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Abstract

This paper explores how communication can be understood as an adaptation by
agents to their environment. We model agents as recurrent neural networks. After
arguing against systems which use discrete symbols to evolve communication, we
supply our agents with a number of continuous communications channels. The
agents use these channels to initiate real-valued signals which propagate through
the environment, decaying over distance, perhaps being perturbed by environmen-
tal noise. Initially, the agents’ signals appear random; over time, a structure
emerges as the agents learn to communicate task-specific information about their
environment. We demonstrate how different communication schemes can evolve
for a task, and then discover a commonality between the schemes in terms of infor-
mation passed between agents. From this we discuss what it means to communi-
cate, and describe how a semantics emerges in the agents’ signals relative to their
task domain.

Key Words: communication; evolutionary algorithms; autonomous agents; neural networks

Running Head: “The Evolution of Communication”
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1  Introduction

The field of adaptive behavior holds that higher-level cognitive skills arise from the more primitive

ability of an agent to adapt to its environment (Beer, 1990). Although many behaviors have been

studied in this bottom-up fashion – perception (e.g., Arkin, Schweighofer, and Thach, 1994; Har-

vey, Husbands, and Cliff, 1994), action selection (e.g., Maes, 1991, 1992; Tyrell, 1993), navigation

(e.g., Brooks, 1986, 1991a), food collection (Arkin, 1992; Deneubourg, et al., 1991), planning

(e.g., Agre & Chapman, 1986; Donnart and Meyer, 1994), predator avoidance (Grefenstette, 1992;

Schmajuk, 1994), locomotion (Beer, 1990; Beer and Gallagher, 1992), social activity (Mataric,

1993, 1994), etc.1 – relatively few people have studiedcommunication as adaptive behavior. In this

paper, we explore how communication can be understood as an adaptation by agents to their envi-

ronment.

The role of communication in multi-agent systems remains one of the most important open

issues in multi-agent system design (Brooks, 1991b; Arkin and Hobbs, 1993). Some have ap-

proached this problem top-down, first incorporating perception, navigation, communication, com-

petition, and cooperation within a single, rich environment (Steels, 1994; McFarland, 1994), al-

though at this stage in the research the agents are still designed.

Others have approached the problem of communication bottom-up, turning towards adap-

tation and evolution as a source of insight (Yanco and Stein, 1993; Werner and Dyer, 1992; Rob-

bins, 1994; MacLennan, 1992; MacLennan and Burghardt, 1993; Collins and Jefferson, 1991,

1992; de Bourcier and Wheeler, 1994), but their work all shares an emphasis ondiscrete commu-

nication.

Yanco and Stein (1993) investigate a “follow-the-leader” task in which one agent, the lead-

er, receives a command which must be followed by a group of agents. The leader chooses one ofn

1.  See Meyer and Guillot (1991, 1994) for extensive reviews.
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symbols to represent the command, broadcasts the symbol to the other agents, and the subordinates

respond. A reinforcement algorithm governs both the encodings of the leader and responses of the

subordinates; over time, a consensus emerges between the two.

Werner and Dyer (1992) describe a more complex environment in which simulated animals

must communicate to find mates. Females, while stationary, can sense potential mates within a lim-

ited range and “call out” to them by emitting a signal. Males, wandering around the environment,

lack the capacity to produce signals or see the females directly, but they can sense the females’ sig-

nals and respond by moving toward them. Using a neural network representation for agents and a

genetic algorithm for search, Werner and Dyer show that the sexes can agree on a common lan-

guage.2 Robbins (1994) shows that introducing artificial parasites can create more robust languag-

es in this task.

MacLennan (1992) adopts a higher-level view of language by defining an abstract task in

which a group of agents must learn to communicate. Each agent possesses local information in

terms of one ofn symbols; it chooses a second symbol (from a set ofn) to convey that information,

and other agents must respond appropriately. Using finite state machines to represent agents and a

genetic algorithm, MacLennan shows how the group of agents evolve a common symbol-symbol

mapping.

Collins and Jefferson (1991, 1992) study AntFarm, a simulated ant colony in which agents

must learn to communicate the presence of food. At each time step, an agent drops between 0 and

64 units of pheromone, which then diffuses throughout the environment as a signal to other ants.

2.  Werner and Dyer (1993) propose a very interesting model “BioLand” which supports the
evolution of communication as well, but the results focus on herding behavior rather than the
evolved communication scheme, and it is unclear how the signals generated by the agents affect
their behavior.
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Although they have yet to evolve cooperative foraging, the work sheds some light on representa-

tional issues, in particular, on the use of neural networks as an agent representation.

de Bourcier and Wheeler (1994) adopt a slightly different focus: rather than studying coop-

eration among agents, they investigate how competition can lead to dishonest signalling schemes.

The basic interpretation of communication is fixed, however – an increase in perceived signal

strengthalways translates into an increased probability that an agent will move away from the

source.

Two sorts of problems run throughout all this work, both engineering and theoretical. From

an engineering perspective, adopting discrete symbols for communication implicitly make a strong

assumption about the number of messages needed for a given task; namely, that this number is fi-

nite. Furthermore, because each symbol is topologically isolated from the others, these systems

suffer from what we call the “lookup table syndrome.” If noise perturbs a symbol during commu-

nication (say from 0 to 1), there is not necessarily any relationship between how the two symbols

are perceived by the recipient. Thus, barring the evolution of a parity bit or even more complex

redundancy scheme (e.g., Shannon and Weaver, 1948), discrete-communication systems will be

highly sensitive to noise.

From a theoretical perspective, adopting discrete symbols for communication implicitly

solves the signal detection problem. When an agent perceives “001,” for instance, it knows with

certainty that another agent is trying to communication. In contrast, when an agent in the real world

perceives a sound, it might be another agent, or a nearby stream, a car, etc. By assuming discrete

symbols, the above systems in effect assume well-defined units of communication. This lends no

insight into how words arise from a continuous sound wave, or how words are then combined into

variable-length sentences by the agents. Finally, some studies make an architectural distinction be-

tween the agent sending the message and the recipient (Yanco and Stein, 1993; Werner and Dyer,
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1992; and to some extend MacLennan, 1992, in the sense that at any given time, there is a privi-

leged agent attempting to convey its local information to the others).

