Evolving Robust Gaits with AIBO

S. Takamura? J. Yokono®

G. S. Hornby!

!Computer Science Dept.
Brandeis University

Waltham, MA 02454

Abstract

An evolutionary algorithm s used to evolve gaits with
the Sony entertainment robot, AIBO. All processing is
handled by the robot’s on-board computer with individ-
uals evaluated using the robot’s hardware. By sculpt-
ing the experimental environment, we increase robust-
ness to different surface types and different AIBOs.
FEvolved gaits are faster than those created by hand.
Using this technique we evolve a gait used in the con-
sumer version of AIBO.

1 Introduction

Entertainment Robots must be fun to play with and
interesting to watch. With AIBO, locomotion gaits
are one of its most visible attributes. Previously [1],
an evolutionary algorithm (EA) was implemented on
ATBO for the automatic acquisition of gait parameters
for dynamic gaits. One finding was that the evolved
gaits tended to be fragile. They performed well on
the robot and carpet with which they were evolved,
but on a different surface type and also on different
ATBOs they would often perform poorly. This paper
presents work towards the automatic acquisition of ro-
bust gaits.

Three reasons for studying automatic acquisition of
gaits are for re-developing gaits for new robots, trans-
ferring gaits from one version of a robot to a new ver-
sion, and for finding gaits that would not have been
discovered by people. When moving from the pre-
AIBO, pet-type robot to AIBO, the hardware plat-
form was very different and the previously developed
gaits did not work. It was necessary to re-develop gaits
for the new robot. During the development of ATBO,
our lab created several prototypes. With each new
hardware version of AIBO, some gaits did not per-
form well. Adapting each pre-defined gait to a new
prototype can take several hours and is a boring task.
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Figure 1: The experimental environment.

Finally, to make AIBO more entertaining we are in-
terested in new behaviors for AIBO, such as new ways
for it to walk or run. In all these cases a method of
automatically creating, or adapting, gaits is a useful
tool.

A gait created for AIBO. a consumer product, must
be able to work well both on every ATBO built as well
as on a variety of surface types — it must be robust.
The gaits evolved in [1] tended to perform worse both
on carpet types different from that which they were
evolved on and on AIBOs different from which they
were evolved with. On a different carpet (or with a
different ATBO) the feet will often drag on the floor
causing the robot to trip or turn. This is because the
evolved gaits take shallow steps. In this paper we test
whether sculpting the landscape will result in gaits
that are more robust.

Gaits are evolved on two different surface types: a flat
surface and one with ridges. The flat surface is made
of carpet tiles similar to those used for Robocup and is
the same surface as the one on which the experiments
of [1] were performed. For the second surface type
we lie plastic poles on this carpet to make ridges over



which the robot must step (see figure 1). On this
second surface the EA must evolve gaits with high
steps to be able to move over the ridges and receive
good fitness scores. We find that gaits evolved on the
ridged surface have better overall performance on four
different surface types than gaits evolved on the flat
surface.

Another change for this work is we parameterize the
gait type and evolve it. There are three advantages to
this. It may be easier to evolve a trot or pace gait
starting from a less difficult gait. By evolving the
gait type we may find a gait with a better dynamic
load. Finally, evolving the gait type allows us to find
different types of gaits for AIBO.

For our problem of autonomous gait acquisition we
chose an evolutionary approach as it has been applied
to a variety of problems, achieving good results that
are both novel and natural looking. Examples of this
are Sims’ work in evolutionary art and in evolving
morphologies and controllers for simulated creatures
2] [3]

In addition to our work. evolutionary techniques have
been used for gait acquisition of a legged robot in sev-
eral other cases. Neural controllers were evolved for
a 6-legged robot in [4] and [5] and an 8-legged robot
in [6] and [7]. A binary string of on/off flags were
evolved for a nitinol-actuated, 6-legged robot in [8]. In
all cases the evolution produced static gaits for robots
with more than 4 legs and required human interven-
tion for evaluating the controllers.

Related to this work is the realization of dynamic gaits
on a quadruped in [9]. Their robot was able to run on
terrains with a small degree of irregularity. Unlike this
work, their robot is constrained on the pitch plane by
poles and the gaits are produced by a neural oscillator
constructed by hand.

