
1

Computer Evolution of Buildable Objects
for Evolutionary Design by Computers
by Pablo J. Funes and Jordan B. Pollack

1 Introduction

This chapter describes our work in evolution of buildable designs using miniature plastic

bricks as modular components. Lego1 bricks are well known for their flexibility when it comes to
creating low cost, handy designs of vehicles and structures. Their simple modular concept make toy
bricks a good ground for doing evolution of computer simulated structures which can be built and
deployed.

Instead of incorporating an expert system of engineering knowledge into the program, which
would result in more familiar structures, we combined an evolutionary algorithm with a model of
the physical reality and a purely utilitarian fitness function, providing measures of feasibility and
functionality.

Our algorithms integrate a model of the physical properties of Lego structures with an evolu-
tionary process that freely combines bricks of different shape and size into structures that are evalu-
ated by how well they perform a desired function. The evolutionary process runs in an environment
that has not been unnecessarily constrained by our own preconceptions on how to solve the prob-
lem.

The results are encouraging. The evolved structures have a surprisingly alien look: they are not
based in common knowledge on how to build with brick toys; instead, the computer found ways of
its own through the evolutionary search process. We were able to assemble the final designs manu-
ally and confirm that they accomplish the objectives introduced with our fitness functions.

This chapter discusses background and related work first (section 2), then goes on to describe
our methods; first the model we use to simulate Lego structures (sections 3-4), then the representa-
tion and evolutionary algorithms (section 5). The results sections (6-7) discuss applications, show-
ing the results of several evolutionary runs and illustrating with pictures of the final assembled
Lego artifacts. Finally, on sections 8-9, current and future lines of work and conclusions are drawn.

2 Background

In order to evolve both the morphology and behavior of autonomous devices which can be
manufactured, one must have adequate representations and simulations. The representation must
provide the computer with ways to create, manipulate and modify an infinite variety of virtual
architectures to be tested in simulation. The objects being simulated need to be adaptive enough to
cover the gap between simulated and real world, so they will perform correctly when built. Desir-
able features of a software engine for evolving morphology are:

• Universal - the simulator should cover an infinite general space of mechanisms.
• Conservative - because simulation is never perfect, it should preserve a margin of safety.
• Efficient - it should be quicker to test in simulation than through physical production and

test.
• Buildable - results should be convertible from a simulation to a real object

1. Lego is a registered trademark of the Lego group.

2

With a representation and a physical simulation that follow these ideas, we have obtained
some promising results. In a first stage we worked with two-dimensional structures only (Funes and
Pollack 1997). We have recently extended our framework to three dimensions; one 3D application
is described here as well.

There are several fields which bear on this questions of representation and physical simula-
tion, including qualitative physics and structural mechanics, computer graphics, evolutionary
design and robotics.

2.1 Qualitative Physics
Qualitative Physics is the subfield of artificial intelligence (AI) which deals with mechanical

and physical knowledge representation. It starts with a logical representation of a mechanism, such
as a heat pump (Forbus, 1984) or a string (Gardin and Meltzer, 1989), and produces simulations, or
envisionments, of the future behavior of the mechanism. QP has not to our knowledge been used as
the simulator in an evolutionary design system.

2.2 Computer Graphics.
The work of Karl Sims (Sims, 1994 and 1994b) was seminal in the fields of evolutionary com-

putation and artificial life. Following Ngo and Marks (Ngo and Marks, 1993), Sims evolved virtual
creatures that have both physical architecture and control programs created by an evolutionary
computation process.

Despite their beautiful realism, Sims’ organisms are far from real. His simulations do not con-
sider the mechanical feasibility of the articulations between different parts, which in fact overlap
each other at the joints, nor the existence of real world mechanisms that could produce the forces
responsible for their movements. There was no attempt to emulate a real environment that could
house mechanical counterparts of those virtual creatures.

2.3 Structural Mechanics/Structural Topology
The engineering field of structural mechanics is based on methods, such as finite element

modelling (Zienkiewicz, 1977) to construct computable models of continuous materials by approx-
imating them with discrete networks. These tools are in broad use in the engineering community,
carefully supervised and oriented towards particular product designs, and are often quite computa-
tionally intensive. Applications of genetic algorithms to structural topology optimization (Chapman
et al., 1993; Shoenauer, 1996) are related to our work. This type of application uses genetic algo-
rithms as a search tool to optimize a shape under clearly defined preconditions. The GA is required,
for example, to simultaneously maximize the stiffness and minimize the weight of a piece subject
to external loads (Chapmanet al.,1993).