2  Communication with Continuous Symbols

Our approach to understanding multi-agent communication differs significantly from all the work

described above. Saunders, Kolen, and Pollack (1994) showed the importance of a continuous sub-

strate for evolving adaptive agents. Subsequently, rather than assume the transmission of discrete

signals between agents, we provide our agents with continuous channels capable of supporting a

wide variety of communication schemes. Furthermore, we make no architectural distinctions be-

tween transmitter and receiver.

As will be described below, we model agents as connectionist networks. We supply each

agent with a number of communications channels implemented by the addition of both input and

output units for each channel. The output units initiate environmental signals which are perturbed

by environmental noise and whose amplitude decays over distance. An agent does not receive input

from other individuals, rather the agent’s input reflects the summation of all other agents’ output

signals along that channel. Because we use real-valued activations, the agents communicate using

real-valued vectors. Under an evolutionary program, the agents coevolve a communication scheme

over continuous channels which in order to be successful conveys task-specific information.

This section describes our experiments. First we briefly describe GNARL, the algorithm we

use to evolve our agents. Then we introduce an extension of the Tracker task (Jefferson et al.,

1992), which will serve as a substrate for our experiments. Next, we describe the method of com-

munication our agents employ. Experimental results will be discussed in Section 3.
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2.1  GNARL

GNARL (Saunders, Angeline, and Pollack, 1994; Angeline, Saunders, and Pollack, 1994) is an al-

gorithm based on evolutionary programming (Fogel, 1992) that induces recurrent neural networks.

It provides a mechanism for the simultaneous acquisition of network structure and weight values.

GNARL employs a population of networks and uses a fitness function’s unsupervised feedback to

guide search through network space.

The algorithm is described in detail elsewhere (Angeline, Saunders, and Pollack, 1994).

Briefly, it begins with a population ofn random individuals; a sample networkN is shown in

Figure 1. The number of input nodes (min) and number of output nodes (mout) are fixed for a given

task; the number of hidden nodes as well as the connections among them are free to vary from 0 to

a user-supplied maximumhmax. Links use real-valued weights, but their presence is free to vary,

so that GNARL networks may have no connections, sparse connections, or full connectivity.

In each epoch of search, the networks are ranked by a user-supplied fitness functionf: N →

IR, whereN represents the space of networks, andIR represents the reals. Reproduction of the best

min + b mout output

at most hmaxhidden nodes

Bias

input nodes nodes

Figure 1: Sample initial network. The number of input nodes (min) and number of
output nodes (mout) is fixed for a given task. The presence of a bias node (b = 0 or
1) as well as the maximum number of hidden units (hmax) is set by the user. The
initial connectivity is chosen randomly (see text). The disconnected hidden node
does not affect this particular network’s computation, but is available as a resource
for structural mutations.
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n/2 individuals entails modifying both the weights and structure of each parent networkN. First,

the temperatureT(N) is calculated:

(1)

wherefmax (provided by the user) is the maximum possible fitness for a given task. This measure

of N’s performance is used to anneal thestructural andparametric (Barto, 1990) similarity be-

tween parent and offspring, so that networks with a high temperature are mutated severely, and

those with a low temperature are mutated only slightly. This allows a coarse-grained search initial-

ly, and a finer-grained search as a network approaches a solution (cf. Kirkpatrick, Gelatt, and Vec-

chi, 1983).

More concretely, parametric mutations are accomplished by perturbing each weight with

gaussian noise, whose variance isT(N)2:

(2)

Structural mutations are accomplished by:

• adding k1 hidden nodes with probabilitypadd-node
• deleting k2 hidden nodes with probabilitypdelete-node
• adding k3 links with probabilitypadd-link
• deleting k4 links with probabilitypdelete-link

where eachki is selected uniformly from a user-defined range, again annealed byT(N). When a

node is added, it is initialized without connections; when a node is deleted, all its incident links are

removed. All new links are initialized to 0.

GNARL has been applied to several different problems (Angeline, Saunders, and Pollack,

1994). In particular, we have applied GNARL to the Tracker task (Jefferson et al., 1992) in which

T N( ) 1
f N( )
fmax

−=

w w Normal 0 T N( );( )+← ���� w N∈∀,
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a simulated ant must learn to follow a broken trail of food (Figure 2a). Each ant receives two inputs:

one indicating the presence of food in the square directly before the agent; and another detecting

the absence of food in that same square. Jefferson, et al., allowed four primitive actions: move-for-

ward (and implicitly eat food if present), turn left, turn right, and no-op (Figure 2b). Under these

conditions GNARL evolved several different networks as a solution, one of which closely approx-

imates the finite-state automaton shown in Figure 3.3

2.2  The Tracker Task, Revisited

To study the evolution of communication in groups of agents, we extend the Tracker task in three

ways (Figure 4):

3.  Note however that the network’s behavior is not precisely captured by the FSA. Kolen (1994a,
1994b) shows that, in general, FSAs approximate networks only poorly. Another network induced
by GNARL makes this point empirically. (See Saunders, Angeline, and Pollack, 1994).

Start

Figure 2: The Tracker task. (a) The trail is connected initially, but becomes progressively
more difficult to follow. The underlying 2-d grid is toroidal; (b) The semantics of the I/O
units for the ant network. The first input node denotes the presence of food in the square
directly in front of the ant; the second denotes the absence of food in this same square. No-
op, from Jefferson et al., allows the network to stay in one position while activation flows
through recurrent links.

