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Abstract

Successful recombination in the simple GA requires that
interdependent genes be close to each other on the genome.
Several methods have been proposed to reorder genes on the
genome when the given ordering is unfavorable. The Messy
GA (MGA) is one such ‘moving-locus’ scheme. However,
gene reordering is only part of the Messy picture. The MGA
uses another mechanism that is influential in enabling
successful recombination. Specifically, the use of partial
specification (or variable length genomes) allows the
individuals themselves, rather than the ordering of genes
within an individual, to represent which genes ‘go together’
during recombination. This paper examines this critical feature
of the MGA and illustrates the impact that partial specification
has on recombination. We formulate an Incremental
Commitment GA that uses partially specified representations
and recombination inspired by the MGA but separates these
features from the moving-locus aspects and many of the other
features of the existing algorithm.

1 Introduction
The Messy GA (MGA) [Goldberg et al 1989] has
numerous features that distinguish it from the simple GA
[Holland 1975]. Related research has built upon this
feature set and developed it still further [e.g. Goldberg et al
1993, Harik 1997, Kargupta 1997]. In this paper we
attempt to go back to basics - to simplify the feature set of
the original MGA to see if we can better understand its
essential elements. In particular, we are interested in how
the MGA represents schemata to enable successful
recombination. We use the original Messy GA [Goldberg
1989] as our point of reference throughout.

In the simple GA (henceforth, GA) a genome may
contain some subset of interdependent genes that confer
above average fitness - a fit schema. Hopefully, these will
be adjacent to each other so that they will stay together
during crossover but, more likely, they will be scattered
along the genome as shown by the bold genes in the
example given in Figure 1. The Messy GA uses a ‘moving-
locus’ representation for genomes. Each gene is
represented by a locus/allele pair. The bold genes from the
GA representation are transferred to an example MGA
representation in the second line of Figure 1. Moving the
genes together in this way allows the MGA to transfer the
schema intact during recombination.

01010011 - GA
((2,1), (6,0), (8,1)) - MGA, moving-locus

-1---0-1 - fixed-locus, partial-commitment

Figure 1 representation of genomes / schema they
contain for GA, MGA, and alternate method. See text.

However, we argue that the feature of the MGA that
most fundamentally distinguishes its operation from that of
the GA is partial commitment. That is, individuals in the
MGA commit to specifying alleles on only a subset of the
entire gene set. As our MGA example shows, not only have
the genes of the schema been moved together, but some
genes have been omitted - in this example, we  have
omitted those that are not part of the schema. The third line
of Figure 1 introduces an alternate representation to
illustrate the distinction between the moving-locus aspect
and the partial commitment aspect of the MGA. Here the
schema has been represented in a fixed-locus tertiary
genome - each gene may be 0, 1, or unspecified (“-”).

The following section reviews recombination in the
simple and Messy GAs with emphasis on distinguishing the
moving-locus aspect of the MGA from the effects of partial
commitment. We re-cast MGA recombination as an
operator that uses this partially-specified but fixed-locus
representation. The discussion illustrates that partial-
commitment has a profound effect on the operation of
recombination and, regardless of moving-loci, can enable
successful recombination.

In Section 3 we discuss the other features of the MGA
that distinguish it from the GA and attempt to reduce them
so we can focus on the effects of partial commitment. In
particular, the MGA has a two-phase operation where the
first phase uses genomes of limited commitment and the
second phase allows full commitment. This two stage
mechanism is a special case of what we will call an
Incremental Commitment GA (ICGA). We implement an
ICGA that utilizes partial commitment and recombination
operations inspired by the MGA and applies them
consistently throughout the operation of the algorithm -
replacing the two-phase process with an integrated and
incremental approach. The resultant algorithm is not
without its own share of complications but it performs very
well on a problem that is not solvable by the MGA. More
importantly, in the process, we clarify some important
concepts in the operation of the MGA and GA
recombination in general.



Experimental results, Section 4, utilize a hierarchical
building-block problem, shuffled H-IFF  [Watson et al
1998], that exhibits strong interdependency between genes
and random genetic linkage. We demonstrate that the
ICGA successfully discovers and recombines building-
blocks through all levels of the problem. Finally, we
discuss the limitations of the ICGA and relate the concepts
illustrated here to the abilities of alternate algorithms.

