
University of Alberta

Library Release Form

Name of Author: Gregory Scott Hornby

Title of Thesis: The Recombination Operator, its Correlation to the Fitness Landscape
and Search Performance

Degree: Masters of Science

Year this Degree Granted: 1996

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scienti�c research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author's prior written permission.

.
Gregory Scott Hornby
242 S. Thulin St.
Campbell River, B.C.
Canada, V9W 2K1

Date:

University of Alberta

The Recombination Operator, its Correlation to the Fitness Landscape and

Search Performance

by

Gregory Scott Hornby

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful�llment
of the requirements for the degree of Masters of Science.

Department of Computing Science

Edmonton, Alberta
Fall 1996

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled The Recombination Operator,

its Correlation to the Fitness Landscape and Search Performance submitted by
Gregory Scott Hornby in partial ful�llment of the requirements for the degree of Masters

of Science.

.

Joseph C. Culberson

.

Francis Yeh

.

Ehab Elmallah

Date:

Abstract

A common misconception in evolutionary algorithms (EAs) is that one recombination opera-

tor is universally better than another. In fact, a recombination operator will only get better

performance on a function if it incorporates some knowledge about that function{called

tuning it to the function's �tness landscape. In this thesis we identify three ways in which

a recombination operator can be tuned to a real-valued landscape: distance, directional-

ity, and distributional bias. We empirically show that a directionally tuned recombination

operator gives better search performance than an untuned operator. We also show that a

recombination operator that is tuned to one landscape can be mis-tuned to a similar land-

scape. In addition we �nd several surprises that contradict our initial intuition but yield

to further analysis. For example one interesting observation is a decrease in the number of

individuals on the global optimum. We show this to be caused by the attractive pull of a

larger group of individuals on a peak with a larger basin of attraction.

Acknowledgements

I would like to thank: my supervisor, Joe Culberson, and my thesis committee for their

help with this thesis; Paul Ferry, for his help with the graphics routines for GAVIN; Mark

Green and John Buchanan for giving me access to the Graphics lab; and Hong Zhang, for

giving me access to the SGI in the Robotics lab. Finally, I would like to thank my parents

for their help and support.

Contents

1 Introduction 1

2 Background 4
2.1 De�nitions . 4
2.2 Recombination . 6

2.2.1 Genotypic Recombination Operators 6
2.2.2 Phenotypic Recombination Methods 9

2.3 Related Research . 11

3 Experimental Design and Methodology 15
3.1 Overview of Experiments . 16
3.2 Landscapes . 17

3.2.1 Royal Road Landscape . 17
3.2.2 Interpolation Landscape . 19
3.2.3 Extrapolation Landscape . 21
3.2.4 Random Peaks Landscape . 22
3.2.5 One-peak Landscape . 25

3.3 Recombination Operators . 25
3.3.1 Headless Chicken Recombination . 25
3.3.2 Interpolating and Extrapolating Recombination 25
3.3.3 Rotational Unbiased Recombination 26

3.4 The Evolutionary Algorithm Used for the Experiments 27
3.5 Performance and Convergence Graphs . 28
3.6 Outline of Experiments . 29

4 GAVIN 31
4.1 Introduction . 31
4.2 Overview . 32
4.3 The Visualization Library . 33
4.4 Using GAVIN . 35
4.5 Future Enhancements . 40

5 Experimental Results 41
5.1 Linearly Related Genes . 41
5.2 Non-linearly Related Genes . 44

5.2.1 RIE vs. RHC . 44
5.2.2 Comparing Against Random-Peaks 47
5.2.3 One-peak Landscape . 55

5.3 Rotating the Landscape . 57
5.3.1 Rotating the Line of Peaks . 57
5.3.2 Rotational Unbiased Recombination 69

5.4 Summary . 75

6 Conclusions and Future Work 78
6.1 Conclusions . 78
6.2 Future Work . 79

Bibliography 81

A Introduction to Evolutionary Algorithms 85
A.1 The General Evolutionary Algorithm . 86

A.1.1 Terminology . 86
A.1.2 Canonical Evolutionary Algorithm 86

A.2 Formal Description of an EA . 87
A.2.1 Initialization . 88
A.2.2 Evaluation . 88
A.2.3 Selection . 89
A.2.4 Stopping Criteria . 92
A.2.5 Replacement . 92
A.2.6 Variation . 93

A.3 Speci�c Evolutionary Algorithms . 94
A.3.1 Genetic Algorithms . 94
A.3.2 Evolutionary Strategies . 95
A.3.3 Steady-state EAs . 95
A.3.4 Parallel Evolutionary Algorithms . 96

B GAVIN Visualization Library 97
B.1 Data Model . 97
B.2 GAVIN Interface . 98
B.3 GAVIN Commands . 99

B.3.1 int gav InitializeGL(int x, int y, int color, char *name) 99
B.3.2 int gav DrawLandscapeArray(void) 99
B.3.3 int gav make color map(int xdim, int ydim) 99
B.3.4 int gav DrawPopulation(double *pPop, int *pColor, int numberIndi-

viduals) . 100
B.3.5 Rotation Commands . 100
B.3.6 int gav InitializeLandscape(double *pLandscape, int xsize, int ysize) 100
B.3.7 int gav InitializePopLocation(int numIndivids, int numColors) . . . 101
B.3.8 int gav SetPopLocation(double *pIndividLoc, int *pColor) 101
B.3.9 void gav DrawScene() . 101

B.4 Example Program . 101

List of Figures

2.1 1{point crossover. 7
2.2 N{point crossover with 6 crossover points. 7
2.3 Crossover on a smooth peak. 10
2.4 With parameter exchanging crossover, o�spring o1 and o2 are less �t than

their parents, p1 and p2. 10
2.5 Blend crossover's (BLX{�) line for potential o�spring. 11
2.6 Eshelman and Sha�er's test set: f-incline, f-V and f-cli�. 13

3.1 Real-valued royal road landscape. 18
3.2 Interpolating on a non-smooth peak. 19
3.3 An interpolation landscape. 20
3.4 Extrapolating on a non-smooth peak. 22
3.5 An extrapolation landscape. 23
3.6 A random-peaks landscape. 24
3.7 RIE : Range for recombination on a gene. 26
3.8 RIE : Range for recombination on an individual. 26
3.9 RRU . 27

4.1 1-D, 2-D and 3-D meshes. 34
4.2 Colour assignments on a 1-D and 2-D topography. 34
4.3 Rotational-unbiased recombination (RRU) with deterministic crowding on

the royal road landscape. 35
4.4 Nine independent sub-populations searching a landscape; screen shots are at

10 generation intervals. 37
4.5 Strictly extrapolating recombination on the extrapolation landscape. 38
4.6 Strictly interpolating recombination on the extrapolation landscape. 39

5.1 RI compared against the headless chicken test on the 2-gene RRV landscape. 41
5.2 Convergences on the 2-gene RRV landscape. 42
5.3 RIE compared against RHC with the dimensions varied for di�erent road

widths. Test function is the RRV landscape with ridges randomly located. . 43
5.4 RIE compared against RHC on the interpolation (left) and extrapolation

(right) landscapes. 46
5.5 RIE compared against RHC on the interpolation (left) and extrapolation

(right) landscapes. 47
5.6 RIE compared against RHC on the random-peaks landscape. 48
5.7 Search on the interpolation (left) and extrapolation (right) landscapes com-

pared against the random-peaks landscape. 49
5.8 RIE on the interpolation (left) and extrapolation (right) landscapes compared

against its performance on the random peaks landscape. 50
5.9 Convergences with RIE; graphs are (from left to right): interpolation, ran-

dom peaks and extrapolation landscapes. 51
5.10 Convergences with RIE; graphs are (from left to right): interpolation, ran-

dom peaks and extrapolation landscapes. 52
5.11 RIE on the interpolation (left) and extrapolation (right) compared against

RIE on the one-peak landscape. 56

5.12 RIE compared against RHC on the interpolation (left) and extrapolation
(right) landscapes with the line of peaks at 45o. 58

5.13 Convergences on the interpolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o. 59

5.14 Convergences on the interpolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o. 60

5.15 Convergences on the interpolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o. 61

5.16 Convergences on the extrapolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o. 62

5.17 Convergences on the extrapolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o. 63

5.18 Convergences on the extrapolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o. 64

5.19 Peak labels for computing probabilities. 64
5.20 RIE compared against RHC on the interpolation (left) and extrapolation

(right) landscapes with the line at 45o. 66
5.21 RIE compared against RHC on the interpolation (left) and extrapolation

(right) landscapes with peak radii adjusted with the number of dimensions
and the line at 45o. 67

5.22 RIE (left graph) and RRU (right graph) on the interpolation landscape where
the line of peaks is rotated. 69

5.23 RRU compared against RHC on the interpolation (left) and extrapolation
(right) landscapes with peak radii adjusted with the number of dimensions
and the line at 45o. 71

5.24 RRU compared against RHC on the random-peaks landscape with peak radii
adjusted with the number of dimensions. 72

5.25 Convergences on interpolation landscape; graphs on the left have the line
parallel to an axis, on the right the line is at 45o. 73

5.26 Convergences on interpolation landscape; graphs on the left have the line
parallel to an axis, on the right the line is at 45o. 74

A.1 An individual. 86

List of Tables

3.1 Summary of experiments. 29

5.1 Summary of results for the royal road landscape. 44
5.2 Summary of results for comparing RIE against RHC 47
5.3 Expected proportion of the population on the high peak after one generation

for p = 0:1. 53
5.4 Expected proportion of the population on the high peak after one generation

for p = 0:2. 54
5.5 Summary of results for the random-peaks landscape. 55
5.6 Summary of results for the one-peak landscape. 57
5.7 Probability of �nding the high peak on the interpolation landscape on n genes. 66
5.8 Summary of results when the line of peaks is rotated. 68
5.9 Probability of �nding the high peak on the interpolation landscape on d genes. 70
5.10 Summary of results for RRU . 75

Chapter 1

Introduction

Evolutionary algorithms, EAs, are a family of stochastic search and optimization strategies.

One trait that distinguishes EAs from similar search strategies (such as hill-climbing and

simulated annealing) is that they maintain a population of search points. Search consists

of starting with some initial population, selecting promising points in the population and

from these promising points a new population is generated. This cycle proceeds until the

search is halted and the best point found is returned. Applications for which evolutionary

algorithms have been used include optimization of discrete and numerical problems, neural

networks, classi�er systems and scheduling problems.

The idea for using evolutionary techniques was developed independently by di�erent

researchers. Others have modi�ed the existing types to come up with new ones. Currently

the family of evolutionary algorithms consists of Evolutionary Programming (EP), Evolu-

tionary Strategies (ESs), Genetic Algorithms (GAs), Genetic Programming (GP), Parallel

Evolutionary Algorithms (PEAs) and Steady{State EAs.

An evolutionary algorithm is made up of several phases. First an initial population

is created through an initialization process. The EA then iterates through a process of:

evaluation, selection and replacement on the population until a halting criteria is reached.

Each iteration through these four phases is called a generation. The evaluation (or �tness)

function assigns a �tness value to each individual in the population. The selection phase

consists of picking individuals, based on their �tness value, to be used in the creation of

new individuals for the next generation's population. These selected individuals are called

parents and the individuals created are o�spring. O�spring are created by applying variation

operators { the two most common being mutation and recombination { to parents. The

replacement method then determines which individuals in the old population are replaced

by the newly generated o�spring. The search stops when the halting criteria is met.

1

Typically an EA manipulates its population by selecting the more promising individuals

as parents (usually either the best half, or by selecting stochastically on �tness). The

o�spring are generated through a combination of mutation, which takes one parent and

modi�es it slightly; and recombination, which takes two parents and combines them to

create new individuals. Search is controlled by the selection of individuals for parents, by

the variation operators and by the representation strategy.

There are di�erent ways in which an EA can be tuned to get better performance on a

given problem. Most often di�erent representation, selection, and/or variation strategies

are used. In this thesis we look at one of the main variation strategies, the recombination

operator.

Not surprisingly there are many comparisons between the di�erent recombination opera-

tors. After running experiments on several test functions one operator frequently stands out

as being better than the others. It is then often concluded that this operator is universally

better.

This belief that one recombination operator is universally better than another is a com-

mon misconception in the �eld of evolutionary algorithms. Under the appropriate model

the No Free Lunch theorems for search [49] state that when averaged over the set of all func-

tions all algorithms perform equally well (this is more formally described in section 2.3). To

achieve better than average performance a search algorithm must incorporate some knowl-

edge about the problem it is searching. This says that a recombination operator will be

useful only if it uses some knowledge about the problem.

To tune a recombination operator to a problem's �tness landscape it is necessary to

determine the features of that landscape. While there has been much research into recom-

bination operators on genotypic encodings (see for example [11], [40] and [5]) visualizing

the landscapes for genotypic EAs is very di�cult. Thus we use a phenotypic representation

as it is easier to identify the features of the landscape and tailor the recombination operator

to them (both [38] and [27] also �nd the phenotypic space easier to work with).

On a phenotypic landscape there are at least three ways in which a recombination

operator can be tuned to a landscape: directionality, using knowledge about the landscape

to limit the directions in which o�spring are located from the parents; distance, the amount

moved can be controlled by the location of the parents and assumptions about the landscape;

and distribution bias, rather than using a uniform distribution along the range in which

o�spring are located the distribution can be biased (such as biased towards points in between

the two parents, centered around each parent, or based on the relative �tness of the parents).

2

In this thesis we concentrate on directionality. We show that increasing the degree to which

a recombination operator is directionally tuned to the landscape features results in more

successful exploitation and better search performance. We also show that predicting the

directional ability of operators is not intuitive. Even simple changes to the orientation of

the landscape can have an unexpected impact on search performance.

This thesis is organized as follows. Chapter 2 contains some de�nitions and background

on evolutionary algorithms and recombination operators. Chapter 3 is an overview of the

experiments. We state the objectives of our experiments and how these will show our

thesis. Chapter 4 describes G.A.V.IN., the research tool implemented to assist in this

thesis. In chapter 5 we present our experimental results. These results show recombination

operators can take advantage of features in the landscape (such as the location of local

optima) in the search for the global optima and that tailoring a recombination operator to

a given landscape will improve the performance of the EA on that landscape. We �nd that

the degree of improvement is based on how well tuned the operator is to features of the

landscape and the ease with which these features are found. We also �nd that what appears

to be a well tuned operator is in fact worse than randomly moving about the landscape.

This shows that a recombination operator tuned to one landscape may not be well tuned to

a similar landscape. Chapter 6 provides a conclusion and gives suggestions for future work.

3

Chapter 2

Background

In this chapter we review the terminology of the �eld, recombination operators and research

related to this thesis. For a more in-depth description of EAs the reader is referred to

appendix A, [16], [33], and [2].

2.1 De�nitions

Evolutionary algorithms are a search and optimization technique. To search a problem

domain an evolutionary algorithm processes a population. A population is a collection of

individuals. Each individual is made up of the same number of genes, where each gene

represents a variable in the problem being optimized. The value contained by a gene is

called an allele.

In describing how an evolutionary algorithm works one of the most commonly used

terms is schema. A schema is an equivalence relation between members of a population.

An individual belongs to a given schema if it has the speci�ed value for each of its genes.

Alternatively to specifying a particular value for a gene a schema can allow any value to be

assigned to the gene { usually represented by the `*' character. For example one schema

for a binary alphabet is [10 � �11]. The set of individuals that are instances of this schema

is f[100011]; [100111]; [101011]; [101111]g. Thus for a given alphabet A on individuals of

length l a schema H is a member of,

H = fA [f�ggl (2.1)

Two measures of a schema H are order and de�ning length. The order of a schema,

o(H), is the number of gene's which have a speci�ed value: o(10 � �11) = 4. A schema's

de�ning length, �(H), is the distance between the �rst and the last speci�ed gene in the

schema: �(10 � �11) = 5; �(�10 � ��) = 1. This is equal to the number of crossover points

4

between the �rst and the last speci�ed genes. A building-block is then de�ned as a short,

low-order schema.

Originally schema were de�ned for discrete alphabets { as this term comes from the GA

community { and later extended by Wright ([50]) to real-valued encodings which he called

interval schema.

Also of interest is monitoring schema through the variation phase. A schema is exploited,

or survives, if it exists in one of the parents and one of the o�spring.

In maintaining a population of search points one tradeo� is diversity versus convergence.

If the points are kept spread apart more of the domain is covered, although not in great

detail allowing for small spikes to go unnoticed. Alternatively, keeping individuals close

together reduces the chances of spikes going unnoticed in a given region but at the cost of

some regions not being examined. At early stages of the search the population tends to

be well distributed about the domain. Selection and replacement of individuals pushes the

population such that individuals tend to become more similar ([19]). This happens even in

the absence of a di�erence in �tnesses and is known as genetic drift. The degree to which

selection picks better individuals and less �t individuals die o� is known as selective pressure.

Most often the change of diversity in the population is known as convergence { a term also

used to describe convergence to the global optima. Competing against convergence of the

population through selective pressure is the diversi�cation of the population by the variation

operators. If selective pressure is very high then premature convergence of the population

to a local optima, or premature convergence, can occur. Premature convergence is when

the population concentrates to a sub-domain that does not contain the global optima and

is not likely to generate individuals outside this sub-domain. If convergence occurs too

rapidly, many useful alleles are lost before being thoroughly explored. This can result in

the population converging on a local maximum instead of the global one.

For the visualization of the search space we use Wright's adaptive �tness landscape

metaphor ([51]). A (�tness) landscape is de�ned by a domain, a distance metric between

points in the domain and a �tness function for points in the domain. Such a landscape

allows us to de�ne: local optima, a point in the domain higher than its neighbours; basin

of attraction, the neighborhood of points for which a hill climber will reach a given local

optima; and (�tness) peak, the part of a domain that is a basin of attraction for a local

optima.

5

2.2 Recombination

In evolutionary algorithms, recombination is one of the two most common operators used

to create new individuals (the other being mutation). Some researchers (see [24] and [16])

believe it to be the more powerful search operator. It is thought that the power of the

recombination operator comes from its communication between individuals ([11], [40], and

[28]).

It is not settled that recombination is better than mutation. The evolutionary program-

ming community uses strictly mutation with no recombination. In [13], Fogel and Atmar

argue that mutation is the more powerful operator.

One way of changing the EA to better suit a problem is to change the operators. Over

the years many di�erent recombination operators have been developed and used. The most

common features among recombination operators are that they take two individuals (called

parents) and create two new individuals (called o�spring) by mixing the values of their

genes.

Recombination operators can be classi�ed into two di�erent types, genotypic recombina-

tion and phenotypic recombination. A genotypic representation is one where each individual

has the encoding for each variable of a solution and the EA processes the encoding. For

example, a string for a real-value, multi-variable problem might consist of a sequence of 1s

and 0s; where groups of 1s and 0s are the binary encoding of some real value. In a pheno-

typic representation the individuals store the values for the variables and the EA processes

these values. In the phenotypic representation for the above problem a string would consist

of a sequence of real values (and not binary encodings of these values). Genetic algorithms

work predominantly on encodings of values. Thus GA recombination operators are usually

genotypic. The alternative to processing encodings of the solution is to process the actual

solution { move about in the domain instead of an encoding of the domain. Evolutionary

strategies, and some work in genetic algorithms, operate on real values and not encodings

of these values. From this work we �nd phenotypic recombination operators. In this section

we will review �rst genotypic then phenotypic recombination operators.

2.2.1 Genotypic Recombination Operators

In the family of EAs, genetic algorithms most commonly work in the genotype space.

Typical recombination operators are:

6

One-point Crossover (1X)

One-point crossover (1X) is the initial recombination operator for GAs developed by Holland

([24]). 1X picks a random point between the genes, before which the �rst child gets the

alleles from the �rst parent and after this point the �rst child receives the alleles from the

second parent; the second child receives its alleles from the other parent (see �gure 2.1).

.

.

. . .

. . .

. . .

