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Abstract- We introduce Embodied Evolution (EE) as a
methodology for the automatic design of robotic con-
trollers. EE is an evolutionary robotics (ER) tech-
nique that avoids the pitfalls of the simulate-and-transfer
method, allows the speed-up of evaluation time by utiliz-
ing parallelism, and is particularly suited to future work
on multi-agent behaviors. In EE, an evolutionary algo-
rithm is distributed amongst and embodied within a pop-
ulation of physical robots that reproduce with one another
while situated in the task environment. We have built a
population of eight robots and successfully implemented
our first experiments. The controllers evolved by EE com-
pare favorably to hand-designed solutions for a simple
task. We detail our methodology, report our initial re-
sults, and discuss the application of EE to more advanced
and distributed robotics tasks.

1 Introduction

Our work is inspired by the following vision. A large number
of robots freely interact with each other in a shared environ-
ment, attempting to perform some task—say the collection
of objects representing food or energy. The robots mate with
each other, i.e., exchange genetic material, producing (off-
spring) control programs that become resident in other mem-
bers of the robot population. Naturally, the likelihood of a
robot producing offspring is regulated by its ability to per-
form the task or collect ‘energy.’ Further, there is no need for
human intervention either to evaluate, breed, or reposition the
robots for new trials—the population of robots evolves hands-
free. Many substantial technological demands are made by
this vision, and considerable algorithmic detail must be added
before it is workable.

We have developed this vision (to our knowledge first de-
scribed in [Harvey, 1995]) into a methodology we call em-
bodied evolution (EE). We define embodied evolution as evo-
lution that takes place in a population of real robots, and we
stipulate that the evolutionary algorithm is to execute in a
distributed and asynchronous manner within that population.
Thus, we distinguish EE from methods that serially evaluate
candidate controllers on a single robot as well as algorithms
that maintain and manipulate the specifications of individual
agents in a centralized manner. We wish to create a popula-

tion of physical robots that evolve autonomously as well as
perform their tasks autonomously. This paper introduces our
implementation of embodied evolution and reports results of
initial experiments that provide the first proof-of-concept.

2 Motives and Related Work

The EE methodology is motivated by three different research
areas. We view EE as an artificial life experiment, as an evo-
lutionary robotics (ER) tool, and, in particular, as a substrate
for the evolution of collective robotics behaviors.

2.1 Artificial Life

The adaptive mechanism of natural evolution is completely
decentralized and distributed. Evaluation is implicit and re-
production is carried out autonomously by the agents in the
population—not at the bequest of some centralized author-
ity. The artificial life literature provides several examples of
simulated systems where agent behavior and reproductive ac-
tivity are integrated [Werner and Dyer, 1991, Fontana, 1991,
Ray, 1991, Ventrella, 1998]. In these systems, agent behav-
ior either impacts reproduction directly, or, in some cases,
is synonymous with reproduction. These experiments en-
able researchers to explore the critical effects that result from
the merging of reproductive behavior with other behaviors.
In contrast, experiments that use physical robots have not
been able to integrate reproduction with other autonomous
behaviors. Although some evolutionary robotics has used
real robots for evaluation of individuals, the evolving pop-
ulation is virtual—a set of controllers centrally stored either
off-board or on-board—and so reproduction can not occur be-
tween two robots. A significant motive for our EE research is
to implement, in a population of real robots, artificial evolu-
tion using the distributed and autonomous properties of natu-
ral evolution. We wish to employ the ideals of autonomy and
distributed control not only in the task behavior of robots, but
in their adaptive mechanism as well.

2.2 Evolutionary Robotics

Evolutionary Robotics (ER) seeks to offer an alternative
to the hand-design of robotic controllers [Cliff et al., 1993,
Husbands and Harvey, 1992]. ER sometimes uses real robots



(typically one or a small number) to evaluate all the
controllers that arise during evolution [Harvey et al., 1993,
Floreano and Mondada, 1994, Floreano and Mondada, 1996,
Nolfi, 1997]. But, evaluating controllers serially on real
robots is time consuming, even if the evaluations can be per-
formed without human supervision. Accordingly, the large
number of evaluations required for evolutionary algorithms
makes simulation an attractive method for the evaluation of
candidate controllers. Unfortunately, a lack of fidelity in the
simulator can lead to problems oftransference; that is, con-
trollers evolved in simulation do not account for the sub-
tleties in the physical characteristics of the robots or the
task environment and fail when transferred to real robots
[Brooks, 1992, Mataric and Cliff, 1996].