2.4 Evolutionary Design
Evolutionary Design, the creation of new designs by computers, using evolutionary computa-

tion methods (Bentley, 1996), is a new research area with an enormous potential. Among the differ-
ent approaches and techniques represented in the present volume, our direction is to exploit
modular components to create complete functional structures.

While other research focuses in evolution of abstract shapes or optimization of one part or
component, the line we are proposing is to let the evolutionary process take care of the entire design
process by means of recombination of available components and evaluation of functionality
through physics simulation.

3

2.5 Evolutionary Robotics
Work in evolutionary robotics has traditionally focused in the evolution of robot controllers to

provide a given robot platform — either real or simulated — with a custom brain that, once down-
loaded, will produce an adequate behavior (Mataric and Cliff, 1996). The process of adaptation
through evolutionary search allows these artificial life forms with evolved brains to perform in the
environments they inhabit. Some experiments rely on carefully designed simulations (Cliffet al.,
1996), while others apply evolution directly in the real robot (Floreano and Mondada, 1994).
Hybrid techniques (Lund, 1995) are a mixture of the two.

Whereas some of the most interesting work in artificial life — Karl Sims’ for example —
involves evolution of morphology and control together, researchers in evolutionary robotics use
human designed robot machines and try to evolve control programs for them. The observation can
be made, however, that evolution of a creature’s controlling brain addresses just one part of the
problem of artificially evolving life forms: a creature that adapts to an environment needs an ade-
quate body to inhabit. In nature, the brain for a body, and the body for a brain are exquisitely inter-
twined and co-adapted after millions of years of coevolution.

The idea of co-evolving bodies and brains is becoming popular. Recent work by Lund, Hallam
and Lee (Lundet al., 1997; Leeet al.1996), for example, evolves in simulation a robot control pro-
gram simultaneously with some parameters of its morphology such as sensor number and position-
ing and body size. Our work attempts to build from the opposite shore: we are using evolutionary
techniques to create structures, physical forms, adapted to perform correctly in the physical world.
This is a step on the way to the full co-evolution of morphology and behavior we believe is neces-
sary for the development of robots and brains with higher complexity than humans can engineer.

3 Modelling Lego structures under stress

We begin the description of our methods with the modelling procedure used to test in simula-
tion the behavior of virtual structures produced by an evolutionary process of genetic crossover and
mutation.

The resistance of the plastic material (ABS-acrylonitrile butadiene styrene) of Lego bricks far
surpasses the force necessary to either join two of them together or break their unions. This makes
it possible to design a model that ignores the resistance of the material and evaluates the strain
forces over a group of bricks only at their union areas. If a Lego structure fails, it will generally do
so at the joints, but the actual bricks will not be damaged.

This characteristic of Lego structures makes their discretization for modelling an obvious step.
Instead of imposing an artificial mesh for simulation purposes only —as in finite elements methods,
for example— these structures are already made of relatively large discrete units.

3.1 Networks of Torque Propagation
We begin considering two-dimensional systems of forces. We measured the amount of stress

that different linear (1×1, 2×1, 3×1, etc., as in fig. 2) unions of brick pairs can support (table 1). The
main simplification comes from the observation that a “fulcrum” effect, the angular torque exerted
over such a joint, constitutes the principal cause for the breakage of a stressed pair of Lego bricks.
Thus a critical abstraction for the purpose of modelling has come from disregarding radial forces
such as vertical pulls, and describing the system of static forces inside a complex structure of Lego
bricks as a network of “rotational” joints located at each union between brick pairs and subject to

loads coming from the weight of each brick (fig. 1).

4

fig. 1.Model of a 2D lego structure showing the brick outlines (rectangles), centers of
mass (circles), joints (diagonal lines, with axis located at the star), and “ground” where
the structure is attached (shaded area). The thickness of the joint’s lines is proportional
to the strength of the joint. A distribution of forces was calculated: highly stressed
joints are shown inyellow/light color, whereas those more relaxed arered/darker.
Note that thex andy axis are in different scales.

Joint
size(knobs)

Approximate torque
capacity

(N-m × 10-6)

1 10.4

2 50.2

3 89.6

4 157.3

5 281.6

6 339.2

7 364.5

Table 1. Estimated minimal torque capacities of the basic types of joints

−160 −140 −120 −100 −80 −60 −40 −20 0 20 40
−2

0

2

4

6

8

10

5

Given a structure formed by a combination of bricks, our model builds a network with joints of
different capacities and external forces that must be in static equilibrium if the structure is not going
to collapse. Each idealized joint is located at the center of the area of contact between a pair of
bricks.

