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Abstract

A strong assumption made in evolutionary
game theory (EGT) [7] is that the evolving
population is infinitely large. Recent simula-
tions by Fogel, et al, [3, 4, 5] show that finite
populations produce behavior that, at best,
deviate with statistical significance from the
evolutionary stable strategy (ESS) predicted
by EGT. They conclude that evolutionary
game theory loses its predictive power with
finite populations. In this paper, we revisit
the question of how finite populations affect
EGT dynamics. By paying particular atten-
tion to the operation of the selection mech-
anisms used by Fogel, et al, we are able to
account for the divergence between ESS pre-
dictions (based on infinite populations) and
results observed in our own finite-population
simulations. We then show that Baker’s SUS
[1] selection method corrects the divergence
to a great extent. We thus conclude that the
dynamics of EGT, and particularly ESSs, can
indeed apply to finite-population systems.

1 Introduction

The primary contribution of evolutionary game the-
ory (EGT) is the concept of the evolutionary stable
strategy (ESS) [7]. The ESS is a refinement of Nash
equilibrium that does not require agents to be ratio-
nal to attain it. Rather, agents achieve equilibrium
through a process of Darwinian selection. At least
three strong assumptions are made in the EGT formal-
ism. First, the evolving population is assumed to be
infinitely large. Second, the payoffs that agents receive
are assumed to be without noise. Third, each agent is
assumed to play against every other agent to determine
its fitness—there is complete mizing. Recently, Fogel,

et al, have questioned the usefulness of evolutionary
game theory in real-world situations where these as-
sumptions, particularly the first, do not hold [3, 4, 5].
They begin their simulations with the population pre-
cisely at the ESS, and discover that the population
consistently moves away from i1t. At best, their sim-
ulation results differ from theoretical ESS values with
statistical significance; at worst, their results bear no
semblance to the ESS whatsoever. Thus, they con-
clude that evolutionary game theory loses predictive
power once these assumptions are relaxed.

In this paper, we concentrate on the first (and per-
haps strongest) of the above assumptions and revisit
the question of whether ESS dynamics can exist in
finite populations. Fogel, et al, report using two dif-
ferent selection methods, truncation, and proportional
roulette-wheel selection. By paying particular atten-
tion to the operation of the selection mechanism, we
are able to account for the divergence between ESS
predictions (based on infinite populations) and results
observed in our own finite-population simulations. We
then examine Baker’s SUS selection method [1] that
corrects the divergence to a great extent. We thus con-
clude that the dynamics of evolutionary game theory,
and particularly the ESS, can indeed apply to finite-
population systems. Further, the selection method
used in a simulation can distort, or even disrupt com-
pletely, the dynamics we may expect to see.

We begin with a brief introduction to evolutionary
game theory in Section 2, and then review and an-
alyze relevant previous work in Section 3. In Section 4
we introduce the methodology used in our own finite-
population simulations and give results. Section 5 an-
alyzes the operation of our selection method and Sec-
tion 6 constructs a method to predict the amount of
divergence to expect for a particular population size.
Section 7 examines the performance of Baker’s SUS
selection method. Section 8 offers final remarks.



2 Evolutionary Game Theory

The Hawk-Dove game forms the backdrop for our in-
vestigation (as in [3, 4, 5]); it has two pure strategies,
H (hawk) and D (dove). The payoff matriz, G, for
this game is shown in Equation 1. Each entry, E(i, j),
in row 7, column j, is the expected value of the pay-
off given to an agent playing strategy ¢ when matched
against an agent playing strategy j—payoffs are as-
sumed to be without noise. The evolving population
of agents is assumed to be infinitely large. The pro-
portions with which the strategies of G are used in
the population can be represented by a column vec-
tor, p; the elements of p sum to 1.0. The fitnesses, f,
of the strategies are determined by a weighted sum of
the payoffs in G according to the proportions in p, and
can be computed by matrix multiplication, as in Equa-
tion 2. This equation assumes complete mizing, that
is, all agents play against all others. The next genera-
tion of agents is formed through fitness-proportionate
selection—each strategy increases its representation,
or “reproduces,” in direct proportion to its fitness.
The reproductive process is described by the difference
equation shown in Equation 3.
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where wo = 26 is a constant added to fitnesses such that
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they are all greater than zero, ‘X’ is element-wise mul-

tiplication, and ‘e’ is inner product. The lower term in

Equation 3 is for normalization.

