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Abstract

One of the main limitations of scalability in body-brain evolution systems is the
representation chosen for encoding creatures. This paper defines a class of repre-
sentations called generative representations, which are identified by their ability
to reuse elements of the genotype in the translation to the phenotype. This pa-
per presents an example of a generative representation for the concurrent evolution
of the morphology and neural controller of simulated robots, and also introduces
Genre, an evolutionary system for evolving designs using this representation. Ap-
plying Genre to the task of evolving robots for locomotion and comparing it against
a non-generative (direct) representation, shows that the generative representation
system rapidly produces robots with significantly greater fitness. Analyzing these
results shows that the generative representation system achieves better performance
by capturing useful bias from the design space and by allowing viable large scale
mutations in the phenotype. Generative representations thereby enable the encap-
sulation, coordination, and reuse of assemblies of parts.
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1 Introduction

The evolution of artificial creatures has come a long way since Dawkins’ evo-
lution of two-dimensional shapes [8]. Controllers have been evolved for fixed
morphologies: first with stimulus-response rules for animated, articulated crea-
tures [28] [35]; then with neural controllers [10]; and more recently for the
dynamic gait of a physical, quadruped robot [11]. More true to the spirit of
artificial life is the evolution of both body and brain, starting with Sims’ evo-
lution of block creatures — for swimming, walking and light seeking [33], as
well as competing for the possession of a box [32] — and Ventrella’s evolution
of stick figures for walking [36]. This has been followed by the evolution of
walking creatures by [20] [26] and [6], summarized in [34]. For the most part,
this newer work has not managed to surpass the complexity of Sims’ original
block creatures. We propose that one source for this difference comes from the
differences in representations used to encode creatures. This paper identifies
a class of representations, called generative representations, and investigates
their impact on the problem of evolving locomoting robots.

Here we consider genotypic representations as a kind of programming lan-
guage. With this analogy, the fundamental properties of programming lan-
guages can be used to understand and classify different approaches to the
underlying representations of evolutionary systems. From [2], the fundamen-
tal elements of programming languages are:

e Combination: Languages create the framework for the hierarchical con-
struction of more powerful expressions from simpler ones, down to atomic
primitives.

e Control-flow: All programming languages have some form of control of
execution, which permits the conditional and repetitive use of structures.

e Abstraction: Both the ability to label compound elements (to manipulate
them as units) and the ability to pass parameters to procedures are forms
of abstraction.

In implementation, these elements can be parceled out to different mecha-
nisms, such as branching, variables, bindings, recursive calls, but are nonethe-
less present in some form in all programmable systems. Some of these basic
properties have also been shown to have analogues in biological systems: phe-
notypes are specified by combinations of genes; the expression of one gene can
be turned on/off by the expression of another gene [24]; and an upstream pro-
tein can control a downstream protein’s activity through a signalling pathway

3].

We can use the properties of programming languages to understand and clas-
sify design representations. A fundamental distinction is whether a represen-



tation used in evolution is direct or generative. In a direct representation there
is a one-to-one mapping from each representational element of the genotype
to some component in the phenotype. A generative representation, on the
other hand, is one which is capable of reusing elements of the genotype in the
construction of phenotypic components. This reuse of components can come
from iteration or from abstraction. Continuing with the programming language
analogy, a generative representation is a kind of language such that heritable
genotypic elements, together with a translation or compilation process, con-
trol the expression of phenotypic components. For instance, the processes may
interpret genotypic information as constructs like loops, procedure calls, vari-
ables, parameters, etc, to control genetic expression. Thus with a generative
representation, the individuals in the population are programs in a language
whose instructions control the flow of construction commands for creating
each design.

Here we use a Lindenmayer system (L-system) [25] as the generative repre-
sentation to encode creatures. L-systems are a grammatical rewriting system
in which the rewriting rules are applied in parallel to all symbols in a string.
Figure 1.a shows a graphical representation of the rules for our generative
representation. In these images cubes represent procedure calls, black spheres
represent conditionals, triangles represent the repeat operator and spheres
represent construction commands. Figure 1.b shows the sequence of assem-
bly strings generated by this set of rules. The sequence begins with the first
cube (here a blue and red one) and the sequence of strings below it are the
strings generated after each iteration of parallel replacement. The last string
of symbols is the assembly procedure used for constructing a robot.

In this paper we explain the details of this generative representation system
and show that during evolution the system can incorporate useful biases from
a robot design problem. This incorporation of bias comes through reuse of
elements in the genotype. By continually creating new components and in-
cluding these into the variations available, the unit of variation scales with
the complexity of the design. Because changing the definition of a reused as-
sembly of parts results in a change in all occurrences of that assembly, the
design system has the ability to make coordinated changes in several parts of
a design simultaneously.

