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ABSTRACT

Coevolution has often been based on averaged outcomes,
resulting in unstable evaluation. Several theoretical ap-
proaches have used archives to provide stable evaluation.
However, the number of tests required by some of these ap-
proaches can be prohibitive of practical applications. Re-
cent work has shown the existence of a set of underlying
objectives which compress evaluation information into a po-
tentially small set of dimensions. We consider whether these
underlying objectives can be approximated online, and used
for evaluation in a coevolution algorithm. The Dimension
Extracting Coevolutionary Algorithm (DECA) is compared
to several recent reliable coevolution algorithms on a Num-
bers game problem, and found to perform efficiently. Appli-
cation to the more realistic Tartarus problem is shown to be
feasible. Implications for current coevolution research are
discussed.
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1. INTRODUCTION

Test-based coevolution algorithms (Barricelli, 1962; Axel-
rod, 1987; Hillis, 1990) use the outcomes of interactions be-
tween individuals to perform evaluation and selection. His-
torically, coevolutionary algorithms have used an aggregate
measure of these outcomes during selection. For example,
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the score against individuals in a second population may be
averaged, either directly or weighted by the number of other
individuals that receive the same score as in competitive fit-
ness sharing (Rosin, 1997). The aggregate fitness measure
is then used to select individuals.

A problem with averaging over a changing set of coevolv-
ing individuals, is that this form of evaluation is unstable;
features that are beneficial in the context of one set of oppo-
nents may later be unfavorable, and thus there is no guaran-
tee that the resulting search process will improve the overall
performance of individuals in the long run.

Several recent approaches to coevolution have used archives
to develop a stable basis for evaluation and subsequent selec-
tion. The criterion used to decide which individuals should
reside in the archive depends on the solution concept (Ficici,
2004) the experimenter wishes to approximate. Examples of
solution concepts and corresponding algorithms include:

e Simultaneous maximization of the outcomes against
all opponents, approximated by the Covering Compet-
itive Algorithm(Rosin, 1997);

e The Nash Equilibrium, approximated by the Nash Mem-
ory (Ficici & Pollack, 2003);

e The Pareto-optimal equivalence set, approximated by
the Incremental Pareto-Coevolution Archive, IPcA (De
Jong, 2004a) and the LAyered Pareto-Coevolution
Archive, LAPCA (De Jong, 2004b);

e Maximization of expected utility, approximated by the
MaxSolve algorithm (De Jong, 2005).

The solution concept adopted in this article is the Pareto-
optimal equivalence set. This concept specifies a set of can-
didate solutions that are non-dominated in the sense of evo-
lutionary multi-objective optimization. The objectives used
in determining this set are given by the set of all possible
tests, where tests are the co-evolving individuals with which
candidate solutions interact. An issue with using all tests
as objectives, is that the number of possible tests in a prob-
lem is typically very large. The approach taken in this work
may provide a way to reduce the set of all possible tests to a
smaller set of objectives that provide equivalent evaluation.

Recent work on test-based problems has shown the exis-
tence of underlying objectives which compress evaluation in-
formation into a possibly small set of dimensions (De Jong
& Pollack, 2004; Bucci, Pollack, & De Jong, 2004). Rather



than representing the raw outcome against a single oppo-
nent, dimensions provide structure over the outcomes against
many opponents. Evaluation information can then be de-
rived from this structure. Theoretically, it has been shown
that all test-based problems can be structured in this way
(Bucci et al., 2004). The question then arises whether this
theoretical structure can be approximated by the search al-
gorithm, and used simultaneously to evaluate individuals.
Here we begin an inquiry into that question by developing
a Dimension Extracting Coevolutionary Algorithm, DECA,
which extracts dimensions and utilizes this information for
evaluation and selection.

DECA constitutes a novel approach to evaluation in co-
evolution. The algorithm constructs and updates a multi-
dimensional evaluation function that aims to approximate
the true underlying objectives of the problem. If this un-
derlying multi-objective evaluation function can be approx-
imated with sufficient accuracy, then DECA can in principle
provide stable evaluation using only a possibly small subset
of all tests.