Food No food

No-op

+1 +1

Move Turn left Turn right

(a) (b)
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• increasing the number of agents

• increasing the size of the grid to accommodate these agents

• moving all the food to a small area in the center of the environment

We assume that these modifications will shift the emphasis of the task from evolution of

local internal state to evolution of distributed external state, i.e., communication. We concentrate

the food within one area so that when an agent finds it and communicates, some food remains by

the time other agents arrive. The size of the environment and the amount of food it contains far

exceed the capabilities of a single ant: in the limited time available an ant can neither search the

entire space nor consume all the food therein. Thus (we assume) the task design ensures that the

only method of complete success necessarily involves communication among the agents.

2.3  An Architecture for Communication

When faced with a task requiring communication, the architecture of Jefferson, et al., (Figure 2b)

will certainly fail; namely, because it in no way supports communication. To remedy this shortcom-

ing, we addn additional input and output units to the network of Figure 2b, representingn channels

Figure 3: FSA hand-crafted for the Tracker task, from Jefferson, et al., 1992. The large
arrow indicates the initial state. This simple system implements the strategy “move
forward if there is food in front of you, otherwise turn right four times, looking for food. If
food is found while turning, pursue it, otherwise, move forward one step and repeat.”

NoFood/Right

NoFood/Right

NoFood/Right
NoFood/Right

Food/Move

Food/Move

Food/Move

Food/Move

Food/Move

NoFood/Move
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of communication (Figure 5.) We maintain, from the original study, an implicit winner-take-all net-

Figure 4: Environment for the modified Tracker task.

64 x 64 grid

15 x 15
patch of food

Figure 5: The semantics of the I/O units for evolving communication. The “food/
nofood” inputs and “move/left/right/noop” outputs are from the Tracker task. The
additional nodes, described in the text, give the agent the ability to perceive and
generate signals.

Food No food

Output signal

...

1 2 n

Input signal
1 2 n

Hidden units (k),...
variable connectivity

...

...

Move  Left  Right Noop ...
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work on the (non-signal) outputs.

Output signals propagate throughout the environment, decaying in inverse proportion to

squared distance.4 Perception of these signals is governed by Equation 3. The input signal to agent

a along theith channel, sIN(a, i), is a summation of the signals of all other agents along this channel.

A is the set of agents,sout(b, i) is theith output signal of agentb. The noise in the channel, U[−ui, ui]

is a uniform random number with range specific to the channel, andσ is a linear threshold function,

which bounds the signals in all channels to a user-specified range [smin, smax]. In the experiments

below,smin = 0 and smax = 40.

(Eqn 3)

Effectively, this equation creates a sound-like model of signal propagation, an example of which is

shown in Figure 6.

For the studies reported in this paper, all activations are continuous; only the hidden acti-

vation is squashed (with the standard sigmoid function). Fitness is measured by simply observing

the total amount of food eaten by the group. Because our interest is in communication rather than

structural variation, we use a version of the GNARL algorithm in which the number of hidden units

is fixed. The number of links, though, varies as described above. Finally, all agents in an environ-

ment are homogeneous in that they share not only the architecture of Figure 5, but also common

weights. As show below, however, their behaviors will be quite different depending upon each

agent’s perspective of its world, creating a heterogenous group at the behavioral level.

4.  We assume that the signals propagate much faster than the agents react (as would a sound
wave), so that effectively, at each discrete time step, an agent’s output signals establish a wave
front whose strength decays over distance.

sIN a i,( )
σ sOUT b i,( ) U ui− ui,[ ]+( )

distance2 a b,( )
b A∈
b a≠

∑=
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3  Results, Part I

Our reason for studying communication as an adaptation was our belief that task-specific commu-

nication schemes can indeed be evolved for cooperative multi-agent systems. Unfortunately, our

first set of results does not support this belief, for the architecture of Figure 5 offers an easier solu-

tion for the modified Tracker task than communication, as we will see below. We present these re-

sults in detail for three reasons: first, the negative results reflect our experimental history in explor-

ing the evolution of communication; second, they will motivate the architecture which does sup-

port our claim (Section 5); and finally, they illustrate the opportunistic nature of adaptive agent

systems.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Figure 6: The sound-like model of signal propagation created by Equation 3.
Agent 1 outputs a relative signal strength of 1; agent 2 outputs a relative signal
strength of 2; and agent 3 outputs a relative signal strength of 3. The topological
map indicates how these signals interact, with the highest elevations corresponding
to the strongest signals.

A1
A2

A3
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3.1  Experiment 1: The Curmudgeon Strategy

We begin with a very simple case: 2 agents, each with one hidden unit, capable of passing one real

number between each other, with no noise (u0 = 0, see Equation 3). Figure 7 shows a series of snap-

shots as the agents collect food. The radii of the circles correspond to the strength of communica-

tion.5 These agents do fairly well, scoring 196 on the task.

To investigate whether these agents had learned to communicate the presence of food, we

plotted the status of each agent over the course of the run (Figures 8 and 9). These and similar fig-

ures describe all there is to know about a particular agent. The lowest graph represents the presence

of food: when food is detected, the value spikes to one; otherwise it is zero. The next graph(s) rep-

resent the input signal(s) from the other agent(s), one graph per communication channel. The “hid-

den unit” graph(s) indicates the agent’s internal state. The “behavior” graph shows the agent’s be-

havior in terms of the output units of the architecture of Figure 5: move is 0; left is 1; right is 2; and

noop is 3. Finally, the top graph(s) represent the output signal(s) of the agent, one graph for each

communication channel.

At first glance, it appears that the agents have indeed learned to communicate the presence

of food. The strength of an agent’s output signal is negatively correlated with the presence of food:

when the agent sees food, its output signal is low; otherwise, it is high. Behaviorally, Figure 7b ap-

pears to show recruitment, i.e., the black agent attracting the white agent to the food.