Transference problems can provably be eliminated
through careful design of the simulator [Jakobi, 1997a,
Jakobi, 1997b], but only by the assumption that the environ-
mental factors critical for the task are known. Distributed
robotics applications are particularly problematic in this re-
gard because such critical environmental factors may be diffi-
cult to ascertain due to the complexity of the environment and
the tightly-coupled interactions of a large number of robots.
Even when known, the complexity of modeling these envi-
ronmental factors, especially for high resolution sensory ap-
paratus (e.g., vision), may make simulation slower than real
time. Yet, without the help of simulation the large numbers of
evaluations required for evolutionary techniques seems pro-
hibitive. EE is our response to the dilemma between fi-
delity and speed. Embodied evolution does not use simulation
and therefore avoids transference completely, and EE uses a
large number of robots to parallelize the evaluation process,
thereby providing speedup.

2.3 Collective Robotics

Distributed robotics systems pose serious challenges to estab-
lished controller-design methods. Distributed control is easy
to achieve if the decomposition of a problem is known and
the problem sub-parts are neatly separable into independent
tasks; in such a case, we build an independent autonomous
agent for each sub-problem (using either hand design or ma-
chine learning). The structures of most real-world problems,
however, are neither knowna priori, nor composed of neatly
separable sub-parts. As a result, much work to-date in col-
lective robotics focuses on restricted cases, such as systems
that are composed of homogeneous and independent sub-
systems, for example flocking and foraging. Typically, agents
in such experiments use hand-built (non-learning) controller
architectures [Beckers et al., 1994, Balch and Arkin, 1995,
Rus et al., 1995, Donald et al., 1997]. Work that does in-
volve learning typically occurs in simulation [Tan, 1993,
Littman, 1994, Saunders and Pollack, 1996, Balch, 1997],
or in relatively simple physical domains/environments
[Mahadevan and Connell, 1991, Mataric, 1994a,
Mataric, 1994b, Parker, 1997, Uchibe et al., 1998].

The difficulties of accomplishing highly coordinated
multi-robot behavior in complex interactive domains provide
the third area of motivation for EE. To date, evolutionary
robotics has not addressed collective tasks in real robots (nor,
for that matter, in simulation) because of the many techni-
cal and engineering challenges involved, such as the need for
continuous power and the difficulty of coordinating multiple
robots. As robot populations become larger (on the order of
hundreds or thousands) and deployed in more complex en-
vironments, the less tenable a centralized evolutionary algo-
rithm becomes; communication bottlenecks arise with a cen-
tralized evolutionary algorithm and synchronized evaluation
and reproduction become difficult.

However, EE does not use a centralized evolutionary al-
gorithm. Our definition of EE stipulates that the adaptive
mechanism must be distributed. This distinguishes embod-
ied evolution from the mere parallelization of embodied eval-
uations using a large number of robots (which would have
no algorithmic distinction from existing work in ER). As an
intrinsically population-based method where robots adapt in
the task environment, embodied evolution potentially offers
an ideal substrate with which to study emergent group behav-
ior and explore mechanisms that adaptively discover problem
decomposition. As well as providing a substrate for study-
ing distributed behavior, the distributed architecture of EE en-
sures that the adaptive mechanism also adheres to the ideals
of scalability and robustness. Finally, EE has the potential
to be used where agents must evolve while deployed “in the
field”—an issue not usually included in ER goals, but an im-
portant consideration for the long term.

2.4 Unifying ALife, ER, and Collective Robotics

Embodied evolution provides a framework that begins to
unify artificial life, evolutionary robotics, and collective
robotics. Each of these areas provide motives for embodied
evolution, and together formulate a long-term goal for their
integration.

