
Incremental Co-evolution of Organisms:
A New Approach for Optimization

and Discovery of Strategies

Hugues Juill�e

Brandeis University, Computer Science Department
Volen Center for Complex Systems, Waltham, MA 02254-9110, USA

hugues@cs.brandeis.edu

Abstract. In the �eld of optimization and machine learning techniques,
some very e�cient and promising tools like Genetic Algorithms (GAs) and
Hill-Climbing have been designed. In this same �eld, the Evolving Non-
Determinism (END) model presented in this paper proposes an inventive
way to explore the space of states that, using the simulated \incremental"
co-evolution of some organisms, remedies some drawbacks of these previous
techniques and even allow this model to outperform them on some di�cult
problems.
This new model has been applied to the sorting network problem, a ref-
erence problem that challenged many computer scientists, and an original
one-player game named Solitaire. For the �rst problem, the END model
has been able to build from \scratch" some sorting networks as good as the
best known for the 16-input problem. It even improved by one comparator
a 25 years old result for the 13-input problem. For the Solitaire game, END
evolved a strategy comparable to a human designed strategy.

Keywords: Evolutionary optimization, Simulated co-evolution, Sorting
networks.

1 Introduction

Simulation of the rules of life is an attractive and intuitive approach for the design
of optimization tools or for machine learning. The evolution of a population of
organisms is ruled by some operators that allow the exploration of the state space
and a selection mechanism that works with respect to an objective function.
Then, this simulated evolution may allow the emergence of specialized organisms
or some complex behaviors. Genetic Algorithms are a perfect example of such a
simulated evolution.
The aim of this paper is to describe an inventive model, called Evolving Non-
Determinism (END), which proposes a new approach to explore the space of
states. In fact, the END model can be seen as many simple competing organisms
that interact locally one with each other and that become more and more complex
with time, evolving using specialization. At each generation, they are evaluated
according to a �tness function that allows most promising organisms to survive
selection and to spread over.

The END model is extremely di�erent from other well-known techniques: Ge-
netic Algorithms (GAs), Hill-Climbing or Simulated Annealing (SA) in the way
the information about the landscape (or the topology) of the space of states is
used. This allows the END model to outperform these techniques in the case
of problems for which there is only little information about the gradient of the
landscape or for which state representation is problematic. Indeed, the main
drawback of GAs is that crossover and mutation operators used to evolve genes
may create genes that correspond to an invalid solution. For some problems, this

1



drawback can be such that the population size has to be very important to coun-
terbalance this undesirable property. For Hill-Climbing and SA, some operators
have also to be designed in order to evolve solutions by �nding some new solutions
in their neighborhood. The design of such operators may be very elaborate for
some problems. Unlike these techniques, the END model doesn't care about so-
lution representation or local neighboring solutions since solutions are generated
incrementally and are always valid. In fact, we shall see that the space of states
can be represented by a tree and that a solution is a path from the root of this
tree to a leaf.

The ENDmodel has been applied on two di�cult \real-life" optimization prob-
lems. Encouraging results described in this paper, let us expect that a broader
�eld of applications can be tackled by this model. The �rst problem is the follow-
up of an established problem for which several approaches ([1, 5, 10]) have been
used to try to improve some 25 years old results concerning sorting networks [8].
Actually, this problem was also at the origin of an early paper [13] in which GAs
were used to try to replicate Hillis's experiment ([5]) for the 16-input problem
and in which some ideas of the END model were presented. The second problem
is a very simple one-player game for which the player tries to �nd a strategy to
get a score as large as possible.

This paper is organized as follows: Principles and parameters of the model are
presented in details in Section 2 along with a comparison with other optimization
techniques. Results for the two real-life problems are described in Section 3.
Section 4 presents a summary and possible future research.

2 Evolving Non-Determinism

2.1 Principles

2.1.1 Description of Organisms

The END model simulates the co-evolution of a population ofN organisms. These
organisms live in a grid world, wrap-around, for which there are as many slots as
organisms. Each slot is occupied by an organism and every organism works as a
non-deterministic Turing machine since it makes random decisions.

2.1.2 Representation of the Space of States

The class of problems we propose to study is such that the space of states can be
represented by a tree of solutions. The leaves of this tree correspond to all possible
solutions to the problem and any solution is uniquely de�ned by a path from the
root to the leaf to which this solution is attached. Such a path can be described
by an ordered sequence of choices, each choice corresponding to the node that has
been picked while incrementally generating the path. A problem for which the
space of states can be represented by such a tree is called an incremental problem
in the following of the paper.
Moreover, we assume the following properties for the tree of solutions:

� A �tness can be assigned to each leaf (and therefore to each solution),
� For each internal node, children nodes are correct and fair. That is, no leaf
corresponds to a non-valid solution and there are no useless choice in the
description of a solution.

In the following of the paper, we shall also use the partial solution term to specify
the �rst choices (or the pre�x) of the description of a solution.

2



2.1.3 Incremental Co-evolution of Organisms

The simulated co-evolution is a sequence of competition rounds. At each round,
each organism generates a path from the root to a leaf in the tree of solutions
associated to the problem at hand. This path is built incrementally, choosing
uniformly randomly a child for each node encountered.
Then, each organism is seen as the member of a species and a �tness is assigned
to it:

� The pre�x of the solution an organism generated de�nes the species to
which it belongs. The length of this pre�x is de�ned by a parameter called
commitment degree. The value of this parameter equals 1 at the beginning
of the simulated co-evolution and its increasement is managed thanks to a
global strategy.

� The �tness is de�ned as the �tness of the solution this organism has gener-
ated.

