Evolution of Controllers from a High-Level
Simulator to a High DOF Robot

G. S. Hornby!, S. Takamura?, O. Hanagata®, M. Fujita3, and J. Pollack!

! Computer Science Dept., Brandeis University, Waltham, MA
{hornby, pollack}@cs.brandeis.edu
http://www.demo.cs.brandeis.edu
2 ER Business Incubation Dept., Sony Corporation, 6-7-35, Kitashinagawa,
Shinagawa-ku
Tokyo, 141-0001 JAPAN
takam@pdp.crl.sony.co. jp
3 Group 1, D-21 Lab, Sony Corporation, 6-7-35, Kitashinagawa, Shinagawa-ku
Tokyo, 141-0001 JAPAN
{hana, fujita}@pdp.crl.sony.co.jp

Abstract. Building a simulator for a robot with many degrees of free-
dom and various sensors, such as Sony’s AIBO*, is a daunting task. Our
implementation does not simulate raw sensor values or actuator com-
mands, rather we model an intermediate software layer which passes
processed sensor data to the controller and receives high-level control
commands. This allows us to construct a simulator that runs at over
11000 times faster than real time. Using our simulator we evolve a ball-
chasing behavior that successfully transfers to an actual AIBO.

1 Introduction

One area of evolutionary robotics is evolving controllers for robots. The two
approaches are to evolve with actual robots or to evolve controllers in simula-
tion for use with an actual robot. Real robots are always a better model than
a simulator, yet they are limited to going at real time. Simulation also has the
advantage of being more convenient to work with because of the ease with which
performance can be monitored and the robot and world can be reset to per-
form multiple trials. Simulation’s shortcoming is that because it is an imperfect
model, controllers created for simulated robots often perform differently on ac-
tual robots. Nevertheless there have been several instances of controllers evolved
in simulation that have transferred to real robots: locomotion for a hexapod
[Gallagher & Beer, 1992] and [Gallagher et al., 1996]; obstacle avoidance with a
Khepera [Michel, 1995]; and others.

One approach to developing a simulator is to create a simulator based on
data taken from a real robot, [Miglino et al., 1995] and [Lund & Miglino, 1996].
Actual robot sensor readings are used to create lookup tables. In their exper-
iments they evolved a neural control system for a Khepera to move around a

4 AIBO is a registered trademark of Sony Corporation

simple environment while avoiding obstacles. Limitations of this methodology
are that it lacks a way of developing an accurate model of the physical dynamics
of the world, it is only useful for creating a partial model of the sensors, nor
would it scale well to more complex sensors, such as a digital camera.

Another approach to constructing a simulator is that of minimal simulations
[Jakobi, 1998]. This methodology identifies features of the environment that are
easy to simulate and are necessary and sufficient for the robot to perform the
desired behavior. These features are reliably simulated for each trial. Other as-
pects of the simulation are varied for each trial so as to be unreliable. Controllers
evolve using only those features of the simulator which were reliably modeled
and thus transfer successfully to an actual robot. Successful transference from
simulators constructed using this method has been achieved for various tasks
with various robots, such as T-maze navigation with a Khepera, locomotion and
obstacle avoidance with a hexapod.

Projects using the simulators listed above connected the robot controllers
directly to the robot’s sensors and actuators. For AIBO, controllers sit on top
of sensor processing and locomotion modules. Consequently our simulator does
not model raw sensor values or motor commands, instead it models the pro-
cessed sensory data and effects of high level movement commands. By modeling
processed sensor input and high level motor commands our simulator was much
easier to create and faster to execute, achieving a speedup of over 11000.

The main motivation in constructing this simulator is for evolving controllers
for actual AIBOs. Controllers evolved in simulation should perform similarly on
an actual ATBO. To evolve controllers that will transfer we include an error value
for sensor values and locomotion similar to that used in minimal simulations
[Jakobi, 1998]. Error values are determined randomly at the start of each trial
and fixed for the entire trial — as opposed to adding random noise throughout
a trial. In this way evolved controllers will be tolerant to sensors and actuators
performing in a small range about the simulator setting, yet the controllers will
not depend on noise. Using our simulator we evolve a ball-chasing behavior for
ATBO which successfully transfers to a real AIBO.

The rest of the paper is organized as follows. In section 2 we describe AIBO
and the simulator. Section 3 contains a description of the control architecture
being evolved. In section 4 we describe our experiments and results. Finally, in
section 5 we summarize our work.

2 Simulator

In figure 1 we show one way of visualizing a robot system. Layer a consists of the
high level controller, which is what is evolved in these experiments. Layer b is
an intermediate processing layer between the controller and layer ¢, the robot’s
sensors and actuators. Layer d is the environment in which the robot exists.