In reality, however, these agents arenot communicating the presence of food. The differ-

ence between Figures 7b and c shows that recruitment is not really occurring. In the former, the

white agent appears to be moving towards the black agent, but in the latter, the white agent has

made no progress towards the food. Instead, it has moved eastward in a path parallel to that of the

5.  The circles denote not signal range, but the radius at which signal strength (i.e., the summand
in Equation 3) is one.
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Figure 7: The “Curmudgeon” strategy (2 agents, 1 communication channel, no
noise). Primitives are “Move,” “Left,” “Right,” and “Noop.” (a) t=1; (b) t=25; (c)
t=50; (d) t=75; (e) t=100; (f) t=125; (g) t=150; (h) t=175; (i) t=200.

(a) (c)(b)

(d) (f)(e)

(g) (i)(h)
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black agent. Figure 7d is similarly surprising: here, the black agent has moved away from the food

patch, and is traveling westward in a path parallel to that of the white agent.

In short, these agents have adopted what might be called “the curmudgeon strategy.” Each

agent prefers to be alone – rather than attraction, what we see here is repulsion! When run on an

empty grid, the agents move about avoiding each other. Food coerces agents to move closer togeth-

er, but they still often maintain a separation, as shown above. In retrospect, one can see why this

Food

Input signal 0

Hidden unit

Behavior

Output signal 0

0.00

1.00

0.00

3.76

0.00

1.00

0.00

2.00

0.00

29.99

Figure 8: Profile of curmudgeon 0 (200 time steps). The lowest graph is the food
input: when food is detected, the value spikes to one; otherwise it is zero. The
input signal reflects communication from the other agent. The value of the hidden
unit reflects internal state. Behaviors are “Move,” “Turn left,” “Turn right,” and
“Noop,” with values 0-3, respectively.



17

Saunders and Pollack The Evolution of Communication

strategy was selected. By pushing each other away, the agents are able to explore a large area of

their environment.

3.2  Experiment 2: The Diagonal Strategy

After several similar runs, we developed a hypothesis about why the agents refused to communi-

cate the presence of food: it is far easier to use signals to implement a pseudo-random search strat-

egy than for each agent to develop a good search strategy alone and communicate the results.

Food

Input signal 0

Hidden unit

Behavior

Output signal 0

0.00

1.00

0.00

5.90

0.00

1.00

0.00

2.00

0.00

29.99

Figure 9: Profile of curmudgeon 1 (200 time steps). This agents behavior is
sensitive to the input signal from curmudgeon 0, but not in a way that qualifies as
communication. See text for details.
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To test this hypothesis, we decided to endow each agent with a good initial search strategy,

and let them evolve communication from there. We chose as our starting point a strategy discov-

ered experimentally by GNARL for the normal Tracker task: the five-state FSA of Figure 3. We

built this FSA into each initial network, and then evolved solutions from there.

To clarify just how much this initial starting point helps, we first present the results of run-

ning just the FSA-network on the modified Tracker task (i.e., with no evolution). Figure 10 shows

the result for the case of 3 agents. Because the black agent does not communicate the presence of

food to the others, the white agent moves continually eastward, following the “search in a circle

then move forward” strategy of the FSA. Similarly, the gray agent moves continually southward.

These agents receive a score of 128.

Figure 11 shows the performance after evolutionary search for the three agent case. Fitness

is now 195. Once again, to investigate whether these agents had learned to communicate the pres-

ence of food, we plotted the status of each agent over the course of the run (Figures 12-14); once

again we learned the agents are not communicating. In the presence of food, each agent executes

the “Move forward” strategy of the FSA. But in the absence of food, each agent ignores its input

signal, and executes the strategy “Left, left, left, move, left, move,” creating a diagonal walk

through the search space. This is evident in the behavior profiles of agents 1 and 2, and even in the

snapshots of the three agents. Note in Figure 11b that the black agent enters the food patch north

of its initial position; it is moving northwest. Comparing Figures 11a-e shows that the white agent

is moving southeast. Finally, the position of the gray agent throughout all the snapshots shows that

it is simply moving southwest.

We repeated this experiment several times varying the number of agents (2, 3, and 5), and

always obtained similar results. The “diagonal strategy” was the most pervasive, though a few oth-

er perturbations of the FSA’s behavior were found.
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Figure 10: Three “FSA-initialized” agents, before any evolution (one
communication channel, no noise). Primitives are “Move,” “Left,” “Right,” and
“Noop.” (a) t=1; (b) t=25; (c) t=50; (d) t=75; (e) t=100; (f) t=125; (g) t=150; (h)
t=175; (i) t=200.

(a) (c)(b)

(d) (f)(e)

(g) (i)(h)
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Figure 11: Three “FSA-initialized” agents, after evolution (one communication
channel, no noise). Primitives are “Move,” “Left,” “Right,” and “Noop.” (a) t=1;
(b) t=25; (c) t=50; (d) t=75; (e) t=100; (f) t=125; (g) t=150; (h) t=175; (i) t=200.

(a) (c)(b)

(d) (f)(e)

(g) (i)(h)
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Figure 12: Profile of “FSA-initialized” the black agent (200 time steps).
Behaviors are “Move,” “Turn left,” “Turn right,” and “Noop,” with values 0-3,
respectively. This agent has learned to correlate oscillation of its output signal with
the absence of food.
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Hidden unit 0

Hidden unit 1

Hidden unit 2
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Figure 13: Profile of “FSA-initialized” the white agent (200 time steps). The
behavior of this agent depends only upon the presence of food, and not upon the
varying input signal.

Food

Input signal 0

Hidden unit 0

Hidden unit 1

Hidden unit 2

Hidden unit 3

Behavior

Output signal 0

0.00

1.00
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Figure 14: Profile of “FSA-initialized” the gray agent (200 time steps). Despite
the large variation in its input signal, this agent has constant behavior. This is due
to the fact that it never encounters food.
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Input signal 0

Hidden unit 0

Hidden unit 1

Hidden unit 2

Hidden unit 3

Behavior

Output signal 0
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1.00

0.03

0.24

0.00

1.00

0.00

1.00

0.00

1.00

0.00

1.00

0.00

1.00

15.04

29.98



24

Saunders and Pollack The Evolution of Communication

4  The Tracker Task, Rethought

This section examines why communication was not evolved in the experiments above, and propos-

es a slightly different direction of study.