To test the viability of DECA, comparison experiments
with several recent reliable coevolutionary methods are per-
formed on COMPARE-ON-ONE, a numbers game problem that
is likely to induce over-specialization, and on a game called
Tartarus (Teller, 1994; Ashlock, Willson, & Leahy, 2004).

The remainder of this paper is structured as follows. In
Section 2, we discuss coevolutionary evaluation, Pareto Co-
evolution, and the notion of underlying objectives. Sec-
tion 3 discusses the extraction of underlying objectives, and
presents the DECA algorithm. Section 4 describes the ex-
perimental setup, and Section 5 presents results. Finally,
Section 6 concludes.

2. COEVOLUTIONARY EVALUATIONAND
UNDERLYING OBJECTIVES

2.1 Pareto-Coevolution

A defining feature of coevolution is that the evaluation of
individuals is influenced by other (co-)evolving individuals
such that the ranking of the individuals can be affected; thus,
scaling effects due order-preserving transformations are ex-
cluded.

As an example, we may imagine a population of chess
players where each individual plays against some sample
of the population. All individuals are evaluated based on
their score against this sample, and their aim is to optimize
this evaluation. This represents a first role that must be
performed by a coevolutionary algorithm: individuals must
perform optimization according to whatever evaluation is
provided. While in regular evolution the goals of the exper-
iments are translated directly into a fitness function, in co-
evolution the evaluation is provided by other, (co-)evolving
individuals.

If coevolutionary optimization is to be effective, the evalu-
ation provided by co-evolving individuals must be adequate.
This implies that there is a second role for individuals in co-
evolution: namely, they must provide accurate evaluation, so
that when this evaluation is optimized, the process behaves
according to the goals of the experimenter. The realization
that a coevolutionary algorithm must successfully address
both of these two distinct roles has been an important de-
velopment in coevolution research.

The value of adequate evaluation has been discussed early
on (Epstein, 1994; Juillé & Pollack, 1998). An important
milestone has been the suggestion that the individuals en-
countered in interactions, such as the opponents in two-
player games, may be viewed as objectives in the sense of
Evolutionary Multi-Objective Evaluation (EMOO). This idea
is known as Pareto-Coevolution (Ficici & Pollack, 2000;
Watson & Pollack, 2000), and has influenced a substantial
amount of subsequent research into coevolution (Ficici &
Pollack, 2001; Bucci & Pollack, 2005; Watson & Pollack,
2003; De Jong & Pollack, 2004; De Jong, 2004a, 2004b).

In correspondence with the two roles, we distinguish be-
tween two types of individuals. A candidate solution is an
individual whose performance we wish to optimize. A test is
an individual used to evaluate candidate solutions. In most
test-based problems, there is a clear distinction between can-
didate solutions and tests. In Hillis’s work on coevolving
sorting networks for example (Hillis, 1990), the sorting net-
works are candidate solutions, while the sequences used to
evaluated the networks (called parasites) are tests. However,
individuals may also have both roles. This occurs for exam-
ple in Cooperative Coevolutionary Algorithms (CCEA’s);
see (Bucci & Pollack, 2005).

2.2 Underlying Objectives

The notion of underlying objectives was first described in
(De Jong & Pollack, 2004). The notion is based on the con-
cept of objectives employed in Evolutionary Multi-Objective
Evaluation. There, an objective is a function that measures
some aspect of the quality of an individual, and expresses
this as an element from an ordered set of scalar values. An
objective can be viewed as a partial evaluation function, as it
reveals some aspect of the quality of an individual; complete
information about the quality of the individual is obtained
by combining the information provided by all of the objec-
tives.

In a multi-objective problem, the objectives are given as
part of the problem definition. In a coevolution problem,
the objectives of the problem are in general unknown. As
Pareto-coevolution makes clear however, a meaningful set of
objectives can be obtained by considering every possible test
to be an objective. While the number of possible tests in
a problem may be very large, Pareto-Coevolution has been
important in providing clear candidate criteria for what a
coevolutionary algorithm should be optimizing.

In the following, we describe Pareto-Coevolution and the
notion of underlying objectives formally. Given a problem
P, let C be the set of all candidate solutions, let T be the
set of all tests, and let G : C'xT — {0,1} be an interaction
function that determines the outcome for candidate C on
test T, which for simplicity we assume to be binary here. A
test is said to pass a candidate if the candidate receives a
positive outcome (1), and to fail it otherwise.