At the heart of evolutionary game theory is the con-
cept of the evolutionary stable strategy. A popula-
tion of agents that play an ESS cannot be “invaded”
by a small number of agents that play some mutant
strategy; hence, the population is evolutionarily sta-
ble. A polymorphic ESS actually involves two or more
pure strategies, all of which receive the same fitness.
The Hawk-Dove game has a polymorphic ESS where
7/12!"¢ of the population plays hawk (pg = %), and
5/121" dove (pp = 15—2) According to Maynard-
Smith, for a strategy (or polymorphic population), i,
to be an ESS it must fulfill one of these two require-
ments against a mutant strategy, j, for all j # i[7]:

E(i,i) > E(j,i) OR (4)
E(i,i) = E(j,i) AND E(i,j) > E(j, j) (5)

3 Review of Previous Work

In this section, we review the experiments reported in
[3, 4, 5], where Fogel, et al, examine various factors
that may influence EGT dynamics. All experiments
have finite populations and generational reproduction.
Two different selection methods are used. The trun-
cation selection method operates by sorting agents
according to fitness and then replacing the worst v
percent of the agents with copies of the best v per-
cent. The value of v lies in the interval [0, 50]; higher
values exert a higher selection pressure. The fitness-
proportionate roulette-wheel selection method biases a
random variable (the roulette wheel) in proportion to
the agents’ fitnesses. The wheel is then “spun” n times
to create an offspring population of size n.

3.1 Truncation Selection

In [3], truncation selection is used with maximum se-
lection pressure, v = 50%. This means that the worst
half of the population is replaced by copies of the best
half to form the next generation. Three experiments
are described. Population sizes of 60, 600, and 6000
are used 1n each experiment and all pair-wise encoun-
ters occur during fitness evaluation (complete agent
mixing). The first experiment adds a form of noise to
the payoffs; the second introduces an additional, but
slight, mutation bias (such that a hawk might become
a dove, and vice versa). The third experiment is pre-
sented as a control—payoffs without noise and no mu-
tation. In every case, the population is begun at the
ESS and observed to move away. The results of the
first two experiments are reported as essentially indis-
tinguishable: for population sizes of 60 and 600, both
give apparently chaotic behavior or a series of short-
lived, quasi limit cycles. A population of size 6000,
however, converges to all hawks in the first experiment
(the second experiment always introduces some num-
ber of mutations). In the control experiment, the pop-
ulation 1s reported to jump immediately to all hawks.
Given the clear absence of an ESS, Fogel, et al, con-
clude that the dynamics of evolutionary game theory
not only assume, but require an infinite population.

Nevertheless, EGT also assumes fitness-proportional
selection—not truncation. Let us consider the behav-
ior of truncation selection in the case of noiseless pay-
offs. At the ESS, both strategies (and hence all agents)
receive the same fitness: py = % = fu = fp. In con-
trast, pg < % = fu > fp, and pg > % = fu < fp.
This describes a simple feedback mechanism (that reg-
ulates properly with proportional selection). TLet us
consider a population where the proportion of hawks
is .5 < pu < % Because the proportion of hawks is



below the ESS, the hawks will receive higher fitness
than the doves. Yet, the hawks comprise at least 50%
of the population. Thus, the top 50% of the population
can only contain hawks, and so, with truncation selec-
tion, the next generation must contain 100% hawks.
This is true regardless of the size of the population—
indeed, even an infinite population. At the ESS itself,
the behavior of truncation selection is ill-defined be-
cause all agents have the same fitness—who are in the
top 50%7 Unless special care is taken to account for
ties, the fixed point of all hawks will again emerge. The
results of the third experiment (control) are consistent
with this analysis.

Now let us consider the first experiment, which adds
the following noise to the payoffs: rather than give
both hawks in a hawk-hawk confrontation the ezpected
payoff of -25, one is randomly chosen to receive a pay-
off of -100 while the other receives 50; similarly, when
two doves meet, one is randomly chosen to receive a
payoff of 40 while the other receives -10, instead of
the expected payoff of 15. The payoffs of hawk-dove
encounters are unchanged. Thus, after all pair-wise
encounters occur, the two strategies still obtain equal
fitnesses at the ESS; but, individual agents may do
better or worse than others. We strongly suspect that
the population of 6000 converges to all hawks because
the higher number of encounters per agent allows ex-
pected payoff values to emerge. With a good enough
approximation of expected payoff, the dynamics of the
system are similar to noiseless payoffs, above.