Each force applied to a brick, either its own weight or an external load, has to be cancelled by
one or more reaction forces if the brick is stable — otherwise it would be falling. Such reaction
forces can originate in any of the joints that connect it to neighbor bricks. In that case the force is
transmitted through the joint to a connected brick. Thus a load is propagated through the network
until finally absorbed by a fixed body — the “ground”.

If a solution to this network exists, it means that there is a way to distribute all the forces along
the structure. Our operating heuristic is this: As long as there is a way to distribute the weights
among the network of bricks such that no joint is stressed beyond its maximum capacity, the struc-
ture will not break.

From this strategy of modelling an algorithmic problem arises. Where nature simply distrib-
utes work dynamically through small deformations along the structure, our model needs an algo-
rithm to determine the existence of solutions. We have not found a complete algorithm for this
problem, but a greedy (Cormen,et al., 1989, p. 239) technique, not always capable of finding the
solution when there is one, guarantees the stability of the structure in the numerous cases when a
solution is actually found. Our model is thus conservative. It might be wrong in predicting the
breakage of a structure, but any shape approved by it is guaranteed to resist the required loads.

3.2 From 2- to 3-dimensional networks
To extend our model of networks of torque propagation to cover three-dimensional brick

structures, our definition of joint needs to be extended. Where before all brick unions could be
described with one integer quantity, the number of knobs that join two bricks, in the three dimen-
sional case these unions will ben-by-m rectangles. Two 2×4 bricks for example can be stuck
together in 8 different types of joints: 1×1, 1×2, 1×3, 1×4, 2×1, 2×2, 2×3, 2×4. We know already,
from the one dimensional case, hown×1 unions respond to forces acting along thex axis alone. A
2×1 union supports more than double the torque admitted by a 1×1, the reason being that the brick
itself acts as a fulcrum (fig. 2). The distance from the border to the first knob is shorter than the dis-
tance to the second knob, resulting in a lower multiplication of the force for the second knob. This
fulcrum effect does not happen when the force is orthogonal to the line of knobs. A 2×1 union can
be considered as two 1×1 unions, or as one joint with double the strength of a 1×1 (fig. 3).

fig. 2. Fulcrum effect: a 1×2 union resists more than twice the load of a 1×1 because
the second knob is farther away from the axis of rotation.

6

fig. 3. Two-dimensional brick joint: bricks A and B overlap in a 4×2 joint J. Alongx
the joint is a double 4×1 joint. Along they axis it is a quadruple 2×1-joint.

Following these ideas we enunciate the following rule: Two bricks united byn × m overlap-
ping knobs will form a joint with a capacityKx along the x axis equal tom times the capacity of one
n-joint andKy along they axis equal to n times the capacity of an m-joint.

To test the resistance of this composite joint to any spatial forcef we have to separate it into its
two components,fx on thexz plane andfy on theyz plane. These components induce two torques
τx, τy. To break the union either τx must be larger thanKx or τy larger thanKy. With this procedure
we induce, from a 3-dimensional brick structure, two separate 2-dimensional systems of joints, one
for thex components of torques and joints and the other for they components. The structure is sta-
ble if and only if both 2-dimensional projections are stable networks (figs. 5 and 6).

We are assuming that a dimensional independence hypothesis is true; it could be the case,
however, that a force exerted along one axis will either weaken or strengthen the resistance in the
orthogonal dimension. We made some exploratory experiments that suggested that the presence of
stress along one axis does not modify the resistance along the other. It is probably the case that the
rectangular shape of the joint makes it stronger for diagonal forces, justifying this simplification.

3.3 Limitations of modelling
We know that this kind of naive modelling is not a complete description of the highly complex

physical interactions that are taking place. However, we expect that considering an adequate margin
of error we will be able to produce useful approximations to the true behavior of actual Lego bricks.

The properties of Lego bricks are variable. Differences in construction, age, dirt, temperature,
humidity and other unpredictable factors produce seemingly random variations on the measure-
ments of their behavior. These factors have to be taken into account in order to have buildable
results.