The system we use for the evolution of robots is Genre, which stands for
Generative representations. This system has been used to evolve tables [14]
and oscillator controlled, robots [12] [15], demonstrating in both cases that an
evolutionary algorithm (EA) using a generative representation outperforms an
EA using a direct representation. Here we describe the application of Genre
to neural network controlled robots, and we call our robots, genobots (for gen-
eratively encoded robots). Moving to neural networks allows us to generate
more complex movement patterns and allows for later work to include sen-
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Fig. 1. A graphical version of the generative representation, (a); along with the
sequence of assembly strings it produces, (b).




sors in order to evolve robots with reactive controllers. With Genre we evolve
neural-network controlled locomoting robots and compare search performance
against a system that uses a direct representation. We find that the generative
representation system rapidly produces robots with significantly greater fit-
ness. Analyzing these results shows that the generative representation system
achieves better performance by capturing useful bias from the design space
and by allowing viable large scale mutations in the phenotype. Generative
representations thereby enable the encapsulation, coordination, and reuse of
assemblies of parts.

The rest of the paper is organized as follows. First we review the different
representation systems used by body-brain evolution systems. Then we de-
scribe the three parts of our body-brain evolution system: the compiler for
the generative representation, the body-brain constructor and simulator, and
the evolutionary algorithm. Next we present the results of our experiments in
evolving locomoting creatures. This is followed by a discussion of our findings
and conclusions.

2 Review of other Representations

Prior methods of body-brain evolution each have their own format for rep-
resenting the creatures being evolved. In this section we first describe how
the properties of programming languages apply to design representations and
then review several representative systems.

With the exception of combination, the elements of programming languages
listed in the introduction translate directly to design representations. Two
types of control-flow are conditionals and iterative expressions. Conditionals
can be implemented with an if-statement, as in genetic programming (GP)
[22], or a rule which governs the next state in a cellular automata (CA). Iter-
ation is a looping ability, such as the repeat structure in cellular encoding [9],
or embedded in the fundamental behavior of CA’s. Abstraction is the ability
to encapsulate part of the genotype and label it such that it can be used like
automatically defined functions (ADFs) in GP [23] or automatically defined
sub-networks in cellular encoding. Abstraction can be seen when subfunc-
tions can take parameters, as with ADFs. Combination refers to the ability
to create more complex expressions from the basic set of commands in the
language. While GP allows explicit combinations of expressions, combination
is not fully enabled by mere adjacency or proximity in the strings utilized by
typical representations in genetic algorithms.

Sims used an embedded, directed graph representation to specify the con-
struction of his creatures [33]. Nodes in the top layer of the graph represent



body segments, inside of which is another graph for the body segment’s neu-
ral controller. An advantage of encapsulating the neural units inside the nodes
for body segments is that copying, or recombining, subgraphs automatically
swaps the associated neural controller for a section of body parts. This repre-
sentation is generative because cycles in the graph, along with a recursive-limit
parameter, are procedural constructs that specify the number of times nodes
in the cycle are to be traversed in the construction phase. But the two-layer
structure does not allow a repetition of the neural processing units inside a
body-segment because they are directly encoded as a design inside a body
node.

The stick creatures evolved in Ventrella’s work [36] [37] are encoded as fixed-
length vectors of parameters for constructing a creature. Parameters specify
the number of segments for a central backbone, the number of opposing limbs,
the number of segments in each limb, joint angles and details for the oscillator
network. While this representation is generative in the sense that it allows
reuse of the genotype, the structure of what can be reused is fixed and not
evolvable.

The genotypes of creatures in Framsticks [20] are encoded as a linear assem-
bly procedure for constructing a creature, with bracketing, which turns the
basic structure from a string to a tree. Commands in the command set attach
sticks to existing ones as well as construct the neural controller — commands
for creating a neuron attach it to the stick most recently created and is then
followed by a sequence of link connections. More recently they have com-
pared their original representation, called recur for direct recurrent, against
the actual representation used by the simulator, stmul, and a tree-structured
representation, called devel for developmental [21]. Simul consists of a list
of all objects (sticks, joints, neurons, sensors and actuators) that make up a
creature, along with all of that object’s attributes. Devel is a tree-structured
version of recur with iteration through a repeat node for repeating a subtree.
Of these, only devel is generative because it is the only representation that
allows for reuse of the genotype.

In GOLEM [26], the representation of a creature is the design itself. Both the
morphology and neural controller are stored as graph-based data structures
with links connecting actuated joints to neurons in the network. One challenge
in using a graph-based representation is in implementing meaningful recombi-
nation operators between graphs. In this case, mutation was the only variation
operator implemented.

The genotypes in the work of Bongard and Pfeifer [6] are a set of gene expres-
sion rules for growing creatures under a simulated ontogenetic process. These
rules determine the division of body segments based on simulating chemical
concentrations inside each segment. Each segment also contains a neural con-



troller, which is developed by the gene expression rules using cellular encoding
commands [9]. They report that similarities between parts of a creature also
have similar gene expression patterns, suggesting that this method can pro-
duce modular creatures. Here reuse comes about through an iterative loop
external to the evolved representation; at each update iteration gene-rules are
applied to the developing creature.

