
Abstract

Evolution, astrial-and-errorbasedlearningmethods,
usually relies on the repeatabilityof an experience:
Differentbehavioral alternativesare testedandcom-
paredwith eachother. But agentsactingon realenvi-
ronmentsmaynotbeableto choosewhichexperience
to live. Instead,theenvironmentprovidesvaryingini-
tial conditions for each trial.

In competitive gamesfor example,it is difficult to
compareplayerswith eachother if they arenot able
to choosetheir opponents.Herewe describea statis-
tics-basedapproachto solving this problem,devel-
oped in the context of the Tron system, a
coevolutionary experiment that matches humans
againstagentson a simplevideo game.We arenow
able to show, among the results, that the complex
interactionsled theartificial agentsto evolve towards
higherproficiency, while at thesametime, individual
humanslearnedasthey gainedexperienceinteracting
with the system.

1. Introduction

In the last edition of SAB we presentedthe Tron system,
(Funes etal., 1998) the first example of animal-animat
coevolution, betweenan agentspeciesanda living species.
Part of the analysisof this experiment was, at the time,
inconclusive: Wasthe agentspecieslearning?We could tell
that agentswere winning more frequently, but this could
have beendue to othereffects: their humanopponentsget-
ting worseover time, for example.In a coevolutionaryenvi-
ronment, the Red Queen effect (Clif f and Miller, 1995)
makes it difficult to evaluateprogress,sincethe parameter
for evaluationof onespeciesis the other, andvice versa.A
highernumberof winsdoesnotnecessarilyimply betterper-
formance.

To analyzethe performanceof Tron agentsevolving vs.
humanplayerswe have now applieda statisticalmethodthat
givesamathematicallysoundevaluationof agentandhuman
playersalike, allowing us to compareall individual players
with eachother, evenwhenit is possiblethatthey havenever
played together.

1.1. Coevolution in Competition

Themostbasicway to assignfitnessto playersin a competi-
tive/coevolutionary environment is to sum up all wins
(Angeline and Pollack,1993, Hillis, 1991, Axelrod,1987).
More advancedis theuseof fitnesssharingstrategies(Beas-
ley etal., 1993,Juillé andPollack,1996,Rosin,1997).Dif-
ferentresearchershave tried to reducethenumberof games
to be played in each generation: large savings can be
obtainedby matchingplayersagainstasampleinsteadof the
whole population — “finding opponentsworth beating”
(Sims,1994,RosinandBelew, 1995).Theassumption,how-
ever, thatonecanchoosetheopponents,couldnot beupheld
in our case,wherehumanopponentscomeand go at their
will, and an entirely different approachto scoring was
needed.

The Tron experimentassayeda fitnesssharing-inspired
fitness function: for agenta the fitness is

(1)

(wheres(h,a) is thenumberof gameslost minusthenumber
of gameswon (score) by a humanopponenth against a;
p(h,a) is the total numberof gamesbetweenthe two; s(h) is
the total scoreof h; andp(h) is the numberof gamesthat h
has played.)

We knew that differentagentswould play againstsome
of thesameandsomedifferenthumans,sosimply summing
up all wins would not suffice. Insteadwe comparedwinning
ratios: accordingto eq. 1, agentsget positive points when
they do better than averageagainst a human,and negative
pointsfor doing worsethanaverage.The moreexperienced
the human is, the more valuable those points are.

This function was relatively successfulin finding good
Tron agents,but hadproblemsthatwe did not foresee.Over
time,a stronggroupof agentsformedthatwerereliably bet-
ter than average,thus surviving for many generations.As
theseagentshadseenhundredsof humansover their history,
and were better than average,even thoughnot necessarily
thebest,they hadtoomany pointsto bechallengedby newer
ones.