According to the value of the �tness, a selection is performed in the population
of organisms. This selection is operated as follows:

� At each slot, the �tness of the occupying organism is compared to the �tness
of organisms in the neighborhood.

� Then, the organism with the highest �tness in this neighborhood is copied
into the slot providing this �tness is better than the one of the organism
currently in the slot. If several organisms have the same �tness, one of them
is picked randomly.

� Otherwise, the slot occupant remains unchanged (and has eventually been
copied into slots of its neighborhood).

The idea of this selection is that an organism with a higher �tness proba-
bly made some better choices for the �rst choices of its solution. Clearly, this
simulated co-evolution of competing species allows such organisms to duplicate
themselves and to take the place of worse organisms.

Now that the selection is completed, for the next round, every organism builds
another solution. However, organisms keep the same pre�x as their previous
solution and build a new solution beginning with this pre�x. This process can be
seen as a backtrack in the tree of solutions and the incremental building of a new
random path from this point. Therefore, the species organisms belong to doesn't
change. Then, another round of selection is performed.

Figure 1 describes how such a population of competing species evolves. This
simulation was performed in a 1024 slots world. There are 10 species competing;
each species is represented by a number from 0 to 9. The problem tackled in
this simulation is the sorting of integers: f0; : : : ; 9g and the �tness is de�ned as
the number of ascents in the sequence generated by organisms. This problem is
used in [6] to analyze performance of the END model. Looking at this simulated
co-evolution, we can see that, as rounds go o�, the species represented by '0' takes
more and more importance and it almost dominates all the other species after 16
rounds.

It is easy to understand that, proceeding in that way, organisms corresponding
to best �rst choices are theoretically stronger than others during the selection
step and therefore duplicate more often. So, their species take more and more
importance in the total population. If we let this scenario run inde�nitely, we
can expect a species to overcome all other species and to be the only one in the
population.

That is why the commitment degree parameter has been introduced. Increase-
ment of the commitment degree corresponds to the specialization of organisms
since it de�nes the length of the pre�x used to identify species of organisms.