Parents Offspring

Crossover point

Figure 2.1: 1{point crossover.

In examining 1X, Eshelman et al. ([11]) found that it su�ers from severe positional bias.

Schema involving genes that are far apart are very likely to be disrupted whereas schema

whose genes are close together are likely to survive. One side a�ect is called spurious corre-

lation; short clusters of non-interacting genes will tend to be passed to the same o�spring.

If the alleles for some genes in an individual are good and result in the individual having a

high �tness, then the alleles for the other genes will also propagate through the population.

Multi-point Crossover (MX)

A method of reducing the positional bias found in 1X is to use multiple crossover points

(�gure 2.2). 2-point crossover (2X) was �rst studied by Cavicchio ([7]) and later multi-point

crossover schemes were examined by De Jong ([10]). Since these studies 2-point crossover

has become the most commonly used crossover operator in the GA community.

Parents Offspring

Figure 2.2: N{point crossover with 6 crossover points.

7

Segmented Crossover (SX)

A variation on MX is segmented crossover, developed by Eshelman et al. [11]. In this

method it is randomly determined whether the genetic material should be taken from the

current parent or whether to switch to the other parent.

for i = 1 to L

if (random val < switch probability)

swap(child1, child2)

child1[i] = parent1[i]

child2[i] = parent2[i]

Uniform crossover (UX)

Uniform crossover was �rst used by Ackley in [1]. With this operator, for each gene, a child

has equal probability of receiving the allele from either parent with the other child receiving

the other allele. Syswerda ([42]) found that UX has a lower survival average than 1X or 2X

but as the length of a schema gets longer UX is better at combining schema.

8i; c1i =

(
p1i; �i = 0
p2i; �i = 1

c2i =

(
p2i; �i = 0
p1i; �i = 1

�i = f0j1g (2.2)

A more general version of UX, parameterized uniform crossover (PUX), was developed

by Spears and De Jong, [41]. Rather than picking which parent to receive an allele from

with equal probability there is a bias towards one parent (see 2.3).

8i; c1i =

(
p1i; �i < P�
p2i; �i � P�

c2i =

(
p2i; �i < P�
p1i; �i � P�

�i; P� 2 [0 : : : 1] (2.3)

A study of the di�erent crossover operators ([11]) found that as the number of crossover

points increase the positional bias of the operator decreases. The tradeo� is that the

distributional bias increases. Distributional bias is the extent that the amount of genetic

material expected to be exchanged is clumped around some value, or values, instead of being

uniformly distributed between 1 and (L� 1)=2 (where L is the length of an individual). It

is not clear that a uniform distribution is better than some bias.

Other Crossover Operators and Variations

All of the above crossover operators, with the exception of UX, su�er from some degree of

positional bias. To remove the positional bias Holland ([24]) developed an inversion operator

8

that reorders the genes. This operator is no longer in common use. Shu�e crossover

(developed by Eshelman et al. [11]) incorporates inversion into a crossover operator by

reordering the genes before crossover takes place.

One method of using the entire population to generate a new individual is bit-based

simulated crossover (BSC) developed by Syswerda ([43]). This is not a true recombination

operator in that it does not mix alleles between parents. Instead, BSC uses the frequency

with which each allele appears in the population to stochastically create a new individual.

2.2.2 Phenotypic Recombination Methods

Evolutionary strategies have always searched the phenotypic space. As a result they have

several phenotypic recombination operators. In the last ten years the use of real-valued

encodings has grown in the GA community, resulting in the development of phenotypic

operators. First we will present the recombination operators in use with ESs. Then we will

review the development of phenotypic recombination operators in GAs.

Evolutionary strategies have several di�erent recombination operators ([3], [2])

For every xi 2 x

xi = pa;i or pb;i discrete (2.4)

xi = (pa;i + pb;i)=2 intermediate (2.5)

xi = �pa;i + (1� �)pb;i 0 � � � 1 generalized intermediate (2.6)

xi = pbi;i panmictic discrete (2.7)

xi = (pa;i + pbi;i)=2 panmictic intermediate (2.8)

xi = �pa;i + (1� �)pbi;i 0 � � � 1 panmictic generalized intermediate (2.9)

For these operators pa and pb are the parent individuals and x is an o�spring. pa;i, pb;i

and xi refer to the ith gene of the individual. Operators 2.5 and 2.6 are intended to take

advantage of the case when one parent is on one side of the peak and the other parent

is on the other side of the peak (�gure 2.3). One disadvantage of a strictly interpolating

recombination operator is that areas outside the populations enclosure cannot be reached.

Operators 2.7, 2.8 and 2.9 are panmictic recombination operators; the �rst parent, pa, is

the same for assigning all gene values while a new second parent, pbi , is selected for each

gene. With panmictic recombination the entire population's gene pool is available for the

creation of each new individual.

Early GA recombination operators for real-valued encodings did not modify the genes

(also called parameters) but exchanged them (for example [13]) { similar to discrete recom-

9

X1

X2

O

X1

extrapolation of X1 and X2 -> O

X2

O

interpolation of X1 and X2 -> O

Figure 2.3: Crossover on a smooth peak.

bination, equation 2.4. In e�ect they operated like genotypic recombination operators where

crossover points could fall only on parameter boundaries. One of the �rst recombination

operators in the GA community to do more than parameter swapping is Davis' averaging

crossover ([9]) which averages some of the parameter values (similar to intermediate recom-

bination, equation 2.5). This is a less general operator than Radcli�e's at crossover ([37])

in which the range of values of the o�spring range uniformly between that of the parents

(equivalent to generalized intermediate recombination, equation 2.6).

There is another case that is not mentioned (right diagram of �gure 2.3) where both

parents are on the same side of the peak. When both parents are on the same side of a

peak then extrapolating beyond one parent can lead to the global optima. The �nal two

operators we look at have this capability.

o2

o1

p
1

p
2

Figure 2.4: With parameter exchanging crossover, o�spring o1 and o2 are less �t than their
parents, p1 and p2.

The previous two operators work on each gene independently. In [50] Wright examined

recombination operators for a real-valued encoding and developed one that treats individuals

as points in an euclidean space. He developed linear crossover to get around the problem

where strict exchange of alleles produced individuals of lower �tness (�gure 2.4). Linear

10

crossover takes the values from p1 and p2 and the resulting o�spring receive the best of:

1

2
p1 +

1

2
p2

3
2
p1 �

1
2
p2

1

2
p1 +

3

2
p2 (2.10)

The latter two have the potential to extrapolate from their parents' positions unlike any of

the previous phenotypic recombination operators mentioned so far.

p
1

p
2

I

I
I

Figure 2.5: Blend crossover's (BLX{�) line for potential o�spring.

Building on Wright's work ([50]), Eshelman et al. ([12]) de�ne a recombination operator

called blend crossover, BLX-�. BLX-� has similarities to both linear and at crossover.

Like linear crossover BLX-� treats individuals as points and creates o�spring on the line

through p1 and p2 and will sometimes extrapolate beyond one parent. Like at crossover

these o�spring are selected with uniform probability across the range. With BLX-� o�spring

take their values from the line through p1 and p2 with equal probability along the interval

from �I beyond p1 to �I beyond p2 (see �gure 2.5). The ability to extrapolate allows an EA

using only the recombination operator to reach points outside the population's enclosure

{ something not possible with strictly interpolating recombination. Another advantage of

this operator is that the balance between convergence and divergence can be controlled by

changing the value of �.

In addition to these recombination operators there are ones created for speci�c prob-

lems or encodings. For example there are a large number of recombination operators for

the traveling salesman problem. Other examples of phenotypic encodings are where the

individuals are programs, such as in genetic programming, [30], or �nite state machines as

in evolutionary programming, [14]

2.3 Related Research

This section reviews some research related to this thesis. First we mention some results

where non-traditional encodings and operators have improved the performance of the EA.

This shows that as well as using di�erent operators another way of tuning an EA to a

problem is to change the encoding. Next Eshelman and Scha�er's work [12] is described.

The two directionally tuned operators used in this thesis are modi�cations of their BLX-�

11

operator and this thesis can be though of as an extension of their study of this operator.

Finally we cover Wolpart and Macready's No Free Lunch theorems for search { which

provide theoretical limitations on any operator.

Even though the majority of work in EAs has used a binary encoding and operators

there are those who have used non-binary representations with non-traditional operators

and found them to work better. In [38], Radcli�e argues that the conventional binary

operators and encoding are ill-suited to many problems. Comparisons between EAs on

real-valued functions have generally shown the algorithm using the real-valued encoding

gives better results (see [27], [50] and [12]). Graph problems, such as the TSP, are another

class of problems for which non-binary encodings have been found to work better (for

example Whitley et al.'s genetic edge recombination [48], Laszewski's partition swapping

crossover [44], and Homaifar et al.'s adjacency matrix representation and matrix crossover

[25]). Other classes of problems for which alternative operators and encodings are used

include evolving computer code and neural network trees (both can use Koza's sub-tree

swap [30]). Each of these operators (and encodings) has been tailored for a speci�c class of

problems, each with its own assumptions about the problem space.

In tailoring recombination operators to speci�c problems it is better to work in the phe-

notype space than the genotype space. Both Radcli�e ([38]) and Janikow and Michalewicz

([27]) arrive at this conclusion. With a phenotypic encoding the representation space is the

same as the problem space making it easier to design problem speci�c operators.

Eshelman and Scha�er ([12]) examine EAs with a real-valued encoding to determine

when they fail to search well. In their paper BLX-0.0 and BLX-0.5 are compared against

each other and against some binary encoded EAs. The initial test functions consist of:

f-needles, f-incline, f-V and f-cli� (the last three are shown in �gure 2.6) on which they are

minimizing. They �nd that the recombination operators for a binary encoding outperform

BLX on the f-needles problem (a problem intended for a binary encoding) but are outper-

formed by BLX on the other three problems (real value problems) { with the exception of

BLX-0.0 on f-incline where BLX-0.0 fails because it does not extrapolate.

BLX and the binary crossover operators are then tried on a test suite of 14 functions.

They �nd that BLX-0.5 is better than the binary recombination operators on functions that

are smooth and continuous with a real-valued representation. BLX-0.5 is outperformed on

those functions which involve building blocks of bits or where the binary representation

places the global optima a few bits away from the local optima. In this latter case shifting

the locations of the local and global optima reduces the performance of the binary encoded

12

Figure 2.6: Eshelman and Sha�er's test set: f-incline, f-V and f-cli�.

EAs to that of BLX-0.5.

In [49] Wolpert and Macready present what they call the No Free Lunch theorems for

search, or NFL theorems. The essence of their paper is that all search algorithms perform

equally well when averaged over a uniform distribution of all functions. Corollaries to these

theorems are: on average no search algorithm outperforms random search; to achieve better

than random search on some subset of all problems the search algorithm must incorporate

some knowledge of these problems; and improved performance on a subset of all problems

comes at the cost of reduced performance on the other problems.

The model in which the NFL theorems hold makes the following assumptions. First,

the average performance of an algorithm is that algorithm's performance averaged over a

uniform distribution of all functions, f : X ! R. Second, this performance is measured

as a function of the histogram of all values seen. Finally, the algorithm must eventually

generate and evaluate all points in the domain.

In their work it is shown that when all functions are equally likely to be chosen the

probability of generating a given histogram is independent of the algorithm used. The

signi�cance of this �nding is that the average performance over all problems is independent

of the algorithm. Similarly, if we know something about our landscape but make algorithm

a independent of this knowledge then NFL applies and we cannot expect a to do better than

a random search. To achieve better than random performance the search algorithm must

incorporate knowledge about the landscape. It is also shown that if a and b are two search

algorithms where the average performance of a on S (S � �, � the set of all problems) is

better than the average performance of b on S then the average performance of b on �nS is

better than the average performance of a on �nS.

When using EAs the NFL theorems are often disregarded. Most users take their favorite

EA and apply it as is to a given problem. They use the same operators (usually 2-pt

crossover or intermediate recombination) without any regard to the problem being searched.

13

General claims on recombination operators are made based on experiments comparing a

few recombination operators on a handful of problems. Some of these claims conclude that

operator a is better than operator b. Such claims go against a corollary of the NFL theorems:

averaged over all problems all variation operators will perform equally well (assuming that

the variation operators do not violate the assumptions that the NFL theorems make).

Improved performance of algorithm (or operator) a can only be achieved on some subset

S of all problems. Incorporating problem speci�c knowledge into a to create a0 will result

in a0 outperforming a on subset S (on average), but then a will on average outperform a0

on problems not in S. Getting better performance with an operator that has been modi�ed

for a problem has been reported in several papers (including [27], [45] and [38]).

In this section we reviewed work on improving EA performance. Initial work showed

that by tuning the EA (either by choice of representation or variation operators) better

performance on a given problem or class of problems could be achieved. Later the NFL

theorems showed that this improved performance on some problems comes at the cost of

reduced performance on other problems.

14

Chapter 3

Experimental Design and

Methodology

For an EA to perform better than the average search algorithm (speci�cally, better than

random search) the recombination operator must have some knowledge about the �tness

landscape built into it. In chapter 1 we identi�ed three properties by which knowledge about

a landscape can be incorporated into a recombination operator for a real-valued landscape.

By changing these properties for a given recombination operator to improve the performance

on a function we say the operator is tuned to the function. The degree to which this tuning

a�ects the performance of the EA is a�ected by both the problem's �tness landscape and

the methods chosen for the di�erent phases of the EA.

In this thesis we examine how an operator's directional tuning to a landscape a�ects

search performance. We compare operators with di�erent degrees of directional tuning

to landscapes with di�erent directional properties to their features. We �nd that a more

directionally tuned operator gives better search performance than a less directionally tuned

operator. On one landscape we �nd that an operator we believe to be directionally tuned

to a landscape gives worse performance than an operator with no directional tuning. Thus

it may not be intuitive if an operator is tuned to a landscape; and an operator tuned to one

landscape can be mis-tuned to a similar one.

This chapter is organized as follows. Section 3.1 is an overview of our experiments. In

section 3.2 we describe the di�erent landscapes used in our experiments. In section 3.3 we

describe the di�erent recombination operators we use. Section 3.4 de�nes the EA used in

our experiments. Section 3.5 describes the graphs used for analyzing our results. Finally,

section 3.6 is an outline of the experiments performed in chapter 5.

15

3.1 Overview of Experiments

After selection has taken place we have a collection of parents that are paired up for re-

combination. How should pairs of good points be used to create new points? Ackley ([1])

states,

If we are given two good points, we can guess that the reason they are both good

is that they are lying at di�erent points on a ridge in the space. Under such an

assumption, it would be rational to search on the line through the points, both

interpolating between them and extrapolating beyond them, in hopes of �nding

even better points elsewhere on the presumed ridge.

In our examination of directionality we study interpolation and extrapolation.

The relationships between the di�erent phases of an EA are very complex. When the

test landscape is also complex it is di�cult to determine the cause of unexpected behaviours

in the population. The use of simple landscapes has been advocated by Forrest and Mitchell

([15]) and Eshelman et al. ([12]). The intent is not to create a challenging problem, rather

it is to create simple landscapes for which it is easy to determine why a given behaviour

occurs. Also, in designing these functions we wanted simple landscapes for which it would

be easy to tune operators. These landscapes also scale up in the number of genes that are

used. As we are interested only in the recombination operator no mutation is used.

There are �ve classes of landscapes we run experiments on. In the �rst class, a royal

road function ([15]), the genes are linearly related (the genes contribute independently to

an individual's �tness). This landscape has smooth ridges on which it is easy to move

along and �nd the global optima. With the next two classes of landscapes we examine

the case when the genes are non-linearly related (the genes do not contribute indepen-

dently to the individual's �tness){the interpolation and extrapolation landscapes. Again

the global optima is found by moving along a ridge but now it is a ridge of peaks. On these

two landscapes we compare performance against two other landscapes which have no such

ridges{the random-peaks and one-peak landscapes. Finally we rotate the interpolation and

extrapolation landscapes to see how this a�ects search performance.

The recombination operators we use di�er in the degree to which they are directionally

tuned to these landscapes. The untuned operator, RHC, has no knowledge of landscape

features built into it. It creates o�spring in random directions. The second recombination

operator, RIE, does not assume any linkage between the genes. RIE is good for moving

along ridges parallel to an axis. Our third recombination operator is RRU . Like RIE it has

16

the assumption that the landscape consists of ridges built into it. RRU is also directionally

tuned to moving along these ridges regardless of their orientation on the landscape.

3.2 Landscapes

Landscapes can be generalized into ones where the genes contribute independently to an

individual's �tness and landscapes where the genes are not independent. For our �rst

landscape we want one in which the genes contribute to an individual's �tness independently

(linearly). That is the �tness of the individual I is the sum of the �tnesses for each gene

(f(I) = f1(I1) + f2(I2) + : : :fn(In)). We use a royal road function which consists of ridges

that intersect at the global optimum. For the non-linear landscapes we use two classes of

landscape, one for interpolation and one for extrapolation. For the non-linear landscapes

we again want the global optima to be found along a ridge of local optima but the function

must be non-linear. We use a ridge of peaks where the global optima is found either in the

middle of the ridge (the interpolation landscape) or at one end of the ridge (the extrapolation

landscape).

As a basis of comparison we use two additional landscapes. The �rst such landscape, the

random-peaks landscape, has all the local optima as in the interpolation and extrapolation

landscapes but these local optima are not in line with the global optima. Instead the local

optima are randomly placed on the landscape. The second control landscape is the one-

peak landscape. This landscape has no ridge of peaks to move along, just the peak with

the global optima.

3.2.1 Royal Road Landscape

It is generally believed that EAs and recombination work best when the relation between

the genes is linear ([28], [40] and [39]). One class of functions designed explicitly to examine

an EA's ability to optimize independent genes is Forrest and Mitchell's royal road functions

[15]. The �rst such function, R1, is for binary individuals of length 64. This function has 8

building blocks, one for each of the sets of genes: 1-8, 9-16, 17-24, . . . , 57-64. For each of

these sets, if the value of all the genes is 1 then the individual's �tness is increased by 8. If

an individual has none of these building blocks its �tness is 0.

As we are working in a phenotypic space we cannot use the royal road functions as

de�ned. Instead we de�ne our own real-valued royal road function, RRV. The properties we

want to maintain are that values o� the roads are 0 and individuals on more than one road

have a �tness equal to the sum of the �tnesses for being on each. Rather than having all

17

Figure 3.1: Real-valued royal road landscape.

18

locations on the road equally good, we want the �tness to depend on the distance from the

center of the road { low �tness near the edge and highest �tness at the center. One function

that satis�es these properties assigns �tness based on the square root of the distance from

the center,

f =
X
i

r
1

2
wi � jci � gij;

1
2
wi � jci � gij (3.1)

where wi is the width of the road, ci is the center of the road and gi is the domain value

of the ith gene in the individual. As the domain is the unit hypercube, none of wi, ci or gi

exceed 1. Figure 3.1 shows this landscape on two dimensions.

RRV is linear { that is each gene can be optimized independently { and it contains

ridges along which the global optima can be found. An instance of RRV is generated by

randomly locating the center of each road (one road for each gene) such that no part of the

road falls outside the domain.

3.2.2 Interpolation Landscape

One way in which to generate a new point from two good ones is to pick a point between

them and interpolate as in �gure 2.3. This �gure shows a smooth peak, one easily climbed

by a hill-climbing algorithm. A more challenging landscape is one where the peak is not

smooth, as in �gure 3.2. On such a landscape it is likely that di�erent sub-populations of

a multi-deme EA will converge to di�erent local optima (as X1 and X2 are in the �gure).

A

A

X2

O

X1

interpolation of X1 and X2 -> O

Figure 3.2: Interpolating on a non-smooth peak.

We expect that an interpolating recombination operator can use local optima in the

search for the global optima even when there is a non-linear relationship between the genes.

The interpolation landscape, �gure 3.3, consists of �ve peaks along a line. A peak is a

19

Figure 3.3: An interpolation landscape.

