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Abstract

Evolution, astrial-and-errorbasedearningmethods,
usually relies on the repeatabilityof an experience:
Differentbehaioral alternatves are testedand com-
paredwith eachother But agentsactingon real ervi-
ronmentanaynotbeableto choosewhich experience
to live. Insteadthe ervironmentprovidesvaryingini-
tial conditions for each trial.

In competitve gamesfor example,it is difficult to
compareplayerswith eachotherif they arenot able
to choosetheir opponentsHerewe describea statis-
tics-basedapproachto solving this problem, devel-
oped in the contxt of the Tron system, a
coevolutionary experiment that matches humans
againstagentson a simple video game.We are now
able to shav, amongthe results, that the comple
interactionded the artificial agentgo evolve towards
higherproficieng, while atthe sametime, individual
humandearnedasthey gainedexperiencenteracting
with the system.

1. Introduction

In the last edition of SAB we presentedhe Tron system,
(Funes etal., 1998) the first example of animal-animat
coevolution, betweenan agentspeciesand a living species.
Part of the analysisof this experimentwas, at the time,
inconclusve: Wasthe agentspeciedearning?We could tell
that agentswere winning more frequently but this could
have beendueto other effects: their humanopponentget-
ting worseover time, for example.In a coevolutionaryervi-
ronment, the Red Queen effect (Cliff and Miller, 1995)
malkesit difficult to evaluateprogresssincethe parameter
for evaluationof onespecieds the other andvice versa.A
highernumberof wins doesnot necessarilymply betterper-
formance.

To analyzethe performanceof Tron agentsevolving vs.
humanplayerswe have now applieda statisticalmethodthat
givesa mathematicallysoundevaluationof agentandhuman
playersalike, allowing usto compareall individual players
with eachother evenwhenit is possiblethatthey have never
played together

1.1. Coeolution in Competition

Themostbasicway to assigrfitnessto playersin a competi-
tive/coolutionary ervironment is to sum up all wins
(Angeline and Pollack,1993, Hillis, 1991, Axelrod,1987).
More adwancedis the useof fithesssharingstratgies(Beas-
ley etal., 1993, Juillé and Pollack,1996,Rosin,1997).Dif-
ferentresearcherbave tried to reducethe numberof games
to be played in each generation:large savzings can be
obtainedby matchingplayersagainsta sampleinsteadof the
whole population — “finding opponentsworth beating”
(Sims,1994,RosinandBelew, 1995). Theassumptionhow-
ever, thatonecanchoosehe opponentsgould not be upheld
in our case,wherehumanopponentscomeand go at their
will, and an entirely different approachto scoring was
needed.

The Tron experimentassayed fithesssharing-inspired
fitness function: for agemtthe fitness is
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We knew that differentagentswould play againstsome
of the sameandsomedifferenthumansso simply summing
up all wins would not sufiice. Insteadwe comparedvinning
ratios: accordingto eq. 1, agentsget positive points when
they do betterthan averageagpinst a human,and negative
pointsfor doing worsethanaverage.The more experienced
the human is, the morebhiable those points are.

This function was relatively successfuin finding good
Tron agentsput hadproblemsthatwe did not foresee Over
time, a stronggroupof agentformedthatwerereliably bet-
ter than average,thus surviving for mary generationsAs
theseagentshadseerhundredf humansover their history,
and were betterthan average,even though not necessarily
thebest,they hadtoo mary pointsto be challengedy newver
ones.

Similar problemsarise when one tries to comparethe
performancesof pastand presentplayers. A well-known
stratgy for evaluating coevolutionary progressin presence
of the RedQueerneffectis to take a sampleset,anadwanced



generatiorfor example,andusethemto evaluateall players
(Cliff and Miller, 1995, Pollack and Blair, 1998). This is
impossiblehere:we cannotrecreatehe behaior of humans
who playedin the past.Somefixedagentscould concevably
be keptin the populationfor evaluationpurposesbut evenif
one or a few agentswereto be presentin all generations,
most people would play against them only a few times,
yielding a measureof low confidence At the onsetof the
experiment,we were not willing to sacrifice performance,
nor slov down the evolutionarypaceby keepingfixedlosers
insidethe population(if they werewinners,they would not
have to be kept alive artificially, but without an oracle we
could not choose them in aahce).