Similar problemsarise when one tries to comparethe
performancesof past and presentplayers.A well-known
strategy for evaluatingcoevolutionary progressin presence
of theRedQueeneffect is to take a sampleset,anadvanced
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generationfor example,andusethemto evaluateall players
(Clif f and Miller, 1995, Pollack and Blair, 1998). This is
impossiblehere:we cannotrecreatethebehavior of humans
whoplayedin thepast.Somefixedagentscouldconceivably
bekeptin thepopulationfor evaluationpurposes,but evenif
one or a few agentswere to be presentin all generations,
most people would play against them only a few times,
yielding a measureof low confidence.At the onsetof the
experiment,we were not willing to sacrificeperformance,
nor slow down theevolutionarypaceby keepingfixedlosers
insidethe population(if they werewinners,they would not
have to be kept alive artificially, but without an oraclewe
could not choose them in advance).

Theneedfor a moreaccurateevaluationof performance
in coevolutionwasthustwofold: notonly wewishedto study
theevolutionof theexperiments,comparingtoday’sandyes-
terday’s humansandrobots;we werealsolooking for a bet-
ter measureto further evolve the artificial populationin the
future.

In what follows we succinctlydescribetheTron system,
then the statisticalanalysistools, to go in moredetail over
the results obtained.

2. Tron

2.1. Internet Evolution

A machinethatlearnsby playinggamesmayacquireknowl-
edgeeitherfrom externalexpertise(playingwith a humanor
human-programmedtrainer), or by engaging in self-play.
Tesauro(Tesauro,1992)wasableto obtainstrongbackgam-
mon players, having one neural network play itself and
adjustingthe weights with a variant of Sutton’s TD algo-
rithm (Sutton,1988).Although it worked for backgammon,
self-play hasfailed on other domains.Our group obtained
similar resultsto thoseof Tesauro’s, using hill-climbing, a
much simpler algorithm (Pollack and Blair, 1998). This
demonstratesthat elementsunique to backgammon,more
than the TD method,enablelearningto succeed.Self-play
remainsan attractive ideabecauseno externalexperienceis
required.In mostcases,however, thelearningagentexplores
a narrow portionof theproblemdomainandfails to general-
ize to the game as humans perceive it.

Attaining knowledgefrom humanexperiencehasproven
to bedifficult aswell. Today’salgorithmswould requiremil-
lions of games, hence rendering training against a live
humanimpossiblein practice.Programmedtrainershave led
(as in self-play above) to the exploration of an insufficient
subsetof the gamespace:Tesauro(Tesauro,1990) tried to
learnbackgammonusinghumanknowledgethrougha data-
baseof humanexpert examples,but self-playyieldedbetter
results.AngelineandPollack(AngelineandPollack,1993)
showed how a geneticprogramthat learnedto play tic-tac-
toe againstseveral fixedheuristicplayerswasoutperformed
by the winner in a self-playing population.

Today’s expert computer players are programmedby
humans;someemploy no learning at all (Newborn,1996)
andsomeuseit duringa final stageto fine-tunea few inter-
nal parameters (Baxter etal., 1998).

With the advent of the Internet,evolving against thou-
sandsof humansbecomespossible.Weconceivedtheideaof
a speciesof softwareagentsthatevolve on theweb,playing
gameswith humansthey encounter:only the betteragents
survive, so a niche on the Internetexerts the evolutionary
pressure that drives the virtual species.

2.2. Tron Agents

An agentengagingin gameson user’s browserprogramsis
constrainedby the Java Virtual Machineof the browser, an
environmentvery limited in speedand resources.Thus we
used Tron, a game with minimalistic memory, CPU and
graphics requirements.

Tron,(alsoknown as“Light Cycles”)got its namefrom a

movie (Walt Disney Studios,1982)andbecamepopulardur-
ing the80’s. It is a real-timevideogamethat requiresquick
reactionsandspacial-topologicalreasoningat thesametime.
In this game, players move at constant,identical speeds,
erectingwalls wherever they passand turning only at right
angles.As the gameadvances,the 2D gamearenaprogres-
sively fills with walls andeventuallyoneopponentcrashes,
losingthegame.In our version,thetwo players(onehuman,
oneagent)startin themiddleregionof thescreen,moving in
the samedirection (fig. 1). The edgesare not considered
“walls”; playersmove pastthemandreappearon the oppo-
siteside,thuscreatinga toroidalgamearena,256×256pixels
in size.