2 Recombination and partial commitment

Genetic Linkage. The performance of the simple GA is
dependent on the correspondence between genetic linkage
and epistatic linkage. Genetic linkage refers to the
proximity of genes on the genome and their corresponding
tendency to travel together during crossover. Epistatic
linkage refers to the interdependency of gene expression
(without regard for gene position) and this defines
important schemata in a problem.1 Genetic linkage is said
to be tight when genes are close to each other on the
genome and tight genetic linkage between the genes of a
schema is a requirement for the growth (increased
representation in the population) of that schema in the
simple GA. As the defining length of a schema increases,
the probability that crossover will transfer the entire
schema to the offspring decreases [Holland 1975].

It is not reasonable to assume that the given ordering
(and certainly not a random ordering) of parameters for a
problem will always reflect the interdependency of those
variables. One way to rectify the problem of poor linkage
is to re-order the genes so that interdependent genes are
close together - so that genetic linkage and epistatic
linkage correspond. Accordingly, several variants of the
GA have proposed moving-locus schemes, e.g. GA with
inversion operator [Franz 1972], Messy GAs [Goldberg
1989], Linkage Learning GA [Harik 1997].

Despite the validity of these approaches, it is important
to remember that the need to rearrange genes is a result of
using a recombination operator that is sensitive to gene
positions. Let us reflect on the broader view of
recombination. Recombination is supposed to take some
good genes from one individual and some good genes from
a second individual and make an offspring with the good
parts put together. The problem is determining, for each
donor individual, which part is a good part to take.
Crossover uses the heuristic of adjacency on the genome to
determine which genes will stay together and so it is
dependent on tight linkage. The genetic operators in the
Messy GA (and its variants) also use bit adjacency for
representing epistatic linkage - though, importantly, they
do not use the original ordering of genes.2 But this is not
                                                       
1 the unqualified term linkage shall refer to genetic linkage
2 the representation used by MGAs is sometimes referred to as
position-independent coding - however, this is a little misleading
- although the coding is not dependent on the original ordering of
genes (or variables in the fitness function), the recombination

the only mechanism at work in the MGA. Because the
MGA uses partially specified genomes - individuals code
for only a subset of the possible genes - the individuals
themselves, rather than the position of genes within the
individuals, can represent subsets of epistatically linked
genes. Disregarding the moving-locus aspects of the
algorithm, underspecification or partial-commitment
makes the nature of recombination in the Messy GA
radically different from the nature of recombination in the
simple GA. In fact, we shall see that the moving-locus
aspects of the algorithm are not essential to successful
recombination even in problems of random linkage.

Resolving Conflicts. Let us look at recombination from a
different perspective: specifically, the appropriate
resolution of conflicts. In the simple GA each gene of one
parent will either agree or be in conflict with the
corresponding gene of the other parent. Where the parents
agree recombination is not problematic. See Figure 2.
Incidentally, this observation has led some researchers to
characterize recombination as (nothing more than) a
‘similarity preserving’ operator, and further to conclude
that uniform crossover is an appropriate mechanism for
recombination. This point of view is valid in the simple
GA but our work here exemplifies that this view does not
always hold, and that the more profound role of
recombination described by the Building-Block Hypothesis
[Holland 1975] is valuable.

A: 01010011

B: 10000110

C: ??0?0?1?

Figure 2. Successful recombination must determine how
to resolve the conflicts (“?”) in allele values supplied by
two parents (A and B) to create the offspring, C.

Taking the conflict resolution perspective, the task of
recombination is to resolve allele disagreement in an
appropriate manner. Crossover uses genetic linkage as a
heuristic for resolving conflicts in a self-consistent manner
- informally, ‘if we take this bit we should also take the
bits next to it’. But clearly, when the placement of related
genes on the genome is unfavorable this heuristic is not
valid. See Figure 3.

A: 0 1010011

B: 10000110

C: 11010011

Figure 3. Parents, A and B, each contain a useful
subset of genes (three genes per parent, shown in bold).
The desired offspring, C, should take the good genes
from both parents as shown. But simple crossover can
not achieve this.