Table 1
Properties of the different representations.
Control Flow Abstraction

System Iteration | Conditionals | Labels | Parameters
Bongard and Pfeifer, [6] yes yes no no
Framsticks-recur/simul, [20] no no no no
Framsticks-devel, [21] yes no no no
Genre-direct no no no no
Genre-generative yes yes yes yes
GOLEM, [26] no no no no
Sims, [33] yes no no no
Ventrella, [36] yes no no no

The properties of the different representations used for the evolution of a
robot’s morphology and controller are summarized in table 1. Not included in
this summary is a column for a representation’s structure, which is left out
because determining the structure of a representation is somewhat subjective
and also depends on how the variation operators act on an encoding. Of the
reviewed representations, only Genre’s generative representation (described
in the next section) has reuse through both iteration and parameterized pro-
cedures. Whereas iteration produces exact copies of the repeated genotype,
parameterized procedures can act as a parameterized module, with the result-
ing phenotype depending on the input parameters.

3 Evolutionary System

The evolutionary system used to evolve creatures consists of the robot con-
structor and simulator, the compiler for the generative representation, and
the evolutionary algorithm. Each robot is constructed from a sequence of con-
struction commands, called an assembly procedure, which specifies how to
assemble both the morphology and the robot’s neural controller. This string
of construction commands is either evolved directly or produced by compil-



ing the generative representation. Robots encoded with a generative repre-
sentation are called genobots (for generatively encoded robots). Our system
uses Lindenmayer systems (L-systems) as the generative representation for the
genobots. The evolutionary algorithm evolves a population of these L-systems,
using the fitness returned by the robot simulator. The following subsections
describe each of these parts.

3.1 L-systems as a Generative Representation Language

The generative representation for each genobot is an L-system, a grammatical
rewriting system introduced to model the biological development of multi-
cellular organisms [25]. Rules are applied in parallel to all characters in the
string just as cell divisions happen in parallel in multicellular organisms. A
basic L-system consists of a collection of re-writing rules, such as,

a:—b

b: »abd

When started with the symbol a, this L-system produces the following se-
quence of strings,

a
b
ab
bab
abbab
bababbab

The class of L-systems used as the genotype for creatures in this work is
context-free, parametric Lindenmayer-systems (POL-systems). Context-free in-
dicates that the rules for rewriting symbols do not depend on the symbol’s
neighbors, and parametric specifies that symbols and rewriting rules can take
parameters. Production rules consist of a rule-head, which is the symbol to be
replaced, followed by a number of condition-successor pairs. The condition is
a boolean expression on the parameters to the production-rule, and the suc-
cessor (also called the production body) consists of a sequence of characters
that replace the rule-head. Rule-head symbols are re-written by testing each
of their conditions sequentially, and replacing the rule-head symbol with the
successor of the first condition that succeeds.



Because the POL-system does not have the ability to directly repeat a block
of symbols, iteration is added through a block-replication command. Symbols
enclosed with parenthesis, { block }(n), are repeated n times, and is similar to
for-next loops in computer programs. The resulting representation language
has the properties of iteration, conditionals, and abstraction with parameters.

Previously EAs have been combined with L-systems to evolve neural networks
[19] [5], plants [17] [29] and architectural structures [7]. For the most part, this
past work has used non-parametric L-systems whereas here we use paramet-
ric L-systems. An advantage of a parametric L-system over a non-parametric
L-system is that a given PL-system can produce a family of strings, with
the specific string determined by the starting parameter(s). For example, the
parameter to a production rule can be used as the argument to the repeat
command to specify the number of times a substring is to be repeated. Fur-
thermore, parametric L-systems naturally allow for parametric commands in
the language — the parameter to a network construction command can specify
the weight of a newly created link in the network.

3.2 Robot Constructor

Robots are constructed through a method that is a synthesis of LOGO-style
turtle graphics [1] and cellular encoding [9]. Commands in the assembly pro-
cedure are for constructing the robot’s morphology and its neural controller.
So that body and brain are joined, the command for the creation of an actu-
ated joint also creates a link to a neuron in the neural network. The following
sections describe the morphology and neural network constructors separately
and then how a robot’s body and brain are simultaneously constructed.

3.2.1 Network Constructor

The method for constructing the neural controllers for the artificial creatures
is based on that of cellular encoding [9]. The main difference is that build com-
mands operate on the links connecting the nodes, as with edge encoding [27],
instead of on the nodes of the network. With edge encoding at most one link
is created with a network construction command, which allows each command
to also specify the weight to attach to that link, and sub-sequences of build
commands will construct the same sub-network independent their location in
the assembly procedure. Another distinction between this and cellular encod-
ing is that assembly procedures for constructing networks are linear sequences
of commands (strings) and not trees. A branching ability is added to strings
by using bracketed L-systems [25] with push and pop operators for storing and
retrieving the current link to a stack.



Commands for constructing the network operate on links between neurons and
use the most recently created link as the current one. Push and pop operators,
‘(" and‘)’, are used to store and retrieve the current link-state — consisting of
the from-neuron, the to-neuron and the indices of the links into these neurons
— to and from the stack. This stack of edges allows a form of branching to
occur in the representation: an edge can be pushed onto the stack followed by
a sequence of commands and then a pop command makes the original edge
the current edge again. The commands for this language are listed in table 2,
for which the current link connects from neuron A to neuron B.