Our Tron agentsperceive theworld throughsensorsthat
evaluatethe distancein pixels from the currentposition to
thenearestobstaclein eight relative directions:Front,Back,
Left, Right,FrontLeft,FrontRight,BackLeftandBackRight.
Everysensorreturnsamaximumvalueof 1 for animmediate
obstacle,a lower numberfor anobstaclefurtheraway, and0
when there are no walls in sight.

Each robot-agentis a small program,representingone
Tron strategy, coded as a Genetic Programming(GP) s-
expression(Koza,1992), with terminals{A, B, …, H (the
eight sensors)andℜ (randomconstantsbetween0 and1)},
functions{+, -, * (arithmeticoperations),%(safedivision),
IFLTE (if-then-else),RIGHT (turn right) and LEFT (turn
left)}, maximum depth of 7 and maximum size of 512
tokens.An agentreadsits sensorsandevaluatesits s-expres-
sion every third time step:if a RIGHT or LEFT function is
output,theagentmakesthecorrespondingturn; otherwise,it
will keep going straight.

When a visitor opensthe Tron web page1, her browser
loadsand startsa Java applet.The applet receives the GP

1. http://www.demo.cs.brandeis.edu/tron



codefor anagentfrom ourwebserverandusesit to playone
gamewith her. Thehumanmovesby pressingthearrow keys
andthe agentaccordingto its s-expression.Whenthe game
ends,theappletreportstheresult(win or loss)to theserver,
andreceivesa new agentfor thenext game.This cycle con-
tinues until the human stops playing.

2.3. Evolving the Tron species

The systemmaintainsa populationof 100 agents.For each
game,an agent is drawn at randomfrom this population.
Resultsarestoredin a database.A generationlastsuntil all
100 agentshave playeda minimum numberof games:new
agentsplay at least10 games,while veteransfrom previous
generationsplayonly 5 games(thusabout18%of gamesare
playedby rookieswho have not seenhumansbefore). With
thecurrentsystemreachinga high proficiency level, thefact
thatsomenovicestrategiesarealwayspresentis abenefitfor
beginnerhumanswhoplay for thefirst time: therearealways
somegamesthatthesystemplaysmorenaively, allowing the
humansto win occasionallyinsteadof beingfrustratedby an
overwhelming opponent.

Whenall agentshave completedtheir minimumnumber
of games,the currentgenerationfinishes:agentsaresorted
by fitness;the worst 10 are eliminatedand replacedby 10
fresh ones,suppliedby a separatenovelty engine. A new
generation begins (fig. 2).

2.4. Creating New Opponents by Coevolu-
tion

The Tron architectureusesa separatenovelty engine— the
“background”part of the system— as the sourceof new
individuals. This module coevolves a population of 1000
agents by playing them against each other.

Eventhoughself-playdoesnot provide enoughinforma-
tion to know which strategieswill performwell againstpeo-
ple, this methodis muchbetterthanblind recombinationfor
creating interesting new agents.

Thenovelty engineplaysall theindividualsin its popula-
tion againsta training setof 25 agents.Fitnessis evaluated,
andthebottomhalf of thepopulationis replacedby random
mating with crossover of the best half. Fitnesssharing is
usedto promotediversity in thepopulation.Thetrainingset
consistedafixedpart,thetop15playersfrom theforeground
population, and a coevolutionary part, 10 more agents
replacedon eachiteration— with a fitnesssharingcriterion
of “finding opponents worth beating” (adapted from
Rosin,1997).Full detailsof this configurationaregiven on
(Funes etal., 1998).

Later analysissuggestedus that having 10 fixed players
duringthecoevolutionaryprocess— they only changedwith
the slowly changingInternet populationof agents— was
suboptimal,so we reducedthe fixed set to just one player.
Fitnessfrom the foreground is fed back into the novelty
enginenow by reintroducingthebestagentsdirectly into the
coevolving population,allowing themto evolve againsttheir
kin (seesection4.4). The novelty enginenow runscontinu-
ous coevolution, eachagentplaying 25 games,one against
thefixed ‘championagainsthumanity’,and24 moreagainst
the representatives chosen from the previous iteration.