In evolutionary robotics, controllers are typically connected directly to a
robot’s sensors and actuators, with no layer b. Simulators developed for such
systems must then model sensor values and actuator movements. Modeling these

Robot

a Controller

b. g?(;]csgsrsing kAO;éJUTeOUOH
Modqle

¢ Sensors Actuétors

d. Environment

Fig. 1. Decomposition of a robot system.

parts of the system can require much development time and may require a high
degree of accuracy, resulting in a slow simulation. Fortunately, AIBO comes
with a layer b that processes sensor readings and converts high level locomotion
commands to control the motors. Thus our simulator does not need to deal with
various complex sensors and 14 motors, but need only model sensors in the way
that the sensor processing module returns data — providing size and direction to
each object instead of determining the color of each pixel of the digital camera —
and it models the results of locomotion commands, such as step forward instead
of modeling the movement of four legs, each with 3 DOF. On an SGI 02 with
an R10000 processor our simulator performs approximately 27800 time-steps a
second which, at 0.42s per simulated time-step, is a speedup of 11700 — adding
processing for the neural controller reduced this to a speedup of 4500.

2.1 AIBO and its Environment

Our simulator models ATBO, a quadruped robot with 18 degrees-of-freedom and
various sensors. We use 14 of AIBO’s 18 degrees-of-freedom which are controlled
through high-level commands, such as look forward, look down and which type of
locomotion step to take. The sensing capabilities of AIBO that we utilize are the
color detection tables of its digital camera, the infrared distance sensor, and joint
values of the neck through various modules. Finally, the environment consists of
a Robocup-like field and ball. A description of AIBO’s prototype can be found
in [Fujita & Kitano, 1998].

Walking and running is controlled through the locomotion module. This mod-
ule takes high-level commands requesting different steps, forward, front left, front
right, turn left, turn right and backwards, and moves AIBO appropriately. Gaits
are developed by hand or are evolved [Hornby et al., 1999].

The two sensors we use are a distance sensor and a digital camera. The raw
signal from the distance value is converted to a distance value in meters. The
images from the digital camera are processed into 8 color detection tables, CDTs.
For each table the total number of pixels containing the target color are given,
as is the center of the pixel mass. One CDT is assigned to each object (own
goal, opponent’s goal, ball, teammate and opponent) in ATBO’s environment —
in these experiments only the CDT data for the ball is used.

The soccer field consists of a flat playing area bordered by walls. At each end
a goal-area is marked by a section of colored cloth.

2.2 Simulator

Our simulator consists of a physical-dynamics component and a sensing compo-
nent. The physical dynamics module handles movement of objects in the world
as well as detecting and handling collisions between objects. The sensing com-
ponent models the data sent by the sensor processing software to the robot’s
controller.

-

Fig. 2. Screen shot of the simulator, 1-on-1 with two AIBOs, two goals and a ball. Not
shown are the walls lining the sides of the field.

Each AIBO robot is simulated as consisting of a body and a head. The
different steps of the locomotion module are modeled as moving AIBO at a given
linear and angular velocity. If AIBO’s current linear or angular velocity are not
the same as the specified value for the type of step being taken, acceleration is
used to adjust these velocities according to classical dynamics. Similarly, AIBO’s
position is updated using classical dynamics.

At the end of each time step objects are checked for collisions. A collision
occurs when two objects are found to intersect each other. When a ball collides
with an object its velocity is instantaneously changed to its reflection. In ad-
dition, the following adjustments to ball velocity are used to model the effects

of a ball colliding with a robot: if the ball collided with the front of an AIBO,
the ball’s velocity is increased by 10-80% of AIBO’s linear velocity; if the ball
collides with any of the other 3 sides of AIBO, the angle of its linear velocity is
changed by up to 20% and its speed is reduced by up to 40%. When an AIBO
collides with a wall it is moved perpendicularly away from the wall until it is
just touching the wall. When two AIBOs collide with each other, they are moved
away from each other along the line through their centers, figure 3, a distance
such that they are no longer penetrating. In both types of collisions the linear
velocity of the colliding robot(s) is reduced to 0.

a S b.

Fig. 3. Collision handling: when two robots intersect each other, the collision is handled
by moving them apart along the line through their centers.

Modeling of sensing uses error to create uncertainty as with the methodology
of minimal simulations. Before each trial the size of the error is decided at random
for each sensor. The range of error is £10% of the sensor value, a range in which
the settings for an actual AIBO should lie. Once selected, this amount of error is
used throughout the entire trial. A different error is selected for subsequent trials.
This forces evolved controllers to perform robustly within the specified tolerance
range, hence they should transfer to an actual AIBO. By not implementing the
error as a random noise to be added throughout a trial, controllers do not evolve
to become dependent on noise.