20

hyper-spherical (circle in two dimensions) region of the domain. The height of a point in

the domain is determined by its distance from a peak. If a point is outside the radius of all

peaks it is assigned a �tness value of 0 (in the �gures of the landscapes this �tness value

is the height of the point). Points within the radius of a peak are given a �tness based on

their distance from the center.

In assigning a �tness value to a point on the peak we want the following properties.

First, we use a hyper-sphere so that the peak is symmetrical in all dimensions. Height must

depend on distance to the center with the maximum height at the center. The maximum

height must be inversely proportional to the radius of the peak (for our functions it is a

non-linear relation). If we divide the distance from the center by r2 then all peaks will have

the same radius, yet if we divide the distance from the center by r3 then the height of a

peak is 1
r which is too strong. Thus we chose to divide the distance from the center by r2:5,

f = (r2i � d2i)=r
2:5
i (3.2)

In equation 3.2, di is the Euclidean distance from the point to the center of peak i and ri

is the radius of peak i. If a point falls within the radius of more than one peak its �tness

value is the greater of the values generated by equation 3.2.

In our interpolation landscape we use four short peaks so that the line going through

the centers of the peaks is well represented yet not too crowded. All the short peaks are the

same height as we want each of the short peaks to be equally attractive to the population.

These short peaks have large basins of attraction, thus the population should �nd and climb

them easily. The global optima can then be found by interpolating between individuals from

peaks on either side of it.

An instance of the interpolation landscape is created by locating the centers of all the

peaks at equal intervals along a line of length 1 (this is the longest line that will �t in the

domain at all angles) with the high peak in the middle. These locations are perturbed by

a small amount in the range of [-0.05, 0.05]. This perturbation is done so as to spread the

peaks out along the line while keeping them from overlapping each other. The line of peaks

is then rotated by a speci�ed angle, A, and centered in the domain. For each dimension the

angle between the line and it's projection onto the other dimension's is Ao.

3.2.3 Extrapolation Landscape

Another way in which a new point can be generated from two good ones is by extrapolating

beyond one of them, as shown in �gure 2.3. As with interpolating, extrapolating from

21

A

A

X1

O

X2

extrapolation of X1 and X2 -> O

Figure 3.4: Extrapolating on a non-smooth peak.

individuals on local optima can lead to a better point in the domain, see �gure 3.4. The

extrapolation landscape, �gure 3.5, contains �ve peaks along a line. Four peaks have the

same height and radius and are short, the �fth peak contains the global optima and is

located at one end of the line.

An instance of the extrapolation landscape is created by locating the centers of all the

peaks at equal intervals along a line of length 1 with the high peak at one end. These

locations are perturbed by a small amount in the range of [-0.05, 0.05]. The line of peaks

is then rotated by a speci�ed angle, A, and centered in the domain. For each dimension

beyond the �rst the line is rotated to A degrees from the axis of the �rst dimension.

3.2.4 Random Peaks Landscape

To compare the performance of the EA on the previous two landscapes we need one in which

there is no ridge through the short peaks and the high peak. For this we use a landscape

where the highest peak is located in the center of the search space, and four short peaks

are randomly located around it, see �gure 3.6. If we had used two short peaks instead of

four the likelihood that they would fall nearly in line with the high peak is large. By using

four short peaks the chances of them all falling on a line is greatly reduced.

An instance of the random-peaks landscape is created by locating the high peak in

the center of the domain and then randomly placing the short peaks. As with the other

landscapes we do not want large portions of the peaks to fall outside the domain so we

restrict their centers from falling in the band 0.1 from the edge. As with the interpolation

and extrapolation landscapes we do not want the high peak to be encompassed by a short

peak, in which case the population after �nding the short peak would have an easy time

climbing it to the global optimum. To reduce this e�ect any short peak whose center falls

22

Figure 3.5: An extrapolation landscape.

23

Figure 3.6: A random-peaks landscape.

24

within the radius of the high peak is moved away such that its center no longer falls within

the radius of the high peak.

3.2.5 One-peak Landscape

Another way of showing that the search algorithm is using the ridge of peaks to �nd the

global optima is to compare its performance against a landscape with no local optima but

only a global optima. The one-peak landscape contains one high peak and no short peaks.

An instance of the one-peak landscape is created by placing its peak at the center of the

domain.

3.3 Recombination Operators

In this section we de�ne the three recombination operators used in this thesis.

3.3.1 Headless Chicken Recombination

Recombination between two individuals is an attempt to �nd a better point through us-

ing/combining information from two individuals. One test to see if the recombination

operator is doing more than blindly moving the population about the landscape is the

headless chicken test. The headless chicken test was developed by Jones [29] to see if a

given recombination operator is using information from the two parent individuals to create

better o�spring than would be created by a large mutation.

Jones' headless chicken operator, RHC , uses the recombination operator which it is

compared against. Instead of both parents being individuals selected from the population

one individual is a randomly generated (with uniform distribution) point from the domain.

As we are comparing against RIE and RRU our RHC uses these two operators (depending

on which is being compared against RHC) with one parent selected from the population

and the other parent being a randomly generated individual. Since this second parent is a

randomly generated individual the o�spring will be created in a random direction. Thus

RHC has no directional tuning to any landscape.

3.3.2 Interpolating and Extrapolating Recombination

The interpolating and extrapolating recombination operator we use, RIE-�, is similar to

Radcli�e's at crossover ([37]) and generalized intermediate recombination. RIE-� interpo-

lates or extrapolates for each gene independently. This causes it to be directionally tuned

to moving along ridges parallel to an axis.

25

G

G1 G2

Figure 3.7: RIE : Range for recombination on a gene.

RIE-� uses two parents to create two o�spring. The value of the ith gene for the two

o�spring is generated by,

xi = ai + �1(ai � bi) 0 � �1 � � (3.3)

yi = bi + �2(bi � ai) 0 � �2 � � (3.4)

where ai and bi are the values for the ith gene of parents 1 and 2, xi and yi are the values

given to the ith gene of o�spring 1 and 2 and �1 and �2 are independent random variables

with a uniform distribution. Figure 3.7 shows the range in which a value for a gene will be

generated with � = 1. Figure 3.8 shows the range in which o�spring will be created when

individuals have two genes.

P2

P1

x
y

Figure 3.8: RIE : Range for recombination on an individual.

It is possible that the range for extrapolation will fall outside the domain. If the value

for an o�spring's gene is outside the domain it is assigned the value of the nearest boundary.

For example if the domain is [0-1] and an o�spring is given a value of -0.5 it is changed to

0.

3.3.3 Rotational Unbiased Recombination

Since RIE interpolates and extrapolates each gene independently we expect better perfor-

mance on landscapes whose ridges are aligned with one of the axes. A variation of BLX-�

([12]) is rotational unbiased recombination, RRU . RRU interpolates and extrapolates along

the line passing through the two parents (see �gure 3.9) and has the same range as BLX-�

26

p
1

p
2

I
I

I

Figure 3.9: RRU .

but o�spring 1 never extrapolates beyond the �rst parent and o�spring 2 never extrapo-

lates beyond the second parent. RRU is directionally tuned to moving along a straight ridge

regardless of the angle. RRU should perform as well as RIE when the ridges are parallel to

an axis. In cases where the ridge is not parallel to an axis we expect RRU to outperform

RIE.

3.4 The Evolutionary Algorithm Used for the Experiments

The evolutionary algorithm used in the following experiments consists of (see appendix A

for notation):

P : Our population consists of 50 individuals.

E: We use the double oating-point representation.

I: Initially we randomly generate individuals uniformly about the domain by assigning

each gene of an individual a random number in the range 0 to 1 with a uniform

distribution.

O: For each EA used in the experiments it is speci�ed which recombination operator is

used (one of RIE, RHC or RRU). No mutation operators are used.

S: Individuals are selected through a combination of exponential ranking and stochastic

remainder selection. Exponential ranking is �rst used to scale the �tness values, with

which we use c = 0:03 { a standard setting ([33]) that was veri�ed to work well after

some experimentation. This reduces the chances of premature convergence by pre-

venting an exceptionally �t individual from dominating the selection phase. Parents

are then selected using stochastic remainder selection, one of the most commonly used

selection methods ([2]). We also use elitism to copy the best individual to the next

generation.

R: The new generation consists entirely of o�spring created from the previous generation.

27

T: We halt the search after 50 generations.

3.5 Performance and Convergence Graphs

The graphs in this chapter fall into two classes: performance graphs, which plot the perfor-

mance as a parameter is varied; and convergence graphs, measuring the convergence across

the generations. Each point in a performance graph is the average of the best point found

after 50 generations for 100 trials. The total number of trials run for a performance graph

varies from 1000 (when varying the number of dimensions) up to 19000 (when varying the

radii of the short peaks). Convergence graphs are generated by running trials and record-

ing the value of the convergence measure at each generation for each trial. Each point on

the graph is the average value of all the trials. So that a comparable number of trials are

run for convergence graphs as for performance graphs, the number of trials run for each

convergence graph is 1000.

A performance graph plots the fraction of optimum found of the best individual at the

end of a run for a given parameter setting. Fraction of optimum is calculated by taking the

�tness of the best individual in the �nal population and dividing it by the global optimum.

In all landscapes we know the value of the global optimum { on the royal road landscape

it is at the center of all the roads, on the peaks landscapes it is the center of the peak with

the smallest radius. As elitism is always used the best individual in the �nal generation is

the same as the best individual ever found throughout the course of the search.

On performance graphs where the radius of some peak is varied a line plotting the ratio

of the heights of the short peaks to the high peak is included. Comparing the performance

of an EA relative to this line shows how well it searches: the degree to which the EA's

performance lies above this line is an indicator of how often the EA �nds the high peak. As

the radius increases a peak's area increases exponentially faster than its height. Since the

probability of �nding a peak is based on its basin of attraction (area) the performance of

an EA may not change at the same rate as the low=high ratio.

To assist in understanding what the population is doing while it is searching we use �ve

convergence measures. The �rst is a measure of concentration of the population. It is an

upper bound on the volume of the population calculated by taking the distance between

the minimum and maximum value of each gene and multiplying these distances together.

The second measure is the minimum distance from an individual in the population to

the maximum point in the domain. With the third and fourth measures we monitor the

concentration of the population onto peaks. The third measure is a count of the number of

28

individuals that are within the radius of some peak in the landscape, and the fourth measure

is a count of the number of individuals on the highest peak in the landscape. Finally, as

two of our landscapes consist of a line of peaks, the �fth measure is the average distance of

the population from the line through the center of the peaks. The random peaks landscape

has no such line of peaks; there we determine the least squares line through the population

and �nd the average distance to it.

3.6 Outline of Experiments

This section is an outline of the experiments performed in chapter 5. Table 3.1 contains a

summary.

Operators Landscapes

linear landscapes

RIE vs. RHC royal road

non-linear landscapes

RIE vs. RHC interpolation

RIE vs. RHC extrapolation

RIE vs. RHC random-peaks

RIE interpolation vs. random-peaks

RIE extrapolation vs. random-peaks

RIE interpolation vs. one-peak

RIE extrapolation vs. one-peak

rotated non-linear landscapes

RIE vs. RHC rotated interpolation

RIE vs. RHC rotated extrapolation

RRU vs. RHC rotated interpolation

RRU vs. RHC rotated extrapolation

RIE vs. RRU rotated interpolation

RIE vs. RRU rotated extrapolation

RRU vs. RHC random-peaks

Table 3.1: Summary of experiments.

First we compare the performance of RIE against that of RHC on the royal-road land-

scape. The royal-road landscape has smooth ridges along which the global optima is located.

RIE is directionally tuned to moving along such ridges so it should perform better than

RHC .

Next we compare RIE against RHC on the interpolation and extrapolation landscapes.

As RIE is directionally tuned to interpolating and extrapolating and RHC is not, we expect

that RIE will get better performance. On the random-peaks landscape RIE interpolating

29

and extrapolating assumptions do not hold, so it should not perform as well on this land-

scape as on the interpolation and extrapolation landscapes. In contrast, RRU 's performance

should remain constant.

RIE's directional tuning operates on each gene independently. This is good for moving

along ridges parallel to an axis, but not as good for moving along ridges at some angle to

the axes. If the landscape is rotated we expect its performance to change. We compare

RIE to RHC on the rotated interpolation and extrapolation landscapes.

Finally we try RRU{an interpolating and extrapolating recombination operator that is

directionally tuned to moving along ridges regardless of the ridge's angle. We compare RRU

against RHC and RIE on the interpolation and extrapolation landscapes and expect it to

perform better than both. Also, we expect the performance of RRU to remain constant for

all angles of the line of peaks.

30

Chapter 4

GAVIN

4.1 Introduction

In studying evolutionary algorithms one problem is determining how the di�erent phases in-

teract { there are various di�erent methods for each phase of an EA (initialization, selection,

variation, replacement and halting) { and how di�erent sub-population con�gurations of a

parallel evolutionary algorithm a�ect the search. The standard statistical and convergence

methods for understanding how the population is moving do not provide enough informa-

tion. The statistical measures can give information such as how good the best individual is

or the average �tness in the population but some information is lost on how the �tness values

are distributed among individuals in the population and how the distribution changes. The

convergence measures give individuals' locations relative to each other but not in relation

to the landscape. Both of these are poor at showing how multiple sub-populations interact.

Through computer visualization the search process can be graphically displayed. The user

sees exactly how the population is moving on the �tness landscape and how individuals

from di�erent sub-populations are interacting.

Most of the public domain EA software packages available for UNIX workstations have

the capability for generating statistical and convergence graphs for the population. Of

these some software packages have the ability to run PEAs (either actual or simulated), for

example:

GAlib: a C++ library of objects for an evolutionary algorithm. Most variations are

available, or custom methods can be added. Parallelization is possible with PVM

(over a network or with sub-populations on the same CPU) using the island model.

DGenesis: a distributed package based on John Grefenstette's GENESIS ([21]). This

program runs on a network of UNIX workstations using Berkeley sockets for commu-

31

nication. The user is able to set the sub-population topology, migration interval and

rate as well as options available on Genesis 5.0.

PGAPack: an evolutionary algorithm library o�ering most common choices for se-

lection and variation operators. The library also supports parallel sub-populations,

either on a single processor, a parallel computer or a workstation network.

Of the software packages available for UNIX workstations none we are aware of have the

capability to graphically display the population searching the �tness landscape. A complete

listing of available software (and instructions for downloading them) can be found in part 5

of the comp.ai.genetic FAQ ([22]).

As none of these packages used graphics to display information about the search I

developed GAVIN.

4.2 Overview

GAVIN (Genetic Algorithm Visualization and INteraction) was built by myself in collab-

oration with the University of Alberta's computer graphics research group. This tool is

valuable because it shows how the population is moving, which sub-population individuals

belong to, and displays the structure of the landscape. Being able to see how the popula-

tion is moving allows one to get an intuitive feel for how the EA searches under di�erent

con�gurations. Knowing which sub-population individuals belong to shows how individuals

in di�erent population structures behave and interact. With the landscape displayed on

screen its features can be identi�ed. Once a landscape's features are known recombination

operators can be designed to make use of them. It would be di�cult to gain as good an

understanding of the EA and the �tness landscape without a visualization tool such as

GAVIN.

GAVIN consists of two independent C libraries: an EA population processing library

and a visualization library (the latter uses the SGI Graphic's Library, GL). Functions in

both libraries are used through an application program. Each library is independent of

the other so the exchange of information from the population processing library to the

visualization library is handled by the application program. One advantage of the library

independence is that a di�erent EA library can be used with the visualization library.

The EA library provides the user with most variations on the canonical evolutionary

algorithm. These include:

�tness processing: linear scaling, linear and exponential ranking and unprocessed.

32

selection: select all, n best, remainder stochastic with replacement and roulette wheel.

replacement: replace all, replace if better than parent, replace parent stochastically.

population structures: island model, multi-deme model and neighborhood model.

representation: binary (with multiple levels of Gray-coding) and real-valued.

variation operators: mutation and recombination (2-point, uniform, and various real-

valued ones).

Descriptions of these di�erent methods for each phase can be found in appendix A and sec-

tion 2.2. In addition there are many test functions available and several di�erent statistical

measures.

4.3 The Visualization Library

In designing the visualization library there are two qualities it had to have. First, the

graphics must display the population's movement on the �tness landscape. Second, the

display should show the sub-population topology (if one exists) and it must be possible

to determine which sub-population an individual belongs to. One method of drawing the

�tness landscape is a contour map; but this does not fully convey all of a landscape's nuances

or structure. More commonly used (in papers to display a single generation) is a wire-frame

drawing of the landscape with the population. On complex landscapes it can be di�cult to

understand the resulting tangle of lines. Our visualization library uses a solid surface with

brightness to indicate height. The drawback to a solid surface is that some features can

be hidden behind others. To alleviate this problem the library includes functions to rotate

the landscape about all three axes. Individuals are drawn as small cubes and after each

generation their locations are updated, showing the user how the population is moving.

Watching the population of a PEA is not useful for determining sub-population interac-

tion unless the graphics also provide information about an individual's sub-population. Our

second goal was to �nd a way such that individuals from di�erent sub-populations could

be easily distinguished. An individual has two traits { shape and colour. We chose to use

colour to signify which sub-population an individual belongs to.

Depending on the population model used there can be restrictions on which migrations

between sub-populations. Generally the model used is dictated by the hardware. One of the

more common models is the [rectangular] mesh. A 1-D mesh is a line of processing elements

33

2-D1-D 3-D

Figure 4.1: 1-D, 2-D and 3-D meshes.

(PEs) each connected to its two neighbors, a 2-D mesh is a number of adjacent 1-D meshes

with adjacent PEs connected to each other, a 3-D mesh is a stack of 2-D meshes, etc.

(see �gure 4.1). The corresponding PEA has a sub-population on each PE with migration

restricted to adjacent sub-populations.

GAVIN's visualization library can colour sub-populations with a 1-D or 2-D mesh topol-

ogy. Colours are selected by varying HSV values. The HSV colour model (left drawing in

�gure 4.2) is a distortion of the RGB cube into a cone with coordinates hue, saturation and

value. Going around the HSV cone varies hue, value { the colour's intensity { varies along

the line through the cone's axis, and saturation { the amount of white { is the distance to

the value axis. With a 1-D mesh topology colours are selected by varying the hue and with

a 2-D mesh topology both hue and saturation are varied.

hue

value

saturation

black

white
red

green

blue

Colour assignments with 8

sub-populations in 1-D.

Colour assignments with 8x5

sub-populations in 2-D.

HSV colour model.

Figure 4.2: Colour assignments on a 1-D and 2-D topography.

Figure 4.2 shows how the colours are selected for the 1-D and 2-D mesh topologies. The

34

middle diagram is the top of the HSV cone with lines along the circle indicating the hues

chosen for a 1-D mesh topology with 8 sub-populations. The right diagram is also the top

of the HSV cone; intersections show the hue and saturation values for an 8�5 2-D mesh

topology.

4.4 Using GAVIN

Figure 4.3: Rotational-unbiased recombination (RRU) with deterministic crowding on the
royal road landscape.

35

The visualization of EA search is an invaluable aid in learning about EAs. For example

one unexpected behavior was noticed while trying di�erent con�gurations on the royal road

function (see section 3.2.1). Using one recombination operator (RRU , a variation on BSC-1

described in section 3.3.3) with deterministic crowding (described in section A.2.5) it was

noticed that the population was grouping on top of a ridge and would not move along

it. This behaviour is shown in the series of screen shots in �gure 4.3. With a di�erent

replacement method (such as stochastic deterministic crowding) the population did not get

stuck but moved along the ridge to the global optimum (see the screen shots in �gure 3.1).

On the royal road landscape the only way to move along a ridge is by extrapolating away

from the parents. But in extrapolating from the parents the o�spring were located farther

from the center of the road than their parents. As a result their �tness was lower so the

they did not replace their parents. When the replacement method is changed to stochastic

deterministic crowding the population is able to move along the ridge and �nd the global

optimum.