We show elsewhere [2] that truncation selection is in-
capable of maintaining arbitrary fixed points. Indeed,
with an infinite population playing the Hawk-Dove
game (wo = 26, noiseless payoffs), truncation selection
produces a fixed point of all hawks, chaos, or limit cy-
cles, depending on the selection pressure. Given that
truncation selection so completely disrupts the dynam-
ics of the Hawk-Dove game with an infinite population,
we believe the experiments in [3, 4, 5] that use trun-
cation implicate the selection method more than other
factors; the effects of noisy payoffs, incomplete mix-
ing, and finite populations are inadequately isolated
to warrant the stated conclusions.

3.2 Roulette Selection

The simulations of Fogel, et al, that do not use trunca-
tion selection use fitness-proportionate roulette-wheel
selection instead [4]. Their core concern is whether
evolutionary game theory can be applied to biologi-
cal field study. Thus, if evolutionary game theory is
applied to a finite population of physically embodied
agents, such as animals, then clearly no pair-wise en-

counter will match an individual against itself. In this
case, computation of fitness is slightly different than
in Equation 2 because the “self” must be subtracted
from the counts. For the Hawk-Dove game, we have:

fit = BUH, ) (prr = ) + E(H, D) s po + iy (6)
fir = B(D H) « prr + (D, D) % (pp — =) + wy

where f; is the fitness of strategy i, F(i,7) is the payoff
for strategy i against strategy j, p; is the proportion of
strategy ¢ in the population, and n is the population size.

Fogel, et al [4], recognize that variations in popula-
tion size cause Equation 6 to change the proportion
at which the two strategies reach equal fitness. In the
limit of an infinite population, Equation 6 converges
to the familiar ESS proportion of % Hawks. For finite
population sizes, however, the fitness-equilibrium pro-
portion is actually higher. Their experiments that use
fitness-proportional roulette-wheel selection give data
that deviate with statistical significance from the the-
oretical ESS. But, the null hypothesis they choose to
measure against is the equilibrium for an infinite pop-
ulation, and not that predicted by Equation 6, which
varies according to population size. (Note that having
7

an equilibrium higher than 15 does not invalidate the

above argument regarding truncation selection.)

Riley [9] raises a much more serious concern: Equa-
tion 6 can actually allow a strategy to meet Maynard-
Smith’s criteria for an ESS (Equations 4 and 5), yet
still be invadable. Such a strategy is termed a gquas:-
equilibrium strategy. Indeed, such is the case in the
Hawk-Dove game. Thus, Equation 6 not only causes
the equilibrium to diverge from the expected ESS, but
also causes the ESS, in effect, to no longer exist. Ri-
ley goes on to show that, by introducing informational
asymmetry into a game, a true (uninvadable) ESS is
made to exist. The simulations of Fogel, et al, do not
include informational asymmetry. Thus, divergence
from the expected ESS, as observed in the simulations
of [4], has ample analytical explanation quite apart
from causes due to quantization noise or stochastic
sampling, which are the factors that Fogel, et al, claim
are implicated.

4 The Effects of Finite Populations:
A Second Look

4.1 Assumptions

We now proceed with our own experiments. Since
truncation selection appears pathological in the con-
text of evolutionary game theory, we will concentrate



on proportional roulette-wheel selection in our sim-
ulations. We assume complete mixing and noiseless
payoffs. We will also assume that an agent can play
against itself. While this may lack biological plausi-
bility, it is entirely possible—indeed common—in co-
evolutionary algorithms. The important mathematical
consequence is that we can revert back to Equation 2
and avoid the problems caused by Equation 6, above.
Thus, we can better isolate the effects of noise due to
quantization and stochastic sampling that arise with
a finite population. Rather than use Maynard-Smith’s
static conception of an ESS, we choose instead to use
the formalism of dynamical systems to describe sta-
bility concepts. As we discuss below, the ESS of the
Hawk-Dove game is an atiractive fized point.

4.2 Methods

We implement proportional roulette-wheel selection as
follows: the fitness scores, f;, are normalized, such that
they sum to 1.0; a vector of sum prefizes is computed,
such that the prefix value for agent ¢ is the sum:

ri=Y_ fr (7)

We draw a value, z, from a uniform distribution and
select the first agent whose prefix value is > z to pro-
duce one offspring. This step is performed n times,
where n is the size of the desired population.