The set of objectives defined by Pareto-Coevolution will
be written as Op. Thus, for each test T' € T, Op contains
an objective or € Op that represents T. The value of an
objective or for a given candidate solution C' can simply be
defined as the outcome of C on T: or(C) = G(C,T).

A set of underlying objectives Up can now be defined as
any set of objectives that induces the same order on the
candidates as Op. Specifically, if an objective o € Op exists
for which candidate C'1’s value is greater than candidate
C2’s value, then Up must contain an objective for which



Figure 1: Example Numbers game problem: tests
are points in a 2-d space. In Pareto-coevolution,
all n? tests would be separate objectives. The two
underlying objectives (marked by ellipses) are more
compact, yet provide equivalent information.

the same holds, and vice versa.

DEFINITION 1 (UNDERLYING OBJECTIVE SET). A set of

objectives Up is an underlying objective set for a problem
P if and only if the following holds for all C1,C2 € C:

Jo € Op : o(C1) > 0(C2) =
3o’ € Up : 0'(C1) > 0'(C2)

A set of objectives that qualifies as an underlying objective
set provides evaluation that is precisely equivalent to using
all possible tests as objectives, assuming evaluation is based
on Pareto-dominance. This can be seen as follows: an indi-
vidual C1 dominates an individual C2 if no objective o ex-
ists for which o(C2) > o(C1), and if in addition an objective
does exist for which o(C1) > o(C2). Thus, the only required
information to determine dominance between two individu-
als is whether an objective exists for which o(C1) > o(C2).
Since the above definition ensures this information is pre-
served, an underlying objective set is guaranteed to induce
the same dominance relation for a set of candidates as the
original Pareto-coevolution objectives of using all tests as
objectives.

It can be productive to view a set of objectives as a space,
which we will call the evaluation space of the objectives here;
the evaluation of candidates then corresponds to determin-
ing its position in the evaluation space. Underlying objec-
tives will equivalently be called underlying dimensions, to
emphasize the geometrical aspect involved in constructing
an evaluation space. To clarify the idea of underlying ob-
jectives, we will now discuss an example.

2.3 Example: A 2-dimensional numbers game

As an example, we consider a two-dimensional Numbers
game (Watson & Pollack, 2001) called COMPARE-ON-ONE,
which was introduced in (De Jong & Pollack, 2004). Both
candidates and tests are points in two-dimensional space, see

Fig. 1. In COMPARE-ON-ONE, the tests test on the dimen-
sion of their highest coordinate; tests below the diagonal
base their outcome on the horizontal axis, while tests above
the axis use the vertical axis to determine outcomes. The
outcome of a test for a given candidate solution is obtained
by determining whether the candidate solution’s value in the
test’s selected dimension is above or below the coordinate of
the test in this dimension. Thus, the game can be defined
as follows:

1 if Crn2>Thn

compare —on —one : G(C,T) = { 0 otherwise

where m = arg max T3, C is a candidate, T is a test, and z;
1

denotes the value of individual z (either candidate or test)
in dimension 1.

In the diagram (Fig. 1), each candidate solution is rep-
resented by a black dot. The set of tests equals the set of
candidate solutions.

By adopting Pareto-Coevolution, the COMPARE-ON-ONE
problem is transformed into a multi-objective problem for
which each test is an objective. Since there are 5x5=25 dis-
tinct tests in this example problem, this leads to a problem
with 25 objectives. However, it is clear from the description
of this example problem that there are only two qualities
that matter for a candidate: its horizontal coordinate and
its vertical coordinate. Intuitively therefore, it would seem
that the example problem should be a 2-objective problem.
Consideration of the underlying objectives of the problem
shows that this is indeed the case.

The following set of two underlying objectives may be de-
fined: a horizontal objective, consisting of the tests on the
horizontal axis, and a vertical objective, consisting of the
tests on the vertical axis. It is straightforward to show that
this set of underlying objectives satisfies the earlier defini-
tion; whenever a pair of candidates C'1, C'2 have different
outcomes for one of the 25 tests, their coordinates on one of
the axes must differ, and hence their outcome for one of the
tests on the axis differs. Vice versa, if the outcomes of C'1
and C2 differ for a test on one of the axes, then clearly their
outcome for one the 25 tests differs, as the tests on the axes
are a subset of the set of all tests.