Although not wused for acquisition of gaits, au-
tonomous EAs have been used to evolve other behav-
iors with real robots. In these cases the behaviors
evolved have been simple and the robots have had
few degrees of freedom with few sensors. Examples of
autonomously evolved behaviors are: forward, back-
ward and stopping behaviors with a wheeled robot in
[10]; homing navigation with a Khepera in [11]; and
pursuer-evader behaviors with Kheperas in [12]. None
of these behaviors would be particularly difficult to im-
plement by hand nor would they be difficult to evolve
in simulation (comparable behaviors have been suc-
cessfully transferred from simulation to physical robot
in [13]). In our case the gaits we evolve outperform
those created by hand. Using this technique we have

evolved a gait that moves at 900cm/min compared to
660cm/min for the fastest hand developed gait. Both
perform well on different robots and surfaces.

The following section describes the robot platform and
the locomotion module. Section 3 describes the evolu-
tionary algorithm and method by which gait parame-
ters are evolved. In sections 4 and 5 we present and
discuss the results of our experiments. We conclude
in section 6.

2 Locomotion Module

ATBO 1s a quadruped robot with 18 degrees of free-
dom and various sensors. A description of ATBO’s
hardware can be found in [14], which describes ATBO’s
precursor. In this section we describe the locomotion
module that controls how AIBO moves and the pa-
rameters which are evolved.

The legs are controlled by a locomotion module that
uses a vector of real-valued parameters to describe a
gait. This reduces the problem of developing a gait to
that of finding a set of parameters for the locomotion
module. In total, there are 61 real-valued parameters
used to define a gait for the locomotion module. The
search space is reduced to 20 parameters by setting
some parameters to fixed values (eg. setting body roll
orientation to 0°) and using the same value for multi-
ple parameters (eg. setting the swing time for each leg
to be the same). These 20 parameters are listed in ta-
ble 1. They specify the position and orientation of the
body. the swing path and rate of swinging of the legs,
the amplitude of oscillation of the body’s location and
orientation, as well as specifying the point in the gait
cycle when each leg swings. With a set of parameters,
the locomotion module moves ATBO in any specified
2D translation and rotation — although for our exper-
iments we test ATBO only on moving forward.

Two differences in the list of evolved parameters be-
tween [1] and this work are the removal of the gain
variation parameters and the addition of parameters
specifying relative swing times between legs. Gain
variation was removed as the new locomotion mod-
ule for ATBO did not support it. Previously, [1], the
times when each leg would swing were fixed. In this
way the type of gait (trot or pace) to be evolved was
predetermined. Advantages of allowing the gait type
to evolve are that it it might be easier to evolve a pace
or trot gait starting from a half-trot, half-crawl gait.
Second, a pure trot or pace gait may not be the best
gait for the robot. Allowing the gait type to evolve
may result in a better gait being found. Finally, con-



Table 1: Parameter List For A Gait

| parameter | unit | initial range |

body center x mm. 105 - 125
body center z mm. -10- 10
body pitch degrees -10- 10
posture center x mm. 0-20
all legs y mm. -5-15
front legs z mm. 10 - 30
rear legs z mm. -5-15
step length n.a. 60 - 100
swing height front mm. 25 - 45
swing height rear mm. 25 - 45
swing time ms. 460 - 540
swing mult. n.a. 3-5
ampl body x mm. -10- 10
ampl body y mm. -25--5
ampl body z mm. -20-0
ampl yaw degrees -10- 10
ampl pitch degrees -10- 10
ampl roll degrees -5-15
L-R n.a. 0.25-0.5
F-H n.a. 0.5-0.75

verting the gait type to evolvable parameters allows
for the discovery of new, and interesting gait types for

AIBO.

Relative swing times for the different legs are specified
as follows. Relative starting time for the swing of each
leg is specified by assigning a value in the range [0-1)
for each leg. This value specifies the point in the gait
cycle when a leg is to start swinging. For example, a
value of 0.0 indicates that the leg will start swing at
the beginning of a gait cycle and a value of 0.5 indi-
cates that the leg will start swinging halfway through
a gait cycle.

Two offset parameters are used to specify the relative
swing times of each leg. These parameters specify the
offset between left and right legs, L-R, and fore and
hind legs, F-H. The right foreleg is fixed to always start
swinging at 0.0; the left foreleg starts swinging at L-R;
the right hind-leg leg starts swinging at F-H; and the
left hind-leg starts swinging at L-R + F-H (this value
is adjusted to the range [0-1) by subtracting 1 if the
sum is greater than, or equal to, 1).

Table 2 displays the swing starting time for each leg
for different types of gaits. F-R and R-L values for
these gaits are shown in table 3.