We begin each experiment with the population at the
theoretical ESS ratio of pyg = % (and pp = 15—2) The
population sizes for all experiments are chosen such
that the ESS ratio is precisely representable by whole
numbers of agents. Five different population sizes are
tested: 60, 120, 300, 600, and 900. Each simulation is
run for 2000 generations. The mean number of hawks
in a run constitutes a single data point in an experi-
ment; each experiment is repeated 100 times.

4.3 Results

Our results are shown in Figure 1. The x and y axes
indicate the population size used in an experiment
and the proportion of hawks in the population, respec-
tively. Each circle represents the mean proportion of
hawks seen during a single run. The dashed line indi-
cates the ESS that evolutionary game theory predicts
for an infinite population. The solid curve indicates
the mean value of the 100 trials in each experiment.
We see that for all population sizes, the mean value
of hawks over all trials is consistently lower than the
theoretical ESS proportion. As the population size

increases, the mean value asymptotically approaches
the theoretical ESS. The second column of Table 1
lists the observed means and the fifth column gives t-
values obtained when applying the ¢-test to the data
from each experiment with respect to a null hypothesis
Hy = .58333 ... (the ESS). In all cases, the observed
data deviate with statistical significance from the the-
oretical ESS.
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Figure 1: Data from finite-population simulations of
Hawk-Dove game. Five experiments are conducted,
each repeated 100 times. Each circle represents the
mean proportion of hawks observed during a single
2000-generation simulation. The dashed line is the
theoretical ESS. The solid curve indicates the mean
values of the 100 data points in each experiment.

5 Analysis of Roulette Selection

That the data means come closer to the theoretical
ESS as population size increases is perhaps easy to
accept. What is less intuitive, however, is why the
approach should be asymptotic from below the ESS
value. To answer this question, we turn to dynamical
systems theory [8, 11]. Figure 2 shows the map dia-
gram for the Hawk-Dove game. Given a proportion of
hawks, represented by the x-axis, one iteration of the
evolutionary difference equation (Equation 3) will pro-
duce a new proportion, represented by the y-axis. The
curve depicts the function that maps the proportion
of hawks from one generation to the next. Intersec-
tions of the curve with the diagonal line indicate fized
points. If the slope of the curve at an intersection has
an absolute value less than one, then the fixed point is
stable; if the absolute value is greater than one, then
the fixed point is unstable. The Hawk-Dove game has



three fixed points: two unstable, where the popula-
tion is either all hawks or all doves, and one stable,
the polymorphic evolutionary stable strategy.

To see the dynamics of the Hawk-Dove game, one sim-
ply picks an initial point on the x-axis, draws a vertical
line to the curve, and then alternately draws a hori-
zontal line to the diagonal and then a vertical line to
the curve until the ESS is reached. This procedure
produces a cobweb diagram that indicates the orbit of
the initial point. Two such orbits are shown in Figure
2, which begin +0.25 away from the ESS (pn = %)
The key observation is that the orbit that begins below
the ESS requires more iterations to reach the ESS than
does the orbit that begins above. Figure 3 shows the
number of iterations required for every initial condi-
tion from 0 to 1, at intervals of 0.001, to arrive within
e = 0.0001 of the ESS. For any 6, orbits starting at
%—6 require > iterations than orbits starting at %—1—6.

This observation is important because the operation
of the roulette-wheel method of proportional selection
produces a binomial distribution around the desired
proportion of hawks indicated in the wheel. The bi-
nomial distribution obtained for n spins of a roulette
wheel that gives a hawk with probability p is:

bin(n, p) = ( ? )*pi*(l—p)"‘i,fori: 0...n (8)

That is, the probability of having exactly ¢ hawks (and
therefore n—i doves) in the next generation of n agents
is the probability of getting ¢ hawks times the proba-
bility of getting n — ¢ doves times the number of ways
n spins can result in ¢ hawks. The resulting distribu-
tion for all possible outcomes, from no hawks to no
doves, has a mean value of p x n hawks—the desired
proportion indicated in the wheel.

Figure 4 shows the “spread” of the binomial distri-
bution for values of n = {60, 120, 300,600,900} (the
population sizes used in our simulations, above) and
p = % (the desired proportion of hawks at the ESS).
Each curve in Figure 4 represents the possible out-
comes that sum to 99 percent of likelihood. The spread
clearly widens as the population size decreases (and
the law of large numbers exerts less influence).