In summary, several issues are problematic for current ER
methods when applied to multi-agent domains:

� We are interested in the interaction of many agents, but
current ER methods scale poorly, and

� We need to evaluate a large number of candidate con-
trollers, and it takes too long to perform these evalua-
tions serially on a real robot, yet

� We need to carry out evaluations in real robots to avoid
transference problems.

These apparent difficulties can be turned to our advantage
by embodying an evolutionary algorithm in a population of
robots that are situated in a single, shared environment:

� EE is a population-based method, which provides a
large number of agents, and its distributed architecture
scales well.

� By using a large number of robots we perform a large
number of evaluations in parallel.



� Because we use real robots, there is no transference to
cause problems. The interaction between agents occurs
without the computational overhead of simulation and
with perfect fidelity. We use the real world to act as “its
own best model” [Brooks, 1991].

3 Implementing Embodied Evolution

Our first experiments in embodied evolution require that we
construct a population of robots, a continuous power delivery
system, and a distributed evolutionary algorithm. Here, we
review each of these in turn. We also note the revised role
that simulation takes in our work.

3.1 A Population of Robots

Embodied evolution requires a larger number of robots than
that used in any evolutionary robotics work to-date. The
short-term proof-of-concept experiments (described in the
next section) require only minimal capabilities of each robot.
Similarly, the long-term objectives of EE emphasize the in-
teraction of robots rather than the sophistication of individual
robots. Accordingly, we have built a population of simple
robots of our own design that are quite minimal in their in-
dividual capacity yet have the necessary capabilities for EE.
Our robots employ the “Cricket” micro-controller board, sup-
plied by the MIT Media Laboratory [Resnick et al., 1997],
which uses a PIC micro-controller. Shown in Figure 1, each
robot measures 12cm in diameter and has two light sensor
inputs and two motor outputs as well as local-range omnidi-
rectional infra-red communication.

Figure 1: (Left) The robot design used in our initial EE ex-
periments. The directional infra-red diodes are directed ver-
tically downwards and use reflectance off the floor to achieve
local omnidirectional communication. A: Infra-red trans-
mit/receive; B: PIC micro-controller; C: Lego motor; D: Tup-
perware body; E: Rechargeable cell; F: Recharge circuit.
(Right) Robot underside showing the two light sensors and
four contact points that collect power from the floor.

3.2 Continuous Power Technology

The power requirements for embodied evolution demand a
novel power delivery system. Battery power is able to sustain
a robot only for a period on the order of hours, often no more

than two or three [Brooks, 1992]. Longer periods of unin-
terrupted power can be achieved by either tethering a robot
directly to a power source [Mondada and Floreano, 1996], or
by providing battery recharge stations for the robot to visit
periodically. Nevertheless, tethers easily tangle with only a
few robots, and recharge stations can not be made transpar-
ent with respect to the robotic task, as they force robots to
interrupt their activity for non-trivial amounts of time. We
have developed and refined an alternative method that trans-
parently provides continuous, untethered power.

Our robots run on a powered floor that is constructed with
modular interlocking panels. Each panel has a number of
strips of stainless-steel tape that alternately connect to the
positive and negative poles of a DC power supply. Each robot
has four contact points on the underside of its body, shown in
Figure 1 (right). The geometry of the contacts guarantees that
at least one point can make contact with each pole of the DC
supply, regardless of the rotation or translation of the robot
on the floor. The power drawn from the robot’s contact points
is rectified and delivered to the robot’s controller and motors.
Power is also sent to a circuit that maintains a small recharge-
able cell, which is used only in the event of momentary loss of
contact with the floor. While building our powered floor, we
learned of two other research groups that have built floors of
similar construction [Martinoli et al., 1997, Keating, 1998].
These parallel efforts attest to the viability and utility of this
power supply approach. Other approaches [AAIS, 1998],
like earlier prototypes of our own, use a floor and ceiling
“bumper-car” style set-up.

3.3 A Distributed Evolutionary Algorithm

The principal components of any evolutionary algorithm are
evaluation and reproduction, and both of these must be car-
ried out autonomously by and between the robots in a dis-
tributed fashion for EE to scale effectively. Because the pro-
cess of evaluation is carried out autonomously by each robot,
some metric must be programmed in. This can be quite im-
plicit, for example, where failing to maintain adequate power
results in “death” [Mondada and Floreano, 1996]. Or, it can
be explicitly hard-coded, for example, where fitness is a func-
tion of objects collected and time. Whatever metric is used,
performance must be monitored by the robot itself, as no ex-
ternal observer exists to measure a robots ability explicitly.

