
Methods for Statistical Inference:

Extending the Evolutionary Computation Paradigm

A Dissertation

Presented to

The Faculty of the Graduate School of Arts and Sciences

Brandeis University

Department of Computer Science

Jordan B. Pollack, Advisor

In Partial Ful�llment

of the Requirements for the Degree

Doctor of Philosophy

by

Hugues Juill�e

May, 1999

This dissertation, directed and approved by Hugues Juill�e's Committee, has been

accepted and approved by the Graduate Faculty of Brandeis University in partial

ful�llment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Dean of Arts and Sciences

Dissertation Committee

Prof. Jordan B. Pollack, Chair

Prof. Martin Cohn

Prof. Kenneth A. De Jong

Copyright c by

Hugues Juill�e

1999

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor, Professor Jordan B. Pollack.

When he arrived at Brandeis, four years ago, I was just starting my Ph.D. program. He

o�ered me an opportunity to address some fascinating problems and gave me the intel-

lectual latitude to perform fundamental research. His scienti�c knowledge and creativity

were a continual source of inspiration. Those years spent working with him were a very

challenging and enlightening experience.

I would also like to thank Professor Martin Cohn. Without him, I might not even have

entered a Ph.D. program. He was always available to listen to me and to give me some

advice. His theoretical background was extremely helpful to my work. Today, I am very

grateful to him and my advisor for putting their trust in me.

I am very honored that Professor Kenneth A. De Jong accepted to serve on my thesis

committee and took the time to review my dissertation during a very busy period. His

comments were very valuable for improving the quality of this dissertation.

I also wish to thank the O�ce of Naval Research for providing support for this work

under grant N00014-96-1-0416.

I wish to give special thanks to my fellows at the DEMO lab: Alan Blair, Paul

Darwen, Sevan Ficici, Pablo Funes, Greg Hornby, Simon Levy, Ofer Melnik, Elizabeth

Sklar and Richard Watson. The lab was an environment in perpetual change and pro-

vided an inexhaustible source of new ideas, discussions and lively group meetings.

Thanks also to all the members of the computer science department and all the people

who helped me during my thesis with their scienti�c insights. In particular, I would

like to thank Professor Melanie Mitchell. My visit to the Santa Fe Institute in June

1998 was very exciting and the source of many interesting discussions with her and other

researchers there.

iv

Anne, my wife, was a wonderful source of moral support. She had faith in me

from the beginning, and she was always here during periods of doubt and uncertainty.

Her smile and her words have always brought so much to me.

Our lives were blessed when Marie was born on September 24, 1997. She gave me the

motivation and strength to �nish this thesis!

A mes parents qui ont toujours su par leur con�ance me motiver pour pour-

suivre mes �etudes et pers�ev�erer dans mes entreprises, je t�emoigne toute ma gratitude.

Leur enseignement et leur exemple m'ont beaucoup apport�e dans la vie.

Paul, je voudrais te dire aujourd'hui �a quel point ton amiti�e a �egalement �et�e une impor-

tante source de soutien.

En�n, je souhaite remercier toute ma famille et belle-famille en France et �a Londres.

Vous avez toujours eu con�ance en moi et mon succ�es d'aujourd'hui est du en grande

partie �a vos encouragements continus.

Hugues JUILLE

v

ABSTRACT

Methods for Statistical Inference:

Extending the Evolutionary Computation Paradigm

A dissertation presented to the Faculty of

the Graduate School of Arts and Sciences of

Brandeis University, Waltham, Massachusetts

by Hugues Juill�e

In many instances, Evolutionary Computation (EC) techniques have demon-

strated their ability to tackle ill-structured and poorly understood problems against

which traditional Arti�cial Intelligence (AI) search algorithms fail. The principle of op-

eration behind EC techniques can be described as a statistical inference process which

implements a sampling-based strategy to gather information about the state space, and

then exploits this knowledge for controlling search. However, this statistical inference

process is supported by a rigid structure that is an integral part of an EC technique.

For instance, schemas seem to be the basic components that form this structure in the

case of Genetic Algorithms (GAs). Therefore, it is important that the encoding of a

problem in an EC framework exhibits some regularities that correlate with this under-

lying structure. Failure to �nd an appropriate representation prevents the evolutionary

algorithm from making accurate decisions. This dissertation introduces new methods

that exploit the same principles of operation as those embedded in EC techniques and

provide more exibility for the choice of the structure supporting the statistical infer-

ence process. The purpose of those methods is to generalize the EC paradigm, thereby

expanding its domain of applications to new classes of problems.

Two techniques implementing those methods are described in this work. The

�rst one, named SAGE, extends the sampling-based strategy underlying evolutionary

algorithms to perform search in trees and directed acyclic graphs. The second tech-

nique considers coevolutionary learning, a paradigm which involves the embedding of

vi

adaptive agents in a �tness environment that dynamically responds to their progress.

Coevolution is proposed as a framework in which evolving agents would be permanently

challenged, eventually resulting in continuous improvement of their performance. After

identifying obstacles to continuous progress, the concept of an \Ideal" trainer is pre-

sented as a paradigm which successfully achieves that goal by maintaining a pressure

toward adaptability.

The di�erent algorithms discussed in this dissertation have been applied to a

variety of di�cult problems in learning and combinatorial optimization. Some signi�cant

achievements that resulted from those experiments concern: (1) the discovery of new

constructions for 13-input sorting networks using fewer comparators than the best known

upper bound, (2) an improved procedure for the induction of DFAs from sparse training

data which ended up as a co-winner in a grammar inference competition, and (3) the

discovery of new cellular automata rules to implement the majority classi�cation task

which outperform the best known rules.

By describing evolutionary algorithms from the perspective of statistical infer-

ence techniques, this research work contributes to a better understanding of the under-

lying search strategies embedded in EC techniques. In particular, an extensive analysis

of the coevolutionary paradigm identi�es two fundamental requirements for achieving

continuous progress. Search and machine learning are two �elds that are closely related.

This dissertation emphasizes this relationship and demonstrates the relevance of the issue

of generalization in the context of coevolutionary races.