3. Paired Comparisons

Pairedcomparisonsmodelsarestatisticalmethodsthat esti-
matethe relative strengthsor preferencesof a groupof par-
ticipants.The “Elo ratings” for Chess(Elo, 1986) are one

Figure1: The Tron game.Tron runsasan appletinside
anInternetbrowser. Arrows have beenaddedto indicate
direction of movement, and dotted lines to show the
sensors of the artificial agent.
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Figure2: Schemeof informationflow. Agentstravel to
users’ computersto play games.Those with poorest
performancesare eliminated.A novelty enginecreates
new players.Thebetteronesareaddedto thepopulation,
filling the empty slots.



exampleof suchmethod.Chessposessomeproblemsakin to
ours,as one would like to ask,say, was Capablancabetter
thanFisher?Evenif thetwo playersdid play eachother, one
might not have beenat the peakof his abilities at the time.
All theinformationfrom opponentsthey playedin common,
and how good they performed,shouldbe put together. We
have followed the maximumlikelihoodapproachdescribed
by Joe(Joe,1990),appliedby theauthorto theChessprob-
lem among others.

Elo’s model — adoptedtoday for many other games,
including the so-called“game ladders” on the Internet —
assignsa low rankingto a novice, who canslowly climb up
asshewins gamesagainstother ranked players.Maximum
likelihood statisticssuch as Joe’s are better suited to our
problembecausethey computethemostfeasiblerankingfor
all players, without presuming that young ones are bad.

The goal of pairedcomparisonstatisticsis to deducea
ranking from an uneven matrix of observed results, from
which thecontestantscanbesortedfrom bestto worst.In the
knowledgethatcrushingall thecomplexities of thesituation
into just onenumberis a hugesimplification,onewishesto
have the best one-dimensional explanation of the data.

Eachgamebetweentwo players(Pi, Pj) canbe thought
of as a randomexperimentwherethereis a probability pij

thatPi will win. Gamesactuallyobservedarethusinstances
of a binomial distribution experiment: Any sample of n
games betweenPi andPj occurs with a probability of

(2)

wherewij is the number of wins by playerPi.
We wish to assigna relative strength parameter(RS)

to eachof the playersinvolved in a tournament,where

 implies that playerPi is better than playerPj.

A probability function F suchthat F(0)=0.5is assumed
arbitrarily; we use the logistic function

(3)

Themodeldescribestheprobabilitiespij asa functionof

the RS parameter  for each player,

(4)

so the outcomeof a gameis a probabilisticfunction of the
difference between both opponent’s strengths.

The observed datais a long sequenceof gamesbetween
opponentpairs,eachonea eithera win or a loss.According
to eq.4, theprobabilityof thatparticularsequenceoccurring
would have been

(5)

for any choiceof λi’s.Theset of λi’s that bestexplains the
observationsis thustheonethatmaximizesthis probability.
The well known method of maximum likelihood can be
appliedto find themaximumfor eq.5, generatinga largeset
of implicit simultaneousequationsthat are solved by the
Newton-Raphson method.

An importantconsiderationis, the λi’s are not the true
indeterminates,for the equationsinvolve only paireddiffer-
ences,λi – λj. Onepointhasto bechosenarbitrarily to bethe
zero of the RS scale.

A similarmethodpermitsassigningaratingto theperfor-
manceof any smallersampleof observations(oneplayerfor
example):fixing all the λi’s on equation(5), exceptone,we
obtain

(6)

whereλ is the only unknown — all the other valueshave
alreadybeencalculated.Theremainingindeterminateis eas-
ily solved with the same procedure.

If a given player’s history, for example, is a vector
(w1,...,wN) of win/loss results,obtainedagainst opponents
with known RS’s λ1,...,λN, respectively, then eq. 6 can be
solvediteratively, usinga “sliding window” of sizen < N, to
obtaining strength estimates for (w1,...,wn), then for
(w2,...,wn+1), andsoon.Eachsuccessivevalueof λ estimates
thestrengthwith respectto thegamescontainedin thewin-
dow only.

With this, we can do two importantthings: analyzethe
changingperformanceof a singleplayerover time,and,put-
ting the gamesof a groupof playerstogetherinto a single
indeterminate,observe their combinedrankingasit changes
over time.