4.1  Analysis of First Results

Why should the evolutionary algorithm favor strategies like “curmudgeon” and “diagonal” as op-

posed to solutions which involve the communication of food? The problem is twofold: the chosen

primitives do not easily support communication, but they do easily support pseudo-random search.

First, following a communication signal is extremely difficult with the primitives “Move,

Left, Right, Noop.” Because the agent only has access to the value of the signal at one particular

grid position, to follow a gradient it would have to first turn four times, sampling and storing the

signal value in four positions, then compare the stored results, turn to the appropriate direction, and

finally move.

Second, the same “Move, Left, Right, Noop” primitives do easily support pseudo-random

search. We have already seen that for a single agent with internal state can evolve a network which

supports complex exploration of the search space (Angeline, Saunders, and Pollack, 1994; Saun-

ders, Angeline, and Pollack, 1994). With multiple interacting agents, such solutions are even easier

to evolve.

In short, the reason for the lack of communication is that the presence of a simpler solution

with the “Move, Left, Right, Noop” primitives: wander around the search space in a pseudo-ran-

dom manner, then eat food when it is discovered. This type of solution was commonplace starting

from either random networks (“curmudgeon” strategy, Figure 7) or from FSA-initialized networks

(“diagonal” strategy, Figure 11).
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4.2  A Shift in Architectures

The results above were more surprising than disappointing. Adaptive agent algorithms are inher-

ently opportunistic, and they will always find the simplest solution to a task. Our original claim was

that task-specific communication schemes can indeed be evolved for cooperative multi-agent sys-

tems. The real problem is not that this claim is false; rather, the problem is that the “Move, Left,

Right, Noop” primitives make the modified Tracker task too simple: solutions with pseudo-random

walks of non-communicating agents abound.

But because the real concern iscommunication, pseudo-random solutions can be inhibited

by simply shifting the task slightly; specifically, by changing the base architecture. To enable

agents to exploit each other’s signals, we give them the ability to follow communication gradients.

To prevent the agents from alternating between Move, Left, and Right to effect a pseudo-random

search, we force them to follow a particular search strategy; namely, that of the Jefferson FSA of

Figure 3 (also evolved experimentally – the simpler of the two results reported in Saunders, Ange-

line, and Pollack, 1994).

The new agent architecture, shown in Figure 15, allows a clear separation between com-

plexity arising from communication, and complexity arising from clever activation of the output

nodes. Then additional output units represent an agent’s actions relative to then communication

channels. When theith “Follow gradient” node receives highest activation, the agent follows the

gradient of communication channeli.

These modifications, though not essential to the results, greatly facilitate their analysis. The

food collection strategy of the FSA is indeed quite simple; if activated repeatedly on a grid con-

taining no food, the agent traverses its environment, turning in circles, but never veering from a

straight line. Thus any agents moving non-linearly in the absence of foodmust be following a com-

munication signal. Furthermore, because of the implicit winner-take-all network, it is easy to ob-
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servewhich communication signal the agent is pursuing by simply comparing activations across

the output nodes.

5  Results, Part II

This section describes the results with the new agent architecture. In spite of the fact that these

agents possess just two types of possible actions (“follow FSA” or “follow gradient”), the task is

more difficult than with the “Move, Left, Right, Noop” primitives. The reason is that pseudo-ran-

dom solutions are now disallowed, and that to search for food effectively, the agents must learn to

communicate. The difficulty here is in finding a way to do this over continuous channels.

5.1  Experiment 3: Constant Communication Schemes

We once again begin with a very simple case: 2 agents, each with one hidden unit, capable of pass-

ing one real number between each other, with no noise (u0 = 0, see Equation 3). Figure 16a shows

Figure 15: An agent architecture which prevents pseudo-random solutions of
Section 3. The “Move, Left, Right, and Noop” actions are condensed into “Follow
FSA,” one particular strategy found by GNARL. The “Follow gradient” nodes
give the agent an Addam-like ability to respond to environmental signals.

Food No food

Follow FSA
Follow gradient

...

1 2 n

Output signal

...

1 2 n

Input signal
1 2 n

Fully connected...
hidden units (k)

...

...

... ...



27

Saunders and Pollack The Evolution of Communication

Figure 16: Scenes of evolved communication, 2 agents, 1 communication
channel, no noise. Primitives are “Follow FSA” or “Follow signal.” (a) Initial
positions: neither agent can sense food; (b) The black agent just reaches food, time
is t=20; (c) Recruitment – first agent attracting the second, t=40; (d-g) Scenes at
t=60, 80, 100, 140, respectively; (h-i) Recruitment again, though now in reverse,
t=180 and 200, respectively.

(a) (c)(b)

(d) (f)(e)

(g) (i)(h)
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the initial environment. Without communication, each agent would follow the FSA, and the white

agent would move in a straight line, finding no food.

With communication, however, the story is quite different. In 700 generations, GNARL

discovered a pair of agents (from a population of 50) which had learned to communicate the pres-

ence of food. Figure 16b shows the case just as the black agent reaches the food. Figure 16c shows

recruitment: the black agent’s strong signal, due to the food, attracts the white agent. Figures 16d

and e show both agents are emitting high signals while eating. Between Figures 16f and i, the black

agent finishes his “half” of the food, and is recruited to help the white agent finish what is left.

Figures 17 and 18 show the agents’ signals which allow them to produce this behavior.

These and similar figures describe all there is to know about a particular agent. The “behavior

graph” now represents the agent’s action in terms of the architecture of Figure 15: zero indicates

the agent is following the Jefferson FSA (Jefferson, et al., 1991); a value ofi indicates that the agent

is pursuing the gradient of signali-1.

The fact that only one communication channel was involved in the first experiment simpli-

fies the interpretation of Figures 17 and 18. The black agent has learned to correlate the magnitude

of its output signal with the presence of food. Of course, this correlation would be meaningless

without a suitable response from the white agent: when the white agent “hears” a large input signal,

it follows the signal to find food.