The needfor a moreaccuratesvaluationof performance
in coevolution wasthustwofold: notonly we wishedto study
theevolution of theexperimentscomparingoday’s andyes-
terdays humansandrobots;we werealsolooking for a bet-
ter measureo further evolve the artificial populationin the
future.

In whatfollows we succinctlydescribethe Tron system,
thenthe statisticalanalysistools, to go in more detail over
the results obtained.

2. Tron

2.1. Internet Evolution

A machinethatlearnsby playinggamesmayacquireknowl-
edgeeitherfrom externalexpertise(playingwith a humanor
human-programmedrainer), or by engaging in self-play
Tesaurq(Tesauro1992)wasableto obtainstrongbackgm-
mon players, having one neural network play itself and
adjustingthe weightswith a variant of Suttons TD algo-
rithm (Sutton,1988). Although it worked for backgammon,
self-play hasfailed on other domains.Our group obtained
similar resultsto thoseof Tesaurcs, using hill-climbing, a
much simpler algorithm (Pollack and Blair, 1998). This
demonstrateshat elementsunique to backgammon, more
thanthe TD method,enablelearningto succeedSelf-play
remainsan attractve ideabecauseno externalexperiencels
required.In mostcaseshowever, thelearningagentexplores
anarrav portionof the problemdomainandfails to general-
ize to the @me as humans pereeiit.

Attaining knowledgefrom humanexperiencehasproven
to bedifficult aswell. Today’s algorithmswould requiremil-
lions of games, hence rendering training against a live
humanimpossiblein practice Programmedrainershave led
(asin self-play abore) to the exploration of an insufficient
subsetof the game space:Tesauro(Tesauro1990) tried to
learnbackgammonusinghumanknowledgethrougha data-
baseof humanexpert examples but self-playyieldedbetter
results.Angeline and Pollack (Angeline and Pollack,1993)
shaved how a geneticprogramthat learnedto play tic-tac-
toe agpinstseveral fixed heuristicplayerswasoutperformed
by the winner in a self-playing population.

Todays expert computer players are programmedby
humans;someemplg no learningat all (Newborn,1996)
andsomeuseit during a final stageto fine-tunea few inter-
nal parameters (Baxter &it, 1998).

With the adwent of the Internet, evolving against thou-
sandof humandecomegpossible We concevedtheideaof
a specief softwareagentghatevolve on the web, playing
gameswith humansthey encounter.only the betteragents
survive, so a niche on the Internet exerts the evolutionary
pressure that drés the virtual species.

2.2. Tron Agents

An agentengagingin gameson users browser programsis
constrainedy the Java Virtual Machineof the browser an
ervironmentvery limited in speedand resourcesThus we
used Tron, a game with minimalistic memory CPU and
graphics requirements.

Tron, (alsoknown as“Light Cycles”)gotits namefrom a

mavie (Walt Disney Studios,1982)andbecamepopulardur-
ing the 80's. It is a real-timevideo gamethatrequiresquick
reactionsaandspacial-topologicaleasoningatthe sametime.
In this game, players move at constant,identical speeds,
erectingwalls wherever they passandturning only at right
angles.As the gameadwancesthe 2D gamearenaprogres-
sively fills with walls and eventually one opponentcrashes,
losingthe game.In our version,thetwo players(onehuman,
oneagent)startin the middleregion of thescreenmoving in
the samedirection (fig. 1). The edgesare not considered
“walls”; playersmove pastthemandreappeaion the oppo-
siteside,thuscreatingatoroidalgamearena256x256 pixels
in size.

Our Tron agentsperceve the world throughsensorghat
evaluatethe distancein pixels from the currentposition to
the nearesbbstaclen eightrelative directions:Front, Back,
Left, Right, FrontLeft, FrontRight,BackLeftandBackRight.
Every sensoreturnsa maximumvalueof 1 for animmediate
obstaclea lower numberfor anobstaclefurther away, and0
when there are noalls in sight.