The most complex sensor to model is the digital camera, which is situated at
the front of AIBO’s head. A color detection table (CDT) is associated with each
object — ball, own goal, opponent goal, teammate, opponent — in the world. For
each color detection table, the CDT module returns the size, number of pixels
of that color, as well as an and tilt angles to the center of the object visible.

Simulation of the CDT consists of calculating, for each object, the pan and
tilt angles to the object’s center and its distance from the digital camera. First
the distance from the digital camera to the object is calculated. The object’s
leftmost and rightmost points are then calculated using the distance value along
with the object’s relative location and orientation from the camera. These values
are clipped to be within the 52° field of view of the digital camera. Next, objects
are compared for occlusion, with nearer objects occluding farther objects. The
exception is that the ball does not obscure anything because of its small size.
Once the left and right angles of all objects are known, the center is the average
of these two angles. Object size, a measure of how large an object appears on the

- -

' - l
- y |
=y]
N) BN
NG ™
N N
E 4 h
N >
o ~N
~N

~
~N

CDT#:012
a. b. c.

Fig. 4. Simulation of vision, showing the sequence of going from simulated world, to
determining how large objects will appear on the robot’s CDTs.

robot’s digital camera, is calculated from the leftmost and rightmost boundaries
on the CDT (see figure 4).

Once vision is completed the infrared distance sensor is handled. The dis-
tances from the front of head to the nearest wall, the floor, and any object
within (£5°) from a direct line of sight are compared. The smallest distance is
the one returned as the distance value.

Modeling of both distance and vision sensing takes into account height of the
digital camera and pan and tilt angles of the head.

3 Neural Control Architecture

The control architecture we use is a recurrent neural networks similar to that of
[Hornby & Mirtich, 1999]. Neural networks consist of an input layer, a number
of hidden units and an output layer. The neural controller receives input from
AIBO’s sensory module and sends commands to the locomotion module.

A neural controller consists of 12 input units, 20 hidden units and 7 output
units. The data structure for a neural controller consists of: w, a matrix of real-
valued weights; f, a vector of processing functions, {z, sin(z), asin(z), ;re==}; 0,
a real-valued vector of input biases; and 7, a real-valued vector of time constants.
The value of the ith row and jth column of the weight matrix is the value of the
weight from the 4th processing unit to the j processing unit. The ith value of the
vectors is the attribute for the ith processing unit. A processing unit functions
as follows:

aiy = Tiaii + (L= 7)[f (O wjia; +6;)] (1)
J

As units are updated sequentially, the activation value a; will be a;; for values
of j less than ¢ and a;;—1 otherwise.

The twelve units of the input layer are listed in table 1. The first two units
are the angles of the pan and tilt joints of AIBO’s neck. The third unit is the
distance from ATBQ’s distance sensor. The next five inputs correspond to step-
ping: forward; turn left; turn right; forward left; and forward right. The unit for

[Unit| Value |
0 tilt angle of neck (radians).
pan angle of neck (radians).
distance from infrared sensor (m).
last step was forward.
last step was turn left.
last step was turn right.
last step was front left.
last step was front right.
ball is visible.
size of ball in CDT.
tilt angle to ball.
pan angle to ball.

O OO | W

= =
[l =]

Table 1. Inputs to Neural Controller

whichever step was taken by AIBO in the previous time step has a value of 1, the
other units have a value of 0. The remaining units are for visual sensing of the
ball with AIBO’s color detection table. There are units for: indicating whether
or not the object is visible; object’s size; pan angle to the object; and tilt angle
to the object. If an object is not visible, then the reported size, pan angle and
tilt angle are those for the last time the object was visible. Other inputs, such
as vision information for the goals and other robots, are available but are not
used in these experiments.

[Unit] Value |

0 stop

step forward
turn left
turn right

step front left

step front right

head position

DO | W[N]

Table 2. Outputs from Neural Controller

The 7 output units are listed in table 2. Outputs 0 through 5 are used to
determine the locomotion behavior of AIBO. Whichever of these units has the
highest activation value is the type of step that AIBO takes. Unit 6 determines
the head position of AIBO. If the activation of this unit is greater than, or equal
to, 0 then ATBO’s head is moved to the forward position (-0.4 radians); otherwise
the head is moved to the down position (-0.9 radians).