vii

Contents

1 Introduction 1

1.1 Problem Solving is about Designing Abstract Objects 3

1.2 E�cient Problem Solving Means Exploiting Constraints and Regularities

of the Problem Domain . 4

1.3 Manipulating Subsets of Candidate Solutions as a Search Paradigm 6

1.4 Interdependence between Heuristic and Structure De�nition 10

1.5 Exploiting Statistical Properties of Problem Domains 11

1.6 Evolutionary Computation as a Paradigm for Statistical Inference 14

1.6.1 Evolutionary Computation from the perspective of Global Random

Search Methods . 15

1.6.2 Genetic Algorithms and the Schema Theorem 17

1.7 Evolutionary Computation as a \Black Art" 22

1.8 Summary and Objectives of this Dissertation 22

2 Extending the Evolutionary Computation Paradigm 25

2.1 Problem De�nition . 25

2.1.1 De�ning Structures to Capture Statistical Properties of Problem

Domains . 25

viii

2.1.2 Explicit Partitioning Methodology 29

2.1.3 Indirect Partitioning Methodology 32

2.2 Proposed Solution . 38

2.3 Related Work . 39

2.3.1 Messy Genetic Algorithms . 39

2.3.2 Adaptive Evolutionary Computation 40

2.3.3 Concluding Remarks . 41

2.4 Original Contributions . 42

2.5 Outline of Chapters . 44

3 SAGE: a Sampling-Based Strategy for Search in Trees and Directed

Acyclic Graphs 45

3.1 The Self-Adaptive Greedy Estimate (SAGE) Search Algorithm 49

3.1.1 Principle . 49

3.1.2 Construction Phase . 54

3.1.3 Competition Phase . 54

3.1.4 Management of the Commitment Degree 57

3.1.5 Parameters of SAGE . 58

3.2 Application 1: The Abbadingo DFA Learning Competition 60

3.2.1 Presentation . 60

3.2.2 Description of the Implementation for SAGE 63

3.2.3 Description of the Evidence-Driven Heuristic 68

3.2.4 Experimental Results . 68

3.3 Application 2: Discovery of Short Constructions for Sorting Networks . . 75

3.3.1 Description . 75

3.3.2 Related work . 76

ix

3.3.3 Implementation . 77

3.3.4 Experimental Results . 80

3.4 Application 3: The Solitaire Game . 82

3.4.1 Presentation of the game . 82

3.4.2 Implementation . 84

3.4.3 Experimental Results . 84

3.5 Discussion . 85

3.6 Concluding Remarks . 87

4 Coevolution and the Emergence of Adaptability 90

4.1 Coevolution as a Paradigm for Capturing Dynamic Properties of Evolving

Agents . 92

4.2 Dynamics of Coevolution Between Two Populations: a Case-Study 94

4.2.1 Motivations . 94

4.2.2 Description of the problem . 95

4.2.3 Learning in a Fixed Environment 98

4.2.4 Coevolutionary Search: Learning in an Adapting Environment . . 101

4.3 Background on Coevolutionary Search . 111

4.3.1 Competition between Populations 111

4.3.2 Cooperation between Populations 115

4.4 Discussion . 117

5 Coevolving the \Ideal" Trainer: a Paradigm for Achieving Continuous

Progress 119

5.1 Coevolutionary Learning: Learned Lessons 121

5.1.1 Adaptability is a Relative Measure 121

5.1.2 Continuous Progress is an Absolute Measure 122

x

5.2 Coevolutionary Learning: Conditions for Success 122

5.2.1 Need for Maintaining Useful Feedback 123

5.2.2 Need for a Meta-Level Strategy . 124

5.3 Coevolving the \Ideal" Trainer: Presentation 127

5.4 Related Work . 129

5.5 Concluding Remarks . 130

6 Applications of the \Ideal" Trainer Paradigm 133

6.1 Application 1: Discovery of CA Rules for the Majority Classi�cation Task 133

6.1.1 Presentation . 133

6.1.2 Experimental Setup . 134

6.1.3 Experimental Results . 136

6.1.4 Performance Comparison: Fixed vs. Adapting Search Environment 140

6.1.5 Analysis of Experiments . 144

6.1.6 Concluding Remarks . 152

6.2 Application 2: a Modular Approach to Inductive Learning 153

6.2.1 Modular Approaches to Inductive Learning: Presentation 153

6.2.2 Related Work . 155

6.2.3 Issues Concerning the Automatic Decomposition of Problems . . . 156

6.2.4 Applying the \Ideal" Trainer Paradigm 157

6.2.5 Architecture of the MIL System 159

6.2.6 Rules of Evolution . 162

6.2.7 Experiments in Classi�cation: the Intertwined Spirals Problem . . 167

6.2.8 Experiments in Time Series Prediction: the Wolfe Sunspots Database172

6.2.9 Concluding Remarks . 179

xi

7 Conclusion 181

7.1 Summary . 181

7.2 Contributions and Discussion . 184

7.3 Future Research . 185

xii

List of Figures

1.1 Distribution between the amount of computational e�ort and the amount

of bias that are necessary to solve a speci�c problem. 5

1.2 Board position for the 8-queens problem where queens have been assigned

in the �rst four columns. 9

1.3 Stochastic procedure to generate non-conicting assignments of queens. . 12

1.4 Evolution of the probability of success for generating a valid assignment

for \n-queen". 13

1.5 Formal scheme for global random search methods. 16

1.6 Description of the one-point and two-point crossover operators. 18

1.7 Illustration for the partitioning of the state space with respect to schemas. 21

2.1 Partitioning of the state space with respect to an explicit procedure. . . . 27

2.2 Partitioning of the state space with respect to an indirect methodology. . 28

2.3 A 10-input sorting network using 29 comparators and 9 parallel steps. . . 30

2.4 Training data for the intertwined spirals classi�cation problem. 33

2.5 Representation of the search space: dark areas correspond to high quality

solutions while light areas are associated with poor solutions. The search

strategy consists in looking for domains of the state space over which

continuous progress can be observed over a period of time. 35

xiii

2.6 Perfect score generalizing classi�cation of the two intertwined spirals. . . . 37

2.7 A 52-atom S-expression classifying correctly all 194 training examples for

the intertwined spiral problem. 37

3.1 Illustration for the parallel search strategy implemented in Beam search. . 50

3.2 Illustration for the sampling-based strategy exploited by SAGE to evaluate

nodes and the adaptive strategy which focuses search on most promising

alternatives. 51

3.3 As a result of the local competition among members of the population,

search focuses on most promising alternatives. 56

3.4 Illustration of the state merging method for DFA induction. Section 3.2.2

describes the di�erent steps in the merge process. 66

3.5 Randomized construction procedure for DFA learning. 67

3.6 A DFA learning algorithm exploiting the evidence-driven heuristic. 69

3.7 Comparison of the performance for the evidence-driven heuristic, the

Trakhtenbrot-Barzdin algorithm and SAGE on the task of grammatical

inference with randomly generated target DFAs of nominal size 32. 73

3.8 Comparison of the performance for the evidence-driven heuristic, the

Trakhtenbrot-Barzdin algorithm and SAGE on the task of grammatical

inference with randomly generated target DFAs of nominal size 64. 74

3.9 A 10-input sorting network using 29 comparators and 9 parallel steps. . . 75

3.10 Randomized construction procedure run by each processor element. 78

3.11 Detail of the principal operations performed by the non-deterministic in-

cremental algorithm, using a direct implementation of the zero-one principle. 79

3.12 Two 13-input 45-comparator sorting networks using 10 parallel steps. . . 81

3.13 A 16-input 60 comparator sorting network using 10 parallel steps. 81

xiv

3.14 The initial con�guration and a possible con�guration after 13 moves for

the Solitaire game. For a clearer picture, the grid layout is not drawn but

is represented by the rules on the border. 83

3.15 The best con�guration found out for the Solitaire game, using 122 lines

(on the right); and the con�guration for this best play after 40 moves (on

the left). 85

3.16 Example for the evolution of the success rate with respect to the value of

the threshold that controls the increment of the commitment degree. . . . 87

4.1 Coevolution between a population of learners and a population of problems. 93

4.2 Two space-time diagrams for the GKL rule. 96

4.3 Evolution of CA rules in a �xed environment: the population converges

quickly to a small domain of the search space. Occasional improvements

may eventually be observed. 100

4.4 Evolution of CA rules in a �xed environment using resource sharing: mul-

tiple niches corresponding to the exploration of di�erent alternatives are

maintained in the population. 101

4.5 Coevolution of CA rules (top) and ICs (bottom) in a cooperative relation-

ship: the strong incentive for each population to propose easy problems

to the other results in little exploration of the search space. 105

4.6 Coevolution of CA rules (top) and ICs (bottom) in a competitive relation-

ship: the two populations follow conicting goals, resulting in an unstable

behavior. 106

xv

4.7 Coevolution of CA rules (top) and ICs (bottom) in a competitive rela-

tionship, using resource sharing in both populations: the two populations

converge to a mediocre stable state involving a number of sub-optimal

niches. 110

5.1 Introduction of gradient information in the \Ideal" trainer approach to

coevolutionary learning. 120

5.2 If the di�culty of problems proposed by the training environment increases

too quickly, there is a small probability that an individual in the solution

set 	(t) be mapped to the solution set 	(t+1) by the search operators:

no gradient is available to drive search toward the target solution set

(represented by the dark area). 124

5.3 The pressure toward adaptability is not enough to drive search toward the

target solution set (represented by the dark area): a high-level strategy is

necessary to control the evolution of the solution sets 	(t), 	(t+1), 	(t+2)

. . . toward that target. 125

5.4 Continuous progress is possible by allowing the progressive evolution of

the solution sets 	(t), 	(t+1), 	(t+2) . . . toward the target solution set

(represented by the dark area). 126

6.1 Distribution of performance for the GKL rule for �0 2 [0:0; 1:0]. 134

6.2 Coevolutionary learning between CA rules (top) and ICs (bottom): the

di�culty of problems proposed by the population of ICs adapts in response

to the progress of the population of rules in order to maintain a challenging

environment and to allow continuous progress. 139

xvi

6.3 Three space-time diagrams describing the evolution of CA states: in the

�rst two, the CA relaxes to the correct uniform pattern while in the third

one it doesn't converge at all to a �xed point. 140

6.4 Distribution of the ratio of runs achieving a speci�c performance after 500

generations. 142

6.5 Distribution of the ratio of runs achieving a speci�c performance after

1000 generations. 143

6.6 Evolution of the performance of the top individual in the �rst 200 gener-

ations for each run. 146

6.7 Evolution of performance of top individual for the 4th run. 147

6.8 Hamming distance between top individual and best rule for the 4th run. . 148

6.9 Distribution of ICs' density for generations: 20, 50, 100, 250, 1000 and 2500.149

6.10 Distribution for the count of 1's in the lookup tables associated with rules

for di�erent densities of the input pattern. 151

6.11 The space of decompositions and the space of local models are explored

simultaneously. If some decompositions characterizing the domain of spe-

cialization of some local models (represented in dark) are discovered, then

a composite classi�cation theory may be constructed. In that example,

the composite solution is de�ned as follows: if (x; y) 2 D2 then C1 else

if (x; y) 2 D1 then C3 else C2 . 154

6.12 Extension of the \Ideal" trainer concept for Modular Inductive Learning. 158

6.13 Architecture of the Modular Inductive Learning system 161

6.14 A perfect classi�cation for the intertwined spirals exploiting a decompo-

sition of the input space into four domains. 168

6.15 Evolution of average score for best composite solutions. 170

6.16 Evolution of average number of components for best composite solutions. 171

xvii

6.17 Trajectory of the pair (accuracy, model size) during evolutionary search. . 172

6.18 Above: the Wolfe sunspots data: average number of sunspots per year and

prediction for run number four. Below: squared error of the prediction

for that same run. 173

6.19 Results for run number four: Evolution of the number of components in

the best composite solution and of the normalized squared error over the

training and prediction sets. 177

xviii

Chapter 1

Introduction

For many tasks in Arti�cial Intelligence (AI), problem solving is an activity that exploits

search as the fundamental paradigm in order to isolate from a set of candidates a so-

lution that exhibits some speci�c properties. As more di�cult problems are addressed,

the size of this search space grows quickly and it becomes important to take advantage

of the available knowledge about the structural properties of the problem domain. This

concept, formalized in the so-called \No Free Lunch" theorems [114], motivates the de-

sign of strong methods which embed such problem-speci�c knowledge in order to make

search tractable. However, for many ill-structured and poorly understood problems, the

knowledge available about the regularities of the problem domain concerns empirical

observations, rules of thumb or intuitions. E�orts to formalize this knowledge in the

framework of traditional search paradigms are often unsuccessful because this knowl-

edge is better described in terms of statistical properties of the problem domain. This

is the reason for the success of Evolutionary Computation (EC) techniques, like Genetic

Algorithms (GAs), which seem more amenable to exploit this form of knowledge. The

principle of operation behind Evolutionary Algorithms (EA) is to gather statistics about

1

the structure of the state space and then to exploit that knowledge to control search. In

the case of Genetic Algorithms, it is well accepted that this information gathering pro-

cess is performed with respect to a speci�c structure constructed from schemas [39, 58].

Researchers are working on extending the schema theory to describe the search strate-

gies embedded in other EC techniques like Genetic Programming (GP) [50, 51, 67, 78].

Therefore, when encoding a problem in the framework of EC techniques, it is important

that the regularities of the state space correlate with the structure supporting the knowl-

edge gathering process in the evolutionary algorithm. This is a necessary condition for

the EA to exploit those regularities e�ciently to drive search. The central contribution

of this dissertation is to generalize this statistical inference strategy by proposing new

methodologies that capture the same principles of operation as those embedded in evolu-

tionary algorithms, thereby expanding their domain of applications. More precisely, the

fundamental idea of this research work is to propose a framework for the representation

and the exploitation of statistical properties of a problem domain that is more exible

than the rigid structures, like schemas, that underlie search in EAs. Since any sampling-

based search strategy captures some speci�c statistical properties, this means that the

techniques introduced in this dissertation are associated with speci�c classes of problems.

The properties and features associated with those classes will be discussed in detail. By

producing multiple tangible results that involved large instances of di�cult combinatorial

and inductive learning problems and resulted in signi�cant improvements, this research

work demonstrates the e�ciency and exibility of those methodologies. Moreover, by

considering EC techniques from the perspective of algorithms that exploit statistical

properties of a search space, this dissertation contributes to a better understanding of

the search strategies embedded in those techniques.

The purpose of the following sections is to o�er to the reader a background

on the foundations of the �elds of heuristic search and evolutionary search. The pro-

2

gression in those sections illustrates the di�erent stages that lead to the research work

presented in this dissertation. The purpose of the next chapter is to describe more for-

mally how the methodologies introduced in this research work extend the EC paradigm

by proposing two di�erent frameworks to capture statistical properties of problem do-

mains. The technical contribution of this dissertation consists in the description of new

evolutionary-inspired search algorithms based on those frameworks. Since any search

algorithm is associated with some speci�c classes of problems, the fundamental features

that correlate with the statistical inference process implemented in those new algorithms

are also discussed in this second chapter. In order to demonstrate the e�ciency of the

methods introduced in this dissertation, they have been evaluated against large instances

of di�cult combinatorial optimization and inductive learning problems. Many of those

experiments performed against well-studied benchmark problems resulted in signi�cant

improvements.

1.1 Problem Solving is about Designing Abstract Ob-

jects

Problem solving involves the design of abstract objects that represent some solutions to

a task. A fundamental activity which is inherent in problem solving concerns the search

of a solution to the problem under consideration in a large space of candidate solutions.

The formalization of this process can be decomposed into three components:

1. A representation to encode those objects.

2. A set of transformation operators that act on the representation of objects in order

to construct new objects. The role of those transformation operators is to explore

the space of candidate solutions.

3

3. A search strategy to explore the state space de�ned by the previous two elements

in order to discover a solution that satis�es some desired properties (like the max-

imization of a criterion). The choices performed by this strategy are based, in

particular, on the de�nition of an objective function used to evaluate and compare

solutions.

The representation and transformation operators de�ne a neighborhood structure over

the space of solutions while the search strategy determines how this space is explored.

One goal of the �eld of Arti�cial Intelligence is to provide methods to explore e�ciently

such spaces of candidate solutions. General purpose tree search algorithms like depth

and breadth-�rst search or learning algorithms speci�c to a particular problem domain

like classi�cation are examples of such methods.

1.2 E�cient Problem Solving Means Exploiting Con-

straints and Regularities of the Problem Domain

In practice, there will always be problems that are just beyond our reach. However, as

more knowledge is available about the properties of those problems and as more com-

putational resource becomes available their status evolves and some of them become

solved. The games of checkers and reversi are instances for which the amount of knowl-

edge that has been gathered through experience and analysis allowed the implementation

of strategies that achieve world class performance. The recent success in cracking some

cryptographic codes using thousands of computers connected on the Internet is also a

good illustration of this evolution in time of our ability to solve increasingly di�cult

problems.

However, as problems of increasing di�culty are addressed, the size of the space

of candidate solutions grows quickly. In order for search algorithms to scale up, it

4

Amount of Bias

Computational
effort

Figure 1.1: Distribution between the amount of computational e�ort and the amount of

bias that are necessary to solve a speci�c problem.

is important to exploit the available knowledge about the regularities of the problem

domain. That is, a search algorithm must be able to deduce information about unvisited

domains of the space of candidate solutions from the evaluation of the samples that have

been gathered. This process is possible only if the mechanisms that are embedded in the

search algorithm correlate with the structural properties of the problem domain. Or, put

in another way, the decision procedures embedded in the search algorithm must make

informed choices with respect to the nature of the problem in order to limit the amount

of e�ort involved in search. General purpose search strategies won't be able to achieve

good performance in large state spaces without the introduction of problem speci�c

knowledge. This concept is known as the knowledge-search trade-o� and is illustrated

with the diagram in Figure 1.1 where the notion of bias corresponds to the explicit

encoding of knowledge about the problem. This notion has also been formalized in

the so-called \No Free Lunch" theorems [114]. Put in a simple way, this theoretical

result states that the operators of a search algorithm must correlate with the features

5

associated with the intrinsic properties of the problem domain if this algorithm is to do

better than random search. As a result, the goal of a general purpose search algorithm

is in fact to propose a framework in which the knowledge about a problem domain can

be expressed easily in a form that can be exploited e�ciently by the search mechanisms

embedded in that algorithm.