Eachrobot-agentis a small program,representingone
Tron stratgy, coded as a Genetic Programming(GP) s-
expression(Koza,1992), with terminals{A, B, ..., H (the
eightsensorspnd 0 (randomconstantdbetween0 and 1)},
functions{+, -, * (arithmeticoperations),%(safedivision),
IFLTE (if-then-else),RIGHT (turn right) and LEFT (turn
left)}, maximum depth of 7 and maximum size of 512
tokens.An agentreadsits sensorandevaluatests s-expres-
sion every third time step:if a RIGHT or LEFT functionis
output,theagentmakesthe correspondingurn; otherwise jt
will keep going straight.

When a visitor opensthe Tron web pagée, her browser
loads and startsa Java applet. The appletreceves the GP

1. http://www.demo.cs.brandeis.edu/tron
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Figure1: The Tron game.Tron runsasan appletinside
an Internetbrowset Arrows have beenaddedto indicate
direction of movement, and dotted lines to shav the
sensors of the artificial agent.

codefor anagentfrom our websenerandusest to play one
gamewith her Thehumanmovesby pressinghearrow keys
andthe agentaccordingto its s-expressionWhenthe game
ends,the appletreportsthe result(win or loss)to the sener,

andrecevesa new agentfor the next game.This cycle con-
tinues until the human stops playing.

2.3. Evolving the fbn species

The systemmaintainsa populationof 100 agentsFor each
game, an agentis dravn at randomfrom this population.
Resultsare storedin a databaseA generationastsuntil all

100 agentshave playeda minimum numberof games:new

agentsplay at least10 games while veterandrom previous
generationplay only 5 games(thusabout18% of gamesare
playedby rookieswho have not seenhumansbefore) With

the currentsystemreachinga high proficieng level, thefact
thatsomenavice stratgjiesarealwayspresentis a benefitfor

beginnerhumanswvho play for thefirst time: therearealways
somegameghatthe systemplaysmorenaively, allowing the
humandgo win occasionallyinsteadof beingfrustratedby an
overwhelming opponent.

Whenall agentshave completedtheir minimum number
of games,the currentgeneratiorfinishes:agentsare sorted
by fitness;the worst 10 are eliminatedand replacedby 10
fresh ones,suppliedby a separatenovelty engine A new
generation bgns (fig. 2).
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Figure 2: Schemeof information flow. Agentstravel to
users’ computersto play games. Those with poorest
performancesare eliminated.A novelty enginecreates
new players.Thebetteronesareaddedo the population,
filling the empty slots.

2.4. Ceating N&v Opponents by Cweelu-
tion

The Tron architectureusesa separateovelty engine— the
“background” part of the system— as the sourceof new
individuals. This module coevolves a population of 1000
agents by playing them aipst each other

Eventhoughself-playdoesnot provide enoughinforma-
tion to know which stratgyieswill performwell againstpeo-
ple, this methodis muchbetterthanblind recombinatiorfor
creating interesting meagents.

Thenovelty engineplaysall theindividualsin its popula-
tion againsta training setof 25 agentsFitnessis evaluated,
andthe bottomhalf of the populationis replacedoy random
mating with crosseer of the best half. Fitnesssharingis
usedto promotediversity in the population.Thetraining set
consistedhfixedpart,thetop 15 playersfrom theforeground
population, and a coevolutionary part, 10 more agents
replacedon eachiteration— with a fitnesssharingcriterion
of “finding opponents worth beating” (adapted from
Rosin,1997).Full detailsof this configurationare given on
(Funes etl., 1998).

Later analysissuggestedis that having 10 fixed players
duringthecoevolutionaryprocess— they only changedvith
the slowly changinglnternet populationof agents— was
suboptimal,so we reducedthe fixed setto just one player
Fitnessfrom the foregroundis fed back into the novelty
enginenow by reintroducingthe bestagentdirectly into the
coevolving population,allowing themto evolve againsttheir
kin (seesection4.4). The novelty enginenow runscontinu-
ous coevolution, eachagentplaying 25 games,one against
thefixed ‘championagainsthumanity’,and 24 moreagainst
the representates chosen from the prieus iteration.