Without additional information about epistatic linkage,
only uniform crossover could possibly create the offspring

                                                                                       
operators are sensitive to the position of genes on the reordered
genome.



shown from these two donors. But uniform crossover is
equivalent to assigning random allele values to all conflicts
(to each question mark in Figure 2). Uniform crossover
only has an advantage over random guessing where genes
are already in agreement. This defeats the intent of
recombination in the Building-Block Hypothesis.

Moving-Locus / Partial Commitment. The Messy GA
response is to use a moving-locus representation. Each
gene is represented as a locus/allele pair - and an
individual consists of a variable number of these pairs. The
two parents from Figure 3 might be represented as below3:

A: ((2,1), (6,0), (8,1))

B: ((1,1), (3,0), (5,0))

C: ((2,1), (6,0), (8,1), (1,1), (3,0) (5,0))

Figure 4: ‘Splice’ recombination in the Messy GA.

It is then a simple matter to create an offspring C which
is the sum of good genes from both parents. This is the
splice operation of the Messy GA [Goldberg 1989]. But
note that the moving-locus aspect of this operation, i.e. the
fact that these genes have been brought next to each other
on the genome, is beside the point. The splice operation
shown is linkage-invariant - the position of genes within
the parents is not relevant. The important aspect of
recombination in this example is the fact that only the
desirable genes are specified in the parents. Accordingly,
we may look at the problem described in Figures 2 and 3,
as not so much a problem of there being distance between
the desired genes, but rather as the problem that there are
garbage genes between the desired genes. In the MGA
individuals can specify for a good schema without having
to specify all the remaining genes. Thus recombination can
combine the good schemata from two individuals without
‘garbage’ genes causing conflicts with desirable genes.

Such garbage bits have variously been referred to as
‘hitch-hikers’ [Mitchell and Forrest 1993], or ‘free-loaders’
- the idea being that they ‘catch a ride’ on the fitness of the
good genes in the same string without contributing fitness
themselves. Goldberg et al voice a concern for the same
principle when found in the Messy GA where they refer to
them as ‘parasitic bits’. In the case where it is not known
exactly how many genes a good schema should have an
over-estimate leaves room for garbage bits. “During
[recombination] these parasites will tend to prevent the
expression of other more useful bit combinations”
[Goldberg et al 1989]. We shall return to the question of
how we could ever know just how many bits a schema
should specify. But for now, we shall grant there is some
way of knowing, at least an upper limit, and we take a
moment to emphasize that it is this knowledge that has the
most profound affect on recombination in the MGA.

Figure 4 showed the desirable genes of two parents in
the MGA representation. Figure 5 shows that the desired

                                                       
3 There are other ways to represent the same individuals with
messy coding but the details are not relevant to our discussion.

genes might just as well be spread out along the genome so
long as we can identify them.

A: -1---0-1

B: 1-0-0---

C: 110-00-1

Figure 5: An alternate representation of the splice
operation in Figure 4. Here we represent unspecified
genes, or don’t cares,  by “-” and the offspring is
created by taking specified genes from either parent
where available.4

Thus far it has been taken as a given that if an
algorithm has a mechanism that is capable of expressing
something advantageous then selection will see that it
does. For example, in the MGA, a moving-locus scheme
plus selection is assumed to reorder genes in an
advantageous manner. Similarly, in our examples of partial
commitment, we have selected out the desirable genes and
discarded the garbage genes. Later we shall show how we
need to engineer selection to achieve this in practice.

To recap, the significant feature of Figure 4 is that a
subset of epistatically linked genes is represented by
inclusion in an individual rather than by their adjacency on
the genome. The point we wish to stress is that successful
recombination in Figure 4 is not a result of moving-locus
representation.

Dominant splice. We now address the case where the
parents use partial specification, as before, but here there
are conflicts in the genes that they specify. Figure 6 shows
two parents that each code for a subset of bits. Unlike
Figure 5 (and Figure 4), these parents specify for non-
disjoint sets of genes and, at some of the common loci,
allele values conflict.

A: -1--00-1

B: 100-0--0

C: 1?0-00-?