Convergence measures show the population converging in both cases and performance

measures show that one EA seldom �nds the global optimum while the other nearly always

does. Neither give any indication of why. With GAVIN it can be seen that the population

of one EA moves along the ridge to the global optimum whereas the population under the

other EA does not. This relation between the replacement method, recombination operator

and the resulting behavior of the population came as a result of being able to observe the

population on a three dimensional landscape. On a landscape of only two dimensions such

complex relationships might not be noticeable.

Other behaviours can be seen with GAVIN. The screen shots in �gure 4.4 show nine

independent sub-populations searching a landscape. With GAVIN it is easy to see that

the individuals in each sub-population converge to one peak and each sub-population tends

to converge to a di�erent part of the domain. Figures 4.5, 4.6 and 3.5 show how search

progresses under di�erent recombination operators. In �gure 4.5 the recombination operator

extrapolates away from the parents and it can be seen that the population moves to the edges

of the landscape (with one individual kept on a peak in the middle by elitism). Figure 4.6

shows a recombination operator that interpolates between the parents. Here the population

quickly converges to a local optimum. Finally in �gure 3.5 we see a recombination operator

that can both interpolate and extrapolate. It does not converge as fast as the strictly

interpolating recombination operator nor does it end up spread out along the edges as with

the strictly extrapolating recombination operator. In addition to observing the e�ects of

36

Figure 4.4: Nine independent sub-populations searching a landscape; screen shots are at 10
generation intervals.

37

di�erent recombination operators the mutation operator can be used, the selective pressure

can be varied and di�erent selection and replacement methods can be used. Once an

interesting behavior has been observed a more formal set of tests can be devised to determine

(or verify) its cause. Alternatively GAVIN can be used to assist in generating plausible

hypotheses to explain experimental results.

Figure 4.5: Strictly extrapolating recombination on the extrapolation landscape.

38

Figure 4.6: Strictly interpolating recombination on the extrapolation landscape.

39

4.5 Future Enhancements

The next stage in the development of GAVIN is the addition of an interaction library. This

will be a graphical user interface allowing the user to con�gure the EA and interact with

the search. By using a mouse the user could select individuals for manipulation { move

them to another part of the landscape, delete them, or use them to create o�spring { or

change the parameters while the search is in progress. In addition we would like to be able

to use colour to show which individuals are selected for parents and then show the o�spring

created by each set of parents.

40

Chapter 5

Experimental Results

5.1 Linearly Related Genes

We start our experiments by showing that a directionally tuned operator searches better

than a non-directionally tuned operator. To show this we run RIE on the real-valued royal

road function (RRV), our easiest landscape because the relationship amongst the genes is

linear, and compare it against an operator that does not have any directional tuning to

the landscape, RHC . RIE interpolates and extrapolates from the parent points so it should

move along the roads and �nd the global optimum. As the roads become wider and easier

to �nd RIE 's performance should improve. RHC does not use features of the landscape like

RIE, but with wider roads the population should converge to them faster and then �nd the

global optimum faster.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

fra
ct

io
n

of
 o

pt
im

um

road width

RIE
RHC

Figure 5.1: RI compared against the headless chicken test on the 2-gene RRV landscape.

41

Figure 5.1 contains a graph plotting the performance of RIE and RHC with varying road

widths on the 2-gene RRV landscape. This graph shows that both operators are improving

their performance as the width increases with RIE improving faster than RHC . In fact,

after a road width of 0.03 RIE appears to always �nd the global optimum. Next we will

look at the convergence graphs on this landscape. What we expect to �nd is that RIE is

converging onto the roads more so than RHC; resulting in RIE putting more individuals on

the global optimum (on all roads) than is RHC .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

v
o

lu
m

e

generation

RIE narrow
RIE medium

RIE wide
RHC narrow

RHC wide

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50

m
in

.
d

is
t.

 f
ro

m
 m

a
x

generation

RIE narrow
RIE medium

RIE wide
RHC narrow

RHC wide

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u

m
b

e
r

o
n

 a
 r

o
a

d

generation

RIE narrow
RIE medium

RIE wide
RHC narrow

RHC wide

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u

m
b

e
r

o
n

 a
ll
 r

o
a

d
s

generation

RIE narrow
RIE medium

RIE wide
RHC narrow

RHC wide

Figure 5.2: Convergences on the 2-gene RRV landscape.

42

The convergence graphs (�gure 5.2) plot four di�erent convergence measures for RIE

and RHC on the 2-gene RRV landscape. For di�erent road widths narrow, medium and

wide correspond to 0.02, 0.05 and 0.10 respectively. From these graphs we can see that RIE

has di�culties in �nding the narrow roads, width 0:02. With a population of 50 individuals

we expect only 1 individual to be on a given road (2

100
50 = 1) { similar to what Forrest and

Mitchell had on their royal road functions ([15]). They attributed the poor performance in

�nding the global optimum to sampling errors and premature convergence. As the roads get

wider they are easier to �nd so the initial population will have individuals on more roads,

explaining why RIE and RHC perform better on wider roads.

The convergence graphs also show that RIE is converging to the roads and into a smaller

volume as the search progresses; RHC is maintaining a constant number of individuals on

roads and is keeping its population spread throughout the domain. Both RIE and RHC are

converging to the global optimum with RIE being faster than RHC. This is strong support

for our hypothesis that directionally tuning an operator improves search performance.

Now we will compare the performance of RIE and RHC when the number of dimensions

are varied. In a larger domain the advantage to using landscape features should be much

larger over random search. Thus we expect the di�erence in performance between RIE and

RHC to be larger as the number of dimensions is increased.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

fra
ct

io
n

of
 o

pt
im

um

dimensions

RIE narrow
RIE medium

RIE wide
RHC narrow

RHC medium
RHC wide

Figure 5.3: RIE compared against RHC with the dimensions varied for di�erent road widths.
Test function is the RRV landscape with ridges randomly located.

Figure 5.3 contains a graph plotting the performance of RIE and RHC for di�erent road

43

widths as the number of dimensions is varied.

When the width of the road is medium or wide RIE �nds higher points than RHC , as

we expected. On the narrow roads RIE outperforms RHC when there are fewer than 9

genes. That RHC performs equally well as RIE when there are more than 9 genes is a little

surprising. This is likely because the roads are so narrow that RIE has problems �nding

them and is reduced to random search. Also, as the number of genes increase premature

convergence is more likely to occur.

In this set of experiments we showed that RIE, because it is directionally tuned to the

landscape, will move along ridges to the global optimum giving better performance than

an untuned recombination operator. RHC , which is not tuned to any landscape features,

does not converge to any features on the landscape. RIE , which is directionally tuned to

ridges, converges to the ridges. This suggests that an operator tuned to using a feature of

the landscape will converge to that feature. We also found that as the landscape features

become harder to �nd the performance of operators tuned to these features degrades to

that of random search. These �ndings are summarized in table 5.1.

observation conclusion

RHC does not converge to the roads, RIE

converges to roads.
An operator that is directionally tuned to
using a given feature will converge to that
feature.

RIE performs about the same as RHC on
the narrow roads.

As a feature becomes harder to �nd the
performance of an operator tuned to using
that feature will degrade to random search.

Table 5.1: Summary of results for the royal road landscape.

5.2 Non-linearly Related Genes

In this section we will investigate the performance of the interpolating and extrapolating

recombination operator RIE on a landscape where the genes are non-linearly related.

5.2.1 RIE vs. RHC

Again we show that a directionally tuned operator searches better than an untuned operator.

For this we compare RIE against RHC on the interpolation and extrapolation landscapes.

We also compare RIE against RHC on the random-peaks landscape. The features to which

RIE is directionally tuned are not on the random-peaks landscape so we expect to �nd that

44

RHC performs at least as well on it.

In our comparison we vary the radius of the high peak and the radii of the short peaks.

When the radius of the high peak is very small the landscape becomes a needle-in-a-haystack

problem (NIAH problem, [16]) so we expect RIE to converge to the short peaks on all three

landscapes. As the radius of the high peak increases it becomes easier to �nd so the EA's

performance should increase. The performance increase should be faster on the interpolation

and extrapolation landscapes than on the random-peaks landscape. When the radii of the

short peaks are varied the population will converge to them faster. Since fewer generations

are used to converge to the short peaks there are more generations to �nd the high peak. As

a result the average performance on the interpolation and extrapolation landscapes should

improve. RIE is not directionally tuned to the random-peaks landscape because there is no

relation between the location of the short peaks and the high peak. As a result increased

convergence time to the short peaks reduces the time to search for the high peak. We expect

the performance on the random-peaks landscape to remain constant or drop as the radii of

the short peaks is increased.

For RHC we expect that it will not outperform RIE but make no predictions as to

where it will fall relative to the low=high line. Instead we predict how its performance will

change as the radii are varied. As the radius of the high peak increases RHC's performance

should improve. Since RHC is randomly moving individuals it should not be a�ected by any

convergence to the short peaks. Thus we expect the performance of RHC to be independent

of the radii of the short peaks.

In �gure 5.4 we compare the performances of these two recombination operators on the

two gene instances of the interpolation and extrapolation landscapes. The radii of the short

peaks is 0.1 and the radius of the highest peak is varied from 0.001 to 0.1. As expected RIE

performs better than RHC .

Figure 5.5 contains performance graphs of RIE and RHC where the radii of the short

peaks are varied from 0.05 to 0.25 and the radius of the high peak is �xed at 0.015. Again

we �nd that RIE performs better than RHC , as predicted. On the interpolation landscape

RHC 's performance level is constant as the radii of the short peaks is varied but decreases

slightly on the extrapolation landscape. Also, RHC does not perform as well on the extrap-

olation landscape as on the interpolation landscape.

There are at least two possible reasons why RHC performs better on the interpolation

landscape than on the extrapolation landscape. If we assume that RHC is una�ected by

the short peaks then one explanation for why RHC performs better on the interpolation

45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of high peak

RIE
RHC

low/high ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of high peak

RIE
RHC

low/high ratio

Figure 5.4: RIE compared against RHC on the interpolation (left) and extrapolation (right)
landscapes.

landscape than the extrapolation landscape is that RHC is biased towards �nding optima

in the center of the domain (where the interpolation landscape has its global optimum).

The convergence graphs show that the population under RHC is converging to the peaks,

although slowly, so the assumption may not be true. The other explanation is based on

the average distance between the short peaks and the high peak. On the extrapolation

landscape the average distance from a short peak to the high peak is greater than it is on

the interpolation landscape. RHC is less likely to �nd the high peak if it has to make a

longer jump thus RHC should operate better on the interpolation landscape.

Now we compare RHC against RIE on the random-peaks landscape. Since RIE is not

directionally tuned to this landscape its performance should be no better than randomly

moving about the landscape (RHC). It is also possible that RIE's tuning will hinder it from

�nding the global optima on this landscape, in which case it will perform worse than RHC.

In �gure 5.6 we see that RHC outperforms RIE. This shows that RIE is not a globally

better operator then RHC and that operators tuned to one landscape will be mistuned to

other landscapes.

With this set of experiments we set out to show that a directionally tuned operator

searches better than an untuned operator. On the landscapes which RIE is directionally

tuned (the interpolation and extrapolation landscapes) it outperforms RHC{supporting our

hypothesis. On the random-peaks landscape (to which RIE is not tuned) RIE performs

46

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of short peaks

RIE
RHC

low/high ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of short peaks

RIE
RHC

low/high ratio

Figure 5.5: RIE compared against RHC on the interpolation (left) and extrapolation (right)
landscapes.

worse than RHC. This is likely because RIE 's assumptions about the structure of the

landscape hinder it on the random-peaks landscape where these assumptions are not true.

That is, RIE is mistuned to this landscape. Table 5.2 summarizes the �ndings for this set

of experiments.

observation conclusion

RIE outperforms RHC on the interpolation
and extrapolation landscapes.

A tuned operator outperforms an untuned
operator.

RIE is outperformed by RHC on the
random-peaks landscape.

An operator directionally tuned to one
landscape may not be directionally tuned
to a similar landscape.

Table 5.2: Summary of results for comparing RIE against RHC .

5.2.2 Comparing Against Random-Peaks

RIE is directionally tuned to the interpolation and extrapolation landscapes but not to the

random-peaks landscape. Here we examine RIE on the three landscapes.

First we compare the performance of RIE on the interpolation and extrapolation land-

scapes against its performance on the random-peaks landscape. For all three landscapes

the population should converge to the short peaks. On the interpolation and extrapolation

47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of high peak

RIE
RHC

low/high ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of short peaks

RIE
RHC

low/high ratio

Figure 5.6: RIE compared against RHC on the random-peaks landscape.

landscapes RIE (because of its assumptions about the landscape) will �nd the highest peak

but on the random-peaks landscape there is no obvious relation between the location of the

short peaks and of the high peak so we do not expect RIE to �nd the high peak as often.

As in the previous section we vary �rst the radius of the high peaks then the radii of

the short peaks. The results for RIE are the same as in the previous section thus we do not

need to re-state our expectations.

Our �rst graph, �gure 5.7, compares the performance of RIE on the interpolation and

extrapolation landscapes against that of RIE on the random peaks landscapes. The radius

of the highest peak is varied and the radii of the short peaks are �xed at 0.1.

One observation is that the performance on the interpolation landscape is better than

on the extrapolation landscape. One explanation for this is that unlike interpolation there

are two directions in which to extrapolate. As each parent-child combination can extrap-

olate in one of these directions only half the extrapolations are in the correct direction.

Thus recombination is less likely to arrive at the high peak on the extrapolation landscape.

Another factor is that extrapolating from two peaks on the interpolation landscape will

sometimes lead to the high peak but interpolating from two di�erent peaks on the extrap-

olation landscape will never lead to the high peak. Thus RIE is more directionally tuned

to the interpolation landscape than the extrapolation landscape.

Figure 5.8 contains the graphs comparing the performance when the radii of the short

peaks is varied. For these plots the radius of the high peak is �xed at 0.015.

48

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of high peak

interpolation
random peaks
low/high ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of high peak

extrapolation
random peaks
low/high ratio

Figure 5.7: Search on the interpolation (left) and extrapolation (right) landscapes compared
against the random-peaks landscape.

We notice that the performance increases on the interpolation landscape but remains

level on the extrapolation landscape. On the random-peaks landscape the performance

decreases. We also see that the performance on the interpolation landscape levels o� after

the radii of the short peaks goes beyond 0.15.

The leveling o� of the performance on the interpolation landscape is caused by the

leveling in convergence time to the short peaks. As the radii of the short peaks increases

the population converges to them faster (shown in �gure 5.9). Yet this rate of convergence

must level o� after some value as there is some minimum number of generations necessary

for the population to converge to the peaks. After some threshold radius there is no increase

in time to �nd the high peak, so the performance remains constant. As for the performance

on the extrapolation landscape, RIE may not be su�ciently tuned to the landscape to take

advantage of the increase in the radii of the short peaks. Examining convergence graphs

may con�rm this hypothesis or suggest a new one.

On the convergence graphs we expect to �nd that increasing the radius of the peaks

decreases the number of generations needed to converge to the peaks. We also expect more

individuals to �nd the high peak on the interpolation and extrapolation landscapes than

on the random-peaks landscape.

Figures 5.9 and 5.10 are convergence graphs for the interpolation, random peaks and

extrapolation landscapes. Each graph plots the convergence measure for peaks with small,

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of short peaks

interpolation
random peaks
low/high ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of short peaks

extrapolation
random peaks
low/high ratio

Figure 5.8: RIE on the interpolation (left) and extrapolation (right) landscapes compared
against its performance on the random peaks landscape.

medium and large radius. The value for each setting is: 0.1 for the short peaks and 0.01 for

the high peaks; 0.15 for the short peaks and 0.015 for the high peak; and 0.2 for the short

peaks and 0.02 for the high peak respectively.

These graphs con�rm that the population converges onto peaks with larger radii faster

and that this increase in convergence levels o�. The graphs also con�rm that the popu-

lation is not converging as quickly or �nding the high peak as well on the random-peaks

landscape as on the other two landscapes. Finally, they con�rm that RIE on the extrapo-

lation landscape is converging to a line, onto the peaks and into a smaller volume as fast

as on the interpolation landscape but not as many individuals are ending up on the high

peak, or are getting as near to the global optimum. Given that RIE is not as well tuned

to the extrapolation landscape as the interpolation landscape this shows that a more tuned

operator gets better search performance.

There are two surprises in these graphs. The �rst is that the minimum distance to

the global optimum, after decreasing for some generations, increases. The second is that

the number of individuals on the high peak drops after roughly 20 generations on the

interpolation and extrapolation landscapes. Both of these unexpected observations have a

similar cause { the short peaks' large basins of attraction and the large number of individuals

on them.

The reason that the minimum distance to the global optimum increases is because in

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

v
o

lu
m

e

generation

small peaks
medium peaks

large peaks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

v
o

lu
m

e

generation

small peaks
medium peaks

large peaks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

v
o

lu
m

e

generation

small peaks
medium peaks

large peaks

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

m
in

.
d

is
t.

 f
ro

m
 m

a
x

generation

small peaks
medium peaks

large peaks

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

m
in

.
d

is
t.

 f
ro

m
 m

a
x

generation

small peaks
medium peaks

large peaks

0

0.035

0.07

0.105

0.14

0.175

0.21

0.245

0.28

0.315

0.35

0 10 20 30 40 50

m
in

.
d

is
t.

 f
ro

m
 m

a
x

generation

small peaks
medium peaks

large peaks

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u

m
b

e
r

o
n

 p
e

a
k
s

generation

small peaks
medium peaks

large peaks

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u

m
b

e
r

o
n

 p
e

a
k
s

generation

small peaks
medium peaks

large peaks

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u

m
b

e
r

o
n

 p
e

a
k
s

generation

small peaks
medium peaks

large peaks

Figure 5.9: Convergences with RIE ; graphs are (from left to right): interpolation, random
peaks and extrapolation landscapes.

51

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50

n
u

m
b

e
r

o
n

 h
ig

h
 p

e
a

k

generation

small peaks
medium peaks

large peaks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50

n
u

m
b

e
r

o
n

 h
ig

h
 p

e
a

k

generation

small peaks
medium peaks

large peaks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50

n
u

m
b

e
r

o
n

 h
ig

h
 p

e
a

k

generation

small peaks
medium peaks

large peaks

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

d
is

ta
n

c
e

 f
ro

m
 l
in

e

generation

small peaks
medium peaks

large peaks

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

d
is

ta
n

c
e

 f
ro

m
 l
in

e

generation

small peaks
medium peaks

large peaks

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

d
is

ta
n

c
e

 f
ro

m
 l
in

e

generation

small peaks
medium peaks

large peaks

Figure 5.10: Convergences with RIE ; graphs are (from left to right): interpolation, random
peaks and extrapolation landscapes.

converging to the short peaks the population is moving away from the high peak. We know

that the population is converging onto the peaks (from the number on peaks graph) and

into a smaller volume (volume graph) so it must be converging onto a short peak.

The decrease in the number of individuals on the high peak is caused by the larger

number of individuals on a short peak (as well as the larger basin of attraction of the short

peak). With most of the individuals on a short peak, parent individuals from the short peak

will frequently be paired with other individuals from the same peak and individuals from

the high peak will also be paired with individuals from the short peak. After recombination

the pairs with both parents from the short peak will produce o�spring on that peak. The

pairs that had one parent from a high peak and one from the short peak will be more likely

to produce individuals on the short peak (it has a larger basin of attraction than the high

peak) than on the high peak.

The following is a mathematical argument that a large group of individuals on a short

52

peak with a large basin of attraction will pull individuals from a smaller group on a higher

peak. First some simplifying assumptions. Assume that:

� the (�; �) selection and replacement method is used (the best � individuals are

selected for parents to create the � individuals for the next generation).

� s is the fraction of the population selected as parents (s = �
�).

� ns is the number of individuals in the small group

� all the individuals in the small group are selected as parents (as they are on a high

peak).

� the remaining parents are selected from the large group on the short peak.