3. Paired Comparisons

Paired comparisonsnodelsare statisticalmethodsthat esti-
matethe relative strengthsor preferencesf a group of par-
ticipants. The “Elo ratings” for Chess(Elo, 1986) are one



exampleof suchmethod.Chesgposesomeproblemsakinto
ours,asonewould like to ask, say was Capablancadetter
thanFisher?Evenif thetwo playersdid play eachother one
might not have beenat the peakof his abilities at the time.
All theinformationfrom opponentshey playedin common,
and how goodthey performed,shouldbe put together We
have followed the maximumlik elihood approachdescribed
by Joe(Joe,1990),appliedby the authorto the Chessprob-
lem among others.

Elo’s model — adoptedtoday for mary other games,
including the so-called“game ladders” on the Internet—
assignsa low rankingto a novice, who canslowly climb up
as shewins gamesaginstotherranked players.Maximum
likelihood statisticssuch as Joes are better suited to our
problembecauseéhey computethe mostfeasiblerankingfor
all players, without presuming that young ones are bad.

The goal of paired comparisonstatisticsis to deducea
ranking from an unesen matrix of obsenred results,from
whichthe contestantsanbesortedfrom bestto worst.In the
knowledgethatcrushingall the compleities of the situation
into just onenumberis a hugesimplification,onewishesto
have the best one-dimensionajpdanation of the data.

Eachgamebetweentwo players(P;, P;) canbe thought

of asa randomexperimentwherethereis a probability p;
that P; will win. Gamesactuallyobsenred arethusinstances

of a binomial distribution experiment: Any sampleof n
games betweeR; andP; occurs with a probability of

n—

P(samplg = p; '(1-py) @

wherew;; is the number of wins by play®y.

We wish to assigna relative strength parameter(RS)
A;to eachof the playersinvolved in a tournamentwhere
A >)\j implies that playeP; is better than playe®;.

A probability function F suchthat F(0)=0.5is assumed
arbitrarily; we use the logistic function
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Themodeldescribeshe probabilitiesp; asa function of
the RS parametey; for each player

Pij = F(A =A)) (4)

so the outcomeof a gameis a probabilisticfunction of the
difference between both opponergtrengths.

The obsened datais a long sequencef gamesbetween
opponenipairs,eachonea eithera win or aloss.According
to eq.4, the probability of thatparticularsequenceccurring
would have been

P = [TFO =2 "(1-F(\ A" )
|

for ary choiceof A;'s.Thesetof A’'s that bestexplainsthe
obsenationsis thusthe onethat maximizesthis probability.
The well known method of maximum likelihood can be
appliedto find the maximumfor eq.5, generatinga large set
of implicit simultaneousequationsthat are solved by the
Newton-Raphson method.

An importantconsiderations, the A;’'s are not the true
indeterminatesfor the equationgnvolve only paireddiffer-
ences); —A;. Onepointhasto bechoserarbitrarily to bethe
zero of the RS scale.

A similar methodpermitsassigningaratingto the perfor-
manceof ary smallersampleof obsenations(oneplayerfor
example):fixing all the A;’s on equation(5), exceptone,we
obtain

wins = ZF()\ -\) (6)

whereA is the only unknavn — all the other valueshave
alreadybeencalculated Theremainingindeterminates eas-
ily solved with the same procedure.

If a given players history for example, is a vector
(wq,...,wy) of win/loss results, obtainedagainst opponents

with known RS's A4,...An, respectrely, theneq. 6 can be
solvediteratively, usinga “sliding window” of sizen <N, to
obtaining strength estimates for (wjy,...,w,), then for
(W,,...,W,+1), andsoon. Eachsuccessie valueof A estimates

the strengthwith respecto the gamescontainedn thewin-
dow only.

With this, we cando two importantthings: analyzethe
changingperformancef a singleplayerovertime, and,put-
ting the gamesof a group of playerstogetherinto a single
indeterminatepbsene their combinedrankingasit changes
over time.