Figure 6: Partial specification with conflicts.

Although much reduced, we still have a problem of
conflict resolution like the one that we started with in
Figure 3. It is for these occurrences that another feature of
the MGA is introduced. In the MGA, when gene values are
over-specified an “intrastring precedence rule” is invoked:
e.g. a first-come-first-served rule is proposed which
expresses only the first occurrence of each gene
encountered in a left to right scan.

A: ((2,1), (5,0), (6,0), (8,1))

B: ((1,1), (2,0), (3,0), (5,0), (8,0))

C: ((2,1), (5,0), (6,0), (8,1), (1,1), (2,0), (3,0), (5,0), (8,0))

Figure 7: A first-come-first-served rule determines
which over-specified genes are ignored (shown bold).

                                                       
4 We shall shortly address what should be done in the case that
specified genes conflict.



Notice that the expression of genes is only dependent
on which parent donated the genes. So far, we have
consistently allowed the genes of string A to be transferred
to the offspring first, to be followed by the genes of B. If
the choice is reversed the resultant string has a different
expression - specifically, all conflicts would be resolved in
B’s favor instead of in the favor of A as shown in the
example. But, either way, the position of genes within each
parent is still not relevant. To this extent the splice event
shown here remains linkage-invariant and we can still
express the splice operation using our fixed-locus
representation - Figure 8.

A: -1--00-1

B: 100-0--0

C: 110-00-1

Figure 8: Partial specification with conflicts resolved
by allowing parent A to dominate. Together with the
specification that parent A is the more fit, we call this
recombination operator ‘dominant splice’.

Adding the specification that parent A shall be the more
fit of the two parents, we call this operation “dominant
splice”: it is the recombination operator that we shall use in
the following experiments. Notice that simply allowing
conflicts to be resolved entirely in the favor of one parent
does not make sense in a fully-specified representation. We
would simply reproduce the first parent. Partially
committed strings allow the good genes from one string to
be transferred intact, and allow additional schemata to be
supplied by the second parent where they do not conflict
with the first. This operation is entirely insensitive to
genetic linkage, yet resolves conflicts in a consistent
manner. The purpose of the Incremental Commitment GA
(ICGA), presented in the Section 3, is to separate this form
of recombination from the other features of the MGA.

Cut. It is important to clarify that we do not use the ‘cut’
operator found in the MGA. Cut takes a subset of genes
from each parent in a manner similar to one-point
crossover. The division of genes is thus sensitive to the
adjacency of genes on the (reordered) genome. In so doing
the cut operation destroys the linkage-invariance quality of
recombination in the MGA. Without cut, the moving-locus
aspects of recombination in the MGA are irrelevant. This is
not to say that they are not valuable - but we will
demonstrate that they are not essential. By removing cut
we can separate the moving-locus aspects from the partial-
commitment feature found in the MGA.

3 Tidying-up the Messy GA
Goldberg et al [1989 pp.508-509] provide the following list
of MGA features:
1) Use of variable-length strings that may be under- or

overspecified.
2) Use of intrastring precedence rules (first-come-first-

served or other)
3) Use of cut and splice instead of crossover.

4) Division of evolutionary processing into two phases:
primordial and juxtapositional.

5) Use of variable-size population [appropriate to phase].
6) Use of partially enumerative initialization to encompass

the longest misleading non-linearity in the problem.
 There are a few other features besides, not included in this
list:
7) Use of competitive templates to fill-in for unspecified

genes for the purposes of evaluation.
8) Use of “thresholding”; a diversity maintenance method

to prevent premature convergence.
Space does not permit us to detail all of these features -
suffice to indicate that it is difficult to determine which
features of the MGA are critical to its operation. The intent
of the ICGA is to reduce this feature set so we can
illustrate one aspect of the algorithm. Specifically, we wish
to determine whether the use of partial commitment is
sufficient for successful recombination. We shall be
describing the Incremental Commitment GA used in the
following experiments in detail, but in overview: the ICGA
will incorporate underspecification, splice and some form
of diversity maintenance mechanism and, in addition, we
introduce a size penalty into the fitness function which
provides a mechanism to regulate the growth of strings
incrementally and replaces the two-phase aspect of the
MGA (hence, incremental commitment). Other features of
the MGA are not used.