Table 2
Command set for constructing neural networks.

Command Description

() Push/pop link-state to stack.

decrease- Subtracts n from the weight of the current link. If the current link is a virtual

weight(n) link, it creates it with weight —n.

duplicate(n) Creates a new link from neuron A to neuron B with weight n.

increase- Add n to the weight of the current link. If the current link is a virtual link,

weight(n) it creates it with weight n.

loop(n) Creates a new link from neuron B to itself with weight n.

merge(n) Merges neuron A into neuron B by copying all inputs of A as inputs to B
and replacing all occurrences of neuron A as an input with neuron B. The
current link then becomes the nth input into neuron B.

next(n) Changes the from-neuron in the current link to its nth sibling.

output(n) Creates an output-neuron, with a linear transfer function, from the current
from-neuron with weight n. The current-link continues to be from neuron A
to neuron B.

parent(n) Changes the from-neuron in the current link to the nth input-neuron of the
current from-neuron. Often there will not be an actual link between the new
from-neuron and to-neuron, in which case a virtual link of weight 0 is used.

reverse Deletes the current link and replaces it with a link from B to A with the

same weight as the original.

set-function(n)

Changes the transfer function of the to-neuron in the current link, B, with:
0, for sigmoid; 1, linear; and 2, for oscillator.

split(n)

Creates a new neuron, C, with a sigmoid transfer function, and moves the
current link from A to C and creates a new link connecting from neuron C'
to neuron B with weight n.

Neurons in the network are initialized to an output value of 0.0 and are up-
dated sequentially by applying a transfer function to the weighted sum of
their inputs with their outputs clipped to the range £1. The different transfer
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functions are: sigmoid, using tanh(sum of inputs); linear; and an oscillator.
Oscillator units maintain a state which is increased by 0.01 after each update.
The output of an oscillator unit is mapped to the range -1 to 1 by applying a
triangle wave function, with a period of four, to the sum of its inputs and its
state. While using oscillating neurons increases the bias for simple networks
with simple oscillating patterns over the sigmoid-only networks used in [20]
[26] it is a less biased model than that of [36], in which all actuators are driven
by oscillators, or [33] which used a variety of transfer functions and oscillating
neurons.

An example of the construction of a network using this system is shown in
figure 2, which contains the intermediate networks in parsing the following
assembly procedure,

split(0.8) duplicate(3) reverse split(0.8) duplicate(2) reverse loop(1)
split(0.6) duplicate(0.4) split(0.6) duplicate(0.4) reverse parent(1) merge(1)

Networks start with a single neuron, a, which has an oscillator transfer func-
tion, and a single link of weight 0.25 feeding to itself, figure 2.a. After executing
split(0.8), a second neuron is created with a link of 0.8 to the oscillating neu-
ron and the original link of weight 0.25 feeding into it, figure 2.b. Executing
duplicate(3), creates a second link from the second neuron to the first, which
is then reversed in executing reverse, figure 2.c. The execution of split(0.8)
duplicate(2) reverse, creates a third neuron, figure 2.d. A link from the third
neuron to itself with weight 1 is created by loop(1), with another neuron cre-
ated by split(0.6), figure 2.e. This is followed by duplicate(0.4), which creates
an additional link from neuron ¢ to d, and then neuron e is created with
split(0.6), figure 2.f. Another link is created from e to ¢ with duplicate(0.4),
which is then reversed, reverse, figure 2.g. Parent(1) causes a shift of link-
state from the ¢ — e link to a new “virtual link” b — e, shown as a dashed
line, figure 2.h. These two neurons are then joined together by the merge(1)
command, and the final network is shown in figure 2.i.

3.2.2  Morphology Constructor

The morphology constructor uses a set of construction commands similar to
that of L-system languages for creating plants [30] to build a body through the
control of a LOGO-style turtle [1]. As the turtle moves, rods are created and
these become the body of the robot. Commands instruct the turtle to move
forward or backward, change orientation, or create an actuated joint. The
method for constructing the morphology of a creature, with joints controlled
by actuators, is described in [15]. The following section describes the method
by which the morphology construction is combined with the neural network
constructor of the previous section.
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Fig. 2. Construction of a neural network.

3.2.8 Neural-Network Controlled Robots

A robot’s morphology and neural controller are constructed by combining
the command sets for constructing body and brain into one language and
then building body and brain simultaneously. This command language consists
of the morphology construction commands, listed in table 3, and the neural
construction commands from section 3.2.1. The resulting language has two
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push/pop commands with two stacks: ( ), for pushing/popping the link-state
to the link stack; and [ |, for pushing/popping both the morphology and link
states to a stack. A robot’s body and brain are joined together by attaching
the current input-neuron to the newly created actuated joint each time a joint
command — revolute-1, revolute-2, tuist-90, or twist-180 — is executed. By
defining joint-creation commands in a way that affects both controller and
morphology we induce a connection between body and brain.