Altogether, the paired comparisons model yields:

• A performancescale that we have called relative
strength(RS).The zeroof the scaleis setarbitrarily
(to the one of a fixed sample player: agent 460003).

• An orderingof the entire set of playersin termsof
proficiency at the game, as given by the RS’s.

• An estimation,for eachpossiblegamebetweentwo
arbitrary players,of the win-lose probability (equa-
tion 4). With it, an estimationof exactly how much
better or worse one is, as compared to the other.

• A way to measureperformanceof individuals or
groups over time.

• A possiblefitnessmeasure:the betterranked players
can be chosen to survive.
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4. Performance of Human and Agent
Players

Our server hasbeenoperationalsinceSeptember1997;we
have collectedthe resultsof all gamesbetweenagentsand
humans;the systemis still running. The resultspresented
herearebasedon thefirst 525daysof data(204,093games).
A total 4037 humanplayersand 3512 agentplayershave
participated,each of them having faced just some of all
potential opponents (fig. 3).

4.1. Win Rate

A basic performance measure is thewin rate (WR),

(7)

which is thefractionof gamesthat theartificial playerswin.
Theaveragewin rateover thetotal numberof gamesplayed
is 0.55, meaningthat 55% of all gamescompletedhave
resultedin agentvictories.TheWR hasbeenchangingover
time (fig. 4), in anoscillatingfashion.This noisybehavior is
a naturalphenomenonin a coevolutionaryenvironment,and
occursheremorenoticeablysinceoneof theevolving popu-
lationsconsistsof randomhumanplayers.Eachof the4037
personssampledherehasa different level of expertiseand
has played a different numberof games(anothervariable
factoris thespeedof thegameon theuser’s machine,which
may have a slower pacewhen the Java environmentis too

slow2). TheincreasingWR suggests,but not proves,thatthe
robot populationhasbeenlearning,gettingbetterover time

as a result of the selection process.

4.2. Statistical Analysis

An increasingWR is not a wholeproof thatour systemwas
evolving towards better agents.It could be the case,for
example, that humansbecameincreasinglysloppy, losing
moreandmoreof their gameswhile agentsstayedmoreor
less the same.

Applying the paired comparisonmodel gave us more
reliable information. We computedthe RS for every com-

puterandhumanplayer3. For the first time we wereableto
compareagentsandhumanswith eachother: tables(a) and
(b) on fig. 5 list the 15 bestandworst players,respectively.
Eachhumanandrobot is labelledwith a uniqueid. number:
humanswerenumberedconsecutively by their first appear-
ance,androbotshave id numbersall greaterthan10,000(the
first 3 digits encode the generation number).

The top playerstable (fig. 5a) has6 humansat the top,
the best agentso far being seventh. The best player is a
human,far betterthanall others:accordingto eq.4, anesti-
mated87% chanceof beatingthe secondbest!.This person

Figure3: Who hasplayedwhom: A dot marksevery
human-robotpair who have playedeachotherat least
once.Both populationsaresortedby the dateof their
first appearance.The long vertical linescorrespondto
robotsthathave beenpartof thepopulationfor a long
time, and thus have played against most newcomers.

win rate
games won

games played
--------------------------------=

2. Our Java Tron usesa millisecondsleepinstructionto pacethe
game,but differentimplementationsof theJavaVirtual Engine,
on differentbrowsers,seemto interpretit with dissimilaraccu-
racies.The effect is more noticeableon machineswith slow
CPUs and early Java-enabled browsers.

3. Playerswho have eitherlost or won all their gamescannotbe
rated,for they would have to be consideredinfinitely goodor
bad. Suchplayersconvey no information whatsoever to rank
theothers.Losingagainsta perfectplayer, for example,is triv-
ial andhasno informationcontents.Perfectwinners/losershave
occurredonly on playerswith very little experience.Thereis
one human(no. 228) who won all 37 gameshe/sheplayed.
Shouldwe considerhim/her the all-time champion?Perhaps.
The presentmodel doesnot comprehendthe possibility of a
perfect player. To eliminate noise, we only considerplayers
with 100 gamesor more.All “unrated” playersare far below
this threshold.
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mustbea geniusor, morelikely, a userwith a very old com-
puter, running the applet way below its normal speed.