We now recap the genetic operators we shall employ
and describe the mechanism we use to maintain diversity.
Incremental commitment will be detailed in Section 5.

Representation and recombination. As mentioned earlier,
we shall not use the moving-locus representation of the
Messy GA but we shall keep the underspecification and
splice recombination. We shall also dispense with
overspecification and, as mentioned, when conflicts occur
between two parents, the more fit parent will be favored
for all conflicts in that mating, and conflicting genes from
the less fit parent will be discarded permanently.
Accordingly we shall simply use a fixed length ternary
genome - {0,1, and null} (see Figure 8). The resultant
offspring may then optionally be mutated. Thus
overspecification, cut, and intrastring precedence rules are
eliminated.

Note that the use of underspecification requires us to
evaluate partial strings and accordingly, in the general
case, we shall need to use some mechanism to replace
competitive templates. However, the test problem used in
the following experiments naturally evaluates partial
strings and so a competitive template will not be necessary.

Diversity maintenance. The diversity maintenance
mechanism we employ is not the same as that used in the
MGA. We use a resource-based fitness-sharing mechanism
as used in our earlier work [Watson et al 1998]. This
mechanism uses considerable domain knowledge -
specifically, a resource-level is maintained for every
building-block in the problem - so it is not intended as a



general solution to diversity maintenance. However, it
enables us to focus on the operation of partial commitment
in the algorithm without significant concern of premature
convergence that would defeat effective recombination.
Our previous work has shown that the fitness sharing
method does not make our test problem easy - the simple
GA cannot solve the shuffled H-IFF (that we will detail
shortly) with, or without, this fitness sharing method. We
are not as yet able to verify whether the original
mechanism for diversity maintenance detailed by Goldberg
et al [1989] will provide the same support for the ICGA.

This leaves the features of the MGA numbered 4
through 6 which we replace with a more general
mechanism to limit the length of strings. But, in order to
properly explain our motives for this change we shall first
explore the motives behind the two-phase operation of the
MGA: this requires discussion of the problem class to
which these algorithms are applied.

4 A Test Problem

Concatenated Trap Functions. Evaluation of Messy GAs
has usually been performed using concatenated trap
functions [Goldberg et al 1998, Deb & Goldberg 1992,
Goldberg et al 1993, Harik 1997, Kargupta 1997]. These
are simple concatenations of difficult (often fully-
deceptive) fixed-size subfunctions. These problems are
therefore delineable at some order, k, being the size of the
subfunctions. The rationale for this and the design of the
Messy GA are mutually consistent. For example, if a
problem is order-k delineable and the gradient information
below order-k is entirely misleading then it is appropriate
to use partially enumerative initialization. “In partially
enumerative initialization, at least one copy of all possible
building-blocks of a specified size is provided, where the
size is chosen to encompass the highest order deceptive
nonlinearity suspected in the subject problem” [Goldberg
et al 1989].  In this manner, the gradient information below
order-k is ignored - initialization simply produces all
possibilities randomly, and subsequent  selection picks out
the good guesses (the primordial phase).

Similarly, if the gradient information above order-k is
reliable (“many high-order nonlinearities in problems
encountered in practice are weak” [Goldberg et al 1989
p.505]) or perfect, as in the case of the test functions, then
it is appropriate to allow accumulation of genes to occur
unchecked after the population has been properly pruned
(as per the juxtapositional phase).

These two phases of the MGA are the mechanism by
which partial commitment is regulated. The primordial
phase searches for highly-fit length-k individuals where k
is the size of the trap function used in the test problem.
Several iterations of selection are performed before their
lengths are allowed to increase by recombination in the
juxtapositional phase.

Clearly, these mechanisms are appropriate for the
assumptions that are made of the problem. In large part,

these assumptions are made because it is not clear how a
problem could be solvable at all if deception were not
bounded, and how it could be at all hard if it were not
deceptive to some level. However, previous work [Watson
et al 1998, Watson & Pollack 1999] introduces a test
problem which is consistent in the difficulty it creates at all
scales of resolution.