Table 3

Command set for constructing the morphology of a robot. Neural controllers are
constructed by using this language along with that of table 2.

Command Description

[] Push/pop state to stack.

forward Moves the turtle forward in the current direction, creating a
rod 10 units long if none exists or traversing to the end of the
existing bar.

back Goes back up the parent of the current bar.

revolute-1 Forward, end with a joint with range 0° to 90° about the
current Z-axis that is controlled by the current neuron.

revolute-2 Forward, end with a joint with range —45° to 45° about the
current Z-axis that is controlled by the current neuron.

twist-90 Forward, end with a joint with range 0° to 90° about the
current X-axis that is controlled by the current neuron.

twist-180 Forward, end with a joint with range —90° to 90° about the
current X-axis that is controlled by the current neuron.

left(n) Rotate heading n x 90° about the turtle’s Y axis.

right(n) Rotate heading n x —90° about the turtle’s Y axis.

up(n) Rotate heading n x 90° about the turtle’s Z axis.

down(n) Rotate heading n x —90° about the turtle’s Z axis.

clockwise(n) Rotate heading n x 90° about the turtle’s X axis.

counter- Rotate heading n x —90° about the turtle’s X axis.

clockwise(n)

An example of an assembly procedure using this language is,

[ right(1.0) forward right(1.0) forward right(1.0) forward right(1.0) for-
ward | duplicate(0.25) split(0.4) reverse revolute-1(1.0) duplicate(0.25)
split(0.4) reverse revolute-1(1.0) left(1.0) right(1.0) forward right(1.0) for-
ward right(1.0) forward right(1.0) forward

13




Fig. 3. Construction of a genobot.
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A sequence of images showing intermediate stages in the construction of this
robot is contained in figure 3. Before any commands are processed, a robot
consists of a single oscillating neuron and a point, figure 3.a. After execut-
ing the commands, [ right(1.0) forward right(1.0) forward right(1.0) forward
right(1.0) forward ], the robot consists of a square of four rods and the os-
cillating neuron, figure 3.b. After executing, duplicate(0.25) split(0.4) reverse
revolute-1(1.0), a second neuron is created and it is attached to the actuated
joint at the end of the newly created rod, figure 3.c. The commands, dupli-
cate(0.25) split(0.4) reverse revolute-1(1.0), are repeated and a third neuron
is created and it is attached to another actuated joint, figure 3.d. The last
commands, left(1.0) right(1.0) forward right(1.0) forward right(1.0) forward
right(1.0) forward, attach another square onto the end of the last revolute-1
joint, figure 3.e. Figure 3.f shows the creature with the joints halfway through
their movement range.

An example of a generative representation using this construction language is,

PO(n0) : n0 > 3.0 — P1(5.0) PO(n0 — 2.0) left(1.0) P1(4.0)
n0 > 0.0 — { duplicate(0.25) split(0.4) reverse revolute(1.0) }(2.0)

P1(n0) : n0 > 4.0 — [ P1(4.0) |
n0 > 0.0 — { right(1.0) forward(1.0) }(n0)

This L-system consists of two productions, each containing two condition-
successor pairs and, when started with P0(4), produces the following sequence
of strings, !

1. PO(4)
2. P1(5.0) P0(2.0) left(1.0) P1(4.0)

3. [ P1(4.0) ] { duplicate(0.25) split(0.4) reverse revolute-1(1.0)
}(2.0) left(1.0) { right(1.0) forward(1.0) }(4.0)

4. [ { right(1.0) forward(1.0) }(4.0) ] { duplicate(0.25) split(0.4)
reverse revolute-1(1.0) }(2.0) left(1.0) { right(1.0) forward(1.0)

}(4-0)

5. [right(1.0) forward right(1.0) forward right(1.0) forward right(1.0)
forward | duplicate(0.25) split(0.4) reverse revolute-1(1.0) dupli-
cate(0.25) split(0.4) reverse revolute-1(1.0) left(1.0) right(1.0) for-
ward right(1.0) forward right(1.0) forward right(1.0) forward

1 For clarity the unraveling of block replication expressions is left until the final
iteration.
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This last sequence of commands is the same assembly procedure as the one
which produces the genobot in figure 3.

3.2.4  Simulation

Once a string of build commands has been executed, and the resulting robot
is constructed, its behavior is evaluated in a quasi-static kinematics simulator
similar to that used by [26]. First the neural network is updated to determine
the desired angles of each actuated joint, then the kinematics are simulated by
computing successive frames of moving joints in small angular increments of
at most 0.06°. After each update the structure is then settled by determining
whether or not the robot’s center of mass falls outside its footprint and then
repeatedly rotating the entire structure about the edge of the footprint nearest
the center of mass until it is stable.