3



4

4

4

0

3

3

0

0

0

3

3

3

1

1

1

1

1

3

3

3

0

0

5

5

0

0

0

0

0

0

4

3

3

4

7

4

3

3

2

2

1

1

3

3

3

1

1

1

1

3

3

0

2

0

4

5

0

0

0

3

0

3

3

3

2

2

7

7

3

2

2

4

4

3

1

3

3

1

2

2

3

3

3

2

2

2

0

0

0

0

0

3

3

0

0

2

2

2

1

1

2

0

0

4

4

1

1

1

2

2

2

2

2

3

2

2

2

2

0

0

0

0

0

0

6

0

0

2

1

1

1

1

1

0

0

4

4

4

1

2

1

2

2

2

1

1

2

2

2

2

6

0

0

0

0

3

6

0

0

0

1

1

1

1

1

1

0

0

0

4

2

1

1

1

2

1

1

1

2

2

3

6

6

6

6

0

3

3

0

0

0

0

1

1

1

1

1

0

0

0

0

6

6

2

3

1

1

1

0

1

2

3

3

8

0

0

0

0

0

0

0

0

0

1

1

1

1

1

2

3

3

0

3

6

3

3

3

3

1

0

0

0

0

2

3

8

1

0

0

0

0

3

0

3

0

3

1

1

0

4

3

3

3

3

6

4

3

3

3

1

0

0

0

0

0

2

2

1

1

0

0

0

2

3

3

3

3

1

1

0

0

0

3

3

3

3

6

6

0

0

0

4

4

0

0

0

0

2

2

1

1

1

2

2

2

2

2

3

3

2

2

0

0

4

3

3

3

5

5

5

0

0

0

3

4

5

5

5

2

2

2

2

1

1

3

4

2

2

2

2

3

2

0

0

4

4

3

3

0

5

0

0

0

0

0

3

0

5

0

2

2

2

2

1

1

1

4

4

4

2

2

2

2

2

0

4

2

4

6

3

0

5

0

0

0

0

0

3

0

0

0

0

2

1

1

1

1

1

1

4

2

2

2

8

2

0

1

2

2

2

0

0

1

1

5

3

3

0

0

0

0

0

0

0

0

0

1

5

6

1

1

1

4

2

8

8

2

0

1

1

2

4

0

1

1

5

5

5

3

2

0

0

0

0

0

0

0

5

5

1

1

6

1

1

4

4

4

7

7

1

1

1

2

2

1

1

1

1

5

1

1

2

0

0

0

0

0

0

5

5

5

1

6

6

6

1

1

4

4

3

3

0

1

2

2

2

1

1

1

1

1

1

1

1

0

0

0

0

0

2

4

5

5

1

1

6

1

1

1

4

3

3

3

1

1

6

6

6

6

1

1

0

0

1

1

1

0

0

0

0

0

4

4

4

4

1

1

1

1

1

1

1

3

3

3

0

6

6

6

6

1

1

1

0

0

0

0

0

0

0

0

0

1

1

4

4

4

7

1

2

1

1

1

3

3

3

5

0

3

6

0

0

1

1

1

0

0

0

0

7

0

0

0

1

1

1

1

4

3

6

2

2

1

2

3

1

3

1

5

5

0

3

0

0

1

1

1

0

0

0

0

7

9

0

0

1

1

6

6

3

3

6

2

2

2

2

3

1

1

1

5

3

0

0

2

0

0

2

2

2

2

0

7

7

3

5

5

0

6

6

6

6

8

8

8

2

2

2

0

0

1

7

0

0

0

0

0

0

2

2

2

4

4

4

4

7

3

3

3

0

1

6

6

7

8

0

0

0

2

0

0

0

1

0

0

0

0

0

0

0

0

2

0

4

4

4

4

4

3

3

1

1

1

1

7

7

7

1

6

0

0

0

0

3

3

0

0

0

7

0

0

0

0

0

4

4

4

4

3

3

3

0

1

0

1

1

1

7

2

6

6

6

3

0

3

5

2

2

2

0

2

2

2

2

0

0

0

4

4

0

4

3

3

3

0

0

0

1

1

1

2

2

2

3

3

1

5

5

5

2

2

2

2

2

2

2

2

4

4

4

4

0

1

4

3

2

2

0

0

0

1

2

2

2

2

6

1

1

1

5

5

2

2

2

2

2

2

2

5

5

4

4

4

0

1

1

0

2

2

4

0

0

2

2

2

0

2

1

1

1

7

2

7

1

2

2

4

1

2

2

2

5

4

4

0

0

0

0

0

0

1

1

1

2

2

0

0

0

0

2

1

2

2

2

2

0

1

4

2

4

0

5

5

6

6

4

4

0

0

0

0

0

0

1

1

1

2

0

0

0

0

0

2

2

2

2

0

0

0

3

4

4

4

0

6

6

0

0

0

0

0

0

0

0

1

1

1

1

6

0

0

0

0

2

2

2

2

0

0

0

3

3

3

4

0

0

0

0

0

0

0

0

3

0

0

1

1

1

1

1

0

0

0

0

0

0

5

2

0

0

0

0

4

3

Step 5 - Disorder = 1794

3

4

4

3

3

3

0

2

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

2

0

0

0

4

4

2

3

3

3

3

2

2

2

1

3

0

2

1

1

1

1

1

0

0

0

0

2

0

0

0

0

3

0

0

0

0

0

2

2

3

3

1

3

2

4

1

1

2

2

1

1

1

1

1

1

3

0

2

2

0

0

0

0

0

0

0

0

0

2

2

2

1

1

1

1

4

4

1

1

2

2

2

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

2

2

1

1

1

1

1

0

4

2

2

2

2

2

2

1

1

1

1

1

2

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

2

2

1

2

2

2

1

1

1

2

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

2

4

1

3

1

2

0

0

1

0

2

3

0

0

0

0

0

0

0

0

0

0

0

1

1

1

3

3

0

0

0

0

4

4

4

1

1

1

0

0

0

0

0

3

1

1

0

0

0

2

0

3

3

0

1

1

0

3

3

3

3

0

0

0

0

4

0

1

1

1

0

0

0

0

2

1

2

0

0

0

0

2

0

0

1

1

1

0

0

3

3

3

3

0

0

6

6

0

0

0

1

5

5

5

0

2

2

2

2

1

1

0

0

2

2

2

2

3

1

0

0

0

3

3

3

3

6

6

6

0

0

0

3

3

0

0

0

0

2

2

2

1

1

0

4

2

2

2

2

3

0

0

0

0

4

3

3

3

1

6

0

0

0

0

3

0

0

0

0

1

1

2

2

1

1

1

1

2

2

2

2

3

0

0

0

2

4

4

3

1

1

0

0

0

0

0

0

0

0

0

0

1

1

2

1

1

1

1

1

2

2

2

0

0

0

1

1

2

2

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

2

0

0

1

1

2

4

0

0

1

1

0

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

1

1

1

2

2

2

0

0

1

1

1

1

1

0

0

0

0

0

0

2

2

1

4

1

1

1

1

1

1

3

3

3

1

1

1

1

2

2

1

0

0

1

1

1

1

1

0

0

0

0

0

2

2

2

4

4

1

1

1

1

1

3

3

3

3

1

0

1

6

0

1

0

0

1

1

0

1

0

0

0

0

0

0

0

2

4

4

1

1

1

1

1

1

3

3

3

5

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

3

4

4

1

2

1

3

1

3

3

5

5

0

0

3

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

1

3

3

2

2

2

2

3

3

3

3

3

5

0

0

0

0

0

0

1

1

0

2

0

0

0

0

0

0

0

1

1

6

3

6

0

0

2

2

3

0

0

3

7

0

0

0

0

0

0

1

1

0

0

2

2

0

0

0

0

0

0

1

6

6

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

2

4

4

4

0

3

0

1

1

1

6

1

0

0

0

0

0

0

0

0

0

3

0

0

0

0

0

0

2

0

0

0

4

4

4

4

3

0

3

3

1

1

1

1

1

0

0

0

0

0

0

0

3

3

3

0

0

0

0

0

0

0

0

0

4

4

4

3

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

5

2

3

0

0

0

0

0

2

0

0

0

0

4

4

1

3

3

0

3

1

1

1

1

1

2

2

0

1

1

1

5

5

2

2

2

0

0

0

2

2

0

0

0

4

4

0

1

3

3

3

0

0

1

0

0

2

2

2

2

0

1

5

5

1

2

2

2

2

2

2

2

2

2

4

4

4

0

0

0

1

3

0

0

0

1

1

2

2

2

2

2

1

1

1

2

1

2

1

2

2

3

1

2

2

2

4

4

0

0

0

0

0

0

0

0

1

1

1

0

2

0

0

2

1

1

1

2

2

1

1

1

3

3

3

3

0

0

6

6

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

2

2

2

2

2

1

1

3

3

3

4

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

2

2

2

2

0

0

1

3

3

3

4

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

0

0

2

2

2

0

0

3

0

Step 8 - Disorder = 1390

2

0

3

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

2

2

2

2

2

0

0

0

0

0

3

3

0

0

0

0

0

1

0

0

0

0

0

1

1

1

1

0

2

0

0

0

0

0

0

2

0

0

0

0

0

1

3

1

1

0

0

0

0

1

2

2

2

2

2

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

2

2

2

2

2

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

2

2

2

2

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

0

0

0

0

0

0

4

1

1