Therefore, solving increasingly di�cult problems means that some properties

about the problem domain must be identi�ed and the search procedure must be able to

exploit those regularities.

1.3 Manipulating Subsets of Candidate Solutions as

a Search Paradigm

In response to the observation discussed in the previous section, most traditional Arti-

�cial Intelligence search algorithms consider a representation scheme for problems that

involves the de�nition of a structure over the state space, along with heuristics as simple

decision procedures to control search. The purpose of this structure is to provide the

decision procedure with meaningful information about the structural properties of the

problem domain.

In particular, a fundamental strategy followed by many AI search algorithms in

order to capture structural properties of a problem domain is based on the ability to

manipulate subsets of candidate solutions. Indeed, manipulating subsets of candidate

solutions makes possible the exploitation of structural properties providing those subsets

capture relevant information. A common example to illustrate this concept concerns a

telephone directory. If one looks for an entry in this directory in order to �nd a street

address and he is only given a phone number then, on average, no strategy is better than

going through the entire directory until the phone number is found. However, if the name

6

of the person is also given then the search becomes very simple by using a binary search

strategy. By exploiting the ordering by names of the entries in the telephone directory,

it is possible to eliminate at each step of the search all the entries that are before or after

the current entry depending whether it is before or after the searched name in lexical

order.

This simple example also illustrates that the di�erent subsets that are under consid-

eration must be meaningful. That is, they should capture some relevant information

that can be exploited by the search procedure. Here, two subsets are considered at each

step of the binary search, each of them corresponding to the sequence of entries in the

directory that are before or after the current entry with respect to the lexical order.

Then, a simple computation is performed in order to determine which subset should be

conserved to continue the search. This example illustrates that this paradigm allows the

elimination of large domains of the state space and e�ciently drives search toward the

goal solution.

However, in many problem domains, the search space is not as well structured

as a telephone directory and the design of simple rules that drive e�ciently the search

toward the goal is not always possible. For such problems, the objective of the search pro-

cedure often shifts from the discovery of optimum solutions to the discovery of satis�cing

solutions. That is, solutions that provide a good trade-o� between the computational

cost to discover them and their quality. For such problems, the subset paradigm still

provides an attractive framework to exploit some of the properties of the problem do-

main. In this framework, the decision procedures that exploit the structure de�ned over

the search space by those subsets implement heuristics [75]. The purpose of heuristics is

to capture some meaningful properties of the problem domain such that satis�cing solu-

tions can be discovered and the amount of computational e�ort involved in this process

remains reasonable.

7

In order to illustrate the di�erent issues relevant to the subset manipulation

paradigm, consider the n-queens problem. The goal of this problem is to place n queens

on a n�n chess board such that no two queens attack each other. Two basic approaches

can be examined for the representation of this problem. The �rst one considers the space

of all possible assignments of the n queens on the board. However,while being able to

represent any valid solutions to the problem, most of the objects in this space corre-

spond to non-valid solutions. In addition, this representation scheme doesn't provide

simple transformation operators to explore e�ciently the space of candidate solutions.

For instance, consider the trivial transformation operator which moves a queen from its

current position to another position on the board. This means that at each step, one has

to make a choice among n�n�n possible transformations (choose one among n queens

and one among n � n board positions for the new assignment). This transformation

operator doesn't exploit e�ciently the constraints associated with the n-queens problem

and, as a result, the sequence of transformations necessary to eventually reach a valid

solution may have to traverse many non-valid con�gurations of the board.

A more e�cient approach to this problem considers a sequential construction approach.

That is, one �rst assigns a queen in the �rst column of the board and then iteratively

assigns a queen in the next column at a position that doesn't violate any constraint. This

strategy, illustrated in Figure 1.2, eliminates a large number of candidate solutions that

were under consideration in the previous representation because the constraints of the

problem are exploited more e�ciently. However, there is still the issue of determining in

which position among the unattacked ones the next queen should be assigned in order to

eventually reach a con�guration where all the queens have been assigned on the board.

There is no trivial decision procedure like the one which was available for the telephone

directory example. Instead, some heuristics have to be designed. A heuristic is a com-

putational procedure which determines which choice among several alternatives should

8

Figure 1.2: Board position for the 8-queens problem where queens have been assigned

in the �rst four columns.

be selected to continue the search process [75]. The complexity of this computational

procedure should be several orders of magnitude smaller than the complexity of �nding

the best solution with some systematic method. Since heuristics don't necessarily pro-

vide an exact measure but only an estimate of the true theoretical value attached to each

decision, they don't always drive search in the correct direction. However, combined with

some backtracking procedure, they usually result in the discovery of high performance

solutions. The purpose of heuristics is to provide a trade-o� between the complexity of

search (in terms of the amount of computational e�ort involved) and the quality of the

�nal solution. From the perspective of this second approach to the n-queens problem,

the partial con�guration composed of the �rst k assignments at a given stage of the

construction procedure can be seen as a representation of the subset corresponding to

all the board con�gurations that can be constructed from this \pre�x". Then, the goal

of a good heuristic is to evaluate which subset among the ones associated which each

valid assignment for the (k+1)th queen is more likely to contain a solution representing

a complete assignment for the n queens.

9

In summary, manipulating subsets of candidate solutions makes possible the

representation and exploitation of structural properties of the problem domain. For

instance, as illustrated with the n-queens problem, subsets can be used for the rapid

identi�cation of non-valid domains of the search space by exploiting e�ciently the con-

straints associated with the problem. Subsets can also be used to de�ne a structure over

the search space. Such a structure organizes candidate solutions into a hierarchy with

respect to the subset inclusion rule. The purpose of this structure is to capture some

meaningful information with respect to the distribution of candidate solutions quality

across the search space.

1.4 Interdependence between Heuristic and Structure

De�nition

From the description of the telephone directory and the n-queens examples, it appears

that the design of the decision procedures (or heuristics) and the structure de�ned by the

decomposition of the space of candidate solutions into subsets are closely intertwined.

Indeed, the de�nition of a heuristic that allows e�cient search is possible only if the

subsets provide meaningful information with respect to the properties of the problem

domain. That is, the structure must capture some information about the problem domain

that can be exploited e�ciently by the computational procedure that implements a given

heuristic. In practice, the strategy for the hierarchical partitioning of the search space

into subsets and the design of heuristics that exploit this partitioning comes from a good

understanding by the human designer of the intrinsic properties of the problem domain.

10

1.5 Exploiting Statistical Properties of Problem Do-

mains

From a general perspective, exploiting statistical properties of a problem domain means

that valid inferences about the characteristics of the problem domain can be made from

the processing of information obtained by randomly sampling the search space. If such

properties of a problem domain can be accurately captured, a correct exploitation of this

information is extremely useful to control a search procedure. Because the knowledge

available about some problem domains is better stated in terms of statistical properties,

this approach is especially relevant. This notion can be illustrated with the following

application of a sampling approach to the n-queens problem. This problem has been

used extensively as a standard Constraint Satisfaction Problem (CSP) benchmark for

investigating the e�ciency of search algorithms. Indeed, the board size provides a simple

parameter to generate problem instances of increasing di�culty. This makes possible the

analysis of the scalability of those search algorithms. Due to combinatorial explosion,

traditional search algorithms (e.g. backtracking search) are limited to relatively small

values of n (usually less than 100). Stone and Stone [102] performed an empirical study

of search algorithms applied to the n-queens and provided evidence that this problem

produces a tree that �rst expands exponentially with depth and then contracts as the

branching factor rapidly decreases because the problem becomes more constrained as

more queens are assigned on the board. Because the density of successful paths among

this exponentially large number of initial alternatives is small, general purpose tree search

algorithms are ine�cient.

Now, consider an experiment in which the space of con�gurations for the queens

on the n � n board is sampled according to the procedure described in Figure 1.3.

This procedure sweeps the chess board from the �rst column to the right and randomly

11

/* Board size is n� n */

i = 0

do

i i+ 1

S = list of positions in the ith column which are not attacked

by any of the queens assigned in columns [1 : : : (i� 1)]

if S 6= ; then

Assign a queen in the ith column at a position selected

uniformly randomly from S

endif

while (S 6= ;)

/* i queens have been assigned on the board. */

Figure 1.3: Stochastic procedure to generate non-conicting assignments of queens.

assigns a queen in a non-attacking position in each column. If at any stage in this

procedure all positions are attacked in the current column, the procedure stops with

an incomplete assignment. Figure 1.4 plots the evolution of the ratio of samples that

resulted in a complete assignment of the n queens on the board as n increases from 100 to

1; 000. For each value of n, a total of 131; 072(= 217) samples are performed. It appears

that, using this simple sampling procedure for assigning queens, there is a non-negligible

probability of generating a complete solution even for n = 1; 000. On average, out of

1; 000 samples, at least one corresponds to a complete solution. The reason for this result

is that the distribution of solutions, even if non uniform as it is shown by [102], is not

localized in a small area of the search space. However, in the case of a deterministic tree

search approach, an incorrect choice early in the search results in the exploration of an

exponentially large domain of the search space that contains no solutions.

It should also be noted that, following a di�erent approach, some large instances

of the n-queens problem have been solved. For example, Sosic and Gu [101] designed a

probabilistic algorithm using a form of gradient-based heuristic to �nd some solutions

12

0

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

0.00175

0.002

100 200 300 400 500 600 700 800 900 1000

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Number of queens

Probability distribution of success for "n-queens"

Figure 1.4: Evolution of the probability of success for generating a valid assignment for

\n-queen".

for n = 3; 000; 000. Minton et al. [57] also proposed an algorithm using a min-conicts

heuristic to control the search. Using this approach, a solution with one million queens

can be discovered in a few minutes. Both approaches start from an initial non-perfect

solution constructed using a greedy algorithm that results in a small number of conicts

that are then resolved using a local search. This former work already shed some light

that some regular structures can be exploited for that particular problem and that the

density of solutions is relatively high.

This simple example exploits the property about the n-queens problem that

solutions are distributed quite evenly in the search space and their density is far from

negligible even for large values of n. Randomization techniques which exploit a similar

idea have also been used in order to boost the performance of combinatorial optimization

algorithms [35]. The underlying idea exploited by randomization techniques is that for

many problems a large variance is observed for the running time of deterministic search

algorithms. In some cases, the mean time to discover a solution even grows exponentially

13

as more instances of the problem are processed. However, even for di�cult problems,

the expected time for discovering a solution can be considerably improved by performing

multiple runs of the randomized version of the deterministic search algorithm. For such

problems, the \hardness" is not intrinsic but relates to the search strategy.

The purpose of this section is to illustrate that stochastic approaches can be

extremely e�cient to address some problems. Usually, stochastic search algorithms are

more elaborate than the simple sampling strategy implemented in this example with the

n-queens problem. An iterative procedure is often involved for which the information

gathered during the sampling stage is exploited to determine how to focus the search in

the following stages.

An important motivation for exploiting statistical properties of problem domains

as a search paradigm is that this information is sometimes the only knowledge that is

available. This is particularly true for problems that are ill-structured and for which

an analytical approach is extremely di�cult. De�ning an appropriate framework that

allows the representation and the exploitation of statistical properties associated with

such problems is the central issue that is addressed in this dissertation.