Table 2: Swing Starting Times for Different Gaits

| Leg | Crawl | Trot | Pace | Skip |
right foreleg 0.0 0.0 0.0 0.0

left foreleg 0.5 0.5 0.5 0.0
right hind-leg | 0.75 0.5 0.0 0.5
left hind-leg 0.25 0.0 0.5 0.5

Table 3: Offset Values for Different Gaits

| Parameter | Crawl | Trot | Pace | Skip |

L-R 0.5 0.5 0.5 0.0
F-H 0.75 0.5 0.0 0.5

3 Evolutionary Method

Evolution takes place inside a pen, figure 1. At each
end of the pen there is a strip of colored cloth to mark
the center of that end. Using its on-board, digital cam-
era the robot turns until it is centered on one colored
strip of cloth. Once centered, the robot measures the
distance to the color strip with its infrared sensor and
proceeds to locomote for a fixed amount of time (7s for
these experiments). The robot stops either at the end
of this time or if it encounters a wall. Next the robot
pans its head to find the color strip and measures its
stopping distance. Using these two distances the robot
scores the tested gait parameters by calculating its av-
erage speed during the trial. An individual’s fitness is
the average of three trials.

To simplify optimizing both velocity and straightness
the score of a trial is the product of its velocity and
straightness scores (averaged over three trials). Veloc-
ity, v(), is the average velocity of the robot during the
trial. Straightness is a function of the angle between
the robot’s forward direction and the direction to the
target color strip, #, and the distance to the target
strip, (see figure 2). Before calculating the straight-
ness function, # is converted to a 0-1 measure of offset
by the function f(#). The straightness function, s(),
normalizes this value to account for the robot’s dis-
tance from the color strip — with the robot at a fixed
orientation # will be larger when the robot is closer to
the color strip. These functions are defined as:

score = v(dstart. dstop. time) X s(0, dsiop) (1)

d —d
”(dstart: dstop: tlme) = W (2)



stop(f(g) — 1) + 80 — 10f(9) .
0 (3)
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For the function s(), 80 and 10 are used as the con-
stants because they are the distance sensor’s maxi-
mum and minimum measurable distances. If the robot
cannot find the color strip it is assumed that the
robot’s gait caused it to turn so sharply that it can-
not pan its head far enough to face the color strip. In
this case the individual receives a score of 0 for the
trial, the same score it would receive if 8 is 90°. An
individual’s fitness, used in the selection phase, is the
average score over three trials.

color strip

Figure 2: Measuring straightness.

A steady-state evolutionary algorithm (EA) running
on-board the robot is used to evolve the parameters
by optimizing fitness. The EA works by creating an
initial population of different parameters to test. Af-
ter evaluating the initial population new individuals
are created by selecting better individuals from the
population from which to create new individuals and
inserting them into the population by replacing indi-
viduals with poor fitness.

The initial population is created with a uniform dis-
tribution over a given search range. Table 1 lists the
twenty real-valued parameters used as genes and their
initial search range. This initial range was determined
from experience in hand developing gaits. Once indi-
viduals are created they are evaluated. With a dy-
namic gait many parameter configurations result in
the robot falling over. To generate an initial popula-
tion of non-falling individuals, sets of parameters in
the initial population that cause the robot to fall are
replaced with new, randomly generated individuals.

When all individuals in the initial population are non-
falling, evolution begins.

A tournament selection is used to select individuals
for parents and the individuals to be replaced. First
the algorithm decides whether to perform recombina-
tion or mutation. Then a number of individuals is
randomly selected to be in the tournament. For re-
combination, 3 individuals are randomly selected and
for mutation 2 individuals are randomly selected. The
parent(s) is the individual(s) with higher fitness, and
the individual with the lowest fitness is replaced by
the offspring of the parent(s).

New individuals are created through recombination
and mutation. Recombination takes two individuals
as parents (pl and p2) and creates one child individual
(¢). Each gene of the child is given a value according
to the equation, ¢; = pl; + a;(pl; — p2;). Here, ¢; is
the ith gene of the child individual; pl; and p2; are
the 7th gene of parents pl and p2; and «; is a random
number in the range of -1 to 1. Mutation takes one
parent individual and perturbs a few genes (1 to 8)
by a small amount to generate a child individual. The
genes to be mutated are selected randomly and the
mutated value 1s. ¢; = p; + é;m;: where é; 1s a uniform
random value in the range of -1 to 1. Values for m;
are set to 5% of a parameter’s initial search range.

4 Results

Experiments were run on two types of surfaces, a flat
surface and one with ridges. Three runs of evolution
were performed on each surface type. The best indi-
vidual evolved for each surface type was then run on
different surfaces to see whether evolution on a surface
with ridges produces better gaits.
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Figure 3: Evolution on a flat surface.