2.4 Representation and Interpretation of
Objectives

In the above example, objectives are represented by se-
quences of tests. For each test, we can determine the set
of candidates failed by the test, called the test’s Candidate
Failure set, or CF-set for short, which is defined thus:

DEFINITION 2. CF —set(T) = {C € C | G(C,T) <0}

We have employed the same notion in previous work (Bucci
et al., 2004), where it was written V;. Objectives can equiv-
alently be represented by sequences of CF-sets. The latter
provides a more powerful representation for objectives, as
the tests of a problem often only represent a fraction of the
set of all possible CF-sets; the latter is given by the power-
set of the set of all candidates.

The objectives span an evaluation space, and can therefore
be viewed as axes that make up a coordinate system. Each
candidate and test has a position in the evaluation space.
The position of a candidate for a given objective, which may
be viewed as a coordinate on an axis, is given by the index



of the highest CF-set on the axis that does not contain the
candidate. This index represents the value of the objective
for the candidate. The position of a test for a given objective
is given by the index of the highest CF-set that is still a
subset of the test’s CF-set.

2.5 Extracting Underlying Objectives

In the previous section it was shown that for an exam-
ple problem, a compact set of underlying objectives existed
that captures the relevant dimensions of performance in the
problem. However, the choice of the underlying objectives
was provided as part of the example. A more interesting
question therefore is whether the underlying objectives of
a problem can be extracted automatically. Other research
demonstrates that this is possible. In earlier work (Bucci
et al., 2004), we described a heuristic algorithm that ac-
cepts a matrix of outcomes, and returns a set of underlying
objectives. In the algorithm, objectives are represented by
sequences of tests, as in the above example.

The minimum number of objectives that form a correct
set of underlying objectives for a problem is an intrinsic
property of a problem, called the evaluation dimension of
the problem. The evaluation dimension is a measure of the
complexity of the evaluation function implicitly defined by
a problem (Bucci et al., 2004). Using an example, it can be
shown that by limiting the definition of dimensions to se-
quences of actual tests, the evaluation dimension of a prob-
lem may not be obtained. This is because certain combina-
tions of outcomes can be represented using a given number
of objectives only if hypothetical tests that assign a partic-
ular combination of outcomes to candidates are available;
thus, limiting the definition of the objectives to combina-
tions of outcomes actually achieved by tests may increase
the required number of dimensions.

Extracting a minimal-dimensional evaluation space is pos-
sible; by considering all possible configurations of combining
CF-sets onto axes for an increasing number of axes until a
complete set of underlying objectives is obtained, minimal
dimensionality can be achieved. However, due to its compu-
tational complexity, this approach is of theoretical interest
mainly.

Here, we employ a variant of our earlier dimension ex-
traction algorithm (Bucci et al., 2004) that, unlike that ear-
lier algorithm, represents objectives as vectors of CF-sets
rather than tests. This combines the merits of the two algo-
rithms mentioned above; by using sequences of CF-sets as a
representation for the objectives, minimality can in princi-
ple be attained. Yet, the algorithm is also computationally
tractable, as it employs a heuristic to search the space of
objective sets. We briefly describe this algorithm below.

3. DECA:DIMENSION EXTRACTING CO-
EVOLUTIONARY ALGORITHM

3.1 Dimension Extraction Algorithm

The input to the algorithm consists of a set of n. candi-
dates and n. tests, together with the full n. X n; matrix with
outcomes of interactions between all combinations of candi-
dates and tests. The output is a set of underlying objectives
or dimensions, each of which is represented by an ordered
sequence of CF-sets.

The DE algorithm operates as follows. First, the set of
candidates and tests is filtered such that of any candidates

or tests with identical outcome vectors, only a single one
remains. The initial set of objectives is empty. The algo-
rithm then considers whether any tests exist that fail only
a single candidate. For each such candidate, an objective
must exist containing a CF-set containing this candidate
only; otherwise the set of objectives cannot form a complete
set of underlying objectives. Since the CF-sets on an objec-
tive are supersets of the preceding CF-sets on the objective,
such a CF-set can only be placed as the first element of an
objective. Therefore, a separate objective is constructed for
each of the above candidates.