To achieve robot designs that are made robust to transferal to the real world,
error is added to evolved structures similar to the method of [18] and [16].
A robot design is evaluated by simulating it three times, once without error
and twice with different error values applied to joint angles. Error is applied
to all connections that are not part of a cycle and is a random rotation in the
range of £0.1 radians about each of the three coordinate axis. The returned
fitness of an evolved individual is the minimum fitness scored from the three
trials. By implementing error that is fixed throughout a trial and evaluating a
design with different error values, evolved designs are robust to imperfections
in real-world construction. Examples of oscillator-controlled robots that were
successfully transferred to the real world are in [12] [13].

3.8  FEwolutionary Algorithm

The evolutionary algorithm and variation operators are described in detail
in [15], here we give an overview of the system. The initial population of
L-systems is created by making random production rules. Evolution then pro-
ceeds by iteratively selecting a collection of individuals with high fitness as
parents and using them to create a new population of individual L-systems
by applying mutation or recombination. Mutation creates a new individual by
copying the parent individual and making a small change to it. Changes that
can occur are: replacing one command with another; perturbing the parameter
to a command by adding/subtracting a small value to it; changing a produc-
tion rule’s parameter equation in a successor; adding/deleting a sequence of
commands in a successor; or changing the condition equation. Recombination
takes two individuals, pl and p2, as parents and creates one child individual,
¢, by making it a copy of pl and then inserting a small part of p2 into it.
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This is done by replacing one successor of ¢ with a successor of p2, inserting
a sub-sequence of commands from a successor in p2 into ¢, or replacing a sub-
sequence of commands in a successor of ¢ with a sub-sequence of commands
from a successor in p2. Data is kept for individual L-system, specifically which
production rules and successors were used, as well as the value range for each
parameter. This data, similar to the environment frame of a programming lan-
guage, allows variation operators to be applied only to those production rules
which were used. It also allows historical-based constraints on the mutation
of conditional values.

Since variations sometimes create an invalid robot (with too many/few rods,
or the body parts intersect at some point while moving) variation operators
are tried a second time, for a particular set of parents, if the first attempt did
not create an offspring whose fitness was at least 10% of that of its parent(s).

4 Results

To compare a direct representation with a generative representation we evolved
neural-network controlled robots for the task of locomotion. Fitness was a
function of the distance moved by the robot’s center of mass on a flat surface.
In order to discourage sliding, fitness was reduced by the distance that points
of the robot’s body were dragged along the ground. Finally, a design was given
zero fitness if it had a sequence of four or more rods in which none of the rods
was part of a closed loop with other rods. This constraint was intended to
keep the system from producing spindly robots which would not function well
in reality.? The evolutionary algorithm was configured to run with a popu-
lation of 200 individuals for 250 generations. The direct representation was
implemented as an L-system with one production rule, no arguments, one
condition-successor pair whose condition always succeeds, and without the re-
peat operator or the ability to call production rules. The maximum length of
the production body was set to 10000 commands, allowing assembly proce-
dures of up to 10000 commands to be evolved. The generative representation
used an L-system with fifteen production rules, two condition-successor pairs,
and two parameters for each production rule. For the generative representa-
tion, the maximum length of production body was set to fifteen commands
and the maximum allowed length of an unraveled generative representation
was set to 10000 commands — the same length as with the direct represen-
tation. Implementing the direct representation as a degenerate case of the
generative representation allowed the evolutionary design system to use the

2 A different approach would be to put a limit on the maximum torque applied on
a connection, but this would require a simulator with more detailed physics then
the one used here.
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same variation operators on both representations so that the only difference
between the two systems was the representation. All results in this section are
from the same set of twenty runs, ten using the direct representation and ten
with the generative representation.

4.1 Fitness Comparison

3000 T
2750 | %" Gect
2500 F
2250 t -
2000 F -
1750 | -
1500 | -
1250 | -
1000 | -
750 f -
500 -

250 i

average fitness

0 25 50 75 100 125 150 175 200 225 250
generation

Fig. 4. Fitness comparison between the direct representation and the generative
representation.

Our first graph, figure 4, plots the average fitness (over 10 runs) of the best
individuals evolved with the direct representation against the best evolved
with the generative representation. The final fitness values achieved were:
Direct: 134, 744, 42, 48, 62, 74, 42, 66, 86, 312.
Generative: 8180, 664, 2308, 3386, 696, 224, 1880, 364, 3810, 4556.
After 10 generations the generative representation achieved a higher average
fitness than runs with the direct representation did after 250 generations and
the final genobots evolved with the generative representation were more than
10 times faster, on average, than robots evolved with the direct representation.

Figure 5 shows the two best individuals evolved with the direct representation
(a and b) and the two best evolved with the generative representation (¢ and
d). From the images it can be seen that the robots evolved with the direct
representation are irregular, and have few components, whereas the robots
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Fig. 5. The two best individuals evolved with: (a) and (b), the direct representation;

and (c) and (d), the generative representation. Genobots (e)-(h) are evolved with
the generative representation and no constraints on limb lengths.
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evolved with the generative representation are more regular and, in some cases,
have two or more levels of reused assemblies of components. Furthermore,
the network morphologies constructed from the generative representation also
contain some reuse of subnetworks. The neural network controller shown in
figure 6 is the controller for the genobot in figure 5.h. In addition to its reuse of
components, its linear sequence of outputs corresponds to the linear sequence
of joints in the genobot’s morphology.