We chose this case as a demonstration for several reasons. First, snapshots easily capture

the evolved communication scheme: larger circles imply a higher signal. Second, the communica-

tion scheme is fairly intuitive: each agent “yells” when it finds food by increasing the strength of

its output signal; upon “hearing” such a signal, the second agent follows it to the source of food.

We have also observed other implementations of the same behavior, e.g., “Yell constantly when
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you’re searching for food, but then grow quiet when eating.” In this case, agents learn to respond

to silence. But such constant signalling behavior by no means exhausts the possible means of com-

munication.

5.2  Experiment 4: Oscillatory Communication Schemes

In contrast to the cases described above, the next example shows how oscillatory communication

schemes may evolve. For this experiment, we used the same food distribution, increased the num-

Food

Input signal 0

Hidden unit

Behavior

Output signal 0

0.0

1.0

0.0

3.7

0.0

1.0

0.0

1.0

0.0

14.7

Figure 17: Profile of the black agent (200 time steps). Behavior is either “Follow
FSA” (low) or “Follow Signal” (high). This agent has learned to correlate the
magnitude of its output signal with the presence of food.
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ber of agents to three, and retained a a single hidden unit for each agent. To investigate how the

agents would respond to noise, we gave them two communication channels, the first clear (u0=0),

the second noisy (u1=10).

 Figure 19a shows the initial environment. The circles reflect the strength of signal 0. We

omit signal 1, transmitted along a noisy channel, because it is not used by the agents (more on this

Food

Input signal 0

Hidden unit

Behavior

Output signal 0

0.0

1.0

0.0

0.9

0.0

1.0

0.0

1.0

0.0

14.7

Figure 18: Profile of the white agent (200 time steps). The point where
recruitment occurs (Figure 16c) corresponds to the first spike in the behavior
profile of this agent. When this agent reaches food (between Figures 16c and d),
the behavior reverts to following the FSA.
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Figure 19: Scenes of evolved communication, 3 agents, 1 communication
channel, no noise. Primitives are “Follow FSA” or “Follow signal.” (a) Initial
condition, circles denote signal 0; (b) After one time step, signal 0 has shrunk to its
minimum value. It oscillates between the two extremes when no food is present;
(c-i) t=25, 50, ..., 300.

(a) (c)(b)

(d) (f)(e)

(g) (i)(h)
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below). After justone time step, the signals along channel 0 have shrunk to their size in Figure 19b.

In the absence of food, signals in this channel oscillate between these two extreme values.

Because overall behavior is difficult to discern from just snapshots, Figure 20 abstracts just

the agents’ paths from Figure 19. Figure 20a shows recruitment by agent 0; Figure 20b shows that

recruitment is not permanent: when the food has been consumed, agent 0 strikes out on its own.

Figures 21-23 show the signals by which this behavior is accomplished. Figure 21 gives the

profile of the black agent over the run. Note how its output signal 0 oscillates in the absence of food.

Figure 22 shows the profile of the white agent throughout the run. The lack of oscillation in the

black agent’s output is enough to turn the white agent towards the food. (The 5 spikes in the be-

havioral profile indicate “Follow signal 0” behavior.)

The gray agent, however, is slightly different (Figure 23). Note the oscillation in its behav-

ior, as it alternates between following the gradient of signal 0 and following the FSA. At first

glance, this seems incorrect, because the inputs to agents 1 and 2 look identical, but their output

behaviors are very different. The problem, however, is simply one of scale. Figure 24 zooms in on

the first 50 time steps of the signal 0 input to agents 1 and 2. It is the phase difference between these

two signals which is responsible for the difference in the agents’ behaviors.

From the agent profiles (Figures 21-23), it appears that the evolved agents are relying solely

on channel 0, the clear channel. To test this, we blocked the agents’ signals by shunting the channel

with various constant values. In all cases, removal of channel 0 drastically reduced fitness, yet the

removal of channel 1 failed to hamper the search behavior of the agents, confirming our expecta-

tions that the agents had learned to ignore the noisy channel.
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Figure 20: Agent paths for the 3-agent case. Dots indicate path of agents (food
and signals have been removed for clarity). (a) Agent 0 recruiting the others. After
food has been consumed, agents 1 and 2 stay together, but agent 0 strikes out on a
different path.

(a)

Agent 1

Agent 2

Agent 0

(b)

Agent 0

Agent 1

Agent 2
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Food

Input signal 0

Input signal 1

Hidden unit 0

Behavior

Output signal 0

Output signal 1

0.00

1.00

0.00

10.26

0.00

10.26

0.00

1.00

0.00

2.00

0.00

40.00

0.00

40.00

Figure 21: Profile of the black agent (300 time steps). This agent has learned to
correlate oscillation of its output signal 0 with the presence of food.
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Figure 22: Profile of the white agent (300 time steps). The five spikes in behavior
indicate points where the agent follows signal 0, as can be seen in Figure 19.
Because the agent perceives no food during this time, the resulting behavior occurs
due to the agent’s input signals.

Food

Input signal 0

Input signal 1

Hidden unit 0

Behavior

Output signal 0

Output signal 1

0.00

1.00

0.00

32.89

0.00

32.89

0.00

1.00

0.00

1.00

0.00

40.00

0.00

40.00
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Figure 23: Profile of the gray agent (300 time steps). Although its initial inputs
(food & signals) look identical to that of the white agent, this agent’s initial
behavior oscillates between “Follow food” and “Follow signal.” The difference is
resolved in Figure 24.

Food

Input signal 0

Input signal 1

Hidden unit 0

Behavior

Output signal 0

Output signal 1

0.00

1.00

0.00

32.88

0.00

32.88

0.00

1.00

0.00

1.00

0.00

40.00

0.00

40.00
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5.3  The Evolution of Communication

The previous subsections focused on how the evolved systems of signals and responses allowed

the agents to communicate the presence of food. This section, in contrast, focuses on an orthogonal

question: how the system of communicationevolves.