Next, the following cycle is repeated. For each test, the
current value for each objective is determined as the highest
CF-set on the objective for which the test still fails all can-
didates. Starting from the set of candidates failed by each
test, the candidates occurring in the highest CF-set of the
test are removed. The remaining candidates failed by the
test (remaining Candidate Failures, or CF’s) are yet to be
accounted for by the coordinate system.

The collection of all remaining CF’s is sorted based on the
number of tests that require the CF’s. The algorithm first
attempts to place one of these remaining CF’s, visited in the
sorted order, at the end of an objective for which it holds
that all test that have the CF as a remaining CF have all
CF’s specified by the highest CF-set on the objective. This
guarantees that by appending the CF to the objective, all
tests that still needed the CF can now remove it from their
list of remaining CF’s. If this fails for all CF, the algorithm
attempts to add a CF to an objective such that not all, but
the highest possible number of tests, but at least one test,
benefit from adding the CF. If this fails for all remaining
CF’s as well, a new objective is created, on which the most
frequently required CF is placed.

The above cycle is repeated until all CF’s made by tests
are accounted for by the current set of objectives, i.e. no
test has any remaining CF’s. The DE algorithm returns
the set of objectives (0bjs), and a corresponding set of test
objectives (testobjs). For every CF-set on an objective obj €
objs, every test whose position on obj equals the CF-set is
placed on the corresponding testobj.

So far, we have discussed the notion of underlying objec-
tives, and briefly described a Dimension Extraction (DE)
procedure for extracting a set of underlying objectives for a
given set of candidates and tests. The significance of this
procedure is that the resulting objectives define an evalua-
tion space that can be used to evaluate candidate solutions.
Given the complete set of candidates and tests for a prob-
lem, the DE procedure constructs a set of objectives whose
values together specify all relevant evaluation information
for a candidate solution. Thus, evaluating the candidate
solution based on the extracted objectives is equivalent to
evaluating the candidate on all tests, and thereby provides
maximally informative evaluation.

Rather than applying the DE algorithm to the complete
sets of candidates and tests, the idea behind DECA is to build
the evaluation space gradually. Starting from an empty eval-
uation space, the algorithm receives sets of candidates and
tests, and calls the DE procedure to construct an evaluation
space that provides complete evaluation information for the
current set of candidates and tests. Next, for all axes on the
objectives returned by the DE procedure, DECA retains the
candidates represented by the CF-sets on the objectives. In
addition, all tests placed on the test objectives by the DE



procedure are kept. By keeping these sets of candidates
and tests, the next approximation of the evaluation space is
guaranteed to represent at least the same evaluation infor-
mation.

It can be shown that the above description of DECA is
guaranteed to converge to a complete underlying objective
set, as will now be discussed. To show this, we consider the
set of distinctions (Ficici & Pollack, 2001) made by subse-
quent versions of the evaluation space. An objective o makes
a distinction between candidates C1 and C2 if it assigns a
higher value to the former than to the latter: o(C1) > o(C2).
It will be shown that the set of distinctions made for the set
of candidates retained by DECA grows over time.

Assume a test T and a pair of candidates C1,C2 exist
such that G(C1,T) > G(C2,T). Since G is assumed to be
binary, this implies T fails C2 but not C'1. In the evaluation
space E returned by the DE procedure, T’s position is rep-
resented by a vector of CF-sets that represent coordinates
on the dimensions of E. The union of these CF-sets equals
the set of all current candidates failed by T'. Since T fails
C2, at least one of these CF-sets must contain C'2, and since
T does not fail C'1, this CF-set cannot contain C1. Given
that for each position on a test objective, all tests that have
the position are retained, we know that T" will be retained.
This guarantees that in the next approximation of the eval-
uation space, and by induction in all subsequent versions of
the evaluation space, a test T' making the distinction be-
tween C1 and C2 will again be present. Therefore, the set
of distinctions made by the evaluation space can only grow.