1.6 Evolutionary Computation as a Paradigm for Sta-

tistical Inference

Evolutionary Computation corresponds to a search paradigm which implements a sim-

pli�ed computational model of the mechanisms embedded in natural evolution. The

central idea is to maintain a population of individuals which correspond to alternatives

in a search space. A �tness is assigned to each individual with respect to some objective

function. Then, following the rule of the survival of the �ttest, individuals with higher

�tness are selected and reproduce. The new o�spring are introduced in the popula-

14

tion and evaluated according to the current objective function. The operators involved

in the reproduction stage introduce variability in the population, thereby allowing the

exploration of the search space for improved solutions. Those operators perform trans-

formations over an entity which is an abstraction of each individual. This abstraction is

an encoding of the characteristics of an individual. Two principal transformation opera-

tors are usually implemented in evolutionary algorithms. The �rst one, called crossover,

takes the encodings associated with the parents that reproduce and constructs a new

entity by taking some pieces from each parent. The second operation, mutation, is usu-

ally performed after crossover and introduces some random variations in the encoding of

an individual. There might be signi�cant di�erences between di�erent implementations

of the EC paradigm with respect to those operators or the representation scheme used

for the encoding of individuals. For instance, the �eld of Evolutionary Programming

[28] considers only mutation as the search operator and doesn't implement crossover. In

Genetic Algorithms [39], the encoding associated with each individual is called a chro-

mosome and is represented as a string of bits, while in Genetic Programming [50, 51] a

tree encoding is used to represent each individual.

1.6.1 Evolutionary Computation from the perspective of Global

Random Search Methods

Evolutionary Algorithms can be described from di�erent perspectives, depending on the

particular features that one wants to emphasize. One approach considers the description

of EAs in the framework of Global Random Search methods. The central idea in global

random search methods consists in sampling iteratively the search space with respect

to a probability distribution which is updated according to the evaluation of previous

samples and some prede�ned strategy. More formally, a general scheme for global random

search methods may be described with the algorithm in Figure 1.5 (from [117]), where

15

X represents the search space and f : X ! < is the objective function. In typical

applications of search and global optimization, the goal is to optimize the objective

function f , that is, to determine a point x� 2 X for which f(x�) approximates the value

of:

f� = inf
x2X

f(x)

if the problem is to determine a global minimizer, or

f� = sup
x2X

f(x)

if the problem is to determine a global maximizer.

1. Let P1 be a probability distribution on X and set k = 1.

2. Generate Nk samples from X according to Pk: Sk = fx1;k; : : : ; xNk;kg

Evaluate f for each of these samples.

3. Construct a new probability distribution Pk+1 on X according to

a fixed algorithm.

4. Check the stopping criterion. If the algorithm doesn't terminate,

let k k + 1 and return to step 2.

Figure 1.5: Formal scheme for global random search methods.

The algorithm that constructs the new probability distribution Pk+1 can be more

or less elaborate, depending on the underlying heuristics implemented by the global

random search method. In the simplest instances, also called passive methods, this

algorithm keeps the probability distribution unchanged (Pk+1 = Pk). If Pk is the uniform

distribution, this is pure random search. In adaptive methods, this algorithm exploits

the information gathered from the di�erent sampling stages to update the probability

distribution. The algorithm implements a predetermined strategy whose design is usually

based on some problem-speci�c knowledge.

In the framework of global random search methods, the state of the population

16

maintained in a given EC implementation at the kth generation corresponds to the set

of samples Sk. Following the same analogy, the search operators embedded in that EC

implementation and the dynamics of the population evolution can be described in terms

of strategies to control the evolution of the probability distribution fPkg. For instance,

Peck [77, 76] followed that methodology to analyze convergence conditions in Genetic

Algorithms.

The point of this section is to focus the attention on the ability of EC techniques

to exploit statistical properties of a state space. Indeed, exploiting the statistical prop-

erties of a problem domain can be described as a sampling strategy that can capture

those properties in order to evaluate them and exploit that information to control the

search process.

1.6.2 Genetic Algorithms and the Schema Theorem

Genetic Algorithms (GAs) originated in the 1960s and were �rst developed by Holland

[39]. In GAs, the data structure undergoing evolutionary search is called a chromosome

and is represented as a string of bits. The crossover operator selects substrings in a

chromosome and exchanges them with substrings at the same location on a second chro-

mosome. Multiple variations exist for the implementation of this operator depending

on the strategy that is used to select the substrings that are exchanged (e.g., uniform

crossover [103]). Figure 1.6 illustrates the one-point and the two-point crossover opera-

tors. Mutation operates at the level of bits and randomly ips those bits according to

some probability.

Much work has been done to formalize the fundamental principles of operation

behind GAs [39, 33, 85, 111, 112]. However, because of the multiple mechanisms involved

in the search process embedded in a GA implementation, it becomes di�cult to analyze

in a formal framework the resulting dynamics of the population of chromosomes. The

17

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

Two-point

One-point

crossover

crossover

Figure 1.6: Description of the one-point and two-point crossover operators.

�rst theoretical analysis of GAs has been proposed by Holland [39] and resulted in the so-

called Schema Theorem. This formulation is known to present some critical drawbacks

to describe accurately the behavior of GAs because of some of the assumptions that

underlie this theory. However, it is usually accepted that this formulation does capture

some of the important principles of operation behind GAs. The purpose of this section

is to present the fundamental ideas underlying this formulation.

Central to this theory is the notion of schemas. Schemas correspond to a hier-

archical partitioning of the space of bit strings of length l into subsets. Each of those

subsets is described by a template (or schema) which is represented as a string of same

length l over the alphabet A = f0; 1; �g, where \�" is the wild card character which

represents a \0" or a \1". For instance, the schema S =\�0 � � � 1 � �" represents the

subset of all binary strings of length eight whose second bit is a \0" and sixth bit is

a \1". In the population, each individual's chromosome is an instance of 2l schemas.

The basic idea underlying the schema theorem is that, in parallel to the evolutionary

search performed on the space of chromosomes, the GAs implicitly manage a population

of schemas. Those schemas correspond to those which have at least one instance in the

18

population of chromosomes. This population of schemas is not represented explicitly.

However, the idea is to describe the search process underlying GAs by observing the

evolution of this population of schemas. Indeed, while GAs evaluate explicitly the �t-

ness of individuals, a �tness is also evaluated implicitly for the schemas that have some

instances in the population. More precisely, a schema's �tness corresponds to the av-

erage �tness of individuals in the population that are an instance of this schema. This

schema's �tness can be seen as an estimate of its \true" �tness de�ned as the average

�tness of all the instances of that schema.

The central result of the Schema Theorem is an expression which describes for

a given schema the expected evolution of the number of instances for that schema in the

population. Taking the same notations as Mitchell [58], this result is stated as follows:

E(m(S; t+ 1)) �
û(S; t)

f(t)
m(S; t)� Sc(S)� Sm(S)

where:

� m(S; t) is the number of instances of the schema S in the population at time t,

� E(:) is the expected value,

� û(S; T) is the average �tness of individuals in the population at time t that are an

instance of schema S,

� f(t) is the average �tness of the population at time t,

� Sc(S) represents the disruptive e�ect of crossover. Assuming the one-point crossover

operator is used, a lower bound for Sc(S) is:

Sc(S) � 1� pc
d(S)

l � 1

where:

19

{ pc is the probability that the one-point crossover operator is going to be

applied when creating a new o�spring,

{ d(S) is called the de�ning length of a schema S and corresponds to the distance

between the outermost de�ned bits in the schema (i.e. those bits that are not

the wild card character \�").

{ l is the length of chromosomes,

� Sm(S) represents the disruptive e�ect of mutation. Assuming a bit mutation prob-

ability of pm, a lower bound for Sm(S) is:

Sm(S) � (1� pm)
o(S)

where o(S) is the order of the schema S which is de�ned as the number of de�ned

bits in S.

This formulation of the Schema Theorem assumes that selection follows a �tness

proportionate rule. That is, the expected number of o�spring of an individual x is equal

to
f(x)

f(t)
, where f(x) is the �tness of x and f(t) is the average �tness of the population at

time t.

The common interpretation of the Schema Theorem is that schemas with short

de�ning length and low order whose average �tness remains above the mean are repre-

sented over time by an exponentially increasing number of individuals in the population.

While the e�ect of crossover is represented as disruptive in the Schema Theorem, this

operator is believed to play an important role in the search process embedded in GAs. A

central idea referred to as the Building Block Hypothesis states that one e�ect of crossover

is to recombine instances of short, low-order schemas to create instances of new higher-

order schemas of potentially higher quality. Following that interpretation, GAs can be

viewed as a statistical inference procedure which is based on the exploitation of statistics

20

Figure 1.7: Illustration for the partitioning of the state space with respect to schemas.

about the distribution of candidate solutions in the state space with respect to a speci�c

hierarchical structure derived from schemas. More precisely, this process �rst gathers

information about short, low-order schemas and then, as higher-order schemas are con-

sidered over time via the selection process and the recombination of building blocks,

focuses the search on more speci�c partitions (or domains) of the state space.

Thus, the knowledge acquisition process implemented in GAs is performed ac-

cording to a rigid structure. Figure 1.7 illustrates this rigid partitioning by decomposing

the space of candidate solutions according to a regular, hierarchical structure. An im-

portant consequence is that the representation of a problem in the framework of GAs

should take that constraint into account so that the regularities of the problem domain

correlate with the schema structure that underlies this knowledge acquisition process.

21

1.7 Evolutionary Computation as a \Black Art"

As discussed previously, Evolutionary Computation techniques implement a na�ive model

of natural evolution and can be described as sampling-based strategies that collect data

about the state space in order to determine which regions of the space should be explored.

However, the introduction of information about structural properties in an EC framework

is often seen as a form of \black art". First, it requires a good understanding of which

properties of a problem domain can be exploited by the intrinsic strategies embedded in

the evolutionary search procedure. Then, the EC practitioner must have a good sense of

how the problem should be represented and how the parameters and search operators of

the algorithm should be set up so that those properties are indeed exploited. Successful

applications are often the result of multiple tests and tuning. The important point is that

the structural properties of the problem domain should correlate with the intrinsic search

mechanisms of the Evolutionary Algorithm. Failure to exploit those structural properties

prevents EAs from scaling up to address more di�cult instances of the problem.

1.8 Summary and Objectives of this Dissertation

In this chapter, the importance of identifying and exploiting the structural properties

of problem domains has been stressed. As a result, the design of search algorithms for

addressing increasingly di�cult problems should o�er a framework for expressing knowl-

edge about such regularities of a problem domain along with a speci�c strategy to exploit

them. Following that idea, a well-known and e�ective paradigm to express structural

properties associated with a problem domain has been discussed. This paradigm is based

on the de�nition of a structure over the space of candidate solutions. This structure cor-

responds to a hierarchical decomposition of the state space into subsets which captures

some properties which are relevant to the problem domain and that can be exploited with

22

a speci�c search strategy. The methodology in traditional AI search algorithms consists

of de�ning heuristics that exploit this structure in order to control search. However, the

formalization of the properties of a problem domain in a scheme that allows the design

of simple decision procedures based on the exploitation of this information is a di�cult

task for ill-structured problems. For many such problems, the available knowledge is

stated more easily in terms of statistical properties. The �eld of Evolutionary Compu-

tation o�ers multiple techniques that seem more amenable to exploit such properties.

However, the statistical inference process embedded in those algorithms is not always

understood. Genetic Algorithms are a special case which has been the object of much

research to provide a formal analysis of this inference process. The Schema Theorem,

one of the theoretical achievements that resulted from that work, o�ers strong evidence

that the knowledge acquisition process embedded in GAs is based on the gathering of

statistics about the distribution of candidate solutions in the search space with respect

to a speci�c hierarchical structure derived from the de�nition of schemas. As a result,

when using GAs to address a problem, an appropriate representation must be designed

so that the structural regularities of the problem correlate with that structure and that

relevant information may be captured by the inference process.