Altogether the paired comparisons model yields:

* A performancescale that we have called relative
strength(RS). The zero of the scaleis setarbitrarily
(to the one of a fizd sample player: agent 460003).

e An orderingof the entire setof playersin terms of
proficieny at the @me, as gien by the RS.

e An estimation,for eachpossiblegamebetweentwo
arbitrary players,of the win-lose probability (equa-
tion 4). With it, an estimationof exactly how much
better or vorse one is, as compared to the ather

* A way to measureperformanceof individuals or
groups eer time.

e A possiblefithessmeasurethe betterranked players
can be chosen to suve.



4. Performance of Human and Agent
Players

Our sener hasbeenoperationalsince Septembel997; we

have collectedthe resultsof all gamesbetweenagentsand

humans;the systemis still running. The resultspresented
herearebasedn thefirst 525daysof data(204,093games).
A total 4037 humanplayersand 3512 agentplayershave

participated,each of them having faced just some of all

potential opponents (fig. 3).
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Figure 3: Who hasplayedwhom: A dot marksevery
human-robopair who have playedeachotherat least
once.Both populationsare sortedby the dateof their
first appearancerlhe long vertical lines correspondo
robotsthat have beenpartof the populationfor along
time, and thus he played aginst most necomers.

4.1. Wh Rate

A basic performance measure is tha rate (WR),

games won

win rate = —=——————
games playe

(1)
which s the fraction of gamesthatthe artificial playerswin.
The averagewin rateover the total numberof gamesplayed
is 0.55, meaningthat 55% of all gamescompletedhave
resultedin agentvictories.The WR hasbeenchangingover
time (fig. 4), in anoscillatingfashion.This noisy behaior is
a naturalphenomenoiin a coevolutionaryervironment,and
occursheremorenaticeablysinceoneof the evolving popu-
lations consistsof randomhumanplayers.Eachof the 4037
personssampledherehasa differentlevel of expertiseand
has played a different numberof games(anothervariable
factoris the speedf the gameon the users machine which
may have a slower pacewhen the Java ervironmentis too

slow?). TheincreasingWR suggestshut not proves, thatthe
robot populationhasbeenlearning,getting betterover time

as a result of the selection process.
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Figure 4: Computerwin rate, sampledevery 1000
games.

4.2. Statistical Analysis

An increasingWVR is not a whole proof that our systemwas
evolving towards better agents.It could be the case,for
example, that humansbecameincreasinglysloppy, losing
more and more of their gameswhile agentsstayedmore or
less the same.

Applying the paired comparisonmodel gave us more
reliable information. We computedthe RS for every com-

puterand humanplaye?. For the first time we were ableto

compareagentsand humanswith eachother:tables(a) and
(b) onfig. 5 list the 15 bestandworst players,respectiely.

Eachhumanandrobotis labelledwith a uniqueid. number:
humanswere numberedconsecutiely by their first appear-
anceandrobotshave id numbersall greateithan10,000(the
first 3 digits encode the generation number).

The top playerstable (fig. 5a) has6 humansat the top,
the bestagentso far being seventh. The best player is a
human far betterthanall others:accordingto eq.4, an esti-
mated87% chanceof beatingthe secondbest!. This person

2. OurJava Tron usesa millisecondsleepinstructionto pacethe
game,but differentimplementation®f the Java Virtual Engine,
on differentbrowsers,seemto interpretit with dissimilaraccu-
racies. The effect is more noticeableon machineswith slow
CPUs and early Ja-enabled brwsers.

3. Playerswho have eitherlost or won all their gamescannotbe
rated,for they would have to be considerednfinitely good or
bad. Suchplayerscorvey no information whatsoeer to rank
the others.Losing againsta perfectplayer for example,is triv-
ial andhasnoinformationcontentsPerfectwinners/loserfiave
occurredonly on playerswith very little experience Thereis
one human (no. 228) who won all 37 gameshe/sheplayed.
Shouldwe considerhim/her the all-time champion?Perhaps.
The presentmodel doesnot comprehendhe possibility of a
perfectplayer To eliminate noise, we only considerplayers
with 100 gamesor more. All “unrated” playersare far belov
this threshold.



mustbe a geniusor, morelikely, auserwith avery old com-
putet running the applet &y belav its normal speed.

