction has a larger constant factor.

2 Applications

Sequential circuits are readily described as FSAs. Thus, the algorithm pro-

vides a simulator where the parallelism is una�ected by the vagaries of a

circuit's structure. To simulate a �nite length queue, the size of a FSA is sim-

ply the size of the queue + 2 (empty queue/free server + empty queue/busy

server). The input consists of time-stamped arrival and departure events

(symbols), which encode a queue length and server status for each state at

an instant of time. The composition of two input events represents a span

of time, transforming the scalar values of the earlier event into curves via

multiplication by time. Subsequent DC steps pair composite events and sum

the areas of their respective curves, as well as calculate the curves between

them. Thus, a second, superimposed scan operation calculates a running

integration of curves that depict queue length and server status over time,

making calculation of server utilization, average wait time, etc., possible.

3 Benchmarks

Figure 1 depicts idealized and actual performace of the algorithm, and in-

dicates an excellent �t. As predicted, for most values of n and p, the nm=p

Scalable DC Algorithm for Finite State Automata 3

a*(n/p) + b*log(p) + c*(2*(sqrt(p)-1))

500 1000
1500

2000 2500
3000

3500 4000 5000
10000

15000
20000

25000
30000

100

200

300

400

500

600

700

800

#Processors p

 Input Size n

Time t (mSec)

’t9.gp’

500 1000
1500

2000 2500
3000

3500 4000 5000
10000

15000
20000

25000
30000

0

100

200

300

400

500

600

700

800

#Processors p

 Input Size n

Time t (mSec)

(a) (b)

Figure 1: (a) Theoretical analysis and (b) benchmark data from MasPar

MP-2 with 4096 processors. p is number of processors, n is input size, and t

is time in mSecs. For large values of n, a virtually linear speedup is achieved

as p increases.

term dominates, and a speedup virtually linear to the number of processors

used is achieved. For small values of n and p, however, DC computation and

communication times dominate: benchmarks indicate that p=8 for n=32 is

optimal at 23 mSecs; timings for p=16 and p=32 are 46 mSecs and 70 mSecs,

respectively. This behavior is still sub-optimal and predicted by our model.

References

[1] R. E. Ladner and M. J. Fischer, \Parallel Pre�x Computation," JACM,

(27/4), 831-838.

[2] Z. G. Mou and M. Goodman, \A Comparison of Communication Costs

for Three Parallel Programming Paradigms on Hypercube and Mesh

Architectures", Proc. 5th SIAM Conf. on Parallel Processing, 491-500.

[3] Z. G. Mou and P. Hudak, \An Algebraic Model for Divide-and-Conquer

and Its Parallelism", The Journal of Supercomputing, (2/3), 257-278.

[4] W. D. Hillis and G. L. Steele, Jr., \Data Parallel Algorithms", CACM,

(29/12), 1170-1183.

4 Mou and Ficici

[5] Z. G. Mou and X. Wang, \Optimal Mappings of m Dimensional FFT

Communication to k Dimensional Mesh for Arbitrary m and k", Lecture

Notes in Comp. Science, (694), 104-119.