� recombination between parents from the same peak will produce o�spring on that

peak, otherwise o�spring will fall on the high peak with probability p.

The fraction of parents from the small group is ns
s
and the fraction of parents from the

large group is s�ns
s . The number of o�spring that are generated on the high peak where

the small group of individuals are is:
�
ns
s

� �
ns
s

�
individuals when both parents are from the

small group and 2p
�
s�ns
s

� �
ns
s

�
individuals when the parents come from di�erent peaks. If

ns(t) is the number of individuals on the high peak at generation t then the number of

individuals on the high peak at generation t + 1 is:

ns(t+ 1) =

�
ns(t)

s

��
ns(t)

s

�
+ 2p

�
s� ns(t)

s

��
ns(t)

s

�
(5.1)

s ns
0.0300 0.0600 0.0900 0.1200 0.1500 0.1800 0.2100 0.2400

0.3000 0.0280 0.0720 0.1320 0.2080 0.3000 0.4080 0.5320 0.6720

0.4000 0.0195 0.0480 0.0855 0.1320 0.1875 0.2520 0.3255 0.4080

0.5000 0.0149 0.0355 0.0619 0.0941 0.1320 0.1757 0.2251 0.2803

0.6000 0.0120 0.0280 0.0480 0.0720 0.1000 0.1320 0.1680 0.2080

0.7000 0.0100 0.0230 0.0389 0.0578 0.0796 0.1043 0.1320 0.1626

0.8000 0.0086 0.0195 0.0326 0.0480 0.0656 0.0855 0.1076 0.1320

0.9000 0.0076 0.0169 0.0280 0.0409 0.0556 0.0720 0.0902 0.1102

1.0000 0.0067 0.0149 0.0245 0.0355 0.0480 0.0619 0.0773 0.0941

Table 5.3: Expected proportion of the population on the high peak after one generation for
p = 0:1.

53

s ns
0.0300 0.0600 0.0900 0.1200 0.1500 0.1800 0.2100 0.2400

0.3000 0.0460 0.1040 0.1740 0.2560 0.3500 0.4560 0.5740 0.7040

0.4000 0.0334 0.0735 0.1204 0.1740 0.2344 0.3015 0.3754 0.4560

0.5000 0.0262 0.0566 0.0914 0.1306 0.1740 0.2218 0.2738 0.3302

0.6000 0.0215 0.0460 0.0735 0.1040 0.1375 0.1740 0.2135 0.2560

0.7000 0.0182 0.0387 0.0613 0.0862 0.1133 0.1425 0.1740 0.2077

0.8000 0.0158 0.0334 0.0526 0.0735 0.0961 0.1204 0.1463 0.1740

0.9000 0.0140 0.0293 0.0460 0.0640 0.0833 0.1040 0.1260 0.1493

1.0000 0.0125 0.0262 0.0409 0.0566 0.0735 0.0914 0.1105 0.1306

Table 5.4: Expected proportion of the population on the high peak after one generation for
p = 0:2.

Using equation 5.1, tables 5.3 and 5.4 give the expected number of individuals that will

be on the high peak after one generation for di�erent values of s, ns and p. These tables

show that recombination is not good at maintaining a small group of individuals on a peak.

Recombination has also been thought of as a diversi�cation operator whose role is to

generate variation and cause the population to explore the landscape (see [11] and [36]).

Thus it may not be surprising that it is not good at keeping individuals on peaks. For this

reason we used elitism to keep the best individual from generation to generation. Trials

without elitism resulted in the population converging to one or two short peaks with no

individuals on the high peak.

The di�erence in degree to which the population is moving away from the high peak on

the di�erent landscapes is explained by the degree of directional tuning of the recombination

operator to the landscape. On the random-peaks landscape there is no relation between

the location of the short peaks and the high peak. As a result once the population has

converged onto the short peaks it is very unlikely to ever reach the high peak. On the

interpolation and extrapolation landscapes there is a relation between the location of the

high and short peaks with this relation built into the recombination operator. Even though

the population converges to the short peaks, recombination between individuals from the

short peaks produces individuals on the high peaks. As RIE is more directionally tuned to

the interpolation landscape its minimum distance from max graph does not increase as fast

as for the extrapolation landscape.

Another reason why the minimum distance to the global optimum increases more on the

extrapolation landscape than the interpolation landscape is that on average the distance

between the short peaks and the high peak is greater on the extrapolation landscape.

54

In this set of experiments we wanted to compare the performance of an operator on

a landscape to which it is directionally tuned against its performance on a landscape to

which it is not tuned. We found that the operator works better on the landscape on which

it is tuned. We also found that the number of individuals on the high peaks decreases. We

showed that this is caused by the attractive pull of a larger group of individuals. Table 5.5

is a summary of our �ndings for this set of experiments.

observation conclusion

RIE performs at least as good on both the
interpolation and extrapolation landscapes
as on the random-peaks landscape

Directionally tuning the recombination op-
erator improves search performance.

Increasing the radii of the short peaks im-
proves RIE's performance on the interpo-
lation landscape but not the random-peaks
landscape

An operator that is directionally tuned to
a landscape will search better as the fea-
ture(s) to which it is tuned are easier to
�nd. The performance of an operator not
tuned to this feature will not improve.

The number of individuals on the high
peak decreases.

A large group of individuals can draw in-
dividuals from a small group.

Table 5.5: Summary of results for the random-peaks landscape.

5.2.3 One-peak Landscape

Figures 5.5 and 5.8 are graphs of RIE with the radii of the short peaks varied. None of

them show any signi�cant change in performance on the interpolation and extrapolation

landscapes as the radius varies. This suggests that perhaps the population is not using the

short peaks to help �nd the high peak. One way to see if the short peaks are being used

is to compare the performance of RIE on the interpolation and extrapolation landscapes

against its performance on a landscape with just one high peak.

As plotting average performance is misleading (on the one-peak landscape if the popu-

lation does not �nd the high peak it will get 0% of optimum whereas on the interpolation

and extrapolation landscapes the population will �nd a short peak) we will monitor the

number of individuals that end up on the high peak. Figure 5.11 has graphs comparing the

number of individuals that �nd the high peak after 50 generations on the interpolation and

extrapolation landscapes against that on the one-peak landscape. In this graph the radius

of the high peak is �xed at 0.015 and the radii of the short peaks is varied. The variances

for these plots are typically between: 0.2 and 0.4 on the interpolation landscape, 0.05 and

55

0.2 on the extrapolation landscape; and on the one-peak landscape it is 0.19 when the high

peak is at the center (for comparison against the interpolation landscape) and 0.13 when

the high peak is near the edge (for comparison against the extrapolation landscape).

0

0.08

0.16

0.24

0.32

0.4

0.48

0.56

0.64

0.72

0.8

0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25

n
u
m

b
e
r

o
n
 h

ig
h
 p

e
a
k

radius of short peaks

interpolation
one peak

0

0.08

0.16

0.24

0.32

0.4

0.48

0.56

0.64

0.72

0.8

0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25
n
u
m

b
e
r

o
n
 h

ig
h
 p

e
a
k

radius of short peaks

extrapolation
one peak

Figure 5.11: RIE on the interpolation (left) and extrapolation (right) compared against
RIE on the one-peak landscape.

The graphs show that the short peaks are helping the search on the interpolation land-

scape but not the extrapolation landscape. On the interpolation landscape the number of

individuals that end on the high peak starts smaller than on the one-peak landscape. As

the radii of the short peaks increase the number of individuals that �nd the high peak on

the interpolation landscape increase and becomes greater than on the one-peak landscape.

This shows that the short peaks are being used to �nd the high peak. On the extrapolation

landscape the number of individuals �nding the high peak remains almost constant but

does increase a little above the level of the one-peak landscape. From this we conclude that

RIE is not making much use of the short peaks to �nd the high peak on the extrapola-

tion landscape{which should be the case as RIE is not as well directionally tuned to this

landscape as it is to the interpolation landscape. Table 5.6 summarizes the results for the

one-peak landscape.

56

observation conclusion

As the radii of the short peaks increase
the number of individuals �nding the high
peak on the interpolation and extrapola-
tion landscapes increase above the number
that �nd the high peak on the one-peak
landscape.

RIE is using the short peaks to �nd the
high peaks.

The increase in the number of individuals
�nding the high peak is much larger on the
interpolation landscape than the extrapo-
lation landscape.

A more tuned operator gets better perfor-
mance.

Table 5.6: Summary of results for the one-peak landscape.

5.3 Rotating the Landscape

5.3.1 Rotating the Line of Peaks

So far the line of peaks has been parallel to one of the axes. When this is the case the

population under RIE has only to converge along the line of peaks and then �nd the high

peak somewhere along this line. This involves optimizing �rst one gene then the other {

similar to when the genes are independent. Meanwhile RHC is not making use of features

on the landscape so it must optimize both genes simultaneously, which is considerably more

di�cult. Let us rotate the line of peaks to 45o so that RIE must also optimize both genes

simultaneously.

RIE is tuned to moving along ridges parallel to an axis. With the line rotated RIE will

not be as well directionally tuned to the interpolation and extrapolation landscapes. There-

fore we expect the performance of RIE to drop on both landscapes and the performance of

RHC to remain the same. RHC is not directionally tuned to these landscapes, so we expect

its performance to remain constant regardless of the orientation of the line of peaks.

Figure 5.12 is a graph of the performance of RIE against RHC where the line of peaks

is 45o. The radius of the high peak is �xed at 0.015 and the radii of the short peaks are

varied.

As expected RIE does not search as well when the line is rotated to 45o and RHC's

performance remains the same. It is interesting to note that RIE's performance on the

interpolation landscape drops slightly as the radii of the short peaks increases whereas its

performance on the extrapolation landscape is at a �xed amount above the low=high line

(dropping considerably).

57

0

0.12

0.24

0.36

0.48

0.6

0.72

0.84

0.96

1.08

1.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of high peak

RIE
RHC

low/high ratio

0

0.12

0.24

0.36

0.48

0.6

0.72

0.84

0.96

1.08

1.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of high peak

RIE
RHC

low/high ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of short peaks

RIE
RHC

low/high ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

radius of short peaks

RIE
RHC

low/high ratio

Figure 5.12: RIE compared againstRHC on the interpolation (left) and extrapolation (right)
landscapes with the line of peaks at 45o.

58

The drop in performance (as the radii of the short peaks is increased) is caused by the

decrease in the height of the short peaks. Converging to the short peaks (instead of the high

peak) with the same frequency will result in a performance drop because the height of the

short peaks is decreasing as their radii increase. The degree of this drop is determined by

the frequency with which the population converges to a short peak instead of the high peak.

Thus both RHC and RIE are better at �nding the high peak on the interpolation landscape

than the extrapolation landscape (as their performance drops more on the extrapolation

landscape than on the interpolation landscape).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

v
o
lu

m
e

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

v
o
lu

m
e

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10 20 30 40 50

m
in

.
d
is

t.
 f
ro

m
 m

a
x

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10 20 30 40 50

m
in

.
d
is

t.
 f
ro

m
 m

a
x

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

Figure 5.13: Convergences on the interpolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o.

59

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 p

e
a
k
s

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 p

e
a
k
s

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 h

ig
h
 p

e
a
k

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 h

ig
h
 p

e
a
k

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

Figure 5.14: Convergences on the interpolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o.

The plots of convergence measures (�gures 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18) show

that when the line of peaks is at 45o the population under RIE is slower at: concentrating

into less volume; concentrating onto peaks; and concentrating along the line than when the

line is parallel to an axis.

RHC is outperforming RIE when the line of peaks is at 45o. Yet the only convergence

measures for which RHC is better than RIE are for minimum distance to the global optimum

and number of individuals on the highest peak. Thus RIE is still �nding the short peaks

but is not successfully using them to �nd the high peak.

60

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

d
is

ta
n
c
e
 f

ro
m

 l
in

e

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

d
is

ta
n
c
e
 f

ro
m

 l
in

e

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

Figure 5.15: Convergences on the interpolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o.

Let us compare the probability of �nding the high peak for RIE and RHC. We will use

the probability that the o�spring of recombination using RIE [RHC] is generated on the

high peak. First some simplifying assumptions. From observing RIE on the interpolation

landscape with GAVIN the population usually converges to two peaks. So assume that

under RIE the parents come from di�erent peaks with probability 1

2
otherwise they are

equally likely to be on a given short peak. With RHC the population does not appear to

converge together so assume that the �rst parent comes from any point in the domain with

equal probability { note that RHC generates the second parent at random with a uniform

distribution across the domain. Finally, we assume that instead of a circle, the high peak

is a square of width w. This last assumption allows us to calculate the probability for each

gene independently.

First the analysis for RIE:

If we label the short peaks A, B, C and D (from left to right as in �gure 5.19), then

the probabilities for the di�erent peak combinations are: P (AB) = 1=6, P (AC) = 1=6,

P (AD) = 1=6, P (BA) = 1=6, P (BC) = 1=6, and P (BD) = 1=6. Since the probability of

the o�spring being generated on the high peak is the same for (AB) and (BA) as well as for

(AC) and (BD) we combine these cases to get: P (AB) = 2=6, P (AC) = 2=6, P (AD) = 1=6,

and P (BC) = 1=6.

The probability that the o�spring will be in the desired range is equal to goal range
possible range

.

61

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

v
o
lu

m
e

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

v
o
lu

m
e

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.035

0.07

0.105

0.14

0.175

0.21

0.245

0.28

0.315

0.35

0 10 20 30 40 50

m
in

.
d
is

t.
 f
ro

m
 m

a
x

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.035

0.07

0.105

0.14

0.175

0.21

0.245

0.28

0.315

0.35

0 10 20 30 40 50

m
in

.
d
is

t.
 f
ro

m
 m

a
x

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

Figure 5.16: Convergences on the extrapolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o.

62

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 p

e
a
k
s

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 p

e
a
k
s

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 h

ig
h
 p

e
a
k

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 h

ig
h
 p

e
a
k

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

Figure 5.17: Convergences on the extrapolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o.

63

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

d
is

ta
n
c
e
 f

ro
m

 l
in

e

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

d
is

ta
n
c
e
 f

ro
m

 l
in

e

generation

RIE small
RIE medium

RIE large
RHC small
RHC large

Figure 5.18: Convergences on the extrapolation landscape; graphs on the left have line
parallel to an axis, on the right the line is at 45o.

0.1 0.3 0.9

A B C D

w

0.5 0.7

Figure 5.19: Peak labels for computing probabilities.

For each case this is:

P(AB) The average distance between peak A and B for a gene is 0.2 giving 0.4 for the range

of the o�spring. This case di�ers from the others in two ways. The �rst is that only

one of the o�spring (the one centered on peak B) can be in the desired range { as

the high peak is reached by extrapolating, extrapolating beyond peak A can never

reach the high peak { thus its probability is reduced by 1
2
. The second is only half the

desired range, on average, is in range for extrapolating beyond B (0:2+0:3 = 0:5 thus

only half of the high peak can be reached). The resulting probability of an o�spring

getting one gene correct is: 1
2

�
w=2
0:4

�
.

P(AC) In this case the high peak is reached by interpolating so both o�spring can reach it.

64

The average distance between A and C is 0.6 giving 1:2 for the range of the o�spring.

The probability for getting one gene correct is: w
1:2
.

P(AD) Again the high peak is reached by interpolating. The average distance between A and

D is 0.8, thus the probability for getting one gene correct is: w
1:6 .

P(BC) In our last case the high peak is reached by interpolating. The average distance

between B and C is 0.3, thus the probability for getting one gene correct is: w
0:6
.

The probability of success for each gene is independent, so the probability for success

when there are d genes is:

P (success) =
1

2

�
2

6
P (AB)d +

2

6
P (AC)d +

1

6
P (AD)d +

1

6
P (BC)d

�
(5.2)

P (success) =
1

6
�

1

2

� w
2

0:4

�d
+

1

6

�
w

1:2

�d
+

1

12

�
w

1:6

�d
+

1

12

�
w

0:6

�d
(5.3)

Some factors not taken into account in equation 5.3 that reduce the probability for

RIE are the population must spend some time converging to the peaks and sometimes the

population will converge to only one peak. Another factor not taken into account is that

the euclidean distance between the center of the peaks is kept constant for all angles of the

line. Thus the di�erence between peak centers on each coordinate varies with the angle.

With the line at an angle of 45o the distances should be reduced by cos(45o) so equation 5.3

should be multiplied by 0:71d.

Now the analysis for RHC :

As we assume that the population is not converging under RHC , then both parents are

equally likely to be from any point in the domain. An approximation of the probability

P(success) is simply the ratio of the areas area of high peak
total area which is

�
w
1:0

�d
= wd.

There are two factors not taken into account in this approximation for RHC . The �rst

is that the population does tend to converge a little onto the peaks, but this should not

a�ect the probability values signi�cantly. The second factor is that with RHC extrapolation

can generate values outside the domain. This changes the e�ective size of the domain to

a value greater than 1.0. Extrapolation happens half the time (on average) so P(success,

RHC) should be multiplied by a value between 0:5d and 1:0d (which should o�set the 0:71d

multiplier for RIE to some degree).

The resulting probabilities for di�erent values of d are in table 5.7. Our analysis shows

that RIE is mistuned for the rotated landscapes on two dimensions{hence its poor per-

65

d probability for RIE probability for RHC

1 0.36 w w

2 0.45 w2 w2

3 0.62 w3 w3

4 0.90 w4 w4

5 1.37 w5 w5

6 2.14 w6 w6

7 3.40 w7 w7

8 5.48 w8 w8

9 8.91 w9 w9

10 14.57 w10 w10

Table 5.7: Probability of �nding the high peak on the interpolation landscape on n genes.

formance. This table also shows that as the number of dimensions increases the relative

performance of RIE to RHC should increase.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

dimensions

RIE
RHC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

dimensions

RIE
RHC

Figure 5.20: RIE compared againstRHC on the interpolation (left) and extrapolation (right)
landscapes with the line at 45o.

Figure 5.20 contains performance graphs showing the results when the number of genes

is varied from 1 to 10. The angle of the line of peaks is 45o, the radius of the high peak is

0.015 and the radii of the short peaks are 0.2.

Contrary to what our model predicts RIE's performance does not pass RHC's { although

RIE does match RHC's performance for 3 or more genes. The quick drop in performance

was unexpected { after six genes neither operator appears to be �nding any peak. Possibly

66

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

dimensions

RIE
RHC

low/high

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

dimensions

RIE
RHC

low/high

Figure 5.21: RIE compared againstRHC on the interpolation (left) and extrapolation (right)
landscapes with peak radii adjusted with the number of dimensions and the line at 45o.

the drop in performance is because the population cannot �nd the peaks. As the number

of genes is increased the ratio of the volume of peaks to the volume of domain decreases

exponentially. This ratio can be kept constant by increasing the radii of the peaks as the

number of genes increase. Equation 5.4 gives the volume of a hypersphere on n dimensions.

Using this we will adjust the radii of the peaks as the number of dimensions increased. Note

that this adjustment does not take into consideration the parts of the spheres falling outside

the domain and the overlap between adjacent spheres as their radii increase. Regardless,

as we increase the radii of the peaks we expect that RIE will catch up and pass RHC but

still expect the performance of both to drop as the number of genes increases.

VD(r) =

8>>><
>>>:

1

(D2)!
�
D

2 rD; D � 0 mod 2

2
D+1
2

1�3�5:::D�
D�1

2 rD; D � 1 mod 2

(5.4)

The graphs in �gure 5.21 plot the performance of RIE and RHC on the interpolation

and extrapolation landscapes where the number of dimensions is varied. Volume for the

short peaks are �xed at 0.12, and the volume of the high peak is set to 0.0007 (which in

two dimensions result in a radii of approximately 0.2 and 0.015 respectively) for search on

one gene, and increased to keep the ratio of the peaks' volume constant with that of the

total domain.