So far we have accounted for this problem using a “safety margin” of 20%. This means that
our model actually assigns 20% less resistance to all the joints involved. Any model for modular
structures will have to contemplate this kind of safety margins to compensate for the random vari-
ability of the generic properties of the average brick, but the value of 20% was set intuitively and
may require further study, especially as our structures scale up in size and complexity.

Evolutionary roboticists have found similar unpredictabilities when attempting to simulate the
environment for a real robot (Jakobiet al., 1995). This has lead to the incorporation of random
noise to the simulators in order to generate robust behaviors suitable to be transferred to the real
world.

Our model provides only an approximation to the complex physical properties of Legos. It
may be possible to complicate it a great deal to have more accurate physics. But because of the

B

J x

y

A

7

variable, noisy properties of Legos, a highly accurate model would not remove the need for a safety
margin. Noise means that real entities can not be simulated beyond the limit of variability in the
measurements of their physical parameters.

fig. 4. 3D model for a few Lego bricks. For every pair of bricks we model a “joint”
located at the center of the area of contact, whose resistance depends on itsx andy
dimensions (see fig. 3). Each joint is labelled with a star and each center of mass with
a circle.

1
2

3
4

5
6 0

1
2

1.5

2

2.5

3

3.5

4

4.5

5

5.5

8

4 Solving a model

fig. 5.Structure of Lego bricks generated by our evolutionary process. The underlying
physical model is shown.

Our model for a 2D structure of bricks generates a set of simultaneous interval equations that
can be satisfied if and only if the structure is stable. Each force, either the weight of one of the
bricks or an external load, will have to be absorbed by the joints in the structure and transmitted to
the ground. The torque exerted by each joint must lie in the interval [-K, K], where K represents its
maximum capacity as deducted from the number and disposition of overlapping knobs between two
bricks.

−5

0

5

10 −6
−4

−2
0

2
4

6

0

2

4

6

8

10

12

123.739929

9

fig. 6.Projecting the 3D structure of fig. 5 to thexzandyz planes two 2D networks are
obtained that can be solved independently.

It is not clear to us yet which algorithm can solve the equations and find, for a given structure
and set of forces, whether or not there is a valid distribution of loads such that all forces are in equi-
librium and at the same time all torques lie inside the valid intervals of the joints. But in the case
where only one force is present, the problem is describable as a network flow algorithm (NFA)
(Cormenet al., 1989, ch. 12) and can be solved by known methods. The possibility of adapting gen-
eralized versions of network flow algorithms (Iusem and Zenios, 1995; Leightonet al., 1995) to our
problem remains to be explored.

By separating each 3D joint into two orthogonal and independent 2D joints, which receive the
x andy components of each external force, we can project an entire 3D network model of a bricks
and joints structure into two orthogonal planes,xz andyz, generating two 2D networks that can be
solved separately (figs. 5 and 6). Thus the problem of solving a 3D network does not add any more
complexity to the existing problem of solving 2D networks of bricks and joints.

4.1 NFA for solving a 2D network with a greedy algorithm
For each given force we consider the network of all the joints in the structure as a flow net-

work that will absorb it transmit it to the ground. Each jointj can support a certain fractionα of
such a force, given by the formula

(1)

where Kj is the maximum capacity of the joint, d(j,F) is the distance between the line gener-
ated by the force vector and the joint, and f the magnitude of the force.

If a given forceF is fixed and each edge on the graph is labeled with the correspondingaj,b

according to (1), a network flow problem is obtained where the source is the brick to which the
force is applied and the sinks are all the connections to the ground. A net flow of 1 represents a
valid distribution of the forceF throughout the structure.

−4 −3 −2 −1 0 1 2 3 4 5 6
0

2

4

6

8

10

12
123.739929

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12
123.739929

αj F,

K
j

d j F,() f
---------------------=

10

The complete problem is not reducible, however, to an NFA, due to the fact that there are mul-
tiple forces to be applied at different points, and the capacity of each joint relative to each one var-
ies with the magnitude of the force and the orthogonal distance between force and joint.

Leaving aside the study of better algorithmic implementations, we are using a greedy algo-
rithm: once a solution has been found for the distribution of the first mass, it is fixed, and a remain-
ing capacity for each joint is computed that will conform a reduced network that must support the
next force, and so on.

While there may be a better algorithm for solving the weight distribution for a stable Lego
structure, an incomplete algorithm could be enough for many applications. Any structure that is
approved as “gravitationally correct” by our simulation possesses a load distribution that does not
overstress any joint, and thus will not fall under its own weight. Our evolutionary algorithm might
be limited by the simulation when it fails to approve a structure that was physically valid, but still
may succeed working only in the space of “provable” solutions.