Reproduction in EE must also be both distributed and
asynchronous. Assuming that we cannot really create new
robots spontaneously, the offspring must be implemented us-
ing (other) robots of the same population. And, if the robots
do not have structurally reconfigurable bodies, reproduction
must simply mean the exchange of control program code.

In general, selection in an evolutionary algorithm may be
realized by having more-fit individuals supply genes (i.e.,
be parents) or by having less-fit individuals lose genes (i.e.,
be replaced by the offspring) or by a combination of both.
The Microbial GA [Harvey, 1996] uses this observation to
simplify the steady-state genetic algorithm; rather than pick



two (above-average fitness) parents and produce an offspring
from the combination of their genes to replace a (below-
average) third, the Microbial GA selects two individuals at
random and overwrites some of the genes of the less fit (of
the two) with those from the more fit. In effect, the less fit of
the two becomes the offspring.

3.3.1 Probabilistic Gene Transfer Algorithm

We have developed a decentralized and probabilistic version
of the Microbial GA for use in EE that we call the Probabilis-
tic Gene Transfer Algorithm (PGTA). This method of repro-
duction is particularly valuable for evolutionary robotics be-
cause it requires that only two robots meet for a reproduction
event to occur. Genetic information thus travels via local re-
production events, according to the locations and movements
of the robots. In the PGTA, each robot pursues reproductive
activity concurrently with its task behavior—there is no “re-
production mode” as such.

Each robot maintains a virtual energy level that reflects
the robot’s performance at its task and each robot probabilis-
tically broadcasts genetic information on its local-range com-
munication channel at a rate proportional to this energy level.
Each broadcast contains a mutated version of one randomly-
selected gene from the robot’s genome. If another robot re-
ceives the broadcast, that robot may allow the received gene
value to overwrite its own corresponding gene. The receiv-
ing robot accepts the broadcast gene with a probability in-
versely related to its own energy level. Robots with higher
energy thus attempt to reproduce, and resist the reproductive
attempts of others, more frequently than robots with lower
energy. But, because sending and receiving is probabilistic,
and genes are picked at random, the PGTA does not guaran-
tee that a fitter robot will transfer all its genes to a less fit
robot. On average each is left with a mixture of genes in pro-
portion to their relative energy levels. This approximates a
fitness-proportionate recombinative evolutionary algorithm.

In the PGTA, a broadcasting robot is unaware of who, if
anyone, is within range of the broadcast—there is no need
to coordinate a reproduction event between two robots. No-
tice also that each robot’s reproductive actions are modulated
only by their own energy levels—the robots do not need to
know each other’s energy levels. The only data broadcast are
genes—no robot identifiers or energy values are exchanged.
Each reproductive event involves only minimal unidirectional
communication, making the algorithm very resilient to genes
“dropped” in communication. Overall, the PGTA (summa-
rized in Figure 4) provides a parsimonious algorithm suitably
robust for implementation in a population of robots.

3.4 The Role of Simulation in EE

One of the primary benefits of EE is that it eliminates the
difficulties of the simulate-and-transfer method, frequently
used in ER. Nevertheless, we acknowledge that simulation
is a valuable tool, used by researchers in many disciplines to

gain insight and understanding of complex systems. In this
spirit, we have built a simulator of the EE system. The aim
of our simulator is not to provide a high-fidelity simulation of
our robots and their environment; it is not part of our method-
ology to transfer solutions from the simulator to the actual
robots. Rather, the simulator serves as a testbed for our evo-
lutionary algorithm and the setup of our experiments. Our
simulations of the nascent EE system provided the first indi-
cations of its viability, and helped identify critical factors in
our approach. We investigate the setup of our experiments
with the aid of simulation and then re-implement all experi-
ments from scratch in the real robot population.