Section 5.1 described an evolved communication scheme in which a one agent signalled

the presence of food by “yelling,” and the other agent responded to the louder signal by moving

towards the food. As stated earlier, this solution was discovered in 700 generations. To determine

how it came about, we compared final agents with their parents in generation 699, and then their

grandparents, etc., tracing their ancestry all the way back to randomly-generated agents in the ini-

tial generation. Our first step in analyzing this lineage was to determine if evolution proceeded

smoothly or by phase transition (Huberman and Hogg, 1987; Pollack, 1991). To do this, we com-

pared gross characteristics of the agents over the course of the run: fitness, number of links in the

networks, and total absolute value of the network weights (Figure 25). We discovered a phase tran-

Input signal 0, agent 1

Input signal 0, agent 2

0.00

0.10

0.00

0.14

Figure 24: Magnified view of the first input signal of agents 1 and 2 (50 time
steps). The white agent’s input begins oscillating between .03 and .04. The gray
agent’s input begins oscillating between .06 and 0. It is not the magnitude, but the
difference in phase which is responsible for the agents’ different behaviors.
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sition before which fitness was low and gross characteristics varied widely, and after which fitness

was high and gross characteristics were fairly stable.

We next moved from gross characteristics to specific agent features; specifically, we began

examining the networks which comprised the agents. Because the agents were fairly stable towards

the end of the run, we plotted only through generation 475 (the location of the arrow in Figure 25).

Each network consisted of a maximum of 20 links in a 5x4 matrix (w00 - w43). This result is split

across Figures 26 and 27. Once again, we observed a phase transition in the weight values.

Unfortunately, just seeing the weight changes in the networks over time is of little help in

understanding how the varying structure effects an increase in fitness. We proceeded with afunc-

Ancestor fitness

Ancestor number of links

Ancestor total absolute weight

128.0

247.0

1.0

20.0

0.9

84.5

Figure 25: Gross characteristics of the ancestors of the agents which
demonstrated a constant communication scheme (Section 5.1). This figure shows
generations 0 - 700. (The arrow denotes generation 475, used later.)
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Ancestor fitness

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

128.0

247.0

-4.1

11.9

-14.7

0.0

-2.4

9.0

-5.7

13.2

-5.4

8.4

-6.4

8.1

-3.3

7.0

-5.1

7.7

-15.8

4.8

-7.2

4.3

Figure 26: Evolution of network weightsw00 - w21, generations 0-475. Non-links
are shown as a zero weight.
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Ancestor fitness

w22

w23

w30

w31

w32

w33

w40

w41

w42

w43

128.0

247.0

-10.9

4.1

-7.7

6.2

-2.3

10.7

-5.2

7.5

-5.5

2.8

-6.5

6.9

-4.9

6.8

-7.7

8.5

-13.5

4.0

-4.7

6.6

Figure 27: Evolution of network weightsw22 - w43, generations 0-475. Non-links
are shown as a zero weight.
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tional analysis as follows. The key to the solution in the agents of generation700 is thatthey have

learned to communicate the presence of food. In particular, if neither agent has discovered the food

patch, both agents search; if one agent has discovered the patch, it communicates this knowledge

to the other. Figure 28, where the agents are taken from the final solution at generation 700, illus-

trates these two critical points in the task. To determine how the agents evolve functionally, we

compared how they behave in these two situations. Specifically, we compared four features: the

output signal of the black agent before it encounters food, the response of the white agent to this

signal, the output signal of the black agent after it has discovered the food patch, and the response

of the white agent to this signal. Furthermore, we graphed the absolute difference in values between

the output signals of the black agent in the food/no-food cases.

Figure 29 shows the results. Let the black agent be 0; the white agent be 1; the food signal

of agent 0 be Sf, and the no-food signal of agent 0 be Sn. Behaviorally, the critical aspect of the

Figure 28: Snapshots of the agents in their environment at t=10 and t=30 (cf.
Figure 16). The agents come from the final solution at generation 700. The
particular time steps, chosen arbitrarily, simply capture the situation both before
and after the black agent finds the food.

(a) (b)
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figure is the response agent 1 to Sf. The phase transition in fitness corresponds exactly to a phase

transition in this behavior.

Why does it take 475 generations for these phase transitions to occur? From the middle

graph, one can observe a non-linear increase in | Sf - Sn |, representing a distinction in the food /

Ancestor fitness

No-food signal (agent 0)

Food signal (agent 0)

Food/no-food signal difference

No-food signal response (agent 1)

Food signal response (agent 1)

128.0

247.0

0.0

30.0

0.0

30.0

0.0

30.0

0.0

1.0

0.0

1.0

Figure 29: Functional difference of the agents over time (generations 0 - 475).
Two events precede the phase transition in fitness: a distinction in the food/no-food
signals by agent 0, and a recognition of this distinction by agent 1.
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no-food cases by agent 0. Interestingly, however, the phase transition in fitness is not forthcoming

despite many large spikes in this value, since two conditions must be met for the jump in fitness:

C0 – agent 0 must effect a distinction between Sn and Sf,
C1 – agent 1 must respond to this distinction appropriately.

Consequently, search is hindered by two factors. First, C0 must logically precede C1, and second,

the simple fitness function used for this task (number of pieces of food consumed) offers no reward

for satisfying C0 if C1 is violated.

6  Remarks

We began with very few assumptions about the nature of communication, essentially stripping

away the information-theory veneer that has made previous systems easy to understand. First we

replaced the engineer with evolutionary search. Second, we eliminated discrete events and allowed

the agents to modify channels with continuous values. These assumptions did not prevent solutions

to the modified Tracker problem; in fact some novel approaches were discovered. We were able to

evolve agents which demonstrated such task-specific behaviors as recruitment. In this section, we

discuss implications of our results.

6.1  The Communicative Stance

Detecting the presence of communication is more difficult than it sounds. Communication can oc-

cur across long and short distances of both space and time, as can random noise. As examples of

evolved communication, we rejected the results in Section 3, but embraced those in Section 5.