EC techniques do provide the designer with a lot of exibility when being ap-

plied to a new problem. However, despite this exibility, experience shows that it is

sometimes di�cult to encode some form of knowledge about the structural properties of

problem domains in their framework. The reason is that, depending on the implementa-

tion choices, the mechanisms embedded in EC techniques are more e�cient to capture

some speci�c classes of structural properties than others. Incorporating this knowledge is

however important. In particular, it can prevent the search algorithm from spending too

much e�ort exploring poor domains of the search space. The objective of this dissertation

is to investigate and propose new techniques to address such situations. More precisely,

23

the central idea is to expand the domain of applications of EC techniques by proposing

a more exible framework to represent and exploit e�ciently statistical properties of

problem domains. This research work is based on the exploitation of the subset manip-

ulation paradigm in order to construct structures that capture some speci�c statistical

properties of problem domains. Methodologies are introduced for the de�nition of such

structures along with speci�c search algorithms that exploit the statistical properties

they capture.

24

Chapter 2

Extending the Evolutionary

Computation Paradigm

2.1 Problem De�nition

2.1.1 De�ning Structures to Capture Statistical Properties of

Problem Domains

The association of a decomposition of the search space into subsets with some appropri-

ate heuristics is an e�cient paradigm to represent and then exploit structural properties

of a problem domain. However, designing heuristics to exploit speci�c structural prop-

erties of a problem domain can be a di�cult task. Indeed, the de�nition of heuristics

requires a good understanding of the properties of the problem domain and also requires

the formalization of this knowledge in a scheme that can be encoded as a simple compu-

tational procedure. If the knowledge available about the problem domain corresponds

to some statistical properties exhibited by the components of a structure de�ned over

25

the search space, the existence of such simple computational procedure is very unlikely.

De�ning a structure over a search space provides a framework to gather statistics

about subsets of candidate solutions. For instance, structures like the one introduced in

the �rst chapter for addressing the n-queens problem can be used to capture statistical

properties at di�erent levels of granularity with respect to the hierarchical decomposition

of the search space. Based on this source of information, one strategy to explore the

search space would consist in evaluating statistical properties of the problem domain at

a coarse level in order to identify promising regions. As the set of alternatives under

consideration is restricted in response to some predetermined criteria, properties at a

�ner level of granularity could then be exploited to re�ne the quality of the current best

solution.

In the n-queens example, each subset used in the de�nition of the structure

over the search space is associated with an explicit entity in the representation scheme.

Namely, an internal node in the search tree that represents the set of board con�gura-

tions that can be constructed from a given partial solution. However, exploiting such an

explicit representation scheme is not the only approach to de�ne a structure. In particu-

lar, in some cases, an indirect approach may be more appropriate to capture the relevant

statistical properties. To illustrate this notion, consider a simple problem for which each

candidate solution can be evaluated against a number of properties to determine which

one it satis�es and which ones it doesn't. Let S represent the space of candidate solutions

and let P = fp1; : : : ; pkg be the set of properties against which solutions are evaluated.

In practice, each property may correspond to a sub-goal that is achieved (or not) by a

solution. Ultimately, the target would be a solution that satis�es all the properties in P .

In this example, each property pi de�nes a decomposition of S into two subsets, S1
i and

S0
i , that correspond to the candidates that do (or don't) satisfy pi. This set of properties

can then be used to construct a structure over S. For instance, in this structure, each

26

A B C D E F G H I J K L M N O P Q R S

A

F

C

B H J

K

I

M N

O P

Q
R

S

G

L

E

D

Figure 2.1: Partitioning of the state space with respect to an explicit procedure.

subset would correspond to solutions that satisfy all the properties of a speci�c subset

of P . Then, once such a structure is de�ned over the search space, it can be exploited

to search for domains of the search space that exhibit some speci�c statistical properties

with respect to this structure.

Therefore, di�erent approaches are possible for the de�nition of structures over

a space of candidate solutions. Two methodologies have been introduced to de�ne such

structures. The �rst one, called explicit partitioning, encodes explicitly the subsets as-

sociated with the structure in the representation scheme. As illustrated in Figure 2.1,

the explicit partitioning of the state space corresponds to a mapping between subsets of

candidate solutions and the nodes of a tree structure. The fact that an explicit encoding

of the decomposition is de�ned means that, when considering an entity associated with

the description of a speci�c subset, any member of that subset may be accessed. As a

result, some speci�c properties related to the members of that subset may be evaluated

27

S1
1

P1 P2 P3 P4

S2
1

S4
1

S3
1

Test cases:

Figure 2.2: Partitioning of the state space with respect to an indirect methodology.

and assigned to that particular entity. In the second methodology, which will be referred

to as indirect partitioning, the di�erent subsets that de�ne the structure are de�ned by

intention; that is, no explicit object in the encoding scheme is associated with them. This

is illustrated in Figure 2.2 where a set of properties is used to de�ne subsets over the

search space. Membership of a candidate solution to a particular subset can be evaluated

directly however no procedure is available to construct the list of members that satisfy

a particular property or a speci�c subset of properties (other than doing an exhaustive

search). New strategies have to be designed in order to exploit statistical information

related to the decomposition of the search space according to those subsets.

The choice of one methodology depends on the statistical properties that are exhibited

by the problem domain. The goal of the next two sections is to illustrate with examples

what kind of statistical properties can be captured with structures constructed following

those methodologies. More precisely, two classes of problems are introduced in those

sections, each one exhibiting some speci�c structural properties that can be represented

28

in the framework of one of those two methodologies.

The central motivation underlying this idea of de�ning a structure over the

search space is that stochastic techniques usually require a large sample, and therefore a

signi�cant amount of computational e�ort, in order to accurately infer properties about

the problem domain. By de�ning a structure over the search space which correlates with

the statistical properties of the problem domain it is however possible to considerably

reduce the size of this sample.

2.1.2 Explicit Partitioning Methodology

Problems whose structural properties are captured by this framework will be referred to

as sequential construction problems. In order to illustrate this class of problems, consider

the problem of designing sorting networks with a minimum number of comparators.

This problem is well-known in the EC community and has been addressed by many

researchers since the pioneering work of Hillis [38]. A sorting network corresponds to a

sorting algorithm for which the sequence of comparisons and swaps is independent of the

input. As a result of this property and for a given number n of inputs, such an algorithm

permits an implementation in hardware. The diagram in Figure 2.3 is an illustration

of a convenient graphical representation for n-input sorting networks. Each horizontal

line represents an input of the sorting network and each connection between two lines

represents a comparator which compares the two elements and exchanges them if the

one on the upper line is larger than the one on the lower line. The input of the sorting

network is on the left of the representation. Elements at the output are sorted and the

largest element migrates to the bottom line. More details about sorting networks can be

found in [48].

A direct approach to this problem that would de�ne the space of candidate solu-

tions as the set of all possible sequences of comparators (eventually with an upper bound

29

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 2.3: A 10-input sorting network using 29 comparators and 9 parallel steps.

for the length of this sequence) would make di�cult the design of transformation oper-

ators to explore that space. The reason is that any modi�cation of a comparator deeply

transforms the function encoded by a network. Here, the di�culty comes from the strong

interdependency between the di�erent components of the representation. The complex-

ity of the constraints involved in the description of the space of valid solutions prevent

the design of search operators that can at the same time capture those constraints and

capture some meaningful information about structural properties of the problem domain

that could be used to control the search.

However, a sequential construction approach similar to the one described for the n-queens

problem seems more appropriate to address this problem. This sequential approach im-

plements an iterative procedure which starts from scratch and then appends one com-

parator after the other until a complete sorting network is constructed. This process

always terminates with a sorting network because at each stage of the construction it

is possible to compute the list of all signi�cant comparators (those comparators that

will perform a swap for at least one input vector) to extend the current partial solution.

This construction process is monotonic in the sense that the number of unsorted vectors

at the output of the partial solution don't increase as more comparators are appended.

The construction ends with a sorting network when the list of signi�cant comparators is

30

empty.

For this particular problem, a sequential construction approach is more appro-

priate to capture the natural constraints of the problem. The sequential construction

approach results in a search space represented as a search tree or, more generally, as a

Directed Acyclic Graph (DAG). Each leaf in this DAG corresponds to a complete solu-

tion to the problem while each internal node represents the subset of all valid solutions

that can be constructed from the corresponding partial solution.

At that point, the de�nition of heuristics would be a natural approach to drive

the search over that DAG. However, when the properties of a problem are not well-

understood or when those properties are ill-structured, the design of simple decision

procedures to implement such heuristics is not always possible. In that case, alternative

approaches must be considered to exploit the properties of the problem domain. For

sequential construction problems, because of the strong dependence of each choice on

the choices that have been made in the early stages of the construction process, those

early choices usually have an important contribution to the quality of the solutions that

are derived from them. To illustrate this concept, consider the game of chess. In that

game, pertinent moves in the opening of the game usually provide a player with a strong

advantage over his opponent and a good chance of winning the game. In chess and many

similar games, heuristics have been identi�ed in order to evaluate with good accuracy

what makes a good opening by performing some analysis of the board. The experience

resulting from the entire history of chess playing has made possible the representation

of the relevant concepts in a formal framework and their encoding into such heuristics.

The goal of such heuristics is to provide accurate information about the status of the

game without waiting until the actual end of the game.

Following the sorting network example, the class of problems we propose to ad-

dress concerns problems for which such knowledge is not available in a formal encoding.

31

In that case, the fundamental idea is to evaluate the quality of early choices by estimating

the quality of solutions that are derived from them. Because of the explicit partitioning

methodology and the corresponding DAG representation, candidate solutions are orga-

nized in a hierarchy where each node at a given level corresponds to a speci�c sequence of

initial steps for the construction of solutions that belong to the sub-tree attached to that

node. If the nature of the problem is such that early steps do contribute signi�cantly

to the quality of solutions that are derived from them, then good solutions are likely to

be grouped together in this hierarchy. Therefore, it would be interesting to exploit this

property of the hierarchy as a source of information to control the search. The motiva-

tion for applying this strategy to address the sorting network problem comes from the

intuition that the choice for the �rst comparators in the construction does contribute

signi�cantly to the expected size of sorting networks constructed from this pre�x and

that an inappropriate pre�x is likely to result in large sorting networks.

2.1.3 Indirect Partitioning Methodology

The domain of application of this methodology corresponds to problems for which can-

didate solutions are evaluated against a set of test cases or some arbitrary subset of a

space of test cases. For the following, such problems will be referred to as multi-objective

problems. The indirect partitioning methodology is appropriate especially when little

information is available about the structural properties of the search space associated

with the problem. In that case, the construction of an explicit structure is not likely to

improve search signi�cantly since no information is available about what this structure

should be. Instead, some other source of information should be considered in order to

drive the search. By providing a framework to capture some speci�c statistical prop-

erties, the indirect partitioning methodology proposes an alternative to address such

ill-structured problems.

32

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Figure 2.4: Training data for the intertwined spirals classi�cation problem.

To illustrate this methodology, consider the following inductive learning problem

which consists of learning to classify points on the plane into two classes according to

two intertwined spirals. The data set is composed of two sets of 97 points, on the plane

between -7 and +7. These two intertwined spirals are shown as \�" and \�" in Figure 2.4.

This learning problem, originated by Alexis Wieland, has been a challenge for pattern

classi�cation algorithms and has been the subject of much work in the AI community, in

particular in the neural network �eld (e.g., [55, 26, 15]). In neural network classi�cation

systems based on linear, quasi-linear, radial, or clustering basis functions, the intertwined

spirals problem leads to di�culty. When it is solved, the neural net solution often has

a very \expansive" description of the spiral, i.e. the conjunction of many small regions,

does not generalize outside the training regions, and is thus not particularly satisfying.

In the EC community, Koza [50] and Angeline [5] have also investigated this problem

using the Genetic Programming paradigm. In this section, the same paradigm and setup

as this last work is considered to address the problem. In Genetic Programming, the

search space is composed of Lisp S-expressions. A S-expression can be described as a tree

in which internal nodes correspond to primitives (or functions) while leaves correspond

33

to terminals (that is, a constant or a variable). A S-expression encodes a function that

can be evaluated once the variables have been instantiated. The following function set

is considered: f+, �, �, %, iflte, sin, cosg, where iflte is a conditional operator that

takes four arguments arg1, arg2, arg3 and arg4. If arg1 is lesser than or equal to arg2

then it returns arg3, otherwise it returns arg4. The terminal set is composed of: fx, y,

<g, where < corresponds to the ephemeral random constant, that is a random constant

which is instantiated the �rst time each instance of < is evaluated and then keeps the

same value. The goal is to discover an S-expression which returns a positive value when

given the coordinates (x; y) of a point that belongs to the �rst spiral and a negative value

when given the coordinates of a point in the second spiral.