Hierarchical if-and-only-if. The canonical form of the
problem defined in [Watson et al 1998] is called
Hierarchical if-and-only-if (H-IFF). In H-IFF the fitness of
a string, B, is defined as follows:

F(B)=






 1,

|B| + F(BL) + F(BR),

F(BL) + F(BR),

if |B|=1, and (b1=0 or b1=1)

if (|B|>1) and (∀i{b i=0} or ∀i{b i=1})

otherwise.                                    Eq.1

where B is a block of bits, {b1,b2,...bk}, |B| is the size of
the block=k, bi is the ith element of B, BL and BR are the
left and right halves of B (i.e. BL={b1,...bk/2},
BR={bk/2+1,...bk}).  The length of the string evaluated
must equal 2p where p is an integer (the number of
hierarchical levels). Notice that this function gives no
reward to nulls and therefore naturally evaluates
partially specified strings.

This function interprets the string as a binary tree and
recursively decomposes the string into left and right halves.
At every level a string is rewarded if all its bits are
identical - either all ones or all zeros. From a bottom-up
point of view, we can see H-IFF as defining a hierarchy of
building-blocks which may be assembled together in pairs,
doubling in size and reward at each level. Since both ones
and zeros are rewarded each partition contains two equal-
fitness competing schemata. Both are rewarded and both
contain one of the two global optima (at all ones and all
zeros) - yet the problem still contains local optima since
only compatible blocks are rewarded at the next level. For
example, the best fitness strings besides the two global
optima are N/2 ones followed by N/2 zeros, or vice versa.
Both these local optima are maximally distinct from the
global optima in Hamming space and make H-IFF very
hard for any kind of hill-climber or non-population-based
method [Watson et al 1998].

Unlike the concatenated trap functions, the recursive
subfunction used to build H-IFF creates a problem with
building-blocks that are not separable. The hierarchically
consistent structure, [Watson & Pollack 1999],  requires
the searching of bit combinations at the bottom-level, and
the searching of schema combinations of successively
higher order, at all subsequent levels. Thus H-IFF is not
order-k delineable for any k (except the trivial case where
k=N, the number of bits in the problem). That is, it does
not consist of separable subfunctions. Incidentally, this
means that, unlike the concatenated trap functions, H-IFF
cannot be solved by a macro-mutation hill-climber even
when linkage is tight, [Jones 1995, Watson et al 1998]. Yet
given that linkage is good it is easy for a GA to solve
[Watson et al 1998].



Our goal now is to solve the shuffled H-IFF where
linkage is random. The shuffled-H-IFF uses a random but
fixed reordering of the variables from standard H-IFF so
that epistatically linked genes are scattered along the
genome (in just the same manner as is used for the
concatenated trap functions in previous MGA research).
The shuffled H-IFF cannot be solved by the GA because
genetic linkage and epistatic linkage do not correspond,
and it cannot be solved by the MGA because it is not
delineable into separate subfunctions.

5 Incremental Commitment
Goldberg et al state, “Messy GAs that use tightly linked
building-blocks are analogous to simple GAs processing
alleles on easy problems” [1993]  - but this is not true in a
hierarchically consistent problem like H-IFF. In fact, the
class of problem facing an algorithm after identifying the
linkage of order-k building-blocks is exactly the same class
as it was after discovering the linkage of order-k/2
building-blocks (by definition, [Watson et al 1999]). Since
H-IFF (shuffled or otherwise) is not delineable it is clear
that the two-phase method of the MGA cannot be applied.
It is not sufficient to use partially enumerative initialization
to find building-blocks for any particular order. Nor is it
appropriate to perform combination only in a separate
phase (i.e. the juxtapositional phase). Accordingly, we
shall dispense with the distinct phases of the Messy GA
and return to the seamless integration of recombination and
selection found in the simple GA.5

The Persistent Parasites. If we are to do away with a
separate first phase that conveniently limits the length of
strings we need some other mechanism to prevent the
otherwise unchecked growth of the number of specified
genes per individual. Without a restriction, recombination
will accumulate genes at an exponential rate, and selection
will promote larger sub-optimal composites rather than
small-but-perfect building-blocks. This means that the
string will predominantly consist of garbage bits that
prevent successful recombination as they do in the GA in
Figure 3.