The differencebetweenthe top groupof humanplayers
(RSaround1.1) andthetop agentplayers(RS’s around0.7)
is about60%.Sevenoutof thebest15playersareagents.We
concludethat Tron is partially learnableby self-play, and
thata few verygoodagentplayershavemanagedto survive.

The worst players table (fig. 5b) is composedof all
humans.This doesnot indicatethat all agentsaregoodbut
rather, that mostbadagentsareeliminatedbeforereaching
100 games.

4.3. Distribution of Players

Theglobalcomparative performanceof all playersis visual-
izedon thedistribution curves(fig. 6). Herewe have plotted
all ratedplayers,includingthosewith just a few games.The
fact that agentsandhumanssharesimilar averagestrengths
indicatesthat the coevolutionary enginethat producesnew
tron players,has managedto producesomegood players.
But at the sametime, the wide spreadof agentlevels, from
very bad to very good,shows us that thereis a reality gap
betweenplaying against other robots and playing against
humans:all agentsthat ever playedagainst humanson the
websitewere selectedamongthe bestfrom an agent-agent
coevolutionaryexperimentthathasbeenrunningfor a large
numberof generations:our novelty engine.If being good
againstagentswasto guaranteethatoneis alsogoodagainst
people,robotswould not cover a wide rangeof capacities—
they would all be nearlyasgoodaspossible,andso would
fall within a narrow range of abilities.

4.4. Are New Generations Better?

It seemsreasonableto expect that new humansjoining the
systemshouldbenobetter, norworse,onaverage,thanthose

who cameearlier. This is indeedthe case,accordingto the
dataon fig. 7a:bothgoodandnot-sogoodpeoplekeepjoin-
ing thesystem.Tron agents(fig. 7b) do show differences.It
wasour hopethat feedbackfrom the foregroundpopulation
back to our background“novelty engine”could lead to the
production of better agents.

Feedbackfrom the foregroundpopulationinto the back-
groundwas introducedin two forms: a) From the onsetof
our experiment,the 15 bestagentswereusedaspart of the
training in thenovelty engineb) Aroundrobotno. 2500this
strategy was changed:control experimentssuggestedthat
trainingagainstfixedcontrolsetswassuboptimal.Fromthis
point on, thefixedtrainingsetwasreducedto just oneagent.
Themainfeedbackusednow consistsin seedingthepopula-
tion with the 100 championsfrom the foreground,letting it
evolve from thereby purecoevolution.Theimprovementon
the averagequality of new Tron agentssince no. 2500 is
apparentin the graph (so is the bug that producedlousy
agents for a few generations).

Our attemptfor progressively increasingthe quality of
new agentsproducedby thenovelty engine,by having them
train against thosebestagainst humans,was partially suc-
cessful: graph 7b shows a marginal improvement on the
averagestrengthof new players,0-th to 2500-th.But notice-
able better agentsbeginning at 2800 come to confirm the
previous findings of other researchers(Angeline and
Pollack,1993,Tesauro,1990)in the sensethat the coevolv-
ing populationusedasfitnessyieldsmorerobustresultsthan
playing against fixed trainerswho can be fooled by tricks
that have no general application.

5. Learning

We wish to studyhow theperformanceof thedifferentplay-
ers and specieson this experimenthaschangedover time.
Fig. 8 shows the sliding window method applied to one
robot. It revealshow inexact — or “noisy” — the RS esti-
matesarewhentoo few gamesareput together. It is apparent

Figure5: Bestplayers(a)andworstplayers(b) tables.
Only players with 100 games or more are been
considered. Id. numbers greater than 10000
correspond to robot players.