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

2

2

1

1

1

0

1

0

3

3

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

2

2

2

0

0

0

1

1

0

0

3

3

3

3

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

2

2

0

0

0

0

0

1

1

1

4

3

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

2

2

0

0

0

0

1

1

1

4

4

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

2

2

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

3

3

0

2

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

2

4

4

1

1

1

1

1

1

3

3

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

2

2

2

4

1

1

1

1

1

1

3

3

1

3

1

3

3

1

1

1

0

1

1

1

1

1

0

0

0

0

0

0

2

2

4

4

1

1

1

1

1

1

3

3

3

1

1

3

3

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

2

4

4

1

1

1

2

1

1

1

3

1

1

0

0

3

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

1

6

4

4

0

1

2

2

3

1

1

1

3

0

0

0

0

0

0

1

1

1

0

0

2

0

0

0

0

0

1

1

1

1

4

0

0

0

2

2

3

1

1

0

3

0

0

0

0

0

0

0

1

0

0

2

2

2

0

0

0

0

1

1

1

1

1

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

1

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

3

0

0

0

1

1

1

1

1

1

0

0

0

0

5

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

3

3

0

0

0

3

1

1

1

1

1

0

0

0

0

0

2

0

2

2

2

0

0

2

2

0

0

0

0

0

0

1

1

1

3

0

3

1

1

1

1

1

1

1

0

0

0

5

2

1

1

2

0

1

1

1

2

2

0

0

0

0

0

0

0

0

0

3

0

1

1

1

1

1

1

0

0

0

0

2

0

0

0

1

0

2

0

1

1

2

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

2

0

0

0

1

2

2

0

1

1

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

2

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

3

2

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

2

0

2

0

3

3

3

Step 12 - Disorder = 1046

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

2

2

1

1

1

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

1

1

1

0

0

0

0

0

0

2

2

2

2

1

1

1

0

0

0

0

0

0

0

0

0

2

2

0

0

0

0

0

0

1

0

0

1

1

0

0

0

2

2

2

2

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

2

0

0

0

0

0

0

1

1

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

2

2

2

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

2

0

0

0

0

1

1

1

0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

3

3

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

3

3

1

1

1

1

1

1

1

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

3

3

3

3

0

0

3

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

0

2

2

1

1

1

1

2

2

1

3

3

3

0

0

0

3

3

0

0

0

0

1

0

0

0

0

0

0

0

0

1

2

2

2

1

1

1

2

0

1

1

1

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

4

4

4

0

0

0

0

0

1

1

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

3

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

0

0

3

0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

3

3

3

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

0

2

0

0

0

0

0

0

0

0

0

3

3

1

1

1

0

1

1

0

0

0

0

0

0

0

0

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

2

2

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

Step 16 - Disorder = 812

Figure 1: Simulation of the co-evolution of 10 competing species in a 1024 slots
world.

4



This parameter is managed by a global meta-level strategy discussed in the
next section.

2.1.4 Strategy to Manage the Commitment Degree

In fact, there are no rules to �nd the best strategy. For our experiments, we
designed two di�erent strategies.

The �rst one is the simpler since the commitment degree is increased every n
rounds, where n is �xed. n has to be chosen astutely so that good species have
time to grow and to reach a signi�cant size. The problem with this strategy is
that the value of n is di�cult to estimate a priori.

The second strategy uses a measure of the state of the model called disorder
measure. The idea of this measure is to have a way to detect when a species over-
comes others to a degree such that we can consider that this species corresponds
to the �rst best choices and such that, after increasing the commitment degree,
specializations of this overcoming species will be signi�cantly represented. This
measure is de�ned as the sum over all the slots of the number of organisms in
the neighborhood that belong to a di�erent species than the one of the occupying
organism. This value tends to decrease as some species dominates the others.
When this disorder measure reach a given threshold, the commitment degree is
increased.
The drawback of this strategy is that it can take a long time for the disorder
measure to reach the given threshold if there are some di�erent �rst choices that
are equivalent. This problem doesn't appear with the �rst strategy. That's why
a combination of these two strategies o�ers often a good compromise.

Thus, as the commitment degree increases, organisms commit themselves in
these earliest choices which seem to be the most attractive.

Finally, when the commitment degree can't be increased because it equals the
length of the found out solution, the simulation stops.

2.2 Parameters of the model

From the description of the model in the previous section, it appears that a few
parameters manage the model. These parameters are the following:

Population size: as this size grows, the number of solutions generated at each
round increases. The size of the \sample" is more important and it is
more likely that species corresponding to optimal solutions don't disappear
because of a too small number of representatives.

Neighborhood used for selection: Unformally, the intuition behind this pa-
rameter is the following: If this neighborhood is large then we can expect
that when a good solution is found out, it propagates more easily in the
population. Therefore, the convergence to a good solution can be fast.
However, a large neighborhood may forbid the discovery of a better solu-
tion since it shrinks the space of explored solutions. It is not the case when
a small neighborhood is used. But, the drawback of the later case is that
convergence is slower.

Management of the commitment degree evolution: the strategy used to
schedule increasements of the commitment degree is very important. Indeed,
it must be such that the number of representatives of \interesting" species
at the next round is su�cient to expect them to overcome other species
with a high probability.