The above shows that the set of distinctions made can
only grow. Furthermore, any distinction that can be made
between two candidates can be incorporated into DECA’s
evaluation space, as long as it is presented to the algorithm.
Therefore, to guarantee that the algorithm will converge to
an evaluation space representing all possible distinctions, it
is sufficient to ensure that all combinations of two candi-
dates and a test will be presented to the algorithm with a
non-zero probability. This can be ensured theoretically by
generating individuals uniformly random (though in prac-
tice this method of finding missing distinctions may not be
the most efficient choice). If it can further be assumed that
the spaces of candidates and tests are finite, then the algo-
rithm must converge to an evaluation space that represents
all possible distinctions. Definition 1 shows that such an
evaluation space is an underlying objective set.

The above version of DECA is described to motivate the
theoretical idea behind the algorithm. However, the sets of
candidates and tests maintained by the above procedure can
still be large. Therefore, two changes are made to define the
implementation of the algorithm. First, rather than main-
taining all tests that have a given coordinate on a test objec-
tive, the algorithm keeps only one, namely the test that fails
fewest other candidate solutions. Furthermore, if candidates
are progressing on all objectives, it is sufficient to maintain
only the high end of each objective, representing the coor-
dinates of the best current candidates. Therefore, only the
highest max-elements elements of each axis are maintained.
The resulting version of DECA is described in pseudo-code in
Figure 2.

An important practical question is whether the evaluation
spaces of practical problems can be compactly described.

!The notation f(&z) denotes call-by-reference, i.e. the func-
tion may change the argument x.

deca(Cnew, Tnew){
Cset =0
Tset =0
initialize(Cpop)
initialize(Tpop)
while(!done)
evolve(Cset, T'set, &Cpop, &T'pop, &Cnew, &Tnew)
extract(Cset U Cnew, Tset UTnew, &objs, &testobjs)
Cset = {}
Tset := {}
Yobj € objs
n := obj.length()
for i := maxz(0,n — max — elements)...n — 1
CF := obj[i] \ objli — 1]
Cset .= Cset UCF
Yobj € testobjs
n := obj.length()
for i := maxz(0,n — max — elements)...n — 1
Tset := TsetU arg min[_]|CF — set(T)]

Teobjli
end

}

Figure 2: Pseudo-code of the DECA algorithm. The
algorithm receives sets of new candidates and tests,
and applies the Dimension Extraction algorithm
(DE), resulting in a set of underlying objectives.
For each objective, and for up to max-elements of the
highest CF-sets on the objective, the correspond-
ing candidate and a test whose position on the ob-
jective corresponds to the CF-set (if possible) are
maintained. In this way, increasingly high sections
of the underlying objectives, and corresponding can-
didates, are maintained.

The example in the previous section showed that this is at
least possible. Stronger evidence to suggest this was found
in a preliminary investigation of the game of Nim; we found
that a complete space of 36 distinct tests could be reduced
to only four underlying objectives, representing a significant
degree of compression.

3.2 Evaluation in DECA

DECA extracts objectives, which represent vectors of can-
didates and tests. In the basic setup, the candidates and
tests on the objectives are collected, and the resulting sets
of candidates and tests are used to evaluate population in-
dividuals, and potentially to generate new individuals, both
without using information about the positions of the indi-
viduals on the objectives.

A crucial feature of DECA however is that the extracted
objectives define an evaluation space that can be used to
accurately evaluate individuals. The objectives can be used
in several ways to perform evaluation.

A first, straightforward idea is that since we have access
to multiple objectives, any algorithm from the growing field
of Evolutionary Multi-Objective Evaluation can be applied.
We test this idea by sorting individuals based on the number
of individuals by which they are dominated. The objectives
of individuals are given by their positions on the objectives,
as defined above. This algorithm is called DECA-MO.

As second idea is to aggregate the objective values of in-



dividuals. We test several possibilities. DECA-SUM sums the
values of the objectives, and uses this score for selection.
DECA-MIN calculates the minimum objective value; if this
value is high, the individual has a high value for all objec-
tives. DECA-MINSUM first sorts by the minimum value of the
objectives of the individual, and for equal values lexically
sub-sorts based on the sum of the objective values. Finally,
DECA-MINSUMAVG uses the average of the minimum and sum
of the objective values as a score.