5 Genetic coding for Lego structures

To evolve structures in the computer, a genetic representation is required. The evolutionary
algorithm manipulates this genotype to create new alternatives by recombination and mutation of
previous ones. The new variations are then tested with the simulation machinery, as described in the
previous sections, to evaluate their properties and select or discard them accordingly.

Our representation borrows the standard tree mutation and crossover operators from genetic
programming (Koza, 1992). We have implemented tree representations of 2D and 3D Lego struc-
tures. Each node on the tree represents a brick and has a size type parameter indicating the size of
the brick and a list of descendants, which are new bricks physically attached to the parent. Each
descendant node has positional parameters that describe the position of the new brick relative to the
parent.

5.1 Coding for 2D and 3D structures
In the 2D version each brick node has a size type parameter (4, 6, 8, 10, 12 or 16, correspond-

ing to the Lego bricks of size 1×4 through 1×16) and four potential sons, each one representing a
new brick linked at one of its four corners (lower left, lower right, upper right, upper left). Each
non-nil descendant has a “joint size” parameter indicating the number of overlapping knobs in the
union.

fig. 7. Example of 2D genetic encoding of bricks

The diagram on fig. 7. represents a 10-brick with its 4 joint sites labeled 0, 1, 2, 3, that is
linked to a 6-brick by two overlapping knobs. The corresponding tree could be written in pseudo-
Lisp notation as

(10 nil (2 (6 nil nil nil)) nil nil) (2)

10

60 1

23

2

11

In the extension to 3D we add more size types to incorporate bricks other than 1×n (the bricks
currently available are 1×2, 1×4, 1×6, 1×8, 1×10, 1×12, 1×16, 2×2, and 2×4), and use a list of
descendants, each one representing a new brick to be plugged into the parent. Each descendant
brick has 3 parameters: The integer(x, y, z)coordinates of the new brick (relative to its parent, so
for a descendant of ann×m brick, 0 ≤ x < n, 0 ≤ y < m andz ∈ {-1,1}); a rotation parameter that
specifies the orientation of the descendant relative to the parent (0˚, 90˚, 180˚ or 270˚), and the size
of the descendant. As an example, the structure in fig. 4 can be codified as

(1×4 ((0,0,1) 0˚ (1×4 ((0,0,1) 0˚ (2×4 ((3,0,1) 0˚ (1×2)))))) (3)

5.2 Mutation and Crossover
Mutation operates by either random modification of a brick’s parameters (size, position, orien-

tation) or addition of a random brick. The basic crossover operator involves two parent trees out of
which random subtrees are selected. The offspring generated has the first subtree removed and
replaced by the second.

After mutation or crossover operators are applied, a new, possibly invalid specification tree is
formed. The result is expanded one node at a time and overlapping is checked. Whenever an over-
lap is found the tree is truncated at that site. With this procedure, a maximum spatially valid subtree
is built from a crossover or mutation. Branches that could not be expanded are discarded.

Once a valid tree has been obtained, the physical model is constructed and the structure tested
for stress stability. If approved, fitness is evaluated and the new individual is added to the popula-
tion.

A problem with our representations, similar in origin to the problem of valid function parame-
ters in genetic programming, is that it is underconstrained: Only some trees will encode valid Lego
structures. Many trees describe impossible, overlapping structures. The following mutation of (3),
for example, is illegal because two bricks would share the same physical space (z = -1 after the sec-
ond brick means that the third one goes below it, but the first brick is already there).

(1×4 ((0,0,1) 0˚ (1×4 ((0,0,-1) 0˚ (2×4 ((3,0,1) 0˚ (1×2)))))) (4)

5.3 Evolutionary Algorithm
We use a straightforward steady-state genetic algorithm, initialized with a population of one

single brick. Through mutation and crossovers a population of 1000 individuals is generated and
then evolved:

1. While maximum fitness < Target fitness
2. Do Randomly select mutation or crossover.
3. Select 1 (2 for crossover) random individual(s) with fitness proportional probability.
4. Apply mutation or crossover operator
5. Generate physical model and test for gravitational load
6. If the new model will support its own weight.
7. Then replace a random individual with it (chosen with inverse fitness proportional prob-

ability).