4 Experiments and Results

Figure 2: The robot pen for the phototaxis experiments. Eight
robots, the power-floor, and the light in the center are shown.
The unique ID of a robot is collected when it reaches the light
(via infra red receivers on the overhead beam). This data is
time-stamped and stored for monitoring experiment progress.

4.1 A Phototaxis Task

Our first embodied evolution environment employs eight of
our robots. The behavior of a robot is controlled by a simple
artificial neural-network architecture, the weights of which
are evolved to perform phototaxis similar to that described
in [Braitenberg, 1984]. The task environment consists of a
130cm by 200cm pen with a lamp located in the middle,
visible from all positions on the floor plane, as seen in Fig-
ure 2. The robot task is to reach the light from any start-
ing point in the pen. An infra-red beacon mounted above
the light signals a robot when it reaches the light source and
triggers a built-in reset behavior that moves the robot to a
random position and orientation along the periphery of the
pen, from where the robot recommences its light-seeking be-
havior. A second built-in behavior, which turns the robot
in-place by a random angle, is invoked by a robot when its
sensors indicate that it might be physically stuck, i.e., when
its sensor readings have not changed significantly for several
time steps. These two built-in behaviors operate indepen-
dently of the evolving neural-network controller. Because



the pen contains a multitude of robots, thede factoenvi-
ronment also includes some amount of robot-to-robot inter-
ference [Schneider-Font´an and Mataric, 1996]; therefore, the
task implicitly requires that each robot also successfully over-
come this interference.

4.2 Control Architecture

Our initial experiments use a simple artificial neural-network
control architecture to serve as the evolving substrate, de-
picted in Figure 3. The weights of the network are evolved.
The network consists of two output nodes, one for each of the
two motors, one binary-valued input node, which indicates
which of the robot’s two light sensors is receiving more light,
and one bias node. Being a fully-connected feed-forward ar-
chitecture, there are four weights. Each weight has an integer
value in the range [-8, 7]. The values sent to the output nodes
(controlling motor speed and direction) are the weighted sum
of the input nodes; no sigmoid function is used. This net-
work is simple enough to be computable by the PIC micro-
controller in real time, yet provides a non-trivial search space
of 164 network weight configurations.

As no individual learning takes place in our experiments,
robots only get new weight values from other robots during
reproduction, which is performed via local broadcasts on the
robots’ infra-red communications channel. The range of a
broadcast is such that a robot may communicate with any
other robot when the peripheries of their bodies are less than
about 4cm apart.

1

[-8, 7]
Weights
Evolving

(1 if True, 0 if False)

?

Bias

Predicate

Σ

Σ

Right Motor

Input

1/0

Outputs

Left Motor
Sensor Sensor

Right>Left

Figure 3: Control architecture for phototaxis experiment. The
one-bit input is 1 if left sensor is brighter than right sensor, 0
otherwise; the bias node has constant activation of 1.

4.3 Maintaining Reproductive Energy Levels

Energy levels regulate reproduction events and should reflect
the robots performance at the task. In our experiments, a
robot’s energy is increased only when it reaches the light and
is decreased only when it broadcasts a gene. Since the robot’s
rate of sending genes is proportional to its energy level and
decrements occur with each send, the rate of broadcasting de-
cays exponentially over the time from its most recent visit to
the light. The more frequently a robot reaches the light, the
higher its energy level is likely to be at any instant (up to
the saturation point defined by the maximal allowed energy).

The energy level thus approximates a leaky integral of the
robot’s performance at its task (i.e., the frequency with which
it reaches the light). Figure 4 provides an overview of how
the reproductive energy levels are maintained in our experi-
ments and how the PGTA is integrated with the robots’ other
behaviors.