4. EXPERIMENTAL SETUP

We now investigate DECA in experiments. The various
ways to use the evaluation information provided by DECA are
compared, and DECA is compared to other coevolutionary
algorithms.

4.1 Comparison Algorithms

DECA is compared to three coevolutionary archive meth-
ods: IPCA, LAPCA, and MaxSolve. Furthermore, to com-
pare with standard coevolution algorithms, we compare two
non-archive setups, called STANDARD and ADVANCED. DECA
and the above archive methods used ADVANCED to supply
new individuals; this algorithm is described below. The can-
didate and test populations are both of size 20 in all exper-
iments. The outcomes of interactions between candidates
and tests are cached to avoid unnecessary evaluations. For
each methods, 10 runs are performed, and the curves show
the average performance over these runs, unless otherwise
specified.

4.1.1 Generation of New Individuals

For the non-archive methods, candidate parents are se-
lected from the candidate population, and test parents from
the test population. For DECA and the archive methods, can-
didate parents are randomly selected from the population,
while tests are selected from the union of the test population
and the tests maintained by DECA or the test archive.

For the COMPARE-ON-ONE problem, individuals are gener-
ated by mutation only. Mutation there randomly selects two
dimensions, and adds a value selected randomly uniformly
from [-0.06,0.04]; the negative mutation bias and the fact
that two dimensions are mutated at once render the prob-
lem difficult, as detecting regress in one of the dimensions
requires accurate evaluation.

For Tartarus, the genetic representation and operators of
variation are as described in (Ashlock et al., 2004). Candi-
dates are generated by mutation, and tests are generated by
generating random new boards.

4.1.2 Evaluation and Salection

Candidates and test are assigned scores as follows. Each
positive outcome of a candidate against a tests counts as one
point, and vice versa. For DECA and the archive methods,
candidates are evaluated on the tests in the population and
those maintained by DECA or the archive, and vice versa for
tests. If distinction objectives are used (ADVANCED), each
pair of candidates between which a test makes a distinc-
tion (Ficici & Pollack, 2001) contributes a point. If fitness
sharing is used (ADVANCED), each point is divided by the
number of other individuals that make the same point (a
positive outcome or a distinction); otherwise (STANDARD),
each point contributes a value of one. The outcomes of in-
teractions and the number of distinctions made are weighted

Different evaluation methods for DECA
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Figure 3: Comparison of DECA and variants.

as 3:1, and then summed, yielding an overall score by which
the individuals are ranked. If duplicates are discounted (AD-
VANCED), of any individuals with identical outcome vectors,
all but one are assigned zero overall scores. The highest
scoring POPSIZE individuals are selected.

4.1.3 Archive Methods and peca

Individuals are only submitted to DECA or the archive
if they are not yet stored there. DECA and the archives
of archive methods are updated every 10 generations. For
DECA, only the highest max-elements = 10 elements CF-sets
on each axis are maintained. The archive size for MaxSolve
was set to the average archive size observed for DECA in the
COMPARE-ON-ONE experiments: 25. For LAPCA, six different
numbers of layers were used: 1, 2, 5, 10, 20, and 50.

4.2 The Tartarus Problem

In addition to the three-dimensional COMPARE-ON-ONE
problem that was described above, a more realistic problem
called Tartarus (Teller, 1994) is used in the experiments.
Tartarus is a standard test problem which has been used
in other coevolution work (Ashlock et al., 2004), and is de-
scribed in detail there. Briefly, Tartarus is a board game
where bulldozers move boxes around on a 2-d board. The
aim is to place box sides against the walls. Candidates are
GP automata that encode a strategy for the game, and tests
are randomly generated boards. In the remainder of this
section, we describe the algorithms that are compared.

4.3 Performance measures

The performance of individuals in COMPARE-ON-ONE can
be measured objectively. The performance criterion is to
maximize the lowest of the three values that define an in-
dividual. Thus, the performance of individuals can only in-
crease if the values of individuals are increasing in all three
dimensions. In Tartarus, the performance of a candidate is
its score on a fixed set of 100 randomly generated boards.
Experiments are run for 10,000 generations.
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Figure 4: DECA versus MaxSolve and IPCA.