All these parameters are analyzed experimentally in [6].

5



2.3 Comparison to other Optimization Techniques

As we have already said, our model doesn't exploit information about local gra-
dient of the landscape. Indeed, once a solution is built, only �rst choices of this
solution are used for the next round. That means that we don't try to get some
better solution in the neighborhood of this solution, using some gradient infor-
mation as it is the case for Simulated Annealing or Hill-Climbing.
This remark doesn't apply to Genetic Algorithms. However, the drawback of
GAs are the operators used to evolve in the landscape: cross-over or mutation
may make very di�cult the search of an optimal solution if the new genotype
doesn't correspond to a valid solution. In the case of some problems, like the two
presented in this paper, this drawback is not negligible and good e�ciency can
only be reached if an extremely large population of genes is used.

To understand a little more easily how the END model works, let us make
the following analogy: Children of the root of the tree of solutions can be seen
as a partition of the space of states, each child (or species) corresponding to a
particular sub-set of this partition. Then, the selection process allows species
that generate a better solution on average (regarding the �tness) to dominate
other species. Such species correspond to the domains of the space of states for
which the mean value for the �tness is larger. Therefore, at this stage, details
and gradient of the landscape of the space of states are not considered. Then, as
the commitment degree increases, each domain is partitioned into smaller sub-
domains and, therefore, details of the landscape take more and more importance.
Schraudolph and Belew ([12]) implemented a similar idea for GAs by tracking the
convergence of the population to restrict subsequent search using a zoom operator.

Of course, it is easy to de�ne a landscape such that this strategy doesn't work.
For example, de�ne a �tness such that the optimal correspond to a peak located
in a region with a very low �tness and for which another region, far from this
optimal peak, has a high average value. This strategy will be inclined to �nd out
a local optimum in the region of high average �tness.
As we shall see later in this paper, the space of states for the sorting network
problem has this kind of landscape.

However, the END model also has the ability to maintain a certain degree
of diversity. This degree of diversity is directly related to the strategy used to
manage the evolution of the commitment degree and it allows the model to not
converge too quickly.

Finally, an analogy may also be done between the END model and a clas-
sical Arti�cial Intelligence heuristic search technique: Beam Search [2]. In this
technique, a number of nearly optimal alternatives (the beam) are examined in
parallel and some heuristic rules are used to focus only on promising alternatives,
therefore keeping the size of the beam as small as possible. This technique pro-
ceeds like the END model in the sense that the search space is described by a
directed graph in which each node is a state and each edge represents the appli-
cation of an operator that tranforms a state into a successor state. A solution is
a path from an initial state to a goal state.
Therefore, the problem modeling is very similar for the two techniques. However,
the main di�erence is that the END model doesn't use some heuristic rules but
only a �tness function that quanti�es the degree of quality of a solution. Beam
search uses heuristic rules to prune the set of alternatives at each step of the
incremental building of a path to a goal state. This pruning is performed by
the END model during selection but it is performed in an auto-adaptive way: no
heuristic is provided to the model.
In fact, the END model has two important advantages compared to such an ap-
proach:

6



s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 2: A 10-input sorting network using 29 comparators and 9 parallel steps.

� It doesn't need a priori knowledge of the topology of the space of states (no
heuristics).

� A strategy is evolved by the model itself to �nd out an optimum, by elimi-
nating \unpromising" species very soon and by maintainingdiversity to keep
attractive species. Therefore, an auto-adaptive behavior emerges while the
model is searching for the optimum.

3 Results for Two Di�cult Real-Life Problems

3.1 Sorting Networks

3.1.1 Presentation

An oblivious comparison-based algorithm is such that the sequence of compar-
isons performed is the same for all inputs of any given size. This kind of algo-
rithm received much attention since they allow an implementation as circuits:
comparison-swap can be hard-wired. Such an oblivious comparison-based algo-
rithm for sorting n values is called an n-input sorting network (a survey of sorting
networks research is in [8]).
There is a convenient graphical representation of sorting networks as the one in
�gure 2 which is a 10-input sorting network (from [8]). Each horizontal line rep-
resents an input of the sorting network and each connection between two lines
represents a comparator which compares the two elements and exchange them if
the one on the upper line is larger than the one on the lower line. The input of
the sorting network is on the left of the representation. Elements at the output
are sorted and the larger element is on the bottom line.
Performance of a sorting network can be measured in two di�erent ways:

1. Its depth which is de�ned as the number of parallel steps that it takes to sort
any input, given that in one step disjoint comparison-swap operations can
take place simultaneously. Current upper and lower bounds are provided in
[10]. Table 1 presents these current bounds on depth for n � 16.

2. Its length, that is the number of comparison-swap used. Optimal sorting
networks for n � 8 are known exactly and are presented in [8] along with
the most e�cient sorting networks to date for 9 � n � 16. Table 2 presents
these results.
The 16-input sorting network has been the most challenging one. Knuth [8]
recounts its history as follows. First, in 1962, Bose and Nelson discovered
a method for constructing sorting networks that used 65 comparisons and
conjectured that it was best possible. Two years later, R. W. Floyd and D.

7



inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Upper 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9
Lower 0 1 3 3 5 5 6 6 7 7 7 7 7 7 7 7

Table 1: Current upper and lower bounds on the depth of n-input sorting networks.