define embodied_evolve
initialize_genes[]
energy = min_energy
repeat forever

if (excited?)
send(genes[random(num_genes)] + mutation)

if (receptive? and received?)
genes[indexof(received)] = valof(received)

do_task_specific_behavior
energy = limit(energy + reward - penalty)

endrepeat
enddefine

Figure 4: Pseudocode of control program that implements the
Probabilistic Gene Transfer Algorithm (PGTA). This code is
run on every robot. No methods for synchronizing or coor-
dinating the robots, nor any centralized elements, are used in
the PGTA. The predicatesexcited?andreceptive?are prob-
abilistic functions ofenergy. send takes a gene value and
broadcasts it on local infrared (wrapped with gene locus).re-
ceived?is true if any gene received on infrared.indexof and
valueof return the locus and value of received gene, respec-
tively. limit bounds the energy value betweenmin energy
andmax energy. random returns an integer in the range of
its argument.task specific behaviour includes monitoring
performance at the task and setting the values ofreward and
penalty. In our phototaxis experiments,min energy is 10;
max energy is 255. excited? returnstrue if energy> ran-
dom(max energy), false otherwise;receptive returnstrue
if energy< random(max energy), false otherwise. Each
gene,genes[1..4], is a weight value for the network.initial-
ize genessets all genes to 0.mutation returnsf0; 1;�1g
with uniform probability. task specific behavior includes
reading sensor values, updating network outputs, setting mo-
tor speeds/directions accordingly, monitoring sensor readings
and performing random turn if robot appears to be stuck, and
monitoring for arrival at the beacon.reward is set to 127, if
the robot detects the beacon, 0 otherwise, andpenalty is set
to 1 whenever the robot broadcasts a gene, 0 otherwise.

4.4 Experimental Results

Figure 5 shows the frequency with which the light is success-
fully reached by the robot population over time in each of
three experiments. The main experiment evolves the neural-
network weights to perform the light-seeking task. The initial
condition of the networks in the evolution experiment is that
all weights have a value of zero (this configuration produces
no output to the motors and provides a neutral starting point).
The other two experiments are controls where the robots do
not evolve; in one case the robots’ weights are random values,



and in the other the robots use weights of a hand-designed
solution. As Figure 5 shows, the two controls show a broad
range of possible performance levels and provide useful ref-
erences against which to judge the success of the trials where
evolution takes place. We see that embodied evolution allows
the population of robots to achieve performance favorably
comparable to that of our hand-designed solution. Though
the robots learn to approach the light in a multi-robot envi-
ronment, they are able to perform effectively in isolation, as
well. These results provide the first evidence that a fully de-
centralized, asynchronous evolutionary algorithm can oper-
ate effectively in a population of physical robots and provide
high-quality control programs. Moreover, these results are
achieved using a crude measure of performance that does not
average over many trials. In fact, the energy level is an odd
representation of performance compared to the usual mean-
ing of “fitness.” A robot’s energy level is not reset when the
robot receives a new specification during a reproduction event
and is therefore a measure of the performance of the various
controllers that have been resident on that robot.
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Figure 5: Average hit rates over time. Three curves show
performance of the robot population using hand-designed
(non-evolved), evolved, and random (non-evolved) network
weights. The data from the hand-designed and evolved ex-
periments are averaged over six runs, while the data from
the random-networks experiment are averaged over two runs.
Each run lasts 140 minutes and uses eight robots. The ver-
tical axis represents the average rate (in hits per minute) at
which robots reach the light. A time window of 20 minutes is
used to compute the instantaneous hit rate for each data point
on the graph (hence the first data points appear at Time = 20
minutes). Error bars on the evolved run, shown every 10 min-
utes, show +/- one standard deviation. Though the evolved
solutions begin with network weights of zero, we see that the
robots achieve an average performance of four hits per minute
within the first twenty minutes of the experiment and eventu-
ally meet the hand-built hit rate.

Despite its minimal structure, the artificial neural-network
control architecture used in the robots allows a surprising va-
riety of solutions to be discovered by the evolutionary pro-

cess. Interestingly, the best evolved solutions exhibit behav-
iors that are qualitatively different from our hand-designed
solution; evolution appears to favor a “looping” solution,
whereas, with our hand-designed solution, the robot “swag-
gers” to the light, as shown in Figure 6. The reasons for this
are not known and we intend to address this in future work.

Robot

Evolved Looping BehaviorHand-Designed Swagger Behavior

Light Source

Figure 6: Trajectories of light-seeking solutions.