4.2 Reuse and Evolvability

In our introduction we argued that one advantage of a generative represen-
tation is its ability to create more complex components from simpler ones.
The graph in figure 7.a shows, for each generation, the average length of
the genotype for both representations, and the length of the assembly proce-
dure produced by the generative representation. In the initial populations that
used the generative representation the average length of the genotype was 126
symbols and the average length of the generated assembly procedure was 534
symbols. This means that on average each symbol in the genotype was being
used 4.2 times in creating the assembly procedure. After 250 generations, this
evolved to an average length of the genotype of 208 symbols and an average
length of the resulting assembly procedure of 2387 symbols, which is an aver-
age reuse of 11.5. The average number of parts (rods only) used in a design is
plotted in the graph in figure 7.b. As the genotype sizes for both direct and
generative representations are about the same, the increased number of parts
used in designs constructed from the generative representation suggests that
the multiple expression of genotype produced a reuse of parts. Further sup-
port comes from the images in figures 5.c-h, which show that designs evolved
with the generative representation have the same assemblies of parts occurring
multiple times in a genobot.

The second part of our argument for a generative representation is that,
through evolution, useful bias of the of search space becomes embedded in
a design encoded with a generative representation, resulting in better perfor-
mance of the variation operators. To compare the performance in variation
operators between the two representations we compare the change in fitness
between a parent and its child (from mutation) and plot it against the differ-
ence between parent and child’s assembly procedures. For the direct represen-
tation, the assembly procedure is the same as the genotype, for the generative
representation, the assembly procedure is the last string produced by the L-
system. In the case where the assembly procedures are the same length, the
command difference between two assembly procedures is the number of loca-
tions for which the parent and child have different symbols. When strings are
different lengths, the number of occurrences of each symbol is counted and
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Fig. 6. Evolved neural network controller for the genobot in figure 5.h.

the command difference is the sum of the differences between these values. 3

3 An alternative distance metric which could be used is edit distance, but this is
an expensive computation for bracketed strings (effectively trees) and would be
prohibitive [31].
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Fig. 9. Probability of success (child is more fit than parent) comparison between
different representations, for ranges 1-50, 51-100, 101-150, ...

Figure 8 shows four different change-in-fitness against command-difference
plots. The first graph, figure 8.a, is a plot of change-in-fitness against command
difference for a single mutation operator applied to a direct representation.
Most mutations were close to the parent, and most successful mutations were
less than 10 commands apart. As offspring under the generative representation
will tend to be further from their parent (because of reuse of the genotype),
we also plot change in fitness against command difference for the direct repre-
sentation with 1-6 mutations (chosen with uniform probability) applied. From
the graphs it can be seen that mutations on the direct representation were
usually only successful when the change in command difference between as-
sembly procedures was small (less than 10), and even then improvements were
not large. The graph in figure 8.c is a plot change-in-fitness against command
difference between assembly procedures and shows that with the generative
representation there was a larger variation in assembly procedure distance be-
tween a parent and its child than with the direct representation. This graph
also shows offspring were more likely to have higher fitness than their parents
with the generative representation than with the direct representation.

To determine if this improved performance under variation was only a result
of the types of strings generated by the generative representation we also ap-
plied 1-6 mutations to the assembly procedure produced by the generative
representation. The plot of figure 8.d shows that variation on the generative
representation’s assembly procedure was not as successful as on the generative
representation itself, suggesting that the structure with the generative repre-
sentation had captured some useful bias of the design problem over the course
of evolution.

As a way of normalizing for the higher average fitness achieved with the gener-

ative representation, we next show the success rate (a child’s fitness is greater
than its parent) for the mutation operator for different command differences

23



between parent and child, figure 9. Again we include a comparison with 1-6
mutations applied to the direct representation as well as 1-6 mutations applied
to the assembly procedure produced by the generative representation. With
the direct representation, the success rate of the mutation operator quickly
dropped to zero as the difference between parent and child’s assembly proce-
dures increased. In contrast, the success rate of mutation more gracefully de-
cayed with command difference when applied to the generative representation
— even when parent and child were 500 construction symbols apart the success
rate of mutation was 10%. The higher success rate of mutation, especially
with larger differences in assembly procedures, and greater average increase
in fitness with the generative representation provides strong evidence that the
generative representation captured meaningful bias of the design problem.