Best Players (a)
Strength Player Id

1. 3.55 887
2. 1.60 1964
3. 1.26 388
4. 1.14 155
5. 1.07 1636
6. 1.05 2961
7. 0.89 3010008
8. 0.89 3100001
9. 0.84 1754
10. 0.81 2770006
11. 0.81 3130004
12. 0.76 2980001
13. 0.70 1860
14. 0.66 2910002
15. 0.62 3130003

Worst Players (b)
Strength Player Id

1. -4.64 2407
2. -3.98 2068
3. -3.95 3982
4. -3.88 32
5. -3.75 1986
6. -3.73 33
7. -3.69 3491
8. -3.41 2146
9. -3.39 2711
10. -3.36 3140
11. -3.31 1702
12. -3.31 1922
13. -3.30 2865
14. -3.27 2697
15. -3.22 2441
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humans.



that 100 gamesor more are neededto obtain an accurate
measure.

Sinceeachindividual agentembodiesa single,unchang-
ing strategy for thegameof Tron, themodelshouldestimate
approximatelythesamestrengthvaluefor thesameagentat
differentpointsin history. This is indeedthecase,asseenfor
exampleon figs. 8 (bottomgraph)and9a.Thesituationwith
humans is very different, as people changetheir game,
improving in most cases (fig. 9b.)

5.1. Evolution as Learning

TheTron systemwasintendedto functionasoneintelligent,
learning opponentto challengehumanity. The strategy of

thisvirtual agentis generatedby therandommixtureof Tron
robotsin the evolving population;18% of the gamesbeing
played by new, untestedagents,exploring new strategy
space.Theremaininggamesareplayedby thoseagentscon-
sideredbestso far — survivors from previous generations,
exploiting previous knowledge. In terms of traditional AI,
the ideais to utilize the dynamicsof evolution by selection
of thefittestasa way to createa mixtureof expertsthatcre-
ate one increasingly robust Tron player.

Weusethesameformulathatsolvestherankingequation
(6) for one player, but solving for all of the computer’s
gamesput together. Theresultis theperformancehistoryof
thecombinedTron agent.Fig. 10 shows thatour systemhas
beenlearning throughoutthe experiment,at the beginning
performingataRSratebelow –2.0,andat theendaround0.

Now we can to go back to the humanscale.The next
graph, re-scalesthe RS values in terms of the percentof
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Figure7: New humans(above) areaboutasgoodas
earlier oneson average.New robots(below) may be
born better, on average,as time passes,benefiting
from feedback from agent-human games and
improvements on the configuration of the novelty
engine.
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Figure8: Performanceof robot460003— which was
arbitrarily chosenasthe zeroof the strengthscale—
observed along its nearly 1600 games, using
increasingly bigger window sizes.
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Figure9: (a) Robot’s strengths,(a) Robot’s strengths
as expected,don’t changemuch over time. Humans,
on the other hand, are variable (b).
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Figure 10: Relative strength of the Tron species
increases over time, showing artificial learning.



humansbelow eachvalue.Beginningasa playerin thelower
30 percent, as compared to humans,the Tron systemhas
improveddramatically: by the endof the period it is a top
5% player (fig. 11).

5.2. Human Learning

Is thehumanspeciesgettingbetteraswell? No. Redoingthe
sameexerciseof figure10,but now tracingthestrengthlevel
of all humanplayersconsideredas one entity, we obtain a
wavy line that doesnot seemto be going up nor down (fig.
12). This meansthat, althoughindividual humansimprove,
new noviceskeeparising,andtheoverall performanceof the
specieshasnot changedover the periodthat Tron hasbeen
on-line.

An altogetherdifferentimageemergeswhenweconsider
humanson an individual basis.Although a large numberof
gamesareneededto observe significantlearning,thereis an
important group of userswho have played 400 gamesor
more.Onaverage,thesehumansraisefrom aperformanceof
–2.4ontheirfirst game,to –0.8ontheir400thgame,improv-
ing approximately1.5 pointsover 400 games(fig. 13). We
mustconcludethatthelearningrateis dramaticallyfasterfor
humans,as comparedto the approximately100,000games
(againstpeople)thatour systemneededto achieve thesame
feat (fig. 10).

On fig. 14. we have plottedthe learningcurvesof the12
most frequentplayers.Many of them keep learning after
1000 gamesand more,but someplateauor becomeworse
after some time.