Each evolutionary run was for 500 evaluations, which



best <
average

500 |
450 | evod?
400 R
350 | f*/

300 osd

250 |
200 -
150 |
100 ;
sof

fitness

0 50 100 150 200 250 300 350 400 450 500
evaluation

Figure 4: Evolution on a ridged surface.

took approximately 25 hours. Figure 3 contains a
graph showing the results of evolution on a flat carpet
and figure 4 contains a graph showing the results of
evolution on a carpet with ridges. Each graph plots
the highest fitness in the population and the average
fitness of the population, averaged over three runs.
Figure 5 shows an evolved gait.

Figure 5: Gait sequence for an evolved gait.

Table 4: Evolved Gaits Tested on Different Surfaces

| | Flat Surface | Ridged Surface |

office carpet | 387 cm/min. | 600 cm/min.
Robocup 369 cm/min. | 598 cm/min.
tatami 369 cm/min. | 576 cm/min.
wood 387 cm/min. | 443 cm/min.

To compare robustness between individuals evolved
on the two different carpet types we ran speed trials
of the best individuals on a variety of surfaces using
3 different AIBOs. Table 4 lists the results of these
trials. On all surfaces we tried, the individual evolved
on the surface with ridges outperformed the individual
evolved on the flat surface.

5 Discussion

Individuals evolved with the ridged surface were better
than those evolved on the flat surface. Averaged over
three different evolutionary runs individuals evolved
on the ridged surface had higher fitness scores. Indi-
viduals evolved on the ridged surface also moved faster
on the different surface types tested and with the 3
different AIBOs we tested with.

Evolved gaits were halfway between a crawl and a trot
gait. Typical sets of values evolved for L-R and F-H
were: (0.477, 0.686) and (0.452, 0.628). These would
produce starting swing times for (right foreleg, left
foreleg, right hind-leg, left hind-leg) of: (0.0, 0.477,
0.686, 0.163) and (0.0, 0.452, 0.628, 0.08).

Evolving with the ridged surface produced individuals
with higher steps. In the early generations of these
experiments, most individuals would drag their feet
along the carpet. With the ridged surface, individuals
with low steps would have a foot catch on a pole and
fall over. These individuals would receive a low fit-
ness score and be replaced by individuals with higher
fitness. By the end of the evolutionary run individu-
als evolved steps high enough to move over the poles.
In contrast, individuals evolved on the flat surface re-
ceived no such pressure to use high steps. Compar-
isons between individuals from the two different types
showed that the individuals evolved on the ridged sur-
face generally had higher steps.

There were two problems we experienced with the
poles. When moving over the ridged surface, AIBO
would often step on top of a pole. Sometimes this
would cause it to turn and change direction. This set
of parameters would receive a poor score even though
it may have been a good individual. Another prob-
lem was in pole placement. With too many poles
ATBO would step on poles too frequently. With too
few poles, or with poorly place poles, AIBO will have
little interaction with them and the poles would not
influence evolution. We settled on using six poles (as
shown in figure 1). With this configuration both the
front and rear legs need to move over at least two poles
in a typical trial.

6 Conclusion

In this paper we presented our work in the autonomous
evolution of dynamic gaits. We evolved vectors of 20
real-value parameters for our locomotion module. The
evolutionary algorithm for this was run on-board the
robot. AIBO evaluated the fitness for each individual



without assistance by the experimenter. Using this
technique we evolved gaits on both a smooth carpet
and a carpet with ridges. We found that evolution on
a carpet with ridges had better robustness to trans-
ference to other AIBOs and other carpets, see table 4.

These experiments produced slower results than pre-
vious trials. One reason may have been that we based
our initial search space on a crawl gait — a typical crawl
gait for AIBO is approximately 450cm/min. Com-
pared to this our results from evolution with a ridged
surface are much faster. Another reason for slower re-
sults may be the increased search range we use. For
most parameters in table 1 the search range is more
than twice as large as that used in [1]. Using a com-
parable number of trials to search a much large space
we would not expect to achieve as good results.

By using the results of one trial to reduce the search
space in a second trial better gaits can be evolved. In
separate experiments using a ridged surface we evolved
a trot-like gait for the consumer version of AIBO. Here
we ran experiments first with a large initial search
space. Using the best individual from the first run
as the basis for a second evolutionary run we evolved
a trot gait that moves at 900cm/min. This gait is
more robust than the first trot gait evolved for AIBO
and is faster than the fastest hand-developed gait of
660cm/min.
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