What justifies the unequal treatment of the two?

Beer (1992) suggests dynamical systems theory as a unifying metaphor in which to under-

stand the behavior of adaptive agents. Certainly, this language applies to all the results above: in

each case, the agents evolved a “structural congruence” (Beer, 1990) between their internal dynam-
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ics and the dynamics of their environment. It is congruence that permitted the interlocking patterns

of behavior (Winograd and Flores, 1986) which we termed either pseudo-random search

(Section 3) or communication (Section 5).

McDermott (1981) warns againstcreative naming, which in our case means thinking that a

set of agents is communicating simply because we adopt the label “communication” to describe

their actions. If the agents’ behaviors can be explained at the level of dynamical systems, we must

carefully justify adopting the language ofcommunication.

Dennett (1987) deals with a similar problem regarding the appropriate language in which

to discussmind, and designates two very different levels of explanation:

Suppose, for example, that we adopt the intentional stance toward bees, and note
with wonder that they seem toknow that dead bees are a hygiene problem in a
hive; when a bee dies its sistersrecognize that it has died, andbelieving that dead
bees are a health hazard andwanting, rationally enough, to avoid health hazards,
they decide they must remove the dead bee immediately. Thereupon they do just
that. Now if that fancy an intentional story were confirmed, the bee-system
designer would be faced with an enormously difficult job. Happily for the designer
(if sadly for bee romantics), it turns out that a much lower-order explanation
suffices: dead bees secrete oleic acid; the smell of oleic acid turns on the “remove
it” subroutine in the other bees; put a dab of oleic acid on a live, healthy bee, and it
will be dragged, kicking and screaming, out of the hive (Dennett, 1987, p. 256).

He goes on to justify the “bee romantic” level of explanation by the fact that it may lead to

a “better” description of a system, where “better” is realized in terms of predictive power or gen-

erality (Dennett, 1987, p. 139). He labels this description in terms of beliefs, desires, and the like

as theintentional stance.

Similarly, saying that the agents of Section 5 arecommunicating is a stance we adopt to-

wards the agents, one which leads to certain predictions and generalizations about the agents’ be-

haviors. In repeating the experiments, we showed how each time a set of agents evolved a commu-

nication scheme which somehow helped perform the task. Sometimes they evolved the “scream at
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food” communication scheme; other times they evolved “be quiet when eating” scheme; still other

times they evolved “oscillate until finding food” scheme. Although these schemes appear quite dif-

ferent, an underlying commonality binds them together: namely, in the types of information the

agents transmit, receive, and use. In all cases, the agents have learned to communicate to each other

the presence or absence of food, the most critical object in their fitness environment. Interpreting

the signals as communicating information allows not only this generalization, but also the predic-

tion that any evolved communication scheme will convey similar information, regardless of its sur-

face appearance.

We avoid calling the pseudo-random search of the agents in Section 3 “communication”

because the agents appear quite different at the information processing level. Their signals and re-

sponses remain invariant when food was removed from their environment – thus failing the test

which we used to operationalize our notion of communication.

6.2  Relativized Semantics

Dynamical systems theory and the communicative stance provide two levels at which to describe

the agents’ behavior, but of course this does not exhaust the possible descriptions. So far, we have

avoided calling the evolved communication schemeslanguages. Now we adopt that perspective.

As languages, theconstant andoscillatory systems of communication in Section 5 appear

quite impoverished. They possess no syntax by which different signals can combine into higher-

level signals, and thus they lack both compositionality (Chandrasekaran, 1990) and generative ca-

pacity (Fodor and Pylyshyn, 1988; Pollack, 1990). But, interestingly, these systems of communi-

cation do possess a semantics. Consider the agents in experiment 3 (Section 5.1). They learned to

generate signals of varying magnitude to indicate the presence of food. From the perspective of one

of these agents, the signal “High, high, high...”means that food is present, while the signal “Low,
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low, low” means no food has been found. In other words, the agents have developed a language

with meaning relative to the task domain; consequently, we propose that these signals possess a

semantics, which we callrelativized semantics.

These semantics emerge independently of the programmer’s notion of how the agents

should communicate. Consider the inputs to the white agents in experiment 3 (Section 5.1) and ex-

periment 4 (Section 5.2), shown together in Figure 30. Although both were evolved in an identical

fashion, the languages are radically different: the first is based upon the input signal’s magnitude;

the second is based upon its phase.

6.3  Conclusions

The most difficult aspect of speech recognition is determining how to carve a continuous sound

wave into meaningful pieces – if the speaker pauses between words, the problem is trivial. An in-

fant just learning language or an adult learning a foreign tongue faces the same problem: just where

does one word stop and the next begin (if indeed there even is a clear boundary)? The discrete com-

Input signal 0, agent 1, experiment 3

Input signal 0, agent 1, experiment 4

0.0

0.1

0.0

0.1

Figure 30: Comparison of input streams across experiment 3 (Section 5.5.1) and
experiment 4 (Section 5.5.2) for the evolved white agent, t=0-50.
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munication systems in Section 1 never address this issue. Indeed, they never address how an agent

detects communication as opposed to noise, how the discrete symbols arise, or how the discrete

symbols may be integrated with the continuous substrate of sound.

Our agents perform differently – at no time is the input stream partitioned, normalized, or

recognized; it simply modulates the behavior of the agent (as in Kolen, 1994b). Yet it does so in a

way which admits a meaningful explanation at the information processing level, one which points

to a integration of the continuous substrate of sound with the discrete system of words. Further-

more, it allows not just an integration of syntax and semantics, but a grounding of semantics in both

overt behavior and changes to internal state.

While a set of agents evolving a way to signal the presence of food is a far cry from natural

language, the evolved communication – and we really meancommunication in the sense of Dennett

– is also a far cry from the way communication has been studied as matching of isolated symbols.

And we feel it is a step in the right direction towards a true understanding of the evolution of com-

munication.
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