When Goldberg et al refer to the issue of parasites,
mentioned earlier, they suggest the use of “nulls” to fill up
the non-essential gene values, and in our terminology,
postpone commitment for these genes. They also suggest
using the number of nulls to resolve ties between strings of
equal fitness: i.e. for any given fitness value, the string
with the most nulls is preferred. However, Goldberg et al
do not take this idea to its natural conclusion. By
augmenting the fitness function with a size-penalty we can
use this idea as the sole method of regulating string growth.
The size-penalty will be proportionate to the number of
specified genes in the individual. See Equation 2.
                                                       
5 An ‘outer loop’ that repeats the process of selection and
juxtaposition has been proposed for the Messy GA but apparently
this still assumes a fixed ceiling on the order of deception.

Comparing Two-Phase with Incremental Commitment.
Both the MGA two-phase method and the incremental
commitment (IC) method require domain knowledge to
regulate the growth of strings. In the MGA a researcher
must know the order of the highest-order deceptive non-
linearity in the problem. This is used to inhibit
commitment in the primordial phase. In the IC method a
researcher must use knowledge of how the fitness of strings
grows with their size. The MGA method is not applicable
to hierarchically consistent problems where there is no
limit to deceptive non-linearities. In this respect the IC
method is the more general.

Nevertheless, the applicability of the IC method is
dependent on finding an appropriate balance between size
and fitness. In our current implementation this is
complicated by the choice of fitness sharing method which
depresses the value of previously discovered building-
blocks. To adjust for this the fitness contribution of
building-blocks is first exponentiated and then re-scaled
after fitness contributions are summed to bring the result
back into line with the size of the individual. This has the
effect of exaggerating the importance of the largest
building-block discovered. Specifically, in our ICGA
implementation,  the fitness of a string B, is given by

F(B)= log2(F’(B))-size(B) where,

F’(B)=




 1,

2|B| + F’(BL) + F’(BR),

F’(BL) + F’(BR),

if |B|=1, and (b1=0 or b1=1)

if (|B|>1) and (∀i{b i=0} or ∀i{b i=1})

otherwise.                                       Eq. 2

The meaning of variables is as per Equation 1, and
size(B) is the number of non-null genes in the string.

We acknowledge this is not a general method but, in a
similar spirit to the fitness-sharing method, it enables us to
focus on the purpose of the experiment, specifically the
investigation of partial commitment, without the
complication of the two-phase features of the MGA.

6 Experimental Results
The following experiments apply the ICGA to the 64-bit
shuffled H-IFF problem. In summary, our implementation
of the ICGA uses the following features:
• Partially specified representation of genes (0, 1, null)

(see Figure 8)
• Dominant splice recombination operator (see Figure 8)
• Diversity maintenance (resource-based fitness-sharing)
• Fitness function is augmented with size-penalty

(Equation 2)
In all other respects the ICGA is as per a simple GA

with the following parameters: a population of 1000
individuals, mutation with bit-wise probability of 2/64 of
assigning a new random value (0,1,null), recombination
(dominant splice) applied with probability 0.3, generational
exponentially-scaled rank-based selection (with scaling
factor, p=0.01), 50% elitism (i.e. the best 50% of the
population are copied to the new population without



genetic variation). Individuals are initialized to all-null
strings (i.e. they have no specified genes).

Figure 9 shows the performance of the ICGA on 64-bit
shuffled H-IFF as indicated by the best individual in the
population in each generation.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70
Performance of ICGA on 64−bit Shuffled H−IFF

generations

si
ze

 o
f l

ar
ge

st
 b

lo
ck

 d
is

co
ve

re
d

Figure 9: Performance of ICGA on shuffled H-IFF.

Rather than show performance as fitness of best
individual we use the size of the largest correct block
discovered. This shows clearly how the ICGA discovers
the building-blocks over successive levels as they double in

size. Despite the rather high elitism used there is still a
little ‘forgetting’ occurring in the early stages of search.
Nonetheless, the ICGA successfully finds a complete 64-
bit solution before 1000 generations. Actually, it finds both
the all-ones and the all-zeros global optima. (not shown).