Here, the search space is composed of all the S-expressions that can be con-

structed from the set of primitives and terminals. In a sense, each S-expression can be

seen as an instance of a computer program. Because any modi�cation of a S-expression

usually results in the encoding of a completely di�erent function, it is very di�cult to

identify some structural properties for this search space. As a result, the search space is

ill-structured because of a large number of local optima and a lack of structural regulari-

ties. Usually, no a-priori explicit partitioning of the search space like the one introduced

in the previous section can be constructed in order to drive search. Such a landscape is

extremely di�cult to search and is typical of needle-in-a-haystack type problems. How-

ever, if some domains of this state space exhibit some regularities that can be exploited

by the search strategy implemented in Genetic Programming then it would be more

e�cient to focus the search on such domains because progress would be more likely to

occur and a good solution might eventually be discovered. The indirect partitioning

methodology proposes a framework to construct a structure over the state space that

can be used to capture such statistical properties.

To implement the indirect partitioning methodology, each point pi in the training

34

Figure 2.5: Representation of the search space: dark areas correspond to high quality

solutions while light areas are associated with poor solutions. The search strategy con-

sists in looking for domains of the state space over which continuous progress can be

observed over a period of time.

set is used to decompose the space S of S-expressions into two subsets, S1i and S0i , that

correspond respectively to S-expressions which encode a function that classify correctly

or fail to classify correctly the test case pi. The goal is to discover an S-expression

that belongs to the intersection of all the subsets S1i . Since no procedure is available

to construct directly those subsets and no explicit structure is known to capture the

regularities of that problem domain, an alternative strategy to address this problem

consists in searching for domains of the state space over which a gradient is available

for the search algorithm. The underlying idea for that particular strategy is that if the

path of continuous improvement along this gradient is long enough then there may be a

good chance of discovering a high quality solution. This is illustrated in Figure 2.5 which

pictures the number of subsets S1i that intersect for each state. Darker regions represent

35

high quality solutions that cover multiple test cases while light regions correspond to

poor solutions. In that picture, the notion of neighborhood between candidate solutions

is de�ned with respect to the search operators implemented in the search algorithm

(i.e., exchange of sub-trees between S-expressions in the case of the GP paradigm). The

goal is to identify domains of that search space over which successive transformations

of a solution by the search algorithm would result in continuous progress toward higher

quality solutions.

As illustrated in the previous example, the motivation underlying the indirect

partitioning methodology is to search for domains of the state space that correlate with

the intrinsic mechanisms implemented in an arbitrary search algorithm. Such domains

exhibit the property that progress can be observed consistently over a period of time.

That is, when search is focussed in those domains, solutions of increasing quality are

more likely to be discovered by the search algorithm. Therefore, if the problem un-

der consideration can be stated as a multi-objective problem, the indirect partitioning

methodology may be used as a very e�cient tool to capture some speci�c statistical

properties of the state space with respect to an arbitrary search procedure. Exploit-

ing this source of information becomes particularly important when little knowledge is

available about the structural properties of the problem domain. If some domains of the

state space over which continuous progress may be observed does exist then, ultimately,

a solution may be discovered that captures some underlying structure of the problem

domain and generalizes well outside the training data. In the case of the intertwined

spirals, such a solution could be like the one plotted in Figure 2.6 whose corresponding

S-expression is presented in Figure 2.7.

36

194 hits

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 2.6: Perfect score generalizing classi�cation of the two intertwined spirals.

(sin (% (iflte (- (- (- (* _A _A) (sin (% (iflte -0.52381

_B

(sin -0.33333)

-0.33333)

-0.33333)))

(* _B _B))

(% _A (% -0.33333 _A)))

-0.80952

_B

(sin (% (% _A

(- (cos (sin (* (cos (sin -0.52381))

(% _B (% _A (- (cos -0.33333)

0.04762))))))

0.04762))

(sin (sin -0.33333)))))

-0.33333))

Figure 2.7: A 52-atom S-expression classifying correctly all 194 training examples for

the intertwined spiral problem.

37

2.2 Proposed Solution

Two fundamental techniques are developed in this dissertation. The �rst one, named

Self-Adaptive Greedy Estimate (SAGE), implements a search strategy that exploits some

speci�c statistical properties that are captured by the explicit partitioning methodology.

As discussed in section 2.1.2, the central idea for this strategy is to identify early choices

in sequential construction problems that are more likely to result in high quality solutions.

SAGE is an iterative search algorithm which proceeds level by level in the hierarchical

partitioning of the space of candidate solutions. At each level, SAGE exploits a sampling-

based strategy to evaluate some speci�c statistical properties about the corresponding

subsets of this decomposition. Then, when enough information has been gathered, search

proceeds to the next level, focusing its attention on the most promising subsets. An

important feature of SAGE is that the statistical inference process it implements is

supported by an evolutionary-inspired model. As a result SAGE exhibits many of the

positive features attributed to Evolutionary Algorithms like robustness, exibility and

the ability to explore multiple alternatives in parallel. Moreover, such population-based

models usually admit an e�cient implementation on massively distributed architecture,

making them an attractive tool to address large scale problems.

The second technique introduced in this dissertation is based on the concept

of coevolutionary learning and is proposed as a solution to exploit statistical properties

of problem domains that are captured with the indirect partitioning methodology. In

coevolutionary learning, agents are evaluated in an environment that responds to their

progress. The fundamental idea is that, instead of providing the learning agents with a

�xed training environment, those agents coevolve with an adaptive environment that al-

ways challenges them in such a way that the performance of the learning agents improves

continuously. From the perspective of this dissertation, this ability to observe continuous

38

progress is seen as the search for domains of the state space that exhibit some speci�c

properties. More precisely, our approach to coevolutionary learning is based on the idea

of augmenting an evolutionary algorithm with a meta-level strategy that controls the

evolution of agents toward domains of the state space that exhibit structural properties

that correlate better with the search mechanisms embedded in that algorithm. The con-

sequence of this meta-level strategy is that the evolutionary algorithm is less likely to

converge to a local optimum and continuous progress has a better chance to occur.

2.3 Related Work

The classes of problems that are addressed by the techniques introduced in this dis-

sertation have the common property that either the available information about their

structural regularities cannot be encoded appropriately in the framework of Evolution-

ary Algorithms in such a way that those regularities are indeed exploited, or that very

little information is available about such structural regularities. Those two issues are

very common to the EC practitioner. In particular, a recurrent issue when applying EC

techniques to a new problem concerns the design of an appropriate encoding to repre-

sent candidate solutions. Indeed, committing to an a priori representation is a di�cult

decision when it is based on little information about the properties of the problem. To

go around that problem, di�erent schemes have been proposed in order to adapt the

encoding or the search operators during the evolutionary process. The following sections

describe two di�erent approaches that explore that direction.

2.3.1 Messy Genetic Algorithms

The central idea of \messy GAs" [34] is to perform evolutionary search on variable

length chromosomes. To support this mechanism, a chromosome is in fact represented

39

by a list of pairs (index, value). Then, a binary string is constructed from that list by

assigning the value speci�ed in each pair to the corresponding index. As a result, the

value of some positions in the binary string may be unspeci�ed because their index is

not represented in any pair in the chromosome or some may be speci�ed more than once.

Speci�c mechanisms have to be implemented to deal with those cases and the evaluation

of chromosomes' �tness [34].

The motivation underlying the development of \messy GAs" is that short chro-

mosomes may capture some important features relevant to the nature of the problem.

Those features would involve, for example, a few important bits in the representation as-

sociated with some high-level properties. Therefore, the search process should continue

by building up new chromosomes from those individuals, adding more information to

their description (that is, specifying more bits). Progressively, such chromosomes would

capture some �ner and �ner regularities of the problem domain and would end up as a

complete encoding of all the bits.

Some important drawbacks are however associated with this strategy (e.g., see

[58]). In particular, the design of a general purpose procedure for the evaluation of the

�tness of incomplete chromosomes resulting in a consistent behavior across a large set

of applications is a di�cult technical challenge.

2.3.2 Adaptive Evolutionary Computation

Adaptive evolutionary computation denotes a class of evolutionary algorithms that mod-

ify the values for some of their operational parameters while performing search. The

motivation underlying this strategy is that evolutionary search may improve its per-

formance by automatically tuning its operational parameters to exploit more e�ciently

the regularities of the problem domain. This is usually achieved by incorporating an

encoding of those parameters in the entities undergoing evolution.

40

Such operational parameters may be associated with di�erent levels of control

in the evolutionary process. Angeline [5] proposed a classi�cation in three categories:

population level, individual level and component level. Accordingly, a large variety of

techniques have been proposed to implement this strategy. The work of Rosenberg [90],

or Scha�er and Morishima [95] on evolving crossover positions in GAs is one example.

This idea has been extended to the �eld of Genetic Programming to implement strategies

that automatically adapt the probability of crossover points when exchanging sub-trees

between S-expressions [41, 5]. Mechanisms adapting dynamically the variance of the

mutational noise applied to real-valued vector representations have also been proposed

very early in the �eld of Evolutionary Strategies [98, 10].

At the highest level, techniques that automatically adapt the representation

of solutions for improving the performance of evolutionary search have been proposed.

Paredis's work on symbiotic coevolution illustrates this strategy with promising results

[72, 73].

Successful applications of adaptive evolutionary computation are usually the

result of an appropriate trade-o� between a larger search space and a more adapted

strategy for exploring that search space. Indeed, the increase in exibility procured

by such adaptive techniques gives more opportunities to the designer for introducing

informed biases.

2.3.3 Concluding Remarks

While methods to adapt the encoding or the search operators of an EA by incorporating

those features as \parameters" of the evolutionary process seem very attractive at �rst,

they are however still subject to one fundamental limit of search algorithms: the \No-

free Lunch" theorem. Indeed, as discussed in [20], such attempts to improve performance

of an evolutionary algorithm are generally fruitless unless the search mechanisms that

41

control the evolution of those parameters correlate with some properties of the problem

domain under consideration. Put in another way, this result means that the design of

any method that implements some form of adaptation for controlling search should be

driven by the identi�cation of regularities of the problem domain. Failure to consider

those properties in order to introduced \informed" biases prevents such adaptive methods

from achieving any signi�cant improvement.

As a corollary to this observation, when proposing new techniques for search, one

should always attempt to describe what speci�c properties are captured and exploited

by the underlying strategies. Indeed, identifying those properties makes possible a more

accurate description of the appropriate domain of applications for those methods.

2.4 Original Contributions

The contribution of this dissertation concerns the investigation of methods to exploit sta-

tistical properties of problem domains. The central idea is to augment the search space

with a structure that captures some speci�c statistical properties. Then, the idea is to

use methods exploiting the same principles of operation as those embedded in Evolution-

ary Algorithms as a paradigm to perform statistical inferences based on the exploitation

of this structure. The bene�t of this approach is illustrated with the design of new search

procedures that address two speci�c classes of problems. The �rst class is referred to

as sequential construction problems and is addressed by SAGE, an algorithm that im-

plements a sampling-based strategy to exploit statistical properties for the distribution

of solutions in tree structures. The second class concerns a category of ill-structured

multi-objective problems. Those problems are addressed with a speci�c coevolutionary

strategy based on the implementation of an evolutionary race between two populations.