12

6 Evolving two-dimensional Lego structures

In this section we summarize the experiments done and the Lego designs obtained. Our first
assay was the “Lego bridge”: evolving a structure attached to a table to reach over the void to a
neighboring table. With appropriate fitness functions we went on to evolve other 2D structures,
including longer bridges, scaffolds and cranes. Finally, our first 3D project is a table.

6.1 Reaching a target point: Bridges and Scaffolds

fig. 8. Basic setup: The structure starts over a Lego plate affixed to a table and has to
reach a target point supporting its own weight.

In our first experiments we conceived a Lego plate affixed to a table (fig. 8) and evolved 2D
structures to reach a target point, using as fitness function a normalized distance to the target point,

(5)

(whereS is the structure,T the target point andd the euclidean distance).
Structures not approved by the physical model where discarded. Those capable of supporting

themselves — according to our simulation — where incorporated to the evolving population and
selected according to this straightforward fitness measure.

With a target point located horizontally and away from the plate we generated a “Lego
Bridge” (figs. 1 and 9), moving it to a remote position we obtained the “long bridge” (fig. 10), and
putting it below we generated a descending structure, a “scaffold” (fig. 11).

Lego plate

Table

EVOLVED
STRUCTURE

target point

Nd S T,() 1 d S T,()
d 0 T,()
-------------------–=

13

fig. 9. The “Lego bridge” defined by the scheme of fig. 1, built on our lab table.

fig. 10.Long Bridge

14

fig. 11.Scaffold.

6.2 External Loads: Horizontal crane arm
With a two-step fitness function that gives one point for reaching the target point as in equa-

tion (5) above and, if reached, additional points for supporting an external weight hanging from the
last brick, we evolved a crane arm (fig. 12).

Since our algorithm gives a yes/no answer for the stability of a structure, we add the weight in
small increments and test repeatedly to create a fitness function in this case. For example, for a tar-
get loadm we can use the following fitness function

1. For i=1 to 100
2. Add a weightm/100 to the structure atT
3. If the structure does not resist, return (i-1)/100
4. return 1.0

15

fig. 12.Crane with evolved horizontal crane arm.

6.3 Constraining the space: Diagonal crane arm
For a different type of crane we constrained the space where bricks can be located to the diag-

onal subspace {-x<y}. In order to evolve a crane arm that would support a weight of 250g we wrote
a fitness function whose value is the fraction of 250g supported times the length of the arm along
thex axis. Since no bricks can be placed below the diagonal, the resulting arm goes diagonally up
and away (figs. 13 and 14).

fig. 13.Crane with diagonal crane arm.

6.4 Optimization
A comment that we often received was that our final structures are not optimized: They have

useless bricks that do not serve for any apparent purpose. Of course, these irregularities are useful
during the search process. Since we are not rewarding nor punishing the number of bricks used, the
evolutionary search will freely generate variations with different numbers of bricks. All of them are
potentially useful in the process of finding new combinations with higher fitness.

16

In a new run of the diagonal crane arm experiment, we added a little reward for lightness,
inversely proportional to the number of bricks, but three orders of magnitude smaller than the raw
fitness function. Fig. 14 shows two solutions for a crane arm the same length (a fitness value of 24).
The structure on the right has a bigger premium, so we will prefer it.

fig. 14.Optimization: Among several structures found with a raw fitness of 24, a small
premium in the fitness function allows us to choose the one that uses less bricks
(right). [Note that the tall column on the right cannot be eliminated because it acts as a
counterbalance for the load that will be placed at the left tip of the crane].

There is a reason why the weight of the fitness of the “simplicity” factor should be small com-
pared with the raw fitness measure (length of the arm): we are willing to sacrifice everything else
for the size of the crane, which is what we are really trying to maximize. Among cranes of the same
size and resistance, however, we prefer those with a smaller number of bricks. The evolutionary
process must not be biased against heavier versions of the crane. In the example shown in fig. 14,
fitness values of 24.0029 and 24.0040 have nearly identical chances of being selected in a fitness
proportional selection scheme. But among otherwise identical cranes, the premium for optimality
allows us to keep the one that is cleanest.

7 Evolving three-dimensional Lego structures

7.1 First project: a Lego table
We have run our first experiments in evolution of 3D Lego designs. Our initial project is a

“table”. We start with a fixed plate as in fig. 8, and want to obtain a table 10 bricks tall, with a sup-
port surface of 9×9 and capable of supporting a weight of 50 grams anywhere. There are four objec-
tives to fulfill:

1. The height of the structure must be as required.
2. The surface most cover the target area.
3. The desired weight has to be supported all over the surface.
4. All other conditions met, a minimal number of bricks should be used.