67

This time RIE does catch up and pass RHC as predicted by our model. Comparing

the performance of RIE and RHC to the low=high ratio we see that they decrease relative

to this curve. In fact after the number of genes is increased beyond 6, RIE 's average

performance is below this line. Thus RIE is just climbing to the top of a short peak and

not �nding the high peak. It is possible that RIE is taking so long in converging to the

peaks that the population is only converging to one peak. As a result RIE is not able

to interpolate [extrapolate] with parents from two di�erent peaks to �nd the high peak.

Another explanation is that a successful coordination of interpolating [extrapolating] on a

large number of genes is so unlikely that the population is not �nding the high peak. By

incorporating the knowledge that genes should be changed together we hope to create an

operator that searches this landscape better.

In this set of experiments we wanted to see how well RIE performs on the interpolation

and extrapolation landscapes when the line of peaks is rotated. We found that the per-

formance of RIE on the interpolation and extrapolation landscapes decreases as the line of

peaks is rotated. We also found that RHC outperforms RIE. Our simpli�ed model showed

that RIE is mistuned to this landscape, thereby explaining its poor performance. Our model

also predicted that eventually (after increasing the number of genes) RIE 's performance will

pass RHC. Empirical testing agreed with this prediction { but only after increasing the radii

of the peaks to keep the ratio of their volume constant with that of the domain. Table 5.8

summarizes the �ndings for this set of experiments.

observation conclusion

RIE performs almost as well as RHC on
the interpolation landscape with the line
of peaks at 45o.

Random search is better than a mistuned
operator.

RIE performs noticeably worse than RHC

on the extrapolation landscape with the
line of peaks at 45o.

Random search is better than a mistuned
operator.

When the number of dimensions is in-
creased RIE eventually outperforms RHC

but does not pass the low=high ratio.

RIE is tuned to hill-climbing.

Table 5.8: Summary of results when the line of peaks is rotated.

68

5.3.2 Rotational Unbiased Recombination

In section 5.3.1 we found that RIE's performance dropped when the line of peaks was set

to 45o. From �gure 5.22 we see that the performance of RIE is dependent on the angle of

the line of peaks { it gets its best performance when the angle is 0o (and 90o) and its worst

performance when the angle is 45o (and 135o). In this section we show that RIE can be

modi�ed so that the resulting recombination operator, RRU , is directionally tuned to the

landscape regardless of the angle of the line of peaks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

angle of line of peaks (degrees)

RIE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

angle of line of peaks (degrees)

RRU

Figure 5.22: RIE (left graph) and RRU (right graph) on the interpolation landscape where
the line of peaks is rotated.

Unlike RIE, RRU assumes there is a linkage between the genes. RRU is capable of

moving along ridges that are at any angle { but still straight lines. As a result we expect it

to perform equally well regardless of the angle of the line. RRU interpolates and extrapolates

similarly to RIE so we expect it to perform as well as RIE . Figure 5.22 shows that RRU 's

performance remains constant as the line of peaks is rotated.

First we compare RRU against RHC to show that the directionally tuned operator

searches better than the untuned operator. To assist in predicting the results we give a

model for success under recombination for RRU . RRU converges onto the peaks similarly to

RIE so we use the same cases (and probabilities for each case) as with RIE : P (AB) = 2=6,

P (AC) = 2=6, P (AD) = 1=6, and P (BC) = 1=6.

Unlike RIE, RRU generates its o�spring along the line through the parents. Regardless

69

of the number of dimensions of the domain the euclidean distance between the peaks is kept

constant. As a result the probability of a successful recombination with RRU is independent

of the number of genes. Here are the probabilities for the four cases:

P(AB) Only one of the o�spring has the potential to be on the high peak giving the probability

of success as 1

2

goal range
total range

. On average only half of the high peak is in range so the

success range is w=2 giving the probability for success for the AB case: w=2
0:8

.

P(AC) The success range is w and the total range is 1:0. The probability of success is: w
1:2
.

P(AD) The success range is w and the total range is 1:6. The probability of success is: w
1:6 .

P(BC) The success range is w and the total range is 0:6. The probability of success is: w
0:6
.

The weighted sum of these cases gives P (success) � 0:434w. Table 5.9 contains the

results for RRU and RHC when w is increased with the number of dimensions using equa-

tion 5.4. Note that the probability formula assumes that w is less than the total range.

From the table we can see that when there are more than 7 genes the desired range becomes

greater than the total range for some cases. Thus after 7 genes our model is inaccurate.

Also, only part of the high peak is higher than the short peaks. The rates of the fraction

of the area that is higher to the total area of the high peak decreases exponentially as the

number of genes increases. So the actual value for P (success) is not necessarily a good

measure for the expected performance of the recombination operators.

d w probability for RRU probability for RHC

1 0.00070 0.00061 0.00070

2 0.030 0.026 0.00089

3 0.11 0.096 0.0013

4 0.22 0.19 0.0023

5 0.34 0.29 0.0042

6 0.45 0.39 0.0087

7 0.57 0.49 0.019

8 0.68 0.59 0.044

9 0.78 0.68 0.11

10 0.88 0.76 0.28

Table 5.9: Probability of �nding the high peak on the interpolation landscape on d genes.

Based on the values presented in table 5.9 we expect that RRU will outperform RHC

when there are 2 through 10 genes and RHC will outperform RRU when there is only 1

gene. The di�erence in performances should shrink as the dimensions increase.

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

dimensions

RRU
RHC

low/high

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

dimensions

RRU
RHC

low/high

Figure 5.23: RRU compared against RHC on the interpolation (left) and extrapolation
(right) landscapes with peak radii adjusted with the number of dimensions and the line at
45o.

Figure 5.23 contains performance graphs for RRU and RHC on the interpolation and

extrapolation landscapes with the angle of the line of peaks at 45o. The volume of the high

peak is set to 0.0007 that of the domain and that of the short peaks is set to 0.12 of the

domain (which gives radii for the peaks in two dimensions of approximately 0.015 and 0.2

respectively).

From this �gure we see that RRU outperforms RHC on the interpolation landscape for

all gene values. Contrary to our simpli�ed probability model RHC does not outperform RRU

when there is only one gene. Our model only takes into account the probability of �nding

the high peak. We expect that RRU is better tuned to climbing a peak than is RHC, which

would explain why RRU outperforms RHC with one gene. On the extrapolation landscape

RRU at �rst performs worse than RHC then catches and passes it. From these experiments

we conclude that a directionally tuned operator searches better than an untuned operator.

When RHC outperformed RIE we gave a mathematical argument showing that RIE is

mistuned to the landscape. Thus it is not always intuitive as to how well tuned an operator

is to a given landscape.

For completeness we also include a comparison ofRRU againstRHC on the random-peaks

landscape (�gure 5.24). In this graph we see that RHC outperforms RRU until the landscape

has 7 dimensions then RRU passes it. By the time RRU passes RHC both are performing

71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

fr
a
c
ti
o
n
 o

f
o
p
ti
m

u
m

dimensions

RRU
RHC

low/high

Figure 5.24: RRU compared against RHC on the random-peaks landscape with peak radii
adjusted with the number of dimensions.

under the low=high ratio line. RRU is not directionally tuned to the random-peaks landscape

so we expect it to perform worse than RHC. But eventually RRU 's performance passes

RHC 's. At the point where RRU passes RHC neither is better than the low=high ratio.

Thus RRU is climbing to a higher point on a short peak than is RHC, which shows that

RRU is better at climbing peaks than RHC .

Now we compare the performance of RRU to that of RIE. Figure 5.22 contains perfor-

mance graphs of the EA using RIE (left) and RRU (right) as the line of peaks is rotated.

The radius of the high peak is 0.02 and the radii of the short peaks are 0.1.

For the most part RRU does achieve better performance than RIE , but not when the

line is parallel to an axis (0o, 90o and 180o). When the line is parallel to an axis we would

expect RIE and RRU to converge onto the short peaks and then onto the high peak at

the same rate. Thus RIE 's better performance at this angle setting probably comes as a

result of RIE being a better hill-climber than RRU . As a tradeo� in gaining the ability to

follow ridges that are at any angle RRU may be losing some ability to climb hills. Recall

RRU 's problem on the royal road landscape (an example discussed in chapter 4) where it

was found to be so restrictive it had problems moving along the ridge. Perhaps allowing

individuals to fall some small amount o� the line through the parents would result in a

better hill-climbing and ridge-following operator than RRU .

Now we will examine the convergence graphs of RIE and RRU . The convergence graphs

72

for RIE have already been presented (in section 5.2.1 in comparison with RHC) so we

will state our expectations for RRU relative to RIE. When the angle of the line of peaks

is parallel to an axis we expect that RRU will converge as well as RIE . If more of the

population converges onto the peaks and onto the high peak under RRU than under RIE

then (since RRU performs a little worse than RIE) this suggests that RRU is not as good

a hill-climber as RIE. Alternatively if RRU does not converge as well as RIE then this

suggests that RIE is better tuned to the landscapes when the line is parallel to an axis.

When the angle of the line is at 45o RRU 's convergence should be better than RIE's.

0

0.013

0.026

0.039

0.052

0.065

0.078

0.091

0.104

0.117

0.13

0 10 20 30 40 50

m
in

.
d
is

t.
 f
ro

m
 m

a
x

generation

RIE, small
RIE, large

RRU, small
RRU, large

0

0.013

0.026

0.039

0.052

0.065

0.078

0.091

0.104

0.117

0.13

0 10 20 30 40 50

m
in

.
d
is

t.
 f
ro

m
 m

a
x

generation

RIE, small
RIE, large

RRU, small
RRU, large

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 p

e
a
k
s

generation

RIE, small
RIE, large

RRU, small
RRU, large

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 p

e
a
k
s

generation

RIE, small
RIE, large

RRU, small
RRU, large

Figure 5.25: Convergences on interpolation landscape; graphs on the left have the line
parallel to an axis, on the right the line is at 45o.

73

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 h

ig
h
 p

e
a
k

generation

RIE, small
RIE, large

RRU, small
RRU, large

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50

n
u
m

b
e
r

o
n
 h

ig
h
 p

e
a
k

generation

RIE, small
RIE, large

RRU, small
RRU, large

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

d
is

ta
n
c
e
 f
ro

m
 l
in

e

generation

RIE, small
RIE, large

RRU, small
RRU, large

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 10 20 30 40 50

d
is

ta
n
c
e
 f
ro

m
 l
in

e

generation

RIE, small
RIE, large

RRU, small
RRU, large

Figure 5.26: Convergences on interpolation landscape; graphs on the left have the line
parallel to an axis, on the right the line is at 45o.

Figures 5.25 and 5.26 are convergence plots for RIE and RRU on the interpolation

landscape. For the left graphs the line of peaks is parallel to an axis, on the right graphs

the line of peaks is at 45o. The radii for these plots are 0.01 for the high peak and 0.1 for the

short peaks with narrow and 0.02 for the high peak and 0.2 for the short peaks with large.

The convergence graph comparing volume is not included. It shows that RRU converges to

a smaller volume faster than RIE; but it is a little misleading in that both converge slower

when the line is at 45o. As volume is calculated by
Q

i(maxi �mini), a population spread

along the line of peaks will have a greater volume when the line's angle is close to 45o then

74

when it is parallel to an axis.

As expected RRU 's convergence is roughly the same for both angles of the line. In

comparison to RIE when the line is at 0o, RRU converges to the line and onto peaks much

faster when the radii are small and only a little faster when the radii are large. RRU also

converges to the global optimum faster, but then (around generation 15) gets pulled away

to the short peaks faster than RIE. RRU is also better at �nding the high peak { it puts

signi�cantly more individuals on it than RIE when the radii are large, and is about the same

when the radii are small. This supports the belief that RRU is not as good a hill-climber as

RIE.

In this set of experiments we set out to create an operator that is directionally tuned

to the landscape regardless of the line of peaks. We created RRU whose performance does

not vary with the angle of the line of peaks. In comparing RRU with RHC we showed that

a directionally tuned operator outperforms an untuned operator. RRU outperforms RIE

except when the line of peaks is near to being parallel to an axis. From this we concluded

that RIE is better at hill-climbing than is RRU . Table 5.10 summarizes the �ndings for this

set of experiments.

observations conclusion

RRU consistently outperforms RHC on the
interpolation landscape with the dimen-
sions varied.

A directionally tuned operator outper-
forms an untuned one.

RRU eventually outperforms RHC on the
random-peaks landscape when the number
of dimensions is increased.

Even though RRU is not directionally
tuned to the random-peaks landscape it is
tuned to hill-climbing

When rotating the line of peaks RIE's per-
formance varies but RRU 's is constant

Operators can be directionally tuned to
linkages between genes.

With the line of peaks parallel to an axis
RIE is better than RRU

RIE is better tuned to climbing peaks than
is RRU

Table 5.10: Summary of results for RRU .

5.4 Summary

Both RIE and RHC 's performance increased with the increase of road widths on the royal

road landscape with RIE outperforming RHC . This comes as a result of RIE converging to

the landscape features and taking advantage of them to �nd the global optimum.

75

On the non-linear landscapes RIE searches signi�cantly better on the interpolation and

extrapolation landscapes than on the random-peaks landscape. This is because RIE is

directionally tuned to �nding the high peak by interpolating or extrapolating from short

ones. The performance of RIE was slightly better on the interpolation than extrapolation

landscape because extrapolating on the extrapolation landscape is only half as likely to

move in the correct direction as interpolating on the interpolation landscape.

Varying the radii of the peaks a�ected RIE's performance on all three landscapes. In-

creasing the radius of the high peak improve the performance of RIE on all three landscapes

{ the high peak is easier to �nd. In increasing the radii of the short peaks RIE 's perfor-

mance improved then leveled o� on the interpolation and extrapolation landscapes. As the

radii of the short peaks increases the population converges to them faster so there is more

time to �nd the high peak. After being increased beyond a certain radius the population

does not converge any faster to the short peaks thus explaining the leveling o�. On the

random-peaks landscape RIE's performance decreases. As the basin of attraction of the

short peaks increases they apply a stronger pull on the population thus decreasing the EA's

chances of �nding the high peak.

One surprise was that the number of individuals on the high peak started decreasing part

way through the search. This is caused by the attraction of the large number of individuals

on the short peaks.

Compared against RHC , RIE performs better on the interpolation and extrapolation

landscape but worse on the random-peaks landscape. RIE is directionally tuned to these

landscapes while RHC is not. Thus these results show that a directionally tuned operator

searches better than an untuned operator. Neither RIE nor RHC are directionally tuned to

the random-peaks landscape but RIE makes some landscape assumptions that cause it to

be mistuned to this landscape (as veri�ed by our mathematical analysis). On the random-

peaks landscape RHC outperforms RIE. All these results are consistent with the NFL

theorems: better than random search can only be achieved by making correct assumptions

about the landscape and in making these assumptions there will be some landscapes for

which they are wrong and performance will be worse than random.

Rotating the line of peaks to 45o (135o, . . .) the performance of RIE decreased and was

eventually outperformed by RHC. Creating a probability model showed that RIE was not

as well tuned to this instance of the landscape as is RHC . The model also predicted that

RIE will outperform RHC if the number of genes is increased. Increasing the number of

genes in the landscape veri�ed this prediction { but only after the relative volume of peaks

76

to domain was maintained.

Adding additional landscape knowledge to RIE resulted in the creation of RRU . Un-

like RIE , RRU 's performance was una�ected by rotating the line of peaks. Compared

against RHC , RRU consistently outperformed it on the interpolation landscape and eventu-

ally passed it on the extrapolation landscape.

77

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we set out to empirically show that operators with more landscape speci�c

knowledge search better. We found that increasing the directional tuning between the

recombination operator and the landscape did result in better search performance. One

interesting observation is that an operator that we thought to be well tuned to a landscape

performed worse than random search. We later gave a mathematical argument showing that

this operator was poorly tuned to the landscape. This shows that it may not be intuitively

obvious as to how well a recombination operator is tuned to a given landscape.

Convergence to features in the landscape is dependent on the size of those features

(how easy they are to �nd) and the degree of tuning between the recombination operator

and the landscape. In all cases the EA using a directionally tuned recombination operator

converged to features of the landscape (ridges, peaks and lines) at a speed related to the size

of those features. When the features were large (eg. wide roads or peaks) the population,

under a directionally tuned recombination operator, concentrated to them quickly. When

the features were small (narrow ridges or peaks) the population did not converge to them

as fast. This convergence is also a�ected by the degree of tuning of the operator { RHC did

not converge to features and RIE converges to features slower when the line is at 45o then

when it is parallel to an axis.

These �ndings suggest two ways to determine if an operator is poorly tuned to a given

landscape. First the operator's performance can be compared against that of random search.

Second, the operator's convergence on the given landscape can be compared against its

convergence on landscapes for which it is known to be tuned.

Just as peaks with large basins of attraction exert a stronger pull on the population then

peaks with small basins of attraction so does a large group of individuals in an area of the

78

landscape exert a strong pull on the rest of the individuals in the population. Recombination

pairings result in many pairs of individuals from the large group (producing many o�spring

in that region of the landscape) and parents from other parts of the landscape also tend

to be paired with parents from the large group (with most of these o�spring falling on

the peak with the larger basin of attraction). Most o�spring will be located in the area

containing the large group of individuals or at least they will be located some distance from

their parents. If most individuals are created by recombination and if the large group is on

a large enough peak eventually it will pull the rest of the population on to it.

One reason that the mutation operator is useful is that it is much better at keeping

individuals on their current peaks. Recombination can �nd peaks, but is not good at

maintaining individuals on them. Mutation is good at climbing hills but not at going from

one peak to the next. An EA using some combination of mutation and recombination

should be better at searching many types of multi-modal functions than an EA using either

operator alone.

One reason that parallel evolutionary algorithms perform better on some landscapes

than single-population evolutionary algorithms is that an individual (or small group of

individuals) is more easily able to move a sub-population made up of a small number of

individuals than it would be able to if it was in a single, large population.

6.2 Future Work

Some possible directions for future research are:

� In this thesis one of the main features of the landscapes is that the peaks lie along a

line. Examining recombination operators for landscapes where peaks are on a di�erent

geometry (such as a curve, along multiple lines or on hyperplanes) could produce

recombination operators useful on other landscapes.

� One hypothesis we had was that RRU does not hill-climb as well as RIE . From using

GAVIN we also found that RRU could be too restrictive and prevent the population

from moving along a ridge. Modifying RRU so that o�spring can fall some short

distance o� the line (such as in an ellipse along the line) may result in a better hill-

climbing and ridge-following operator than RRU while retaining its ability to follow

lines at any angle.

This may also improve RRU 's ability to follow a ridge. With two parents near the top

of a ridge, if both are on either side then extrapolating will always produce o�spring

79

that are worse than both parents. If the replacement scheme uses relative �tness of

parents and o�spring then the population may not move along ridges. Changing the

distribution of o�spring from a line to an ellipse may reduce this problem.

� We identi�ed three properties by which a recombination operator can be tuned to

a real-valued �tness landscape (distance, directionality, and distributional bias). Of

these we investigated directional tuning. Examining tuning for distance and distribu-

tional bias may lead to other interesting �ndings for the development of recombination

operators for real-valued encodings.

� Another area for future work is the combined use of mutation and recombination. Our

results suggest that using mutation along with recombination may work better than

either alone on some types of landscapes. If recombination's role is to �nd new peaks

then mutation's role may be to climb peaks. This suggests that multiple generations of

mutation hill-climbing should be performed before individuals undergo recombination.

� Our initial motivation in this research was in PEAs and recombination between locals

and immigrants. One conclusion that we came to was that a large number of individ-

uals in an area of the landscape are hard to move. From this we hypothesized that a

PEA with several small sub-populations might search some landscapes better because

an individual �nding a higher local optima would more easily be able to move the rest

of the subpopulation.

80

Bibliography

[1] D. H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic
Publishers, Boston, MA, 1987.

[2] Thomas B�ack. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, 1996.

[3] Thomas B�ack, Frank Ho�meister, and Hans-Paul Schwefel. A survey of evolution
strategies. In Richard K. Belew; Lashon B. Booker, editor, Proc. of the Fourth Int.
Conf. on Genetic Algorithms, pages 2{9, San Mateo, CA, 1991. Morgan Kaufmann.