Best Players (a)
Strength Player Id

Worst Players (b)
Strength Player Id

1. 3.55 887 1. -4.64 2407
2. 1.60 1964 2. -3.98 2068
3. 1.26 388 3. -3.95 3982
4. 1.14 155 4. -3.88 32
5. 1.07 1636 5. -3.75 1986
6. 1.05 2961 6. -3.73 33
7. 0.89 3010008 7. -3.69 3491
8. 0.89 3100001 8. -3.41 2146
9. 0.84 1754 9. -3.39 2711
10. 0.81 2770006 10. -3.36 3140
11. 0.81 3130004 11. -3.31 1702
12. 0.76 2980001 12. -3.31 1922
13. 0.70 1860 13. -3.30 2865
14. 0.66 2910002 14. -3.27 2697
15. 0.62 3130003 15. -3.22 2441

Figureb5: Bestplayers(a) andworstplayers(b) tables.
Only players with 100 games or more are been
considered. Id. numbers greater than 10000
correspond to robot players.

The differencebetweenthe top group of humanplayers
(RSaroundl.1) andthetop agentplayers(RS’s around0.7)
is about60%. Sevenout of thebest15 playersareagents\We
concludethat Tron is partially learnableby self-play and
thatafew very goodagentplayershave managedo survive.

The worst players table (fig. 5b) is composedof all
humans.This doesnot indicatethat all agentsare good but
rather that mostbad agentsare eliminatedbeforereaching
100 games.

4.3. Distrikution of Playes

The global comparatie performanceof all playersis visual-
ized on the distribution curves(fig. 6). Herewe have plotted
all ratedplayers,includingthosewith justafew games.The
factthat agentsand humanssharesimilar averagestrengths
indicatesthat the coevolutionary enginethat producesnew
tron players,has managedo producesomegood players.
But at the sametime, the wide spreadof agentlevels, from
very badto very good, shaws us that thereis a reality gap
betweenplaying against other robots and playing against
humans:all agentsthat ever playedagainsthumanson the
websitewere selectedamongthe bestfrom an agent-agent
coevolutionary experimentthat hasbeenrunningfor alarge
numberof generationsour novelty engine.If being good
againstagentsvasto guarante¢hatoneis alsogoodagainst
people robotswould not cover a wide rangeof capacities—
they would all be nearlyasgoodas possible,and so would
fall within a narrav range of abilities.

4.4. Ae Nev Geneations Better?

It seemsreasonabléo expectthat newv humansjoining the
systemshouldbeno better norworse,on averagethanthose
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Figure 6: Strengthdistribution curves for agentsand
humans.

who cameearlier This is indeedthe case,accordingto the
dataonfig. 7a: bothgoodandnot-sogoodpeoplekeepjoin-

ing the system.Tron agents(fig. 7b) do show differenceslt

wasour hopethat feedbackirom the foregroundpopulation
backto our background‘novelty engine” could leadto the
production of better agents.

Feedbackrom the foregroundpopulationinto the back-
groundwasintroducedin two forms: a) From the onsetof
our experiment,the 15 bestagentswere usedas part of the
trainingin the novelty engineb) Aroundrobotno. 2500this
stratgly was changed:control experimentssuggestedhat
training againstfixed control setswassuboptimal Fromthis
pointon, thefixedtraining setwasreducedo justoneagent.
The mainfeedbackusednow consistsn seedinghe popula-
tion with the 100 championsfrom the foreground,letting it
evolve from thereby purecoevolution. Theimprovementon
the averagequality of new Tron agentssince no. 2500 is
apparentin the graph (so is the bug that producedlousy
agents for a f@ generations).

Our attemptfor progressiely increasingthe quality of
new agentsproducedby the novelty engine,by having them
train against thosebestagainst humans,was partially suc-
cessful: graph 7b shavs a mamginal improvementon the
averagestrengthof new players,0-th to 2500-th.But notice-
able better agentsbeginning at 2800 cometo confirm the
previous findings of other researchers(Angeline and
Pollack,1993, Tesauro1990)in the sensethat the coerolv-
ing populationusedasfitnessyields morerobustresultsthan
playing against fixed trainerswho can be fooled by tricks
that hae no general application.