E. Knuth, and independently K. E. Batcher, found a new way to approach
the problem and designed a sorting networks using 63 comparisons. Then,
a 62-comparator sorting network was found by G. Shapiro in 1969, soon to
be followed by M W. Green's 60 comparator network (see [4] and [8]).

inputs 1 2 3 4 5 6 7 8
comparators 0 1 3 5 9 12 16 19

inputs 9 10 11 12 13 14 15 16
comparators 25 29 35 39 45� 51 56 60

Table 2: Best upper bounds currently known for length of sorting networks. Pre-
viously, the best known upper bound for the 13-input problem was 46

3.1.2 Previous works

Most of the previous works on sorting networks focussed on the 16-input problem.
The �rst person who used optimization technics to design sorting networks

is W. Daniel Hillis. In [5] and [9], he used GAs and then co-evolution to �nd a
61-comparator, only one more sorting exchange than the construction of Green.
However, Hillis considerably reduced the size of the search space since he initial-
ized genes with the �rst 32 comparators of Green's network. Indeed, since the
pattern of the last 28 comparators of Green's construction is not really intuitive,
one can think that a better solution exists with the same initial 32 comparators.

In a previous paper, overviewing the END model [13], a 60 comparator sorting
network was found out with the same initial conditions as Hillis, that is as good
as the best known. Two attempts were also done on the 15-input problem and
the model was able to �nd two 56 comparators sorting networks, again as good
as the best known, with no initial conditions.

Ryan [11] applied a Genetic Programming approach to the problem of 9-input
sorting networks. Kim Kinnear also used GP, but in the area of adaptive sorting
algorithms, to �nd an algorithm to sort n elements in O(n2) time [7].

Ian Parberry ([10]) worked on the optimal depth problem and found out opti-
mal values for 9 and 10-input sorting networks using an e�cient exhaustive search
executed on a supercomputer.

More recently, Gary L. Drescher ([3]) designed a novel �tness function for
evolving sorting networks, using GAs. His approach �nds quickly and reliably
60-comparator networks, as compact as the best known, again starting with the
�rst 32 comparators of Green's construction.

3.1.3 Non-Deterministic Sorting Network Algorithm

The aim of this non-deterministic algorithm is to generate incrementally and
randomly some valid sorting networks. Each organism runs this algorithm (see

8



Begin with an empty or a partial network

DO BEGIN

Compute the set of significant comparators

IF (set of significant comparators IS NOT empty)

Pick one of these comparators randomly and add

it to the existing partial network

END_IF

UNTIL (set of significant comparators is empty)

/* A valid and fair sorting network has been generated */

Figure 3: Non-deterministic algorithm run by each organism.

�gure 3), making some random choices until a valid sorting network is found.
A run of this algorithm corresponds to the incremental construction of a path
in the tree representing all valid and fair sorting networks; that is, valid sorting
networks with no useless comparators.
Valid sorting networks are built using the zero-one principle:

Zero-one principle: If a network with n input lines sorts all 2n sequences of
0's and 1's into nondecreasing order, it will sort any arbitrary sequence of
n numbers into nondecreasing order.

Therefore, we only consider all 2n possible inputs instead of the n! permuta-
tions of n distinct numbers to incrementally build a sorting network.

The �tness of a sorting network is de�ned as its length. However, for the
selection process, ties are broken using the depth of the sorting networks. In that
way, we also generate some e�cient sorting networks regarding the number of
parallel steps.

3.1.4 Results

Experiments were performed on a Maspar MP-2 parallel computer. The con-
�guration of our system is composed of 4K processors elements (PEs). In the
maximal con�guration a MP-2 system has 16K PEs. Each PE has a 1.8 Mips
processor, forty 32-bit registers and 64 kilobytes of RAM. The PEs are arranged
in a two-dimensional matrix.
This architecture is particularly well-adapted for our model since it is designed
as a two-dimensional (grid) world. Each PE simulates one organism if we want
to study a 4K population, but it can also simulate more organisms if we want a
larger population.

Results for the 16-input problem initialized with the �rst 32 comparators of
Green's sorting network will not be presented. The last version of the model is able
to evolve a sorting network as good as the best known with a 4K population size
and a success rate of almost 100% within 5 to 10 minutes. This time performance
is comparable to Drescher's results ([3]) who used a 64-node CM-5 computer.
Actually, the interesting comparison between his GAs approach and the END
model is that:

� GAs evolved a population of 219 (= 524; 288) sorting networks (compared
to a 4,096 population size for END),

� 29 to 100 generations are enough for GAs to �nd the optimum but 150 to
200 generations are often required for END.

9



0

10

20

30

40

50

60

70

80

90

100

40004500500055006000650070007500800085009000950010000

Success
rate

Threshold

10 inputs; Radius = 1 3

3
3

3

3

3
3

3

3

3

3

3

3

3

3
3
3

Figure 4: Success rate for the 10-input sorting network problem versus the thresh-
old value for the disorder measure strategy.

In the following, only results for evolved sorting networks from scratch (ie: with
no initialization) are described. In order to increase the probability of �nding
good sorting networks, we used a 64K population size, each processor of the
Maspar simulating 16 organisms.

Before presenting results, let us come back to a previous observation. As it has
been said in section 2.3, the landscape of the state space for the sorting network
problem is such that optimal solutions don't correspond to the species which
perform well for lower value of the commitment degree. That means that if we let
the model evolve until there are only a few species remaining then the probability
that the best solution be found out is very low. This behavior can be oberved in
�gure 4 which shows the evolution of the success rate as the value of the threshold
decreases. First the success rate increases but, once the diversity degree is forced
to be lower by decreasing the threshold value (the disorder measure strategy is
used), the success rate also decreases.