To cover all the objectives we wrote a step fitness function that gives between 1 and 2 points
for the first objective partially fulfilled, between 2 and 3 for the first objective completed and partial

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50
24.002913

−25 −20 −15 −10 −5 0 5 10 15 20 2
0

5

10

15

20

25

30

35

40

45

50
24.004095

17

satisfaction of the second, and so on. With this setup, the algorithm builds upwards first, then
broadens to cover the surface, later secures that all points of the surface support a load of 50g and
finally tries to reduce the number of bricks to a minimum.

One of the solutions we obtained is shown in figs. 5 and 6, and a picture of the Lego table built
in fig. 15.

fig. 15.Lego table as specified by the diagram of fig. 5, holding a 50g weight.

7.2 Problems defining the fitness function
A first attempt to evolve a table failed to satisfy objective 2 (covering the entire surface). The

reasons for this failure require further investigation. One problem with our representation is that the
distance between genotype and phenotype is big, making most mutations too radical. Also, not pro-
viding 1×1 bricks complicates matters (but we did so because our current set of Lego does not
include them). Finally, there is little selective pressure as fitness values between 1.9 and 2.0 are
nearly identically selected. The raw value in the range [1, 5] was expanded by an exponential func-
tion to add selective pressure (so for example the fitness value of 123.74 in fig. 5 corresponds to a
raw fitness of 4.8), but this did not solve the problem of full coverage. For the successful run pic-
tured above the coverage objective was redefined as “covering at least 96% of the target area”.

The use of stepped fitness functions might not be ideal; Pareto optimality aware GA tech-
niques (Goldberg, 1989, ch. 5) should improve performance in multiobjective problems such as this
one.

8 Problems and future research directions

The algorithm being used to solve our models does not find all possible solutions. More
sophisticated algorithmic tools may provide ways to fully solve the system of equations. The use of
appropriate heuristics may in any case help a good deal. This is a critical factor as we may be wast-
ing many plausible structures just because we are not capable of proving their stability.

18

The tree representation for Lego structures is a limiting factor. An improved description
should bring genotype and phenotype closer, providing a better ground for evolution of objects of
higher complexity.

The crossover operator provides a primitive way to reuse successful parts, modules, that may
spread over the population. A better representation combined with modular recombination tools
(Angeline and Pollack, 1994) could allow composite block structures — such as the bricklayers
pattern which holds increased stress — to be discovered and replicated as new basic components.

We believe that we can reach some understanding of the dynamic stresses which would be
involved in basic Lego mechanisms driven by Lego motors. This would open the field for evolving
active pieces of machinery, including vehicles.

The use of more advanced evolutionary techniques including multiobjective optimization,
speciation, automatic functional decomposition or landscape models (Goldberg, 1989; Darwen,
1996), may improve over the performance of our minimal steady-state GA.

9 Conclusions

We have shown that under some constraints, a simulator for objects can be used in an evolu-
tionary computation, and then the objects can be built. Our belief is that in machine learning/evolv-
ing systems, the more interesting results, such as Sims’ creatures or expert backgammon players
(Tesauro, 1995; Pollacket al.,1996), are due more to features of the learning environment than to
any sophistication in the learning algorithm itself. By keeping inductive biases andad hocingredi-
ents to a minimum, we have also demonstrated that interesting real-world behavior can come from
a simple virtual model of physics and a basic adaptive algorithm.

The use of modular building elements with predictable — within an error margin — properties
allows evolutionary algorithms to manipulate physical entities in simulation in ways similar to what
we have seen, for example, in the case of robot control software. The bits in our artificial chromo-
somes are not limited to codifying just bits; they are capable of representing the building blocks of
an entire physical structure.

We believe to have only scratched the surface of what is achievable. Combined with suitable
simulators, the recombination of modular components guided by an artificial selection algorithm is
a powerful framework capable of designing complex architectures ready to be built and used.

19

References

Angeline, P. J. and Pollack, J. B. (1994). Coevolving High-Level Representations. In C. Langton,
(ed.)Proceedings of the Third Artificial Life Meeting.

Chapman, C. D., Saitou, K. and Jakiela, M. J. (1993) Genetic Algorithms as an Approach to Con-
figuration and Topology Design, inProceedings of the 1993 Design Automation Conference,
DE-Vol. 65-1. Published by the A.S.M.E., Albuquerque, New Mexico, p. 485-498.