[4] J. E. Baker. Adaptive selection methods for genetic algorithms. In John J. Grefen-
stette, editor, Genetic Algorithms and their Applications: Proceedings of the First
International Conference on Genetic Algorithms, pages 101{111, 1985.

[5] Lashon B. Booker. Recombination distributions for genetic algorithms. In L. D. Whit-
ley, editor, Foundations of Genetic Algorithms 2, pages 29{44. Morgan Kaufmann,
1993.

[6] A. Brindle. Genetic Algorithms for Function Optimization. Doctoral Dissertation,
University of Alberta, Edmonton, 1981.

[7] D. J. Cavicchio. Adaptive Search using simulated evolution. Ph.D. Thesis, University
of Michigan, Ann Arbor, 1970.

[8] Joe Culberson. Genetic invariance: A new paradigm for genetic algorithm design.
(Technical Report TR 92-02), University of Alberta Department of Computing Science,
1992.

[9] L. Davis. Hybridization and numerical representation. In L. Davis, editor, The Hand-
book of Genetic Algorithms, pages 61{71, New York, 1991. Van Nostrand Reinhold.

[10] K. A. DeJong. Analysis of the Behavior of a Class of Genetic Adaptive Systems. Dept.
Computer and Communication Sciences, University of Michigan, Ann Arbor, 1975.

[11] Larry J. Eshelman, Richard A. Caruana, and J. David Scha�er. Biases in the crossover
landscape. In J. David Scha�er, editor, Proc. of the Third Int. Conf. on Genetic
Algorithms, pages 10{19. Morgan Kaufmann, 1989.

[12] Larry J. Eshelman and J. David Scha�er. Real-coded genetic algorithms and interval-
schemata. In L. D. Whitley, editor, Foundations of Genetic Algorithms 2, pages 187{
202. Morgan Kaufmann, 1993.

[13] D. B. Fogel and J. W. Atmar. Comparing genetic operators with gaussian mutations
in simulated evolutionary processes using linear systems. In Biological Cybernetics,
volume 63, pages 111{114. Springer-Verlag, 1990.

[14] L. J. Fogel, A. J. Owens, and M. J. Walsh. Arti�cial Intelligence Through Simulated
Evolution. Wiley Publishing, New York, 1966.

81

[15] Stephanie Forrest and Melanie Mitchell. Relative building{block �tness and the
building{block hypothesis. In L. D. Whitley, editor, Foundations of Genetic Algo-
rithms 2, pages 109{126. Morgan Kaufmann, 1993.

[16] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Don Mills, 1989.

[17] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes
used in genetic algorithms. In G. J. E. Rawlins, editor, Foundations of Genetic Algo-
rithms, pages 69{93. Morgan Kaufmann, 1991.

[18] David E. Goldberg and Jon Richardson. Genetic algorithms with sharing for mul-
timodal function optimization. In John J. Grefenstette, editor, Genetic Algorithms
and their Applications: Proceedings of the Second International Conference on Genetic
Algorithms, pages 41{49. Lawrence Erlbaum Associates, 1987.

[19] David E. Goldberg and Philip Segrest. Finite markov chain analysis of genetic algo-
rithms. In John J. Grefenstette, editor, Genetic Algorithms and their Applications:
Proceedings of the Second International Conference on Genetic Algorithms, pages 1{8.
Lawrence Erlbaum Associates, 1987.

[20] David Perry Greene and Stephen F. Smith. A genetic system for learning models of
consumer choice. In John J. Grefenstette, editor, Genetic Algorithms and their Ap-
plications: Proceedings of the Second International Conference on Genetic Algorithms,
pages 217{223. Lawrence Erlbaum Associates, 1987.

[21] J. J. Grefenstette. A User's Guide to GENESIS. (Technical Report CS 83-11), Com-
puter Science Department, Vanderbilt University, Nashville, TN, 1983.

[22] Joerg Heitkoetter and David Beasley, editors. The Hitch-Hiker's Guide to Evolutionary
Computation: A list of Frequently Asked Questions (FAQ). USENET: comp.ai.genetic,
Available via anonymous FTP from rtfm.mit.edu:/pub/usenet/news.answers/ai-
faq/genetic/, 1996.

[23] M. R. Hilliard and G. E. Liepins. A classi�cation{based system for discovering schedul-
ing heuristics. In John J. Grefenstette, editor, Genetic Algorithms and their Appli-
cations: Proceedings of the Second International Conference on Genetic Algorithms,
pages 231{235. Lawrence Erlbaum Associates, 1987.

[24] J. H. Holland. Adaptation in Natural and Arti�cial Systems. University of Michigan
Press, Ann Arbor, 1975.

[25] Abdollah Homaifar, Shanguchuan Guan, and Gunar E. Liepins. A new approach on
the traveling salesman problem by genetic algorithms. In S. Forrest, editor, Proc. of
the Fifth Inter. Conf. on Genetic Algorithms, pages 460{466, San Mateo, CA, 1993.
Morgan Kaufmann.

[26] Wilfried Jakob, Martina Gorges-Schleuter, and Christian Blume. Application of genetic
algorithms to task planning and learning. Parallel Problem Solving from Nature, 2,
pages 291{300, 1992.

[27] Cezary Z. Janikow and Zbigniew Michalewicz. An experimental comparison of bi-
nary and oating point representations in genetic algorithms. In Richard K. Belew;
Lashon B. Booker, editor, Proc. of the Fourth Int. Conf. on Genetic Algorithms, pages
31{36, San Mateo, CA, 1991. Morgan Kaufmann.

[28] Terry Jones. Crossover, macromutation, and population{based search. In Larry J.
Eshelman, editor, Proc. of the Sixth Inter. Conf. on Genetic Algorithms, pages 73{80,
San Francisco, CA, 1995. Morgan Kaufmann.

[29] Terry Jones. Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. Thesis,
University of New Mexico, 1995.

82

[30] J. R. Koza. Genetic Programming: on the programming of computers by means of
natural selection. MIT Press, Cambridge, Mass., 1992.

[31] S. W. Mahfoud. Crowding and preselection revisited. In R. M�anner and B. Manderick,
editors, Parallel Problem Solving from Nature, 2, pages 27{36. North-Holland, 1992.

[32] M. L. Mauldin. Maintaining diversity in genetic search. In Proceedings of the National
Conference on Arti�cial Intelligence, pages 247{250, 1984.

[33] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, New York, 1992.

[34] Heinz M�uhlenbein. Evolution in time and space{the parallel genetic algorithm. In
G. J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 316{337. Morgan
Kaufmann, 1991.

[35] Chrisila C. Pettey, Michael R. Leuze, and John J. Grefenstette. A parallel genetic
algorithm. In John J. Grefenstette, editor, Genetic Algorithms and their Applications:
Proceedings of the Second International Conference on Genetic Algorithms, pages 155{
161. Lawrence Erlbaum Associates, 1987.

[36] Xiaofeng Qi and Francesco Palmieri. The diversi�cation role of crossover in the genetic
algorithms. In S. Forrest, editor, Proc. of the Fifth Inter. Conf. on Genetic Algorithms,
pages 132{137, San Mateo, CA, 1993. Morgan Kaufmann.

[37] N. J. Radcli�e. Genetic Neural Networks on MIMD Computers. Ph. D. Dissertation,
Dept. of Theoretical Physics, University of Edinburgh, Edinburgh, UK., 1990.

[38] Nicholas J. Radcli�e. Non-linear genetic representations. In R. M�anner and B. Mand-
erick, editors, Parallel Problem Solving from Nature, 2, pages 259{268. North-Holland,
1992.

[39] J. David Scha�er and Larry J. Eshelman. On crossover as an evolutionarily viable
strategy. In Richard K. Belew; Lashon B. Booker, editor, Proc. of the Fourth Int.
Conf. on Genetic Algorithms, pages 61{68, San Mateo, CA, 1991. Morgan Kaufmann.

[40] William M. Spears. Crossover or mutation? In L. D. Whitley, editor, Foundations of
Genetic Algorithms 2, pages 221{237. Morgan Kaufmann, 1993.

[41] William M. Spears and Kenneth A. De Jong. On the virtues of parameterized uniform
crossover. In Richard K. Belew; Lashon B. Booker, editor, Proc. of the Fourth Int. Conf.
on Genetic Algorithms, pages 230{236, San Mateo, CA, 1991. Morgan Kaufmann.

[42] Gilbert Syswerda. Uniform crossover in genetic algorithms. In J. David Scha�er, editor,
Proc. of the Third Int. Conf. on Genetic Algorithms, pages 2{9. Morgan Kaufmann,
1989.

[43] Gilbert Syswerda. Simulated crossover in genetic algorithms. In L. D. Whitley, editor,
Foundations of Genetic Algorithms 2, pages 239{255. Morgan Kaufmann, 1993.

[44] Gregor von Laszewski. Intelligent structural operators for the k-way graph partitioning
problem. In Richard K. Belew; Lashon B. Booker, editor, Proc. of the Fourth Int. Conf.
on Genetic Algorithms, pages 45{52, San Mateo, CA, 1991. Morgan Kaufmann.

[45] Michael D. Vose and Gunar E. Liepins. Schema disruption. In Richard K. Belew;
Lashon B. Booker, editor, Proc. of the Fourth Int. Conf. on Genetic Algorithms, pages
237{242, San Mateo, CA, 1991. Morgan Kaufmann.

[46] D. Whitley and J. Kauth. Genitor: A Di�erent Genetic Algorithm. Technical Report
CS 88-101, Colorado State University, 1988.

83

[47] Darrell Whitley. The genitor algorithm and selection pressure: Why rank-based allo-
cation of reproductive trials is best. In J. David Scha�er, editor, Proc. of the Third
Int. Conf. on Genetic Algorithms, pages 116{121. Morgan Kaufmann, 1989.

[48] Darrell Whitley, Timothy Starkweather, and D'Ann Fuquay. Scheduling problems and
traveling salesmen: The genetic edge recombination operator. In J. David Scha�er,
editor, Proc. of the Third Int. Conf. on Genetic Algorithms, pages 133{140. Morgan
Kaufmann, 1989.

[49] David H. Wolpert and William G. Macready. No free lunch theorems for search.
ftp://ftp.santafe.edu/pub/wgm/n.ps.

[50] Alden H. Wright. Genetic algorithms for real parameter optimization. In G. J. E.
Rawlins, editor, Foundations of Genetic Algorithms, pages 205{218. Morgan Kauf-
mann, 1991.

[51] Sewall Wright. The roles of mutation, inbreeding, crossbreeding and selection in evo-
lution. In Donald F. Jones, editor, Proc. 6th Intl. Cong. of Genetics, pages 356{366,
Brooklyn, New York, 1932. Brooklyn Botanic Garden.

[52] Byonng-Tak Zhang and Heinz M�uhlenbein. Genetic programming of minimal neural
nets using occam's razor. In S. Forrest, editor, Proc. of the Fifth Inter. Conf. on
Genetic Algorithms, pages 291{300, San Mateo, CA, 1993. Morgan Kaufmann.

84

Appendix A

Introduction to Evolutionary

Algorithms

Evolutionary Algorithms (EAs) are a family of stochastic search algorithms. They in-

clude Evolutionary Programming (EP), Evolutionary Strategies (ESs), Genetic Algorithms

(GAs), Genetic Programming (GP) and Steady{State EAs. Unlike most other search algo-

rithms, EAs maintain a population of search points. Search consists of starting with some

initial population, selecting promising points in the population and from these promising

points generating a new population. This cycle proceeds until the search is halted and the

best point found is returned.

In single point search strategies there is only information about the landscape at the

current point. This can make it di�cult for the search algorithm to determine if it is caught

on a local optimum, or if it is searching the wrong part of the landscape to �nd the global

optimum. One way to get more global information about the landscape is to maintain a

collection of points: a population.

An evolutionary algorithms manipulates its population by selecting the more promising

points, called individuals, and from them producing new points in the landscape. These

new points are generated by various operators, one of which is the recombination operator.

The recombination operator uses two individuals and from them decides on two new points

to examine. The new points, o�spring, are based on their parents. Search is controlled by

the selection of parent individuals to create new o�spring individuals, and by the method

of which operators are used to generate new individuals from parent individuals.

This appendix is organized as follows. Section 1 is a general description of evolutionary

algorithms and basic terminology. Section 2 is a formal description of evolutionary algo-

rithms. This section also contains a detailed description of each part of an EA with the

common variations used. Section 3 has a description of each of the main types of evo-

85

lutionary algorithms: genetic algorithms; evolutionary strategies; steady-state EAs; and

multi-deme EAs.

A.1 The General Evolutionary Algorithm

A typical EA uses a population of sample points to search the domain of a function. EAs

have been used with success in function optimization, [10] and [16]; classi�er systems, [20]

and [23]; learning, [26] and [16]; and in designing neural networks, [52].

This section contains a formal description of EAs, followed by an outline for an imple-

mentation of an evolutionary algorithm. The following parts of this section will describe

each part of an EA in greater detail.

A.1.1 Terminology

.
x1 x2 x3 xk xn

GeneIndividual

Figure A.1: An individual.

Some terms commonly used are:

Genes: the most basic elements of evolutionary algorithms. Each gene stores a value

to be assigned to a variable.

Individual: (or string) consists of some number of genes, as shown in �gure A.1. An

individual is analogous to a chromosome in biology. It can be thought of as a solution,

or set of assignments to variables.

Population: a collection of individuals maintained by the EA.

Generation: each iteration of generating a new population is called a generation.

A.1.2 Canonical Evolutionary Algorithm

The canonical implementation of an EA is:

86

Initialize the population, P

Evaluate all members of P

while not done

f

Select individuals to be parents, P 0, from P

Create new individuals by applying the reproduction operators to P 0

Evaluate the new individuals

Replace some, or all, of the individuals in P with the new individuals

g

First a population of individuals is created. This is usually done by assigning random

values to all the genes in the population. To decide which individuals in the population will

reproduce an evaluation of all individuals occurs. This is done by an evaluation function,

or �tness function, similar to those used in standard search algorithms. In addition to

evaluating the �tness of an individual, the �tness function may also evaluate other properties

of the individual. For example, when using individuals of variable length it may be desirable

to have a shorter one over a longer one. In this case the evaluation function would reduce

the �tness of longer individuals and increase the �tness of shorter individuals. Once all

individuals have been evaluated, parents for the next generation are selected according to

the selection method. Then reproduction is performed. O�spring are created by applying

the variation operators. After a new population is created the individuals are evaluated

and the process is repeated. This continues until the stopping criteria is met.

A.2 Formal Description of an EA

An evolutionary algorithm is a 9-tuple (f , D, P , E, I, S, O, R, T)

� f is a relation that maps a point from the domain, D, to < called the �tness function.

Each individual in P has a �tness value associated with it. The goal of the search is

to �nd the point in D that has the maximum [minimum] �tness value.

� D is the domain of the search, typically a subset of <n.

� P is a collection of points in the domain called the population. Each element of P is

called an individual.

� E is the encoding of a point in D to an individual in P .

87

� I is the method of generating the initial population, P0.

� S is the selection method. It uses the �tness values of individuals in P to select

individuals to be used by O to generate new individuals

� O is a set of probabilistic variation operators that take individuals from P to generate

new points in the domain.

� R is the replacement method. It determines the fate of new individuals; either they

replace an existing individual or they are discarded.

� T is the stopping criterion for the search.

The population, P , is a collection of points in the domain. Starting from the initial

population, P0, the operators in O are applied to existing members of P , called individuals,

to generate new members. Individuals are chosen to generate new individuals through the

selection procedure S. After some number of new individuals are created, some members

of the population are removed by the replacement procedure, R. Each iteration of selecting

individuals, creating o�spring, and replacing individuals is called a generation. This contin-

ues until the stopping criteria, T, is met. At this point the EA returns the best individual

found.

A.2.1 Initialization

Little research has been done in the area of creating the initial population. In the vast

majority of EA implementations, the initial population is created randomly and is spread

uniformly across the domain. Other methods of initialization could arti�cially insure that

the individuals are uniformly spaced across the landscape. One method would be to create

some sort of grid and create an individual for each intersection. Another method would be

to randomly place an individual in each section.

A.2.2 Evaluation

As with other search strategies EAs use an evaluation (or �tness) function to assign a �tness

value to individuals. This �tness value is used by the selection phase for selecting individuals

for parents. The selection phase may use the �tness values as is or it may scale them (in

the �tness adjustment part of the selection phase) into a given range. Fitness values are

also in the replacement phase by some replacement methods.

88

A.2.3 Selection

The selection of individuals is one of the dominant controls on how the EA searches. Depend-

ing on how S picks individuals the population will quickly focus on promising individuals

and converge quickly, or will maintain a diverse population and explore the domain. The

selection phase uses the �tness scores assigned by the evaluation function, scales (or adjusts)

these values, and then chooses some subset of P to be used to create a new population.

The selection phase can be broken down into two stages: the �tness adjustment stage

and the parent selection stage.

Fitness Adjustment Methods

In both ESs and the original GAs �tness scores are unprocessed. ESs take the best indi-

viduals for parents based on rank so scaling the �tness scores does not a�ect its selection

methods. GAs use �tness proportionate selection which can lead to problems with un-

adjusted �tness values. One drawback is that the EA will perform di�erently when the

range of f is (100, 101) than when it is in the range (0, 1). Also, in early generations it

is quite common to have a few extremely �t individuals in the population. Using �tness

proportionate selection, these individuals will dominate the selection step and cause the

search to converge on them { possibly prematurely. At the other extreme, late in the run

all individuals tend to have similar �tness. With individuals of similar �tness values an EA

using �tness proportionate selection has little preference for one over another. As a result

the best individuals do not stand out, so the population will converge near an optimum but

not necessarily at it.

One method that causes the EA to operate the same when the domain is shifted is linear

scaling,

f 0 = af + b (A.1)

Linear scaling keeps the �tness values of the population within some range so that no one

individual dominates the selection step, and to stretch out the �tness values in cases where

they are all nearly the same so that search will focus on the better individuals. Linear

scaling is not without its own problems. It is possible that a signi�cantly less �t individual

can receive a negative �tness score after scaling, which will break selection algorithms

which assume non{negative �tness scores. One �x is to set the scaled �tness for the worst

individual to 0. Other scaling functions, in addition to this one, have been developed.

Another method of processing �tness scores is ranking. Ranking was proposed by Baker,

89

[4]. In his method individuals are sorted by their �tness values, and then assigned a new

value based on their rank.

pi =
1

N

�
MAX � (MAX �MIN)

i� 1

N � 1

�
(A.2)

Using a population of size N , where MAX is the maximum �tness value, assigned to

individual of rank 1,MIN is the minimum �tness value, assigned to the least �t individual,

equation A.2 gives the new �tness value for an individual of rank i. Other ranking functions

have been proposed, such as Michalewicz's exponential scaling [33],

pi = c� (1� c)i�1; 0 < c� 1 (A.3)

where c is some value that determines the selective pressure and pi is the new �tness of

individual of rank i. The main advantage of ranking is it allows for a more direct control

of selective pressure than any of the other methods.

In a multi-modal function, the standard GA converges to one peak. If the GA converges

too fast, without su�ciently exploring all peaks, then it is possible that this is not the opti-

mal peak in the solution space. Goldberg and Richardson, [18], present a way of assigning

�tness values, called sharing functions, such that the GA maintains a population on each

peak of a multi-modal function. In this modi�ed GA the �tness for each peak is divided

by the number of individuals on that peak and the resulting value is the �tness given to

an individual on that peak. Ideally, if ten individuals are on a peak of 10, each individual

receives a �tness of 1. The method used by Goldberg and Richardson used a sharing func-

tion, sh, which takes a measurement of the distance between two individuals, i and j (using

a distance function, d) and returns 1 if they are within some distance, otherwise returning

0. The new �tness for individual p is,

f 0(p) =
f(p)PN

i=1 sh(d(i; p))
(A.4)

Selection Methods

As with �tness processing methods, there are many ways of choosing which individuals will

be used as parents for the next generation.