Returning to Figure 3, we see that an increase in
spread at the ESS will cause the asymmetry in conver-
gence time to grow. This is what causes the observed
population averages to tend to fall below the theoreti-
cal ESS by an amount inversely related to population
size. But, how might we approximate the actual di-
vergence without resorting to empirical methods? We
offer an approach based on Markov chains.
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Figure 2: Map diagram of Hawk-Dove game. The

curve depicts the function that maps the proportion

of hawks from one generation to the next.
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6 Calculating the Divergence

6.1 Method

In this section, we develop the intuition from above to
predict how experimental data will deviate from the
theoretical ESS value. For the Hawk-Dove game (or
any two-strategy game), there are only n 4 1 possible
states in which a population of size n can be, from 0
hawks to n hawks. These can be considered the states
of a Markov chain. At each population state, ¢, the
binomial distribution of the roulette wheel gives a set
of transition probabilities to states j = 0...n. This
information is represented by a transition matriz, M:
Pr(0]0) Pr(0|n)
M = : : 9)

Pr(n|0) Pr(n|n)

where each column gives the transition probabilities, p(j]7),
from state 1 to states 7 = 0...n. Each column sums to 1.0.

To compute the matrix columns, we need only cal-
culate the appropriate binomial distribution for each
possible state of the population. Recall that for any
desired proportion of hawks, d, the binomial distribu-
tion bin(n, d) tells us the likelihoods of all possible pro-
portions of hawks, given n spins of the roulette wheel.
For a population with ¢ hawks (a proportion of i/n),
the desired number of hawks for the next generation
is d = map(i/n), where the function map corresponds
to an iteration of the map diagram in Figure 2. Thus,
the columns of the transition matrix, M, are:

. 0 .

M = [bin(n, map(=))...bin(n, map(ﬁ))] (10)
n n

Let us consider an initial population composed of ex-

actly % hawks, and represent this population as a col-

umn vector, b, of probabilities on the different possible
population states:

T Pr(0) 7 [07
Pr(%n -1 0
b= Pr(Ln) =1 (11)
Pr(Ln+1) 0
L Pr(n) 1 L0

The distribution of possible populations after ¢ gener-

ations is M raised to power t times b:

b= (M)t b (12)

Therefore, the expected proportion of hawks after ¢
generations is given by the weighted sum:

n

E[%hawks]' = E

1=0

‘L
b; * 1

n

(13)

What is the limit behavior, as time goes to infinity?
Observe that roulette selection always gives a non-zero
probability of arriving at a state of all hawks or all
doves. And, since a population of all hawks will remain
all hawks, and a population of all doves will remain
all doves, we know that, in infinite time, one of these
two absorbing states is an inevitable outcome. The
probabilities of these two absorbing states are sensitive
to the initial state.

Thus, the distribution, 6 must have the form:
b% = [Pr(0);0;0;...;0;0; Pr(n)] (14)

where only states 0 and n have non-zero probability.

Referring back to Equation 13, this implies that the
expected proportion of hawks is simply the probability
of ending in the absorbing state of all hawks. Thus,
E[%hawks]® = b5°.

6.2 Predictions and Data

For the population sizes used in our experiments, the
expected number of hawks for even small values of ¢
gives an excellent approximation of the limit behav-
ior: | b%° — bl |< € for small ¢. Figure 5 shows the
values of Equation 13 for values of ¢ = 1...30. We see
that the limiting distribution is approached asymptot-
ically. Our approximate expected values (computed at
t = 100) are listed in column three of Table 1. We see
that they are very close, indeed, to the actual means
observed in our experiments (shown in column two).
Further, using these predictions as null hypotheses in
the t-test, the resulting t-values (shown in column 4)
indicate that none of the predictions can be rejected
(95% confidence level). Thus, the dynamics and equi-
libria of evolutionary game theory have been demon-
strated to exist and apply to finite populations.