5. Learning

We wish to studyhow the performanceof the differentplay-
ers and specieson this experimenthaschangedover time.
Fig. 8 shaws the sliding window method applied to one
robot. It revealshow inexact— or “noisy” — the RS esti-
matesarewhentoo few gamesareputtogetherlt is apparent
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Figure7: New humans(abore) are aboutasgoodas
earlieroneson average.New robots (belov) may be
born better on average,as time passesbenefiting
from feedback from agent-human games and
improvementson the configuration of the novelty
engine.

that 100 gamesor more are neededto obtain an accurate
measure.
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Figure8: Performancef robot460003— which was
arbitrarily chosenasthe zero of the strengthscale—
obsered along its nearly 1600 games, using
increasingly bigger winde sizes.

Sinceeachindividual agentembodiesa single,unchang-
ing stratgyy for the gameof Tron, the modelshouldestimate
approximatelythe samestrengthvaluefor the sameagentat
differentpointsin history Thisis indeedthecaseasseerfor
exampleon figs. 8 (bottomgraph)and9a.Thesituationwith
humansis very different, as people changetheir game,
improving in most cases (fig. 9b

5.1. Evolution as Learning

The Tron systemwasintendedto functionasoneintelligent,
learning opponentto challengehumanity The stratgy of
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Figure 9: (a) Robots strengths(a) Robot’s strengths

as expected,don’t changemuch over time. Humans,
on the other hand, aranable (b).

this virtual agentis generatedby the randommixture of Tron
robotsin the evolving population;18% of the gamesbeing
played by new, untestedagents,exploring new stratgy
spaceTheremaininggamesareplayedby thoseagentscon-
sideredbestso far — survivors from previous generations,
exploiting previous knowledge. In terms of traditional Al,
theideais to utilize the dynamicsof evolution by selection
of thefittestasa way to createa mixture of expertsthatcre-
ate one increasingly rabt Tron player
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Figure 10: Relatve strength of the Tron species
increaseser time, shwing artificial learning.

We usethesameformulathatsolvestherankingequation
(6) for one player but solving for all of the computers
gamesput together The resultis the performancehistory of
the combinedTron agent.Fig. 10 shavs thatour systemhas
beenlearning throughoutthe experiment,at the beginning
performingata RSratebelov —2.0,andattheendaround0.

Now we canto go backto the humanscale.The next
graph,re-scalesthe RS valuesin terms of the percentof



humandelow eachvalue.Beginningasa playerin thelower
30 percent, as compaed to humans,the Tron systemhas
improved dramatically: by the end of the period it is a top
5% player(fig. 11).
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Figurel1: Strengthvaluesfor the Tron system plotted
as percentof humansbelow. In the beginning our
system performed worse than 70% of all human

players. Nav it is within the best 5%

5.2. Human Learning

Is the humanspeciegyettingbetteraswell? No. Redoingthe
sameexerciseof figure 10, but now tracingthe strengthlevel

of all humanplayersconsideredas one entity, we obtaina
wavy line that doesnot seemto be going up nor down (fig.

12). This meansthat, althoughindividual humansimprove,
new noviceskeeparising,andthe overall performancef the
specieshasnot changedover the periodthat Tron hasbeen
on-line.
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"Figure 12: Performanceof the human species,
considered as one player varies strongly
complicating things for a learning opponent,but
does not presenwerall trends.

An altogethedifferentimageemegeswhenwe consider
humanson anindividual basis.Although a large numberof
gamesareneededo obsere significantlearning,thereis an
important group of userswho have played 400 gamesor
more.On averagethesehumangaisefrom a performancef
—2.4ontheirfirst game to —0.8ontheir 400thgame,improv-
ing approximatelyl.5 points over 400 games(fig. 13). We
mustconcludethatthelearningrateis dramaticallyfasterfor
humans,as comparedto the approximately100,000games
(agpinstpeople)that our systemneededo achieve the same
feat (fig. 10).
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Figure13: Averagehumanlearning:RS of players’
n-th gamesupto 400.A first-timerhasanestimated
RS strengthof -2.4; after a practiceof 400 games
sheis expectedto play at a -0.8 level. Only users
with a history of 400 games or more were
consideredN=78).