6. Conclusions

In an effort to track the RedQueen,without having to play
gamesoutsidethoseinvolvedin thecoevolutionarysituation,
we canthink of eachplayerasa relative reference.In Tron,
eachagenthasa fixedstrategy andthusconstitutesa marker
thatgivesasmallamountof evaluationinformation.A single
human,asdefinedby their login nameandpassword,should
also be relatively stable— in the short term at least.The
pairedcomparisonsmodeldescribedhereis a powerful tool
that usesthe informationof all the interwoven relationships
of a matrix of games(fig. 3) at thesametime. Every player,
with his/her/its wins and loses,contributes useful bits of
information to evaluate all the rest.

Therearedegeneratesituationswherethepresentmodel
would give no answer. If one has knowledge of games
betweenplayersA andB for example,andalsobetweenC
andD, but nor A nor B have ever playedC or D, thereis no
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Figure11:Strengthvaluesfor theTronsystem,plotted
as percentof humansbelow. In the beginning our
system performed worse than 70% of all human
players. Now it is within the best 5%
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Figure 12: Performance of the human species,
consideredas one player, variesstrongly, complicating
things for a learningopponent,but it all, hasnot gone
either up nor down significantly.

Figure 12: Performanceof the human species,
considered as one player, varies strongly,
complicating things for a learning opponent,but
does not present overall trends.
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Figure13: Averagehumanlearning:RSof players’
n-th gamesup to 400.A first-timerhasanestimated
RS strengthof -2.4; after a practiceof 400 games
sheis expectedto play at a -0.8 level. Only users
with a history of 400 games or more were
considered (N=78).



connectivity, and consequentlyno solution to equation(5).
In the Tron case,connectivity is maintainedthroughoutthe
experimentby the multitude of playerswho comeand go,
coexisting for a while with otherplayerswho arealsostay-
ing for a limited time. The whole matrix is connected,and
the global solution propagates those relative references
throughout the data set.

With Tron we areproposinga new paradigmfor evolu-
tionary computation: creating niches where agents and
humansinteract,leadingto the evolution of the agentspe-
cies. Thereare two main difficulties introducedwhen one
attempts this type of coevolution against real people:

• Interactions with humans are a sparse resource.

• Opponentsare randomandknown tournamenttech-
niques for coevolution become unfeasible.

Thefirst problemis commonto all applicationsthatwish
to learnfrom areal,or evensimulated,environment:interac-
tionsareslow andcostly. Weaddressthisproblemby nesting
anextra loop of coevolution: while thesystemis waiting for
human opponents,it runs more and more generationsof
agent-agent coevolution.

The secondproblemled us to develop a new evaluation
strategy, basedon the pairedcomparisonsstatistics.With it
we have beenableto prove that thesystemhasindeedbeen
learningthroughinteractionwith people,reachingthe level
of a top 5% player.

Thepairedcomparisonsmodelalsogivesusa candidate
for a fitnessfunction that could solve the problemsof the
first one.At thepresentmoment,wehave replacedourorigi-
nal formula(eq.1) with theRSindex, re-evaluatedaftereach
generationis run. The resultswill be presentedin a forth-
coming paper.

The widespreaddistribution of Tron agent capacities,
from very goodto very bad(fig. 5) indicates,on onehand,
thatevolving Tron agentsby playingeachotherwasnot suf-
ficient, as the top agentsare usually not so specialagainst
people.But on theother, someof themaregood,soexpertise
against other robots and expertise against people are not
completely independent variables.

We think that this is thegeneralcase:evolutionarycom-
putationis useful in domainsthat are not entirely unlearn-
able; at the sametime, there is no substitutefor the real
experience: simulation can never be perfect.

We have alsobeenableto show here,how mosthumans
— at least thosewho stay for a while — learn form their
interactionwith thesystem;someof themquitesignificantly.
Eventhoughthesystemwasnot designedasa trainingenvi-
ronmentfor people,but rathersimply asan artificial oppo-
nent, the implications for human educationare exciting:
evolutionary techniquesprovide us with a tool for building
adaptive environments,capableof challenginghumanswith
increasedefficiency dueto thesimultaneousinteractionwith
a large group of people.
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