Cliff, D., Harvey, I., Husbands, P. (1996). Artificial Evolution of Visual Control Systems for
Robots.From Living Eyes to Seeing Machines. M. Srinivisan and S. Venkatesh (eds.), Oxford
University Press.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (1989). Introduction to Algorithms. MIT press -
McGraw Hill.

Darwen, P. J. (1996)Co-evolutionary Learning by Automatic Modularisation with Speciation. Uni-
versity of New South Wales, 1996.

Floreano, D. and Mondada, F. (1994). Automatic Creation of an Autonomous Agent: Genetic Evo-
lution of a Neural Network Driven Robot. In D. Cliff, P. Husbands, J.-A. Meyer, and S. Wil-
son (Eds.),From Animals to Animats III, Cambridge, MA. MIT Press.

Forbus, K. (1984). Qualitative process theory. InArtificial Intelligence 24, 85-168.

Funes, P. and Pollack, J. (1997). Computer Evolution of Buildable Objects.Fourth European Con-
ference on Artificial Life. P. Husbands and I. Harvey, eds., MIT Press. pp 358-367.

Gardin, F. and Meltzer, B. (1989). Analogical Representations of Naive Physics.Artificial Life 38,
pp 139-159.

Goldberg, David E. (1989).Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley.

Iusem, A. and Zenios, S. (1995). Interval Underrelaxed Bregman’s method with an application. In
Optimization, vol. 35, iss. 3, p. 227.

Jakobi, N., Husbands, P. and Harvey, I. (1995). Noise and the Reality Gap: The use of Simulation in
Evolutionary Robotics, inAdvances in Artificial Life: Proceedings of the 3rd European Con-
ference on Artificial Life,Moran, F., Moreno, A., Merelo, J., Chacon, P. (eds.) Springer-Ver-
lag, Lecture Notes in Artificial Intelligence 929. pp. 704-720.

Koza, John R. (1992). Genetic Programming: On the Programming of Computers by Means of Nat-
ural Selection. Cambridge, MA: The MIT Press.

Lee, W., Hallam, J. and Lund, H. (1996). A Hybrid GP/GA Approach for Co-evolving Controllers
and Robot Bodies to Achieve Fitness-Specified Tasks. InProceedings of IEEE 3rd Interna-
tional Conference on Evolutionary Computation. IEEE Press.

20

Leighton, T., Makedon, F., Plotkin, S., Stein, C., Tardos, E. and Tragoudas, S. (1995). Fast Approx-
imation Algorithms for Muticommodity Flow Problems.Journal of Computer and Syst. Sci-
ences 50. p. 228-243.

Lund, H., (1995). Evolving Robot Control Systems. In J. T. Alander (ed.) Proceedings of 1NWGA,
University of Vaasa, Vaasa.

Lund, H., Hallam, J and Lee, W. (1997). Evolving Robot Morphology. Invited paper inProceedings
of IEEE Fourth International Conference on Evolutionary Computation.IEEE Press, NJ.

Mataric, M and Cliff, D. (1996). Challenges In Evolving Controllers for Physical Robots. InEvolu-
tional Robotics, special issue ofRobotics and Autonomous Systems, Vol. 19, No. 1. pp 67-83.

Ngo, J.T., and Marks, J. (1993). Spacetime Constraints Revisited. InComputer Graphics, Annual
Conference Series. p. 335-342.

Pollack, J. B., Blair, A. and Land, M.(1996). Coevolution of A Backgammon Player.Proceedings
Artificial Life V, C. Langton, (Ed), MIT Press.

Shoenauer, M. (1996). Shape Representations and Evolution Schemes. In L. J. Fogel, P. J. Angeline
and T. Back, Editors,Proceedings of the 5th Annual Conference on Evolutionary Program-
ming, MIT Press, to appear.

Sims, K. (1994). Evolving Virtual Creatures. InComputer Graphics,Annual Conference Series.

Sims, K. (1994b). Evolving 3D Morphology and Behavior by Competition. InArtificial Life IV
Proceedings, MIT Press.

Tesauro, G. (1995) Temporal difference learning and TD-Gammon.Communications of the ACM,
38(3): 58-68.

Zienkiewicz, O.C. (1977).The Finite Element Method in Engineering Science.McGraw-Hill, New
York, 3rd edition.