On fig. 14. we have plottedthe learningcurvesof the 12
most frequent players.Many of them keep learning after
1000 gamesand more, but someplateauor becomeworse
after some time.

6. Conclusions

In an effort to track the Red Queen,without having to play
gamesoutsidethoseinvolvedin the coerolutionarysituation,
we canthink of eachplayerasa relative referenceln Tron,
eachagenthasa fixed stratgly andthusconstitutesa marker
thatgivesa smallamountof evaluationinformation.A single
human,asdefinedby theirlogin nameandpassverd, should
also be relatively stable— in the shortterm at least. The
pairedcomparisonsnodeldescribechereis a powerful tool
that usesthe information of all the interwoven relationships
of amatrix of games(fig. 3) atthe sametime. Every player
with his/her/itswins and loses, contributes useful bits of
information to galuate all the rest.
Therearedegeneratesituationswherethe presentmodel
would give no answer If one has knowledge of games
betweenplayersA andB for example,and also betweenC
andD, but nor A nor B have ever playedC or D, thereis no
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Figure14: Individual learning:strengthcurvesfor the 12
mostfrequentplayers(curvesstartat differentx valuesto
avoid overlapping).All userschangenearlyall improve
in the beginning, but later some of them plateau or
descend whereas others continue learning.

connectity, and consequentlyno solutionto equation(5).
In the Tron case,connectvity is maintainedthroughoutthe
experimentby the multitude of playerswho comeand go,
coexisting for a while with otherplayerswho are alsostay-
ing for a limited time. The whole matrix is connectedand
the global solution propagtes those relative references
throughout the data set.

With Tron we are proposinga new paradigmfor evolu-
tionary computation: creating niches where agents and
humansinteract,leadingto the evolution of the agentspe-
cies. There are two main difficulties introducedwhen one
attempts this type of cwelution aginst real people:

» Interactions with humans are a sparse resource.

» Opponentsaare randomand known tournamentech-
nigues for coeolution become unfeasible.

Thefirst problemis commonto all applicationghatwish
to learnfrom areal,or evensimulated grvironment:interac-
tionsareslow andcostly We addresshis problemby nesting
anextraloop of coevolution: while the systemis waiting for
human opponents,it runs more and more generationsof
agent-agent ceelution.

The secondproblemled usto develop a new evaluation
stratgyy, basedon the pairedcomparisonsstatistics.With it
we have beenableto prove thatthe systemhasindeedbeen
learningthroughinteractionwith people,reachingthe level
of a top 5% player

The pairedcomparisonsnodelalsogivesus a candidate
for a fitnessfunction that could solve the problemsof the
first one.At thepresenimomentwe have replacecur origi-
nalformula(eq.1) with theRSindex, re-evaluatedaftereach
generationis run. The resultswill be presentedn a forth-
coming paper

The widespreaddistribution of Tron agent capacities,
from very goodto very bad (fig. 5) indicates,on one hand,
thatevolving Tron agentdy playing eachotherwasnot suf-
ficient, as the top agentsare usually not so specialagainst
people But ontheother someof themaregood,soexpertise
agpinst other robots and expertise against people are not
completely independengiables.

We think thatthis is the generalcase:evolutionarycom-
putationis usefulin domainsthat are not entirely unlearn-
able; at the sametime, thereis no substitutefor the real
experience: simulation can ver be perfect.

We have alsobeenableto shav here,how mosthumans
— at leastthosewho stay for a while — learnform their
interactionwith the systemsomeof themquite significantly
Eventhoughthe systenwasnot designedasa training ervi-
ronmentfor people,but rathersimply asan artificial oppo-
nent, the implications for human educationare exciting:
evolutionary techniquesrovide us with a tool for building
adaptve ervironments,capableof challenginghumanswith
increasecefficiengy dueto the simultaneousnteractionwith
a lage group of people.
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