Coevolution o�ers an attractive paradigm for search and learning when little knowledge

42

is available about the properties of a problem domain or when this knowledge is di�cult

to introduce in the framework of a speci�c search strategy. However, coevolution also

comes with several impediments. For this reason, only a limited number of successful

applications based on coevolution can be found in the research literature. One impor-

tant contribution of the research work presented in this dissertation is to provide more

insights and a better understanding of the fundamental issues involved in this promising

�eld. In particular, a central result introduced in this dissertation addresses directly the

signi�cance of coevolution as a paradigm for achieving open-ended evolution. That is, the

emergence of agents that continuously improve their performance. More speci�cally, two

fundamental conditions have been identi�ed for achieving continuous progress: the need

to maintain useful feedback from the training environment and the need for a meta-level

strategy to ensure progress in the long term. Finally, based on the development of new

techniques implementing those two requirements, the signi�cance of the coevolutionary

paradigm for addressing the issues of adaptability and generalization is demonstrated.

In addition, the search algorithms described in this dissertation have made possi-

ble the discovery of new results for large instances of di�cult combinatorial optimization

and inductive learning problems. The following is a list of some of those achievements:

� new constructions for 13-input sorting networks using fewer comparator-swaps.

� a new cellular automata rule that implements the majority classi�cation task with

signi�cantly higher accuracy.

� a procedure for the induction of minimum DFAs from positive and negative ex-

amples requiring sparser training data than the previous best algorithms for that

task. This procedure ended up as a co-winner in the \Abbadingo" challenge, a

competition in grammar induction.

43

2.5 Outline of Chapters

The body of this dissertation is organized as follows. Chapter 3 describes SAGE, a search

procedure for the exploration of trees and directed acyclic graphs (DAGs) based on a

sampling-based strategy. The central idea in SAGE is to exploit the information about

the distribution of solutions gathered by sampling the tree or the DAG to determine on

which domain(s) of the state space to focus the search. The application of SAGE to three

di�erent problems is then presented: the construction of compact sorting networks, the

induction of �nite state automata from a training set composed of positive and negative

examples, and a game of Solitaire.

Chapters 4, 5 and 6 investigate coevolutionary methods and their application

to search and learning. First, Chapter 4 describes the concept of coevolution and the

motivations for exploiting this paradigm in the framework of the indirect partitioning

methodology. Chapter 5 states two fundamental requirements for achieving continuous

progress in the context of coevolutionary learning and introduces the \Ideal" trainer as

a paradigm implementing those requirements. Finally, Chapter 6 describes two applica-

tions of the \Ideal" trainer paradigm. The �rst one consists in the discovery of cellular

automata rules that implement the majority classi�cation task. The second application

presents a system implementing a modular approach to inductive learning based on the

\Ideal" trainer paradigm.

Chapter 7 summarizes the di�erent issues and achievements that resulted from

this work. Then, a presentation of the contributions of this research and its signi�cance

to the EC community concludes this dissertation.

44

Chapter 3

SAGE: a Sampling-Based

Strategy for Search in Trees

and Directed Acyclic Graphs

As discussed in chapters 1 and 2, capturing the intrinsic regularities of a problem domain

is important in order to address di�cult instances of that problem. The main reason

is that such instances usually involve a large search space. In chapter 2, a speci�c

class of problems referred to as sequential construction problems has been introduced.

Such problems are combinatorial optimization problems that are highly constrained and

sequential in nature. As a result, those problems are di�cult to describe in the framework

of existing EC techniques. The reason is that the information gathering process in those

techniques is supported by a structure that may not be compatible with an appropriate

encoding of the problem. That is, an encoding that would allow the intrinsic search

mechanisms embedded in the Evolutionary Algorithm to exploit the statistical properties

45

of the problem.

By de�nition, sequential construction problems are associated with an iterative

procedure which de�nes a hierarchical partitioning of the space of candidate solutions

into a tree or a Directed Acyclic Graph (DAG) structure. The internal nodes of the tree

correspond to partial solutions that are associated with some intermediate stage in the

construction process. Each internal node (and its associated partial solution) can then

be seen as the encoding of a speci�c subset composed of all the candidate solutions that

can be constructed by extending this partial solution. This principle was described as

the explicit partitioning methodology in chapter 2.

Addressing sequential construction problems in the context of Evolutionary Al-

gorithms is di�cult because it requires the design of a representation and some search

operators that capture the constraints that apply for the construction of valid solutions

and at the same time exhibit some regularities that can be exploited by the search strat-

egy. If the representation and the operators can't capture the construction constraints

or if the state space doesn't exhibit some regularities, search becomes trapped in local

optima. In the EC community, such undesirable property of a representation is some-

times referred to as epistasis, meaning that the degree of interdependence among the

components of the representation is high and makes the problem deceptive with respect

to the search operators. In fact, an important part of the work involved when applying

an EC technique to a particular problem is to design a representation for states that is

compatible with the search operators embedded in the evolutionary algorithm.

On the other hand, sequential construction problems would seem a typical appli-

cation for traditional arti�cial intelligence backtracking search algorithms. However, to

face the problem of combinatorial explosion, those search algorithms usually require the

design of heuristics in order to control the search. Such heuristics use problem-speci�c

knowledge that has been identi�ed for the problem at hand. This knowledge can be an

46

estimate of the cost to reach one valid solution from a partial solution (e.g. Manhattan

distance for the \8-puzzle" problem [84]) or an ordering of the children of the current

node in order to de�ne a priority for the branches to explore and/or how to prune the

search tree (e.g. a chess program). However, such heuristics cannot use any information

about the distribution of the solutions in the space unless this information has been pro-

vided explicitly. For example, following an idea �rst introduced by Palay [68], Baum [11]

used an evaluation function for game tree search which returns a probability distribution

rather than a single number to estimate the \value" of a position. Then, these distri-

butions are propagated upward to the root of the tree and the best move corresponds

to the branch whose distribution has highest mean. The distribution returned by this

evaluation function is a model of the distribution of the values of children nodes for the

current leaf and can be the result of a combination of hand designed features and of a

training with statistics data from experiments. However, little work has been done to

explore the idea of using the distribution of solutions when an evaluation function such

as the one described above is not know or di�cult to design.

This chapter presents an algorithm that captures the same principles of opera-

tion as Evolutionary Algorithms in order to gather information about the distribution of

candidate solutions in the search space. This knowledge acquisition process is supported

by a speci�c hierarchical partitioning of the search space de�ned by the construction

procedure associated with the problem. The motivation for the development of this algo-

rithm is to combine some of the fundamental search strategies embedded in Evolutionary

Algorithms with a framework that can capture e�ciently the constraints associated with

the de�nition of valid solutions. More precisely, the central idea for that algorithm is to

collect information about the distribution of values assigned to the leaves of the sub-trees

associated with the alternatives under consideration by performing a random sampling.

Then, this information is used to focus the search on the most promising alternatives.

47

This result is achieved by using a model of local competition between the elements of

a distributed model, which allow the algorithm to allocate more \resources" (i.e., pro-

cessing elements) to the most promising alternatives in a self-adaptive manner. Such a

model provides this algorithm with the advantage of allowing a highly distributed im-

plementation because of a loose central control. Because of this architecture, we named

this algorithm Self-Adaptive Greedy Estimate (SAGE) search procedure. So far, random

sampling techniques on search trees have been used to predict the complexity of search

algorithms [49, 16], but never as a strategy to control the search.

This chapter describes the application of SAGE to three di�cult problems. The

�rst one is a grammar induction problem and originated from the Abbadingo DFA learn-

ing competition [54] which took place between March and November 1997. This compe-

tition proposed a set of di�cult instances for the problem of DFA learning as a challenge

to the machine learning community and to encourage the development of new algorithms

for grammar induction. The problem instances proposed in that competition were ex-

pected to be just beyond the current state of the art. Each instance consists in a set

of training examples and a set of test examples extracted from a randomly generated

DFA. The goal is to discover a model of the training set which has a predictive error

over the test set less than one percent. The labeling of the test examples and the un-

derlying DFAs of the di�erent problem instances were disclosed only at the end of the

competition. Therefore, the performance of a model could be tested only by submitting

a labeling candidate for the test examples to an \Oracle" implemented on a server at

the University of New Mexico. The complexity of the di�erent instances evolves in two

dimensions: the size of the underlying DFA and the sparsity of the training data. This

feature introduces a partial order over problems which makes possible multiple winners.

The SAGE search algorithm was able to solve di�cult problems along the dimension of

sparser data and was one of the two winners of this competition. The second problem is

48

a discrete optimization problem: the discovery of sorting networks with a minimal num-

ber of comparators. Several computer scientists and mathematicians worked on that

problem in the '60's, trying to construct by hand minimal solutions for sorting networks

up to 16 inputs. An extensive presentation of that problem is presented in [48]. Since

that time, no improvement has been made for that problem. Using SAGE, new con-

structions have been discovered whose size matches all the upper bounds already known

and even improves by one comparator the best upper bound for the 13-input case. The

third problem is a one-player game named Solitaire. This game can be stated as a com-

binatorial optimization problem for which the player wants to maximize the number of

moves. Little knowledge is available for the design of good strategies to play that game.

However, SAGE exhibits a performance similar to a highly-skilled human player.

3.1 The Self-Adaptive Greedy Estimate (SAGE) Search

Algorithm

3.1.1 Principle

As discussed in the previous section, the search space associated with sequential con-

struction problems is represented as a tree or a directed acyclic graph. An approach that

has proven to be e�ective to illustrate the search strategy implemented in SAGE is to

compare this algorithm with a well-known AI algorithm for search in DAGs and trees

called Beam search [113]. Beam search examines in parallel a number of nearly optimal

alternatives (the beam). This search algorithm progresses level by level in the tree of

states and it moves downward only from the best w nodes at each level. Consequently,

the number of nodes explored remains manageable: if the branching factor in the tree is

at most b then there will be at most wb nodes under consideration at any depth. This

49

parallel search strategy is illustrated in Figure 3.1: at each level, the alternatives under

consideration are evaluated with respect to some objective function (denoted hi), then

the search moves on to the next level, considering only the children of the best w = 3

nodes. SAGE is similar to this algorithm in the sense that it proceeds level by level

111 112 131 132

11 12 13 21 22 23

321 4

41 42 43

412411

h h h h

h h h

hh

hhhhhh

h h h h

Figure 3.1: Illustration for the parallel search strategy implemented in Beam search.

in the search tree and it implements a distributed-model that performs multi-threaded

search. SAGE is composed of a population of processor elements. Each of them is playing

the role of an elementary search algorithm and is seen as one alternative in the beam.

In tree search algorithms, a �tness (or score) is assigned to internal nodes in order to

determine which nodes will be explored further and which nodes will be ignored. Beam

search uses heuristics to score the di�erent alternatives and to select alternatives that

are most promising, i.e. the nodes with largest scores. However, this approach assumes

the existence of an evaluation function used to score the nodes. The new idea proposed

by SAGE is to estimate the score of internal nodes by performing a random sampling

from this node. That is, a path is constructed incrementally and randomly until a leaf

50

(or valid solution) is reached. Then, the score of this solution is directly computed with

respect to the problem objective function and it is assigned to the initial node. This

random-sampling strategy is illustrated in Figure 3.2 -(a) where Ni represents the num-

ber of processor elements associated with a speci�c internal node (i.e., alternative) and

fi represents the evaluation of a leaf (i.e., solution).

(a)

4N3N2N1N

fjifhfgfffefdfcfbfaf

(b)

af’ bf’ cf’ df’ ef’ ff’ gf’ hf’ if’ jf’

N’ N’ N’

2N’1N’ 3N’

N’

4N’

N’ N’N’11 13 23 31 32 41 N’42 43

Figure 3.2: Illustration for the sampling-based strategy exploited by SAGE to evaluate

nodes and the adaptive strategy which focuses search on most promising alternatives.

51

More precisely, SAGE is an iterative search procedure for which each iteration

is composed of two phases, a construction phase and a competition phase. SAGE imple-

ments a population of elementary randomized search algorithms and ameta-level strategy

which controls the search procedure by distributing the alternatives under consideration

among this population of processor elements. For any iteration, all the alternatives repre-

sented in the population have the same depth in the search tree and they are represented

by a number of processor elements which depends on their relative performance. At the

beginning of the search, this depth is null and it increases with the number of itera-

tions according to a meta-level strategy which is described in section 3.1.4. During each

iteration, the construction and the competition phases perform the following operations:

� construction phase: during this phase, each processor element calls the construction

procedure designed for the current problem. This procedure starts the construction

from the internal node which represents the alternative assigned to the calling

processor and thereafter makes each decision by randomly selecting one choice

from the list of choices available at each step. Each random selection is performed

with respect to a uniform probability distribution. This phase ends when all the

processor elements have constructed their own solution.