The curves in Figure 10 indicate the proportion of
building-blocks of each size discovered - e.g., discovery of
size-16 blocks begins between 200 and 300 generations
and by approximately 450 generations about half of the
size-16 all-one blocks have been discovered. There are
N/size all-one blocks of each size.

We stress that the shuffled H-IFF problem used in these
experiments is more difficult than the concatenated trap
functions usually used to test MGAs in that the building-
blocks are not separable. H-IFF uses strong non-linear
interdependency between competing building-blocks at all
hierarchical levels. And shuffled H-IFF has random genetic
linkage. The results shown therefore demonstrate that, with
appropriate regulation, incremental commitment is
sufficient for solving multi-level building-block problems
with strong epistatic linkage and random genetic linkage.
And in particular, the results demonstrate that moving-
locus aspects of the MGA are not required since the ICGA
uses linkage-invariant recombination. Accordingly, the
ICGA performs identically regardless of whether the genes
are shuffled or not.
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Figure 10: The discovery of (all-one) building-blocks at intermediate levels (blocks of size 4,8,16,32 and 64) averaged over 5
runs of the ICGA: vertical axis shows the proportion of the number of all-one blocks of that size.



7 Conclusions
“From square one, we would like to be able to evaluate the
fitness of a part without possessing a whole.” [Goldberg et
al 1989]. Evaluating parts, together with an appropriate
mechanism to (re)combine them, is the heart of the MGA.
The virtue of this intuitive concept has been difficult to
assess amongst the numerous other features of the MGA.

The Incremental Commitment GA has attempted to
extricate the feature of partial specification from the other
features of the MGA. It demonstrates the use of a fixed-
locus partially-specified genome instead of a moving-locus
scheme. And incremental commitment using a size-penalty
augmentation to the fitness function instead of the two-
phase method of the MGA.

Our experiments have addressed a hierarchical
building-block problem, shuffled H-IFF [Watson et al
1998]. This problem has random linkage and therefore
cannot be solved by the simple GA [Watson et al 1998]. It
is also not delineable into separable subfunctions of a fixed
order and therefore the Messy GA cannot be applied. But,
with the proviso that diversity in the population is
maintained, and an appropriate balance between fitness and
the growth of strings is found, the ICGA solves the
shuffled H-IFF successfully. It is incremental commitment,
inspired by the MGA, that enables the ICGA to discover
and recombine the schemata successfully. Thus we have
shown that a key feature of the MGA, the use of under-
specification, provides the basis for a successful algorithm
for this class of problem.

Unlike the MGA the ICGA does not reorder genes on
the genome so as to provide correspondence between
genetic linkage and epistatic linkage. The ICGA it is not
sensitive to the order or proximity of genes on the genome
– its mechanisms are linkage-invariant. Instead the ICGA
uses the individuals themselves, rather than the adjacency
of genes within an individual, to represent sets of
epistatically linked genes. Partially-committed genomes
enable individuals to specify a schema without having to
specify for all the remaining genes. And, assuming
selection does its job – finding fit schema and discarding
garbage genes – this enables recombination to combine
good schemata from two individuals without garbage genes
causing conflicts with desirable genes.

Thus we have illustrated that the recombination of
partially-specified strings need not suffer from linkage-
dependent operators like crossover or cut, and to this
extent, we have demonstrated that the moving-locus
aspects of the MGA are subsidiary. Nevertheless, linkage
learning algorithms, and the original MGA, are a valid
alternative to this approach.

The difficulty of balancing fitness with size, as required
in the ICGA, may prove difficult to use in practice. In the
ICGA a gene is either committed fully or not at all, and the
number of committed genes is regulated by the string’s
fitness. A method that is more subtle in deciding a degree

of commitment to gene values may be more robust. The
Selective Crossover algorithm [Vekaria & Clack 1998]
offers such an approach. We would also like to investigate
a ‘group evaluation’ method that uses other members of the
current population to temporarily fill-in for unspecified
genes during evaluation [Watson & Pollack 1999b] and act
as the competitive template for problems where partial
evaluation is not provided naturally.
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