5 Future Work and Conclusions

5.1 Future Work

There exist a number of control experiments that will help us
map the parameter space of the PGTA. Through these con-
trols, we expect to refine the PGTA and understand more pre-
cisely the dynamics of the algorithm and the settings that pro-
vide the most robust operation. For example, simulation sug-
gests that good solutions are not stable in the population if we
remove the robots’ ability to resist the reproductive attempts
of others. The resistance model we use, while effective, is not
known to be optimal. Other parameters we will investigate
include the rates at which a robot’s energy is increased and
decreased as it reaches the light and attempts reproduction,
respectively. We are in the process of developing more com-
plex task environments and control architectures for our ex-
periments, beginning with a recurrent version of the network
architecture that will operate on raw sensor inputs. Though
the phototaxis task described in this report is simple and does
not to involve explicit robot interaction, the transparency of
this domain allows us to investigate the strong implicit in-
teractive forces within the EE approach. For example, the
reproductive process and physical robot-to-robot interference
are two types of interaction that we are currently investigating
before moving to a more complex task.

Although the performance of the looping behavior (dis-
covered by evolution) appears slightly more effective than the
(hand-built) swagger behavior, this result is not statistically
significant with the data collected to-date. If this result should
prove reliable, one question we hope to answer is why the
looping, which seems less efficient, is more effective than the
swagger. One hypothesis is that the looping behavior over-



comes the physical interference caused by the other robots in
the pen more efficiently than does our hand-designed solu-
tion. Another hypothesis is that looping is more robust to the
inevitable hardware variances that exist between the robots.
Or, perhaps, we will find the cause is more mundane.

As stated, a long-term goal of distributed robotics is a
method for the automatic discovery of problem decomposi-
tion and balancing local autonomy with group coordination.
By employing a large number of robots together in the task
environment and allowing them to evolve interactive behav-
iors, we avoid introducing preconceptions about how a prob-
lem should be decomposed, how many robots should be as-
signed to each task/sub-task, or how many groups/sub-groups
will be needed. Potentially, we allow the robots to discover
appropriate working groups and interactive behaviors that re-
flect the nature and structure of the task at hand. Achieving
this will require that we address many critical issues: credit
assignment, the balance of cooperation and competition, ho-
mogeneity and heterogeneity, encapsulation and modularity.

5.2 Conclusions

Embodied evolution is a new methodology for evolutionary
robotics. EE uses a population of robots that evolve to-
gether while situated in the task environment. The adaptive
mechanism is distributed in the population using robot-to-
robot reproduction that is carried out autonomously by the
robots. Evolutionary adaptation is seamlessly integrated with
the robot’s task behavior. Our experiments in EE have em-
ployed a population of eight robots that are supplied continu-
ous power via an electrified floor. We have developed an evo-
lutionary algorithm that operates via the probabilistic transfer
of genetic information between robots on local-range com-
munication. This PGTA is entirely distributed and is robust
in ways that make it effective for implementation in a popu-
lation of robots.

EE provides a number of opportunities. Firstly, EE en-
ables the study of the effects of integrating reproduction with
other autonomous behaviors into real robots in a manner that
has previously only been possible in simulated ALife experi-
ments. Secondly, EE offers advantages over other ER meth-
ods: specifically, speed-up in time by parallelizing evalua-
tions, and the elimination of transference problems, since all
evaluations are carried out on real robots. Thirdly, EE pro-
vides a substrate for future research to investigate collective
robotics behaviors. However, EE also introduces some com-
plications from which established ER methods do not suf-
fer; for example, because we do not use a centralized mech-
anism, the collection of experimental data is made more dif-
ficult. Also, because reproduction in EE is based upon the
principle of locality, EE is susceptible to failure if the robots
become physically, and therefore reproductively, isolated. Fi-
nally, though embodied evolution appears particularly suited
to team tasks, the precise manner in which EE should be ap-
plied to team evolution is unclear—reproduction may inter-
fere with task behavior.

Our experiments provide the first proof-of-concept for em-
bodied evolution. We have successfully applied EE to a sim-
ple phototaxis task. The neural-network control architecture,
though minimal, has a non-trivial search space and provides
surprisingly novel solutions for phototaxis. Results show so-
lutions evolved with EE to perform comparably to our best
hand-designed solutions. Future experiments will provide
greater clarity on the advantages and difficulties of the EE
method.
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