4 Experimental Results

To test our simulator we use it to evolve a neural controller for ball-chasing.
Networks are recurrent neural networks with 12 inputs, 20 hidden units and 7
output units. and are evolved the same way as in [Hornby & Mirtich, 1999]. In
these experiments we use a population size of 60 individuals, with 60% recom-
bination, 40% mutation and an elitism of 2 individuals. Fitness is the average
score over 12 trials — for each trial the score is a function of the distance which
the ball is moved over a period of 21 (simulated) minutes.

population average ——
population best -+---
2000
LWL
1800 i s]
A
1600 | g <
e Poosgongt e opost e
, 1400 f 7 M«f]
T 08
8 1200 | ra
1000 | / 1
¢+<‘ ¢Q’)‘ﬁé
goo 1
600 - p % q
+ b
400 - iF 8
Li ¢]
200 L
0 ,

0 10 20 30 40 50 60 70 8 90 100
generation
Fig. 5. Graph of average fitness for the entire population and fitness of the best indi-

vidual, averaged over 6 evolutionary runs. Fitness is distance (cm) the ball is moved
over a 21minute (3000 time step) trial.

Figure 5 contains a graph plotting the average fitness of 6 evolutionary runs.
Individuals start with very poor ball chasing skills. After a few generations in-
dividuals are able to push the ball a few hundred centimeters over the course of
21 minutes. By the end of 100 generations individuals can push the ball more
than 1500cm.

Evolved individuals chased the ball in a variety of ways. Initially they would
turn until they could see the ball and move towards it. Some would push the
ball a little, then re-center on it. Others would give a hard push and, once they
lost sight of the ball, would then loop around until they spotted the ball again.
All controllers performed the behavior well. Figure 6 contains screen shots of a
chase sequence.

Individuals that were transferred to an actual AIBO were successful in chas-
ing a ball. As in the simulated world they generally avoided the wall and were
able to relocate the ball after it is moved to a different location in the world. Fig-
ure 7 shows pictures of an actual AIBO performing ball chasing with an evolved
neural network controller.

N Y B
1Y,
Y ‘o h

f.

Fig. 6. Ball chasing sequence on the simulator.

One difference between simulation and the real world was in the collisions
between the ball and the robot. In the simulator, collisions between the robot
and the ball are treated like a collision between a ball and a moving box. In the
real world, the robot has moving legs that cause a greater variety of results.

5 Summary

We described our simulator for AIBO. The simulator handled locomotion of the
robot, sensing of the digital camera and infrared distance sensor, and physical
dynamics between the objects in the world.

Using this simulator we evolved a neural-controller for ball chasing that suc-
cessfully transferred to AIBO. We noticed that collisions between the robot and
ball had different results in the real world than in the simulated world. This
did not affect ball chasing performance but suggests that evolving more com-
plex behaviors for AIBO to interact with a ball may require better modeling of
robot-ball collisions.

References

[Fujita & Kitano, 1998] Fujita, M. & Kitano, H. (1998). Development of an au-
tonomous quadruped robot for robot entertainment. Autonomous Robotics, 5:1-14.
[Gallagher & Beer, 1992] Gallagher, J. C. & Beer, R. D. (1992). A qualitative dynam-
ical analysis of evolved locomotion controllers. In Meyer, J.-A., Roitblat, H. L., &

Wilson, S. W. (Eds.), From Animals to Animats 2, pp. 71-80.

Fig. 7. Ball chasing sequence with an actual AIBO and an evolved neural network
controller.

[Gallagher et al., 1996] Gallagher, J. C., Beer, R. D., Espenschied, K. S., & Quinn,
R. D. (1996). Application of evolved locomotion controllers to a hexapod robot.
Robotics and Autonomous Systems, 19(1):95-103.

[Hornby et al., 1999] Hornby, G. S., Fujita, M., Takamura, S., Yamamoto, T., & Hana-
gata, O. (1999). Autonomous evolution of gaits with the sony quadruped robot. In
Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kauf-
mann.

[Hornby & Mirtich, 1999] Hornby, G. S. & Mirtich, B. (1999). Diffuse versus true
coevolution in a physics-based world. In Banzhaf, Daida, Eiben, Garzon, Honavar,
Jakiel, & Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation
Conference. Morgan Kaufmann.

[Jakobi, 1998] Jakobi, N. (1998). Minimal Simulations for Evolutionary Robotics. PhD
thesis, School of Cognitive and Computing Sciences, University of Sussex.

[Lund & Miglino, 1996] Lund, H. H. & Miglino, O. (1996). From simulated to real
robots. In Proceedings of IEEE 3rd International Conference on Evolutionary Com-
putation. IEEE Press.

[Michel, 1995] Michel, O. (1995). An artificial life approach for the synthesis of au-
tonomous agents. In Alliot, J., Lutton, E., Ronald, E., Schoenauer, M., & Snyers, D.
(Eds.), Proceedings of the European Conference on Artificial Evolution, pp. 220-231.
Springer-Verlag.

[Miglino et al., 1995] Miglino, O., Lund, H., & Nolfi, S. (1995). Evolving mobile robots
in simulated and real environments. Artificial Life, 2(4):417-434.