7 Stochastic Universal Sampling

While the predicted divergence from the theoretical
ESS is clear when we look at an ensemble of 100
data points, an individual run can show a rather large



Table 1: Simulation results and predictions.

|| Size | Mean Hawks | Adj. ESS | tag;. | tpss ||
60 0.578166 | 0.578008 | 0.4922 | -16.09
120 0.580682 | 0.580755 | -0.3289 | -11.99
300 0.582301 | 0.582320 | -0.1267 | -6.72
600 0.582864 | 0.582829 | 0.3953 -5.31
900 0.582981 | 0.582998 | -0.2132 -4.47
0.584-
,,,,,,,,,,,,, Infinite. ___________________._
0.583 900
P 600
%0.582* 300
.‘50‘581*
ﬂi 120
% 0.58
&
0.579+
0578 ) Popsize = 60 ) ) )
0 5 10 15 20 25 30
Generation, t

Figure 5: Adjustment of ESS. Though small in mag-
nitude, the adjusted values vary from the ESS enough
7

to cause statistically significant deviation from 75 in

simulation data (indicated by column 5 of Table 1).

amount of noise due to the roulette wheel. Figure 6
shows 500 generations of the Hawk-Dove game begin-
ning at the ESS for a population of size 60. Though
noise is reduced with a larger population, there exists
an alternative selection scheme that reduces the noise
even further while maintaining a small population.

Baker’s Stochastic Universal Sampling (SUS) [1] pro-
vides fitness-proportionate selection with minimal use
of a stochastic process. Simply, rather than spin a
roulette wheel with one “pointer” on it n times, we
spin a roulette wheel with n equally-spaced pointers
just once. This method guarantees that an individ-
ual that should appear with proportion, pigea, will
appear with proportion [prdeal * 7]/n < pactual <
[Pldeal * n]/n. Baker’s analysis of this method indi-
cates that i1s has excellent statistical properties.

Indeed, SUS produces far less noisy results than ordi-
nary proportional roulette selection, as seen in Figure
7. Because the ESS can be exactly represented by a
population of size 60, we instead choose a population
of 61. We see that the actual proportions remain as
close to the theoretical ESS as the resolution of the

population allows. In fact, SUS will converge to the
ESS within the resolution of the population regardless
of the initial condition (0 < p{F**'?! < 1.0). For a popu-
lation of size 100, SUS selection gives data that cannot
be rejected by the t-test (at 95% confidence level) with
a null hypothesis of Hy = % That is, because SUS
uses only a single “spin,” the distribution of possible
outcomes is made so narrow that the calculation of
divergence from the theoretical ESS is unnecessary.
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Figure 6: Sample run with population size 60 using
proportional roulette-wheel selection.
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Figure 7: Sample run with population size 61 using
Baker’s Stochastic Universal Sampling selection [1].

8 Conclusion

There is no question that the introduction of noise, be
it from the finiteness of a population, variation in pay-



offs, or incomplete mixing, affects the dynamics and
equilibria in evolutionary game theory. And, Fogel,
et al, are correct to highlight the issue. But, the se-
lection method distorts the process, as well—t can
never be made transparent. In simulations that deal
with finite populations, reproduction generally cannot
occur in exact proportion to fitness—agents can only
replicate whole-numbers of offspring. Thus, the ques-
tion of how one is to implement reproduction, fitness-
proportionate or otherwise, arises. All these sources
of “noise” determine whether the essential character
of evolutionary game theory remains intact.

Truncation selection is shown to be pathological in the
context of evolutionary game theory—it can neither
attain nor maintain a polymorphic ESS (even with in-
finite populations). Roulette-wheel selection is shown
to diverge from the theoretical ESS due to the interac-
tion between the wheel’s binomial distribution and the
convergence properties of the Hawk-Dove map (Figure
2). We show how the expected divergence can be com-
puted without empirical data. Finally, we show that
Baker’s SUS selection method allows a finite popu-
lation of modest size to approximate the ESS with-
out statistically significant deviation. If the popula-
tion size n can be divided into whole numbers that
precisely represent the ESS ratio, then SUS selection
allows the population to converge to the exact ESS.
Thus, we have demonstrated that the dynamics and
equilibria of evolutionary game theory can persist with
finite populations, provided that the selection method
is appropriately chosen and implemented.

Of course, this study has only addressed the smallest
of games; what happens when the number of strategies
in a population is comparable to the population’s size?
This is akin to representing the state of a dynamical
system with very low resolution, and we will need to
return to dynamical systems theory for a satisfactory
answer.

While the primary concern of Fogel, et al, is the ap-
plicability of evolutionary game theory to biological
study, we make no attempt to relate our results and
methods to a biological context—to avoid the prob-
lems and remedies discussed by Riley [9], we assume
an agent can play against itself. Nevertheless, we
believe our approach suggests a novel framework in
which to understand the dynamics of coevolutionary
algorithms—for evolutionary game theory can be un-
derstood as a coevolutionary algorithm without vari-
ational operators. This avenue is another subject of
our current research.
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