This explains why one needs to maintain diversity to be able to �nd out an
optimal solution. And of course, the larger the population size, the higher the
probability of success.

We have been interested to tackle two di�erent sorting network problems:
1. The 13-input problem because of the large gap between the best known

result (46 comparators) and the 12-input one (39 comparators).
2. The 16-input problem because it is the most challenging one.

For the 13-input sorting network problem, we ran the END model 6 times
with di�erent values for the selection neighborhood radius (between 1 and 5) and
the threshold. Each run was completed in about 8 hours. For 2 runs, we got a
sorting network better than the best known. That is, the END model discovered
two sorting networks using only 45 comparators, one comparator less than the
best current known. Moreover, those two sorting networks use 10 parallel steps

10



s

s

s

s

s

s

s

s

s

s

s

s s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 5: A 13-input 45-comparators sorting network using 10 parallel steps.

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 6: A 16-input 60-comparators sorting network using 10 parallel steps.

which is very good since to get smaller delay time one often has to add one or
two extra comparator modules ([8]) and the best known delay for the 13-input
problem is 9. Figure 5 presents one of these two 13-input sorting networks.

For the 16-input sorting network problem, we ran the END model 3 times.
Each run was completed in a period of 48 to 72 hours1. For 2 runs, a 60 compara-
tor sorting network was found out, each of them using 10 parallel steps. This is as
good as the best human-built sorting network designed by M. W. Green. Those
sorting networks were entirely designed from scratch by the END model (ie: there
was no initial comparators as it was the case the previous times this problem was
tackled using computers). Figure 6 presents one of these two 16-input sorting
networks.

1A new algorithm that doesn't use the zero-one principle but that maintains the set of
unsorted vectors using a list of masks has been recently implemented. This algorithm allowed
us to divide execution time for the 16-input problem by a factor of about seven. Now, we can get
reliable results within an execution time of 12 hours for a run. Using the maximal con�guration
for the Maspar, a run would take about 3 hours.

11



x x x x

x

x

x x x x

x

x

xxxx

x

x

xxxx

x

x

xxxx

x

x

x x x x

x

x

xb xb xb xb

xb

xb

xb xb xb xb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xb xb xb xb

xb

xb

x

x

x

@
@
@

x

@
@
@

x

�
�
�

x

x

�
�
�

x

x

x

@
@
@

x

x

x

Figure 7: The initial con�guration and a possible con�guration after 13 moves
for the Solitaire game. For a clearer picture, the grid layout is not drawn but is
represented by the rules on the border.

3.2 A One-Player Game: Solitaire

3.2.1 Presentation of the game

This second problem is an original one and no one has published about it. There-
fore, it is not possible to make some comparison. However, it is an interesting
problem since it shows how di�cult the modelling of a problem can be for other
classical optimization techniques.

To play this game, you only need a piece of paper with a grid layout and a
pencil. First, the player draws a �xed initial pattern composed of crosses, like the
left picture in �gure 7. The rule is that a cross can be added at an intersection of
the grid layout if and only if it allows the drawing of a line composed of 5 crosses
that do not overlap another line. This line may however be the continuation
of another line or may cross another line. That is, the new line can share at
most one common cross with another line. This new line can be drawn vertically,
horizontally or diagonally.
The right picture in �gure 7 shows a possible con�guration of this game after a
few moves. Crosses of the initial pattern are circled to be identi�ed more easily.
Now, the goal of this game is simply to draw as many lines as possible!

If this game is played by hand, one can see that a good strategy is di�cult to
elaborate. After a few plays, a score of 70-80 lines is relatively common. However,
to reach 90 lines is less obvious and a score greater than 100 lines is exceptional.

Moreover, it can be proved that the maximumnumber of moves for this game
is �nite. However, no tight upper bound has been established for this optimum.

This game is interesting because it is a typical example of a problemwich seems
impossible to code using an optimization technique like GAs or Hill-climbing.
However, using an incremental approach, the description of solutions to this prob-
lem becomes obvious.

12



3.2.2 Results

The most recent result is a 117 lines game con�guration. This result has been
found out using a population of 4K organisms and required 30 hours of compu-
tation on the Maspar.
Figure 8 shows the �nal con�guration along with the con�guration of the game
after the �rst 40 moves. It is very interesting to observe that most of the moves
at the beginning of the play are located in the same area of the game board: this
is the same as our best own strategy for hand-playing! This strategy is the result
of the evolution of the population of organisms as a whole.