4.8  Summary of Results

Table 4

Summary of results for evolving neural-network controlled robots.
Summary of experiments Direct | Generative
Average final best fitness 157 2609
Number of mutations with distance > 0 184667 188749
Success rate of mutations 16.4% 18.1%
Average fitness change -27 -526
Average fitness change of successful mutations 19 178
Average distance of mutations 3 118
Average distance of successful mutations 3 44
Number of large mutations (distance > 100) 65 27899
Success rate of large mutations (distance > 100) 10.8% 10.5%
Average fitness change of large mutations (distance > 100) -74 -1396
Average fitness change of successful, large mutations (dis- 25 357
tance > 100)
Average distance of large mutations (distance > 100) 131 693
Average distance of successful, large mutations (distance 113 344
> 100)

The results of our experiments are summarized in table 4. While the overall
success rate of mutations is similar between the two representations, there
is a difference in the average distance of mutations. Mutations on the direct
representation were considerably smaller in assembly-procedure command dif-
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ference than those on the generative representation. Examining the probability
of success of a mutation for similarly sized distances (the graphs in figure 9,
which plot the rate of success for distance in bins of size 50), it can be seen
that for all distances the rate of success was higher with the generative rep-
resentation. In addition, considering only mutations that are successful (the
child has higher fitness than its parent), the average increase in fitness was
significantly higher with the generative representation than with the direct
representation.

5 Discussion

By allowing the inclusion of subprocedure-like structures (here, the L-system’s
production rules) a generative representation can create more complex building-
blocks from simpler ones. Since these production rules are a single character
that can be inserted /removed from the genotype with a single mutation, vari-
ation operators can scale with design complexity because new assemblies of
components become possible unit variations. In addition, reusing code in the
genotype to reuse parts in the actual design makes certain types of design
changes easier. The images in figure 10 show examples of reuse through vari-
ations applied to the individual of figure 5.d. Changing the genotype to add
rods to an assembly of parts results in the change to all occurrences of that
part in the design, figure 10.b, and a single change to the genotype can cause
the addition/subtraction of a large number of parts, figure 10.c. In both cases
the same change would be harder to make with a direct representation. For
example, even though recombination can duplicate assemblies of parts in a
direct representation, a later application of variation will only change one in-
stance of this assembly. As designs become more complex, the likelihood of the
same change happening simultaneously to all uses of this assembly becomes
increasingly unlikely with a direct representation, yet remains constant with
a generative representation.

Of the representations described in section 2, the generative representation of
Genre has similarities to those of Framsticks and the one used by Sims. The
method of specifying a creature’s morphology by a sequence of commands,
with parentheses and brackets used for branching is almost identical to the
Framsticks-recur representation [20]. One difference is in specifying the neural
controller. In Framsticks, this is done by listing the links immediately after
the neuron whereas in our system a cellular encoding language is used. The
other difference is that the Framsticks-recur representation does not have any
properties of reuse. Both Framsticks-devel [21] and Sims’ [33] allow for parts
of the genotype to be reused through a looping ability. This looping is like the
repetition blocks of the generative representation defined in section 3 and is the
beginning of a procedural description. The representation of Genre extends on
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(b) (c)

Fig. 10. Mutations of a genobot: (a), the genobot from figure 5.d; (b), a change
to a low-level component of parts results in all occurrences of this part to have
the change; (c), a single change to the genotype changes the number of high-level
components in the genobot from four to six.

the ability to define loops by including labeled sub-procedures with parameters
in the genotype — similar to the modules of GLiB [4], automatically defined
functions (ADFs) of GP [22] and automatically defined sub-networks (ADSNs)
of [9] — and conditionals on the parameters.

In our comparison robots evolved with a generative representation were, on av-
erage, ten times faster than those evolved with a direct representation. These
results differ from those of [21], in which their comparison produced little dif-
ference between a generative representation, devel, and a direct representation,
recur. Since their generative representation had only the property of iteration
— whereas our generative representation also has conditionals and abstraction
with parameters — it suggests that these additional properties can make a
significant difference on the performance of an evolutionary design system.

6 Conclusion

The concurrent evolution of bodies and brains has been limited by the rep-
resentations used to encode them [36] [20] [26] [6]. Here we have defined the
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class of generative representations and presented Genre, a generic system for
evolving designs with this class of representations. Previous work has shown
how this system can be used to evolve table designs [14], two-dimensional
oscillator-controlled genobots [12], and three-dimensional oscillator controlled
genobots [15]. Since Genre treats command sets and assembly procedures as
symbols and strings, by replacing one command set with another and/or re-
placing the design constructor, this evolutionary system can be used on any
design domain in which a design can be constructed from a linear assembly
procedure.

In this paper we have described a method for evolving the morphology and
neural controller of three-dimensional robots. We have showed that robots
evolved with the generative representation reach higher fitnesses than those
evolved with a direct representation. This improved performance has been
shown to be the result of the ability of the generative representation to reuse
parts of the design. In summary, generative representations accelerate evolu-
tion by learning useful problem bias over the course of the evolution and by
encapsulating, in heritable elements of the genotype, assemblies of phenotypic
components, thereby allowing mutation to scale with design complexity.

Generative representations capture the fundamental elements of general pur-
pose programming languages - combination, control flow, and abstraction.
However, we note that the linear representation is somewhat limiting, even
though primitives like ”push” and ”pop” add tree-like constructions. As con-
tinuing work expands the range and power of generative representations, while
maintaining evolvability, we expect to see ever more progress towards general
purpose evolutionary design.
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