There are at least three selection methods that use an individual's rank to select parents:

q-tournament, (�+�) and (�; �) methods. In the q-tournament selectionmethod ([17]) the

�rst q individuals are randomly selected from the population. From this pool the individual

with the highest �tness is selected as a parent. This process is repeated until all the parents

90

have been selected. From evolutionary strategies come the (�+ �) and the (�; �) method.

The (� + �) was developed �rst. In this method the � best individuals are chosen from

the combination of the parents and o�spring. Thus it is possible for an individual to exist

for more than one generation. With the (�; �) method the � individuals to form the next

population are selected from the best of the � o�spring. These last two methods are also

replacement strategies.

The rest of the selection methods are �tness proportionate selection techniques from the

GA community.

With �tness proportionate selection the processed �tness scores of the population are

used to generate the expected number of times an individual will be selected:

si =
num parents � fiPpop size

i=1 fi
(A.5)

In equation A.5 fi is the �tness of individual i (after adjustment) and si is the expected

number of times that the ith individual will be selected as a parent, called the expected

value. Thus the sum of the si's is equal to the number of parents to be selected:

num parents =
NX
i=1

si (A.6)

A study of �tness proportionate selection was done by Brindle, [6]. Among the selection

schemes she examined are:

� Stochastic Sampling or Roulette Wheel: this is one of the simplest ways of selecting

parents. The �tness of every individual is placed on a roulette wheel, where the size

of an individual's slot is directly proportional to its processed �tness. The wheel is

spun and where the ball ends is the individual that is selected. This is done once for

each parent and is called stochastic sampling with replacement. A variation on this

is to subtract 1 (to a minimum of 0) from the expected value of the individual who

is chosen and thus reduce its chances of being picked. This is stochastic sampling

without replacement.

� Deterministic Sampling: one problem with stochastic sampling is that in small pop-

ulations sampling error will result in good individuals not being selected. A way to

avoid this is to have an individual selected equal to the integer portion of its expected

selection value then order the individuals by the fractional portion of their selection

values and choose the remainder of the parents from the best of these.

91

� Remainder Stochastic Sampling: this picks individuals based on the integer portion of

their expected selection value as in deterministic sampling, then the remainder of the

parents are selected stochastically based on the fractional part of individuals' selection

values.

Brindle's experiments did not suggest that one selection is globally superior to any of

the others but she did �nd that roulette wheel sampling was more prone to sampling errors.

A.2.4 Stopping Criteria

There are two common stopping criteria for EAs. The �rst method is to have the EA run

for a predetermined number of generations. The second method is for the EA to run until

the population has converged. Convergence can be a measurement of the diversity of the

population { in which case the search halts after the population diversity is below some

predetermined value { or failure to �nd a new best point after x generations.

A.2.5 Replacement

In addition to controlling the search through selection, the search can also be directed by

the replacement method. In the selection method the focus is on choosing good individuals

and reducing the scope of the search (converging); the focus of replacement strategies is on

maintaining a diverse population.

The standard replacement strategies of EAs are simple. In GAs the entire population

is replaced by the newly generated o�spring. ESs have two di�erent replacement strategies

{ the replacement part of the (� + �) and (�; �) methods. The replacement strategy for

the (�; �) method is the same as that for GAs { replace the entire old population with the

newly generated o�spring. With the (� + �) method the new population is made of the

best individuals from the previous population and the newly generated o�spring.

Cavicchio, [7], in his doctoral dissertation was interested in �nding a way of maintaining

several species. This is very similar to maintaining subpopulations of solutions where mem-

bers within a subpopulation are similar (are on the same peak of a multi-modal function),

whereas members of di�erent subpopulations are not very similar (exist on di�erent peaks

of a multi-modal function). To achieve his goal he introduced preselection. Preselection is

where the o�spring replaces its least �t parent. Diversity is maintained as a new individual

replaces one that is similar to itself.

An extension of preselection, called crowding was proposed by De Jong in [10]. In

crowding a pool of random individuals to be replaced is created. When a new individual

92

is generated, it replaces an individual in this pool that is within a certain distance called

the crowding factor. Initially, the crowding factor is large, then it decreases over time.

Using crowding, De Jong had some success in using this scheme to maintain populations

on di�erent peaks of multi-modal functions.

Another way of maintaining diversity in the gene pool was proposed by Mauldin, [32].

Rather than replacing the most similar individual in the pool, Mauldin proposed a vari-

ation where he de�nes an uniqueness value. A new string can replace any string in the

population that is not farther away then the uniqueness value. He calculated uniqueness

as the Hamming di�erence between two bit strings, but other formulas for calculating dif-

ference between individuals can be used. He found that the more the role of uniqueness

increases in determining which individual to replace, the better his GA performed. From

his experiments he found that a GA gets good performance when combining uniqueness

with crowding. Mauldin also suggested using mutation on a new individual until it di�ered

from every other string in the population by at least k bits.

Mahfoud, [31], compares preselection and crowding as well as modi�cations of these

two methods, one of which he calls deterministic crowding. In deterministic crowding all

members of the population are paired up and produce o�spring; this way every member

participates in the production of two o�spring. An o�spring is compared with its most

similar parent, and replaces it if it has a higher �tness. This algorithm outperformed

preselection and crowding in that it maintained populations on more peaks of a multi-

modal function. In addition, deterministic crowding is easy to implement and is much more

e�cient than crowding.

Another replacement method is that used in GIGA ([8]). Unlike the previous replace-

ment methods (which are generational) GIGA uses a steady-state replacement method. In

GIGA a pair of parents are selected for reproduction { typically the pair with the closest

�tness values { and they create a number of pairs of o�spring. The parents are then re-

placed by the by the best pair of o�spring. Typically this pair is the one that contains the

individual with best �tness but other de�nitions of best are possible (such as best average

�tness). A selection-replacement policy that introduces only one or two new individuals to

the population at a time is a steady-state EA (described later in this chapter).

A.2.6 Variation

Once individuals have been selected to produce o�spring, the o�spring must be generated.

Evolutionary algorithms have two operators for the creation of new individuals, mutation

93

and recombination. It is through the use of these operators that the domain is searched. The

mutation operator is similar to the movement operator in hill-climbing. It takes one parent

and creates one o�spring near the parent. In genetic algorithms this is most commonly

done by ipping a bit, or assigning a random value to a gene in the individual; evolutionary

strategies add a small random number, with a Gaussian distribution, to a gene. The second

operator, recombination, is the focus of this thesis. It uses two or more parent individuals

to create one or more o�spring. Recombination is discussed in detail in section 2.2.

A.3 Speci�c Evolutionary Algorithms

In this section we will present the most commonly implemented EAs: genetic algorithms,

evolutionary strategies, steady-state EAs and multi-deme EAs.

A.3.1 Genetic Algorithms

Genetic algorithms were developed by John Holland at the University of Michigan, [24].

The main di�erences between GAs and other evolutionary algorithms are that GAs work

on a binary encoding of the problem, selection of individuals is proportional to their �tness,

and the main search operator is recombination.

The majority of GAs use the following methods:

� E: traditional GAs use a binary encoding but the use of more natural encodings, such

as oating{point for real{valued problems, is becoming more popular.

� I: the initial population individuals are created randomly with a uniform distribution

of gene values.

� O: recombination, called crossover in the GA community, is the dominant operator.

It is used to create 80{100% of the new individuals, with the most common types

being 2-point and uniform crossover. Mutation is strictly a background operator and

is applied at a rate of 0.1 to 0.001. The usual rate is near 0.001. Mutation typically

consists of ipping a bit in an individual from 0! 1 or 1! 0. At one time inversion

was also included, but now this operator is seldom used.

� S: �tness proportionate selection is used after some form of scaling or ranking takes

place.

� R: the entire old population is replace by the new one.

94

A.3.2 Evolutionary Strategies

Independent of the work of Holland, evolutionary strategies were developed in Germany by

Bienert, Rechenberg and Schwefel. ESs always work on real valued representations. The

main operator is a gaussian mutation on these values, with recombination being a secondary

operator.

There are two types of evolutionary strategies and they are distinguished by their selec-

tion method. The original ES used the (� + �) selection method. One problem with this

method was that individuals could survive for multiple generations. As a result the (�; �)

method was developed. An ES can be described as a 9-tuple with:

� E: uses a oating{point representation

� O: mutation is the dominant operator. Each real value is perturbed by a small random

number with a gaussian distribution. Recombination is also used, in most cases picking

a value at random between that of the �rst and second parent.

� S: the � best individuals in the population are used to create � o�spring.

� R: for the (� + �){ES the next population, Pt+1, is chosen from the best individuals

of the previous population and the � o�spring. In the (�; �){ES the new population

is the best individuals from the � o�spring.

A survey of evolutionary strategies is given in [3].

A.3.3 Steady-state EAs

The EAs discussed so far are called generational. They start with an initial population,

select some number of parents and then use them to create an entirely new population.

Steady-state EAs (SSEAs) are a variation on GAs where a new individual is created and

replaces an existing member of the population. One advantage of SSEAs is that the better

(more �t) individuals remain in the population for many generations, like an automatic

elitism. The use of SSEAs has been popularized by Whitley and Kauth's GENITOR package

([46]) and has been used in several experiments such as [42] and [47].

An EA is a steady-state EA depending on its selection and replacement methods:

� S: two individuals are selected from P stochastically on �tness - possibly after ranking

or scaling individuals - and creates one or two o�spring.

� R: these o�spring replace the least �t individuals in P .

95

A.3.4 Parallel Evolutionary Algorithms

One method of improving an EA's performance is to increase the population size. This way

there are more individuals searching in the domain so the e�ects genetic drift and sampling

errors are reduced and the search is less likely to converge prematurely. Increasing the

population increases the running time by at least a linear rate. Splitting the population

onto several processors and parallelizing it is one way of keeping the running time constant

while increasing the population size ([35], [34]). A parallel evolutionary algorithm is called

a PEA.

Each sub-population of a PEA is called a deme. A PEA maintains multiple demes and

runs each like a simple EA. Selection and replacement takes place in each deme independent

of the others. After some number of generations has passed a small number of individuals

are passed from one deme to another. As with every other part of an EA, there are di�erent

ways of selecting individuals for emmigration and di�erent rates of emmigration can be used.

96

Appendix B

GAVIN Visualization Library

The GAVIN visualization library is a UNIX C library for graphically displaying evolutionary

search. The purpose of the library is to display a problem's �tness landscape and show the

movement of a population's individuals on it. In addition the visualization library uses

an individuals colour to give other information about that individual (such as which sub-

population the individual is a member of).

B.1 Data Model

There are four data structures used in the GAVIN visualization library. These data struc-

tures store information de�ning the problem's �tness landscape, the locations of individuals

in the population, the colour number to assign to each individual and the RGB values for

each colour number.

The �tness landscape is stored in a two dimensional array of real values. This array

represents a grid on the xy plane with each element in the array storing the height (z value)

of the �tness landscape at a given (x, y) position. The �tness landscape is displayed by

drawing the quadrilaterals formed from each neighboring group of four points.

Population information is stored in two data structures. One data structure contains the

x, y and z information for each individual (where x and y are the values of an individual's

two genes and z is the individual's �tness). The other data structure stores the colour

number of each individual. These data structures must be updated each generation.

The fourth data structure contains the RGB values for each colour number. Currently

colours are used only to show membership to a given sub-population and are de�ned by

specifying the population topology.

97

B.2 GAVIN Interface

GAVIN consists of a set of functions, written in C, that are called by an EA. The library

uses the Silicon Graphics c Graphics LibraryTM(GL). These functions are:

int gav_InitializeGL(int x, int y, int color, char *name)

int gav_DrawLandscapeArray()

int gav_make_color_map(int xdim, int ydim)

int gav_DrawPopulation(double *pPop, int *pColor, int numberIndividuals)

void gav_RotateX(float angle)

void gav_RotateY(float angle)

void gav_RotateZ(float angle)

int gav_InitializeLandscape(double *pLandscape, int xsize, int ysize)

int gav_InitializePopLocation(int numIndivids, int numColors)

int gav_SetPopLocation(double *pIndividLoc, int *pColor, int numIndivids)

void gav_DrawScene()

gav InitializeGL() is called �rst. This sets the size of the window to be opened and the

number of demes in the population. Second, the landscape to use is set with gav InitializeLandscape().

This function also sets the grid size for displaying the landscape. Then the colourmap for

the demes is set using gav make color map(). GAVIN expects that the demes will exist

in some grid and assigns neighbours similar colours. Neighbours along the x dimension

di�er slightly in hue, while neighbours in they y direction di�er in saturation. The �nal

setup function is gav SetPopLocation() to specify where on the landscape each individual

is located.

Each generation the EA calls gav SetPopLocation() to update individuals' positions

followed by gav DrawScene() to update the graphics. By putting a suitable delay between

generations the user can watch the population evolve.

Other functions provided by GAVIN are the ability to rotate the landscape, using

gav RotateX(), gav RotateY() and gav RotateZ(). Additionally just the landscape or the

population can be updated with gav DrawLandscapeArray() and gav DrawPopulation().

98

B.3 GAVIN Commands

B.3.1 int gav InitializeGL(int x, int y, int color, char *name)

This function must be called before any other GAVIN functions and must be called before

creating the visualization window. This function initializes the GL environment for drawing.

RGB mode with double bu�ering and zbu�ering is turned on. The parameters are:

� x: the resolution of the x dimension of the landscape

� y: the resolution of the y dimension of the landscape

� color: a boolean value, if non{zero then colours will be used in drawing the landscape

and the population, otherwise the landscape will be drawn in a shade of gray on a

white background and individuals will be drawn in black.

� name: a pointer to an array of characters containing the name to call the window

It returns 0 if it failed, or 1 if it succeeded.

B.3.2 int gav DrawLandscapeArray(void)

This function draws the landscape in the GAVIN window. It must not be called until after

the landscape has been initialized with gav InitializeLandscape(). It returns 1 if it

succeeds, otherwise it returns 0.

B.3.3 int gav make color map(int xdim, int ydim)

When simulating a parallel GA, or running a multi-deme GA, this function allows for

individuals from di�erent demes to be distinguished by colour. The parameters are:

� xdim: the integer value of the number of demes in the x dimension.

� ydim: the integer value of the number of demes in the y dimension.

Colours are chosen from the HSV colour map. Hue is varied with xdim and saturation is

varied with ydim.

Note: xdim � ydim must be less than the number of colours speci�ed in the call to

gav InitializePopLocation().

99

B.3.4 int gav DrawPopulation(double *pPop, int *pColor, int numberIndi-

viduals)

Once the GAVIN environment has been setup, this function is used to draw, or redraw, the

population. The parameters are:

� pPop: a pointer to an array containing the x, y and z coordinates for each individual

to be displayed. The formula to get individual i's x, y and z coordinates from pPop

is: xi = pPop[i � 3], yi = pPop[i � 3 + 1] and zi = pPop[i � 3 + 2].

� pColor: a pointer to an array specifying which colour to use for which individual.

Values must be in the range 1 to color as given in gav InitializePopLocation().

B.3.5 Rotation Commands

� void gav RotateX(float angle)

� void gav RotateY(float angle)

� void gav RotateZ(float angle)

� angle: a oating point value specifying the number of degrees to rotate.

All of these functions rotate the landscape around the corresponding axis by the speci�ed

angle.

B.3.6 int gav InitializeLandscape(double *pLandscape, int xsize, int ysize)

This function speci�es the landscape which is being searched. As it is assumed that the land-

scape will be �xed, this function should be called once after calling gav InitializeGL().

The parameters are:

� pLandscape: a pointer to an array of the landscape grid of dimensions

pLandscape[xsize][ysize][3]. The x, y and z coordinates for the ith and jth entry

are: x = pLandscape[i][j][0], y = pLandscape[i][j][1], and z = pLandscape[i][j][2].

� xsize: the integer value containing the x dimension of the landscape grid.

� ysize: the integer value containing the y dimension of the landscape grid.

100

B.3.7 int gav InitializePopLocation(int numIndivids, int numColors)

Before the locations of individuals can be sent to the GAVIN module, it is necessary to

specify the number of individuals in the population and the number of colours to be used

in drawing them. The parameters are:

� numIndivids: an integer specifying the number of individuals to be drawn.

� numColors: an integer specifying the size of the colour index to use for drawing

individuals. This value should be at least 1.

B.3.8 int gav SetPopLocation(double *pIndividLoc, int *pColor)

After the GAVIN environment for individuals has been setup with a call to

gav InitializePopLocation() this function is used to specify the location of the individ-

uals. The parameters are:

� pIndividLoc: a pointer to an array containing the x, y and z coordinates of each

individual to be drawn. The values for the coordinates of individual i must be located

at: xi = pIndividLoc[i � 3], yi = pIndividLoc[i � 3 + 1] and zi = pIndividLoc[i �

3 + 2]. The number of individuals expected is the value given for numIndivids in

gav InitializePopLocation().

� pColor: a pointer to an array of integers. The value at location pColor[i] is the

colour to use in drawing that individual.

B.3.9 void gav DrawScene()

Once the landscape has been speci�ed and the locations of all the individuals have been given

they can be drawn. This function draws the landscape, as speci�ed by gav InitializeLandscape(),

and the population, as speci�ed by gav SetPopLocation().

B.4 Example Program

The following is a sample program using the GAVIN functions. The landscape is a sin wave.

Each generation the twenty individuals are randomly relocated on the landscape, and the

landscape is rotated.

#include <math.h>
#include <stdio.h>
#include <gl/gl.h>

101

#include <gl/device.h>
#include <gavin.h>

#define GRIDSIZE 50
#define NUM_INDIVIDS 20

/*===
* This holds the points of our landscape.
===/
double searchscape[GRIDSIZE][GRIDSIZE][3];
double individLoc[NUM_INDIVIDS][3];

int main(int argc, char **argv)
{

short val;
int i,j,k,x,y,color[NUM_INDIVIDS];
double yAngle = 0.0,sampleStep = 6*M_PI/GRIDSIZE;

/*===
* Create the searchscape, taking into account grid size. We
* want a complete period of the size wave.
===/
for (i = 0; i < GRIDSIZE; i++)
{

for (j = 0; j < GRIDSIZE; j++)
{

searchscape[j][i][0] = 3*j-GRIDSIZE;
searchscape[j][i][1] = 2*((((sin(sampleStep*(j-10))/

sampleStep*j)))/20 *
(sin(sampleStep*(i-10))/sampleStep*i)/20);

if (searchscape[j][i][1] < 0.0)
searchscape[j][i][1] = 0.0;

searchscape[j][i][2] = 3*i-GRIDSIZE;
}

}

/*==
* Initialize the GL environment.
==/
if (!gav_InitializeGL(400,400,"G.A.V.IN"))
{

fprintf(stderr,"Cannot initialize GL environment.\n");
exit(-1);

}
gav_InitializeLandscape(&(searchscape[0][0][0]),GRIDSIZE,GRIDSIZE);
gav_InitializePopLocation(NUM_INDIVIDS, NUM_INDIVIDS);

/*==
* Give each individual its own colour.
==/
gav_make_color_map(NUM_INDIVIDS, 1);
for (i=0; i<NUM_INDIVIDS; i++)

color[i] = i;

for(;;)
{

for (i = 0; i < NUM_INDIVIDS; i++)
{

102

x = rand()/(32767/GRIDSIZE);
y = rand()/(32767/GRIDSIZE);
individLoc[i][0] = searchscape[x][y][0];
individLoc[i][1] = searchscape[x][y][1];
individLoc[i][2] = searchscape[x][y][2];

}

gav_RotateYAxis(yAngle);
yAngle++;
if (yAngle > 360.0)

yAngle = 0.0;

gav_SetPopLocation(&(individLoc[0][0]), &(color[0]),
NUM_INDIVIDS);

gav_DrawScene();
}

sleep(15);
gexit();

}

103