xb xb xb xb

xb

xb

xb xb xb xb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xb xb xb xb

xb

xb

x

x

x

x

x

x

x

x

x

x

x

@
@
@

x

@
@
@

x

x

x

@
@
@

x

@
@
@

x

�
�
�

x

x

�
�
�

x

@
@
@

x

�
�
�

x

x

�
�
�

x

@
@
@

x

�
�
�

x

�
�
�

x

x

�
�
�

x

x

�
�
�

x

�
�
�

x x

x

@
@
@

x

@
@
@

x

x

x

x

@
@
@

x

xb xb xb xb

xb

xb

xb xb xb xb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xb xb xb xb

xb

xb

x

x

x

x

x

x

x

x

x

x

x

@
@
@

x

@
@
@

x

x

x

@
@
@

x

@
@
@

x

�
�
�

x

x

�
�
�

x

@
@
@

x

�
�
�

x

x

�
�
�

x

@
@
@

x

�
�
�

x

�
�
�

x

x

�
�
�

x

x

�
�
�

x

�
�
�

x x

x

@
@
@

x

@
@
@

x

x

x

x

@
@
@

x

x

x

x

@
@
@

x

�
�
�
x

x

�
�
�

x

@
@
@

x

x

�
�
�

x

x

@
@
@
x

@
@
@

xx

x

x

x

@
@
@x

x

�
�
�

x

@
@
@

x

@
@
@x

x

�
�
�

x

�
�
�

x

@
@
@

x

�
�
�

x

x

�
�
� x

�
�
�

x

x

@
@
@

x

x

x

�
�
�

x

@
@
@

x

@
@
@

x

�
�
�

x

x

x

@
@
@

x

@
@
@

x

x

x

x

�
�
�

x

�
�
�

x

x

x x

x

@
@
@

x

�
�
� x

x

�
�
�

x

@
@
@

x

x

x

x

�
�
�

x

@
@
@x

x

x

@
@
@

x

x

x

�
�
�

x

x

@
@
@
x

�
�
�

x

x

@
@
@

x

xx

x

�
�
�

x

x

@
@
@

Figure 8: The best con�guration found out for the Solitaire game, using 117 lines
(on the right); and the con�guration for this best play after 40 moves (on the left).

4 Conclusion

This paper presented an inventive and very promising technique. By using a
new approach for the search in the state space and by constructing solutions
incrementally, this model can outperform actual techniques. However, it should
be noticed that when the topology of the search space for a given problem is well-
known and its gradient is appropriate for Hill-Climbing or SA, these techniques
are more e�cient than the END model regarding execution time. Indeed, the
approach of the END model is a statistical one which progressively takes into
account details of the landscape; no gradient information is used. Moreover,
analysis of the sorting network problem also reveals that the topology of the
sub-space of valid networks makes the use of crossover and mutation critical.
Therefore, it is di�cult to take advantage of the \building block" mechanism
exploited by GAs.

The aim of this paper was to present the parameters of the model. We focussed
only on some elementary operators for selection and solution generating in order
to identify clearly their importance for the e�ciency of the model. The model
described in this paper can be easily enhanced with some new features like:

13



� Allowing the use of some heuristics for solution generating to reduce the
number of potential extensions at each node of the tree of solutions.

� Managing a local memory for each organism that would memorize its \past"
and would allow learning.

� Each organism could look for a local optimumbefore selection rounds (using
SA for example). When possible, this technique allows a faster convergence.

Moreover, we are currently working to replace the global strategy for the com-
mitment degree management by a local strategy that would be managed by the
model itself.

A very interesting advantage of the END model is that, intrinsically, it is
highly parallelizable and its performance is related almost linearly to the size of
the parallel system used.

Finally, the very encouraging results let us think about improving this ap-
proach and applying it on even more challenging problems like:

� multi-player games,
� problem solving,
� mechanical discovery of heuristics or theorems,

for which each organismwould be an elementary and naive game player or problem
solver. At each step, organisms would take a decision randomly but, as the result
of the evolution of the population, some \high-level strategies" could be expected.
This last idea needs however to be worked on.

5 Acknowledgments

I would like to thank Jordan Pollack, Patrick Tufts, Martin Cohn and Jacques
Cohen for their advice and discussions. I would like also to thank Roger Gallier
who challenged me one day with the Solitaire problem. Thanks also to the NSF
whose grant allowed the Brandeis Computer Science to buy a Maspar computer.
Finally, I want to thank my wife, Anne, for the moral support she provided me
while I was working on this project and her constant curiosity.

References

[1] Richard Belew and Thomas Kammeyer: Evolving Aesthetic Sorting Networks using
Developmental Grammars. In Proceedings of the Fifth International Conference of
Genetic Algorithms.

[2] Roberto Bisiani: Beam Search. In Encyclopedia of Arti�cial Intelligence, Vol. 2,
Second Edition, John Wiley & Sons, 1992.

[3] Gary L. Drescher: Evolution of 16-Number Sorting Networks Revisited. Submitted.

[4] Milton W. Green: Some Improvements in Nonadaptive Sorting Algorithms. Stanford
Research Institute. Menlo Park, California.

[5] W. Daniel Hillis: Co-Evolving Parasites Improve Simulated Evolution as an Opti-
mization Procedure. In Arti�cial Life II, Langton, et al, Eds. Addison Wesley, 1992,
pp. 313-324.

[6] Hugues Juill�e: Evolving Non-Determinism: An Inventive and E�cient Tool for Op-
timization and Discovery of Strategies.Draft paper, Computer Science Departement,
Brandeis University, 27 pp.

14



[7] Kim Kinnear: Generality and Di�culty in GP: Evolving a Sort. In Proceedings
of the Fifth International Conference on Genetic Algorithms, S. Forrest, Morgan
Kaufmann Publishers, 1993.

[8] Donald E. Knuth: The Art of Computer Programming: Volume 3 - Sorting and
Searching. Addison Wesley, 1973.

[9] Steven Levy: Arti�cial Life: the Quest for a New Creation.Pantheon Books, 1992.

[10] Ian Parberry: A Computer-Assisted Optimal Depth Lower Bound for Nine-Input
Sorting Networks. In Mathematical Systems Theory, No 24, 1991, pp. 101-116.

[11] Conor Ryan: Pygmies and Civil Servants. In Advances in Genetic Programming,
Kim Kinnear, Ed. MIT Press, 1994.

[12] Nicol N. Schraudolph and Richard K. Belew: Dynamic Parameter Encoding for
Genetic Algorithms. In Machine Learning, Vol. 9, 1992, pp. 9-21.

[13] Patrick Tufts and Hugues Juill�e: Evolving Non-Deterministic Algorithms for E�-
cient Sorting Networks. Submitted.

15