5. RESULTS

5.1 Results for Compare-on-one

In this section, we report experimental results with DECA
and the comparison methods. First, we compare the dif-
ferent variants of DECA; see Figure 3. The graph shows
that the standard version of DECA performs best. In this
algorithm, the candidates and tests on the objectives are
collected and the resulting sets are used for evaluation. It is
striking that standard DECA outperforms the DECA-MO ver-
sion, which uses multi-objective selection. Our explanation
for this is that the evaluation method used by the population
uses distinctions and fitness sharing.

The aggregate methods (DECA-MIN, DECA-SUM,
DECA-MINSUM, and DECA-MINSUMAVG) all have a substan-
tially lower performance than DECA and DECA-MO. There-
fore, in further experiments, DECA is employed.

Figure 4 compares DECA to MaxSolve and 1pCA. While
MaxSolve performs best, DECA performs comparably, and
both methods clearly outperform 1pcA. The latter is not
surprising; while 1PCA is a reliable coevolution method, its
test population grows quickly. The resulting slowdown of
the algorithm is visible as a slight decline in the slope of the
curve.

Figure 5 compares DECA with LAPCA. The best perfor-
mance for LAPCA is obtained with 5 or 10 layers. DECA
performs comparably to or better than these best instances
of LAPCA.

The standard, non-archive coevolutionary methods (STAN-
DARD and ADVANCED) were also run on the COMPARE-ON-
ONE problem, but for both methods the average performance
remained below one, and it is therefore not plotted; the
COMPARE-ON-ONE problem can only be addressed by coevo-
lutionary methods that perform accurate evaluation or use
other techniques to ensure stable progress.

In summary, on the COMPARE-ON-ONE problem, DECA per-
forms comparably to the best comparison methods, demon-
strating the potential of the method to establish reliable
evaluation using limited resources.

DECA versus LAPCA with different archive sizes
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Figure 5: DECA versus LAPCA.

5.2 Results for Tartarus

Finally, we ran DECA, MaxSolve, and the non-archive meth-
ods on the slightly more realistic Tartarus problem; see
Fig. 6. It is encouraging that DECA, a theoretically founded
algorithm, can feasibly be run on a test problem that is
closer to practice than more artificial test problems such
as COMPARE-ON-ONE, and achieve reasonable performance.
However, it is also striking that on this problem DECA per-
forms no better than the much less complex non-archive
coevolutionary methods STANDARD and ADVANCED.

This suggests that difficulties which reliable coevolution
methods are designed to overcome play only a minor role
in Tartarus. This finding leads to a new question for cur-
rent coevolution research: which problem features are most
influential in limiting performance on practical coevolution
problems?

6. CONCLUSIONS

We have described DECA, a coevolutionary algorithm that
extracts the underlying objectives of a problem and simul-
taneously uses these to evaluate individuals. The number of
tests on the dimensions of an evaluation space can be vastly
less than the total number of tests. Due to this reduction,
evaluation in DECA can be efficient and yet provide accurate
and reliable information.

The novel approach to evaluation that has been investi-
gated was compared with several recent reliable coevolution
methods. On the COMPARE-ON-ONE problem, the algorithm
was found to perform comparably to the best comparison
methods. The algorithm was also applied to the Tartarus
problem. The application to this more realistic problem
demonstrates that it is feasible to bring the ideas embodied
by DECA into practice. However, while DECA and MaxSolve
are based on theoretical principles, no substantial perfor-
mance improvements were observed compared to more ba-
sic comparison methods. Thus, while theoretical research
into coevolution has certainly improved insight into certain
problems that can occur in coevolution problems, and has
yielded solutions to several of these problems, the results
that were obtained pose a new question for current coevo-
lution research; namely, to identify features of coevolution
problems of practical interest that limit the performance of
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two standard coevolution methods on the Tartarus
game.

current coevolution methods. We hope the extraction of un-
derlying objectives that has been employed here may serve
as a useful tool in analyzing the unknown complexities of
these problems.

In contrast to algorithms inspired by biological principles,
DECA derives from a theoretical understanding of problem
structure. We take the performance of this algorithm as
evidence that its theoretical grounding is both sound and
useful. A goal of future work is to further this theoretical
analysis to the point that we can produce algorithms which
demonstrably outperform existing algorithms.
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