� competition phase: the purpose of this phase is to focus the search on most promis-

ing alternatives by assigning more representatives to them. This result is achieved

by assigning those better alternatives to the processor elements that are represen-

tative of poor alternatives. The details of that phase are described in section 3.1.3.

In Figure 3.2 -(a), this process updates the value of Ni's so that most promising

alternatives are represented by a larger number of processor elements.

In summary, SAGE is a population-based model in which each processor element

is the representative of one alternative for the current level of search in the tree. That

52

alternative determines the initial node from which the random sampling is performed

by that processor element during the construction phase. Then, SAGE controls the

exploration of the search space according to the following strategy:

1. Initially, the search is restricted to the �rst level of the tree and each processor

element in the population randomly selects one of the �rst-level nodes.

2. Each processor element scores its associated node (or alternative) by performing a

random sampling. This is the construction phase.

3. Then, the competition phase is operated. The purpose of this phase is to focus the

search on most promising alternatives.

4. A test is performed by the meta-level strategy and the result determines whether

the level of search is increased by one or not. In the a�rmative, each proces-

sor element selects uniformly randomly one of the children of its associated node

and this node becomes the new alternative assigned to the processor element. In

Figure 3.2 -(b), this translates with the fact that
P

j N
0
ij = Ni.

5. The search stops if no new node can be explored (because the search reached the

leaves of the tree); otherwise it continues with step 2.

In the SAGE model, the level of search in the tree is called the commitment degree since

it corresponds to a commitment to the �rst choices of the incremental construction of

the current best solution.

The following sections describe in detail the di�erent implementation issues for the con-

struction phase, the competition phase and the management of the commitment degree.

53

3.1.2 Construction Phase

The construction procedure used during this phase plays an important role since it

determines the distribution of solutions when sampling the search tree. The procedure

that generates the list of possible extensions at each step of the incremental construction

of a solution to a problem can be implemented in several ways. It is possible to introduce

some problem-speci�c heuristics to drive the search in a particular direction, to introduce

some constraints in order to reduce the size of the search tree, or to use some strategies

that modify the distribution of solutions. The multiple-sampling strategy is an example

of a technique that adapts this distribution. This strategy simply evaluates the score of

an alternative by taking the best out of n samples, where n is a parameter of SAGE.

In the limit (as n �! 1), one of the samples will correspond to the best score for the

alternative under consideration and thus this technique would give an exact measure of

the score of partial solutions. In practice, n cannot be too large since the computational

resource required increases linearly with its value. However, increasing n can be an

interesting alternative to a larger population size since the amount of memory required

to store the members of the population can quickly become overwhelming for complex

problems.

3.1.3 Competition Phase

The SAGE search algorithm uses a population of geographically distributed processor

elements. This architecture makes it amenable to a simple implementation on several

models of computer networks or of parallel computers since di�erent topologies can be

implemented for the adjacency structure over the population of processor elements. For

the sake of simplicity, we will consider a model in which the population of processor

elements is mapped on a wrap-around mesh (i.e. a torus). A processor element is

54

assigned to each node of the mesh and, therefore, has four adjacent nodes. In such a

setup, the competition phase can be performed in the following way:

� Each processor element compares its score with the score of processor elements

in its neighborhood. This neighborhood is composed of the nodes in the mesh

whose Manhattan distance from the central node is less than a given value of the

parameter radius.

� If one processor element in this neighborhood has a better score than all the others

then the central processor element becomes a representative of the same alternative

as that node. If several processor elements in the neighborhood have identical scores

which are better than all the others then the central processor element becomes

a representative of the alternative associated to one of them, uniformly randomly

selected. If no processor element in the neighborhood is better than the current

processor element, then it remains a representative of the same alternative.

So, if a given alternative for the current level of search in the tree is more likely to lead

to a high score solution then more copies of that alternative will be represented by the

population of processor elements as a result of this competition phase (thus focusing

the beam). This process is illustrated in Figure 3.3 which presents the state of the

population at di�erent stages of the search. The problem consists in sorting integers

f0 : : : 9g in ascending order. The search tree represents all the permutations of those

numbers. Each node at a given level in this search tree corresponds to the addition of

one element to the pre�x associated with its parent. In the simulation of the population

evolution presented in Figure 3.3, each processor is associated with a node in the �rst

level in the search tree (which corresponds to a single number). During the construction

phase, each processor element constructs a random permutation of the numbers f0 : : : 9g

by extending the current pre�x (in that example, the pre�x corresponds to the �rst

55

element of the sequence). The �tness is de�ned as the number of ascents in the resulting

sequence. As a result of the local competition, nodes associated to 0 are represented by

a growing number of processor elements, thereby focusing the search on that particular

integer as the �rst element for the �nal sequence.

4

4

4

0

3

3

0

0

0

3

3

3

1

1

1

1

1

3

3

3

0

0

5

5

0

0

0

0

0

0

4

3

3

4

7

4

3

3

2

2

1

1

3

3

3

1

1

1

1

3

3

0

2

0

4

5

0

0

0

3

0

3

3

3

2

2

7

7

3

2

2

4

4

3

1

3

3

1

2

2

3

3

3

2

2

2

0

0

0

0

0

3

3

0

0

2

2

2

1

1

2

0

0

4

4

1

1

1

2

2

2

2

2

3

2

2

2

2

0

0

0

0

0

0

6

0

0

2

1

1

1

1

1

0

0

4

4

4

1

2

1

2

2

2

1

1

2

2

2

2

6

0

0

0

0

3

6

0

0

0

1

1

1

1

1

1

0

0

0

4

2

1

1

1

2

1

1

1

2

2

3

6

6

6

6

0

3

3

0

0

0

0

1

1

1

1

1

0

0

0

0

6

6

2

3

1

1

1

0

1

2

3

3

8

0

0

0

0

0

0

0

0

0

1

1

1

1

1

2

3

3

0

3

6

3

3

3

3

1

0

0

0

0

2

3

8

1

0

0

0

0

3

0

3

0

3

1

1

0

4

3

3

3

3

6

4

3

3

3

1

0

0

0

0

0

2

2

1

1

0

0

0

2

3

3

3

3

1

1

0

0

0

3

3

3

3

6

6

0

0

0

4

4

0

0

0

0

2

2

1

1

1

2

2

2

2

2

3

3

2

2

0

0

4

3

3

3

5

5

5

0

0

0

3

4

5

5

5

2

2

2

2

1

1

3

4

2

2

2

2

3

2

0

0

4

4

3

3

0

5

0

0

0

0

0

3

0

5

0

2

2

2

2

1

1

1

4

4

4

2

2

2

2

2

0

4

2

4

6

3

0

5

0

0

0

0

0

3

0

0

0

0

2

1

1

1

1

1

1

4

2

2

2

8

2

0

1

2

2

2

0

0

1

1

5

3

3

0

0

0

0

0

0

0

0

0

1

5

6

1

1

1

4

2

8

8

2

0

1

1

2

4

0

1

1

5

5

5

3

2

0

0

0

0

0

0

0

5

5

1

1

6

1

1

4

4

4

7

7

1

1

1

2

2

1

1

1

1

5

1

1

2

0

0

0

0

0

0

5

5

5

1

6

6

6

1

1

4

4

3

3

0

1

2

2

2

1

1

1

1

1

1

1

1

0

0

0

0

0

2

4

5

5

1

1

6

1

1

1

4

3

3

3

1

1

6

6

6

6

1

1

0

0

1

1

1

0

0

0

0

0

4

4

4

4

1

1

1

1

1

1

1

3

3

3

0

6

6

6

6

1

1

1

0

0

0

0

0

0

0

0

0

1

1

4

4

4

7

1

2

1

1

1

3

3

3

5

0

3

6

0

0

1

1

1

0

0

0

0

7

0

0

0

1

1

1

1

4

3

6

2

2

1

2

3

1

3

1

5

5

0

3

0

0

1

1

1

0

0

0

0

7

9

0

0

1

1

6

6

3

3

6

2

2

2

2

3

1

1

1

5

3

0

0

2

0

0

2

2

2

2

0

7

7

3

5

5

0

6

6

6

6

8

8

8

2

2

2

0

0

1

7

0

0

0

0

0

0

2

2

2

4

4

4

4

7

3

3

3

0

1

6

6

7

8

0

0

0

2

0

0

0

1

0

0

0

0

0

0

0

0

2

0

4

4

4

4

4

3

3

1

1

1

1

7

7

7

1

6

0

0

0

0

3

3

0

0

0

7

0

0

0

0

0

4

4

4

4

3

3

3

0

1

0

1

1

1

7

2

6

6

6

3

0

3

5

2

2

2

0

2

2

2

2

0

0

0

4

4

0

4

3

3

3

0

0

0

1

1

1

2

2

2

3

3

1

5

5

5

2

2

2

2

2

2

2

2

4

4

4

4

0

1

4

3

2

2

0

0

0

1

2

2

2

2

6

1

1

1

5

5

2

2

2

2

2

2

2

5

5

4

4

4

0

1

1

0

2

2

4

0

0

2

2

2

0

2

1

1

1

7

2

7

1

2

2

4

1

2

2

2

5

4

4

0

0

0

0

0

0

1

1

1

2

2

0

0

0

0

2

1

2

2

2

2

0

1

4

2

4

0

5

5

6

6

4

4

0

0

0

0

0

0

1

1

1

2

0

0

0

0

0

2

2

2

2

0

0

0

3

4

4

4

0

6

6

0

0

0

0

0

0

0

0

1

1

1

1

6

0

0

0

0

2

2

2

2

0

0

0

3

3

3

4

0

0

0

0

0

0

0

0

3

0

0

1

1

1

1

1

0

0

0

0

0

0

5

2

0

0

0

0

4

3

Step 5 - Diversity = 1794

3

4

4

3

3

3

0

2

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

2

0

0

0

4

4

2

3

3

3

3

2

2

2

1

3

0

2

1

1

1

1

1

0

0

0

0

2

0

0

0

0

3

0

0

0

0

0

2

2

3

3

1

3

2

4

1

1

2

2

1

1

1

1

1

1

3

0

2

2

0

0

0

0

0

0

0

0

0

2

2

2

1

1

1

1

4

4

1

1

2

2

2

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

2

2

1

1

1

1

1

0

4

2

2

2

2

2

2

1

1

1

1

1

2

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

2

2

1

2

2

2

1

1

1

2

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

2

4

1

3

1

2

0

0

1

0

2

3

0

0

0

0

0

0

0

0

0

0

0

1

1

1

3

3

0

0

0

0

4

4

4

1

1

1

0

0

0

0

0

3

1

1

0

0

0

2

0

3

3

0

1

1

0

3

3

3

3

0

0

0

0

4

0

1

1

1

0

0

0

0

2

1

2

0

0

0

0

2

0

0

1

1

1

0

0

3

3

3

3

0

0

6

6

0

0

0

1

5

5

5

0

2

2

2

2

1

1

0

0

2

2

2

2

3

1

0

0

0

3

3

3

3

6

6

6

0

0

0

3

3

0

0

0

0

2

2

2

1

1

0

4

2

2

2

2

3

0

0

0

0

4

3

3

3

1

6

0

0

0

0

3

0

0

0

0

1

1

2

2

1

1

1

1

2

2

2

2

3

0

0

0

2

4

4

3

1

1

0

0

0

0

0

0

0

0

0

0

1

1

2

1

1

1

1

1

2

2

2

0

0

0

1

1

2

2

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

2

0

0

1

1

2

4

0

0

1

1

0

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

1

1

1

2

2

2

0

0

1

1

1

1

1

0

0

0

0

0

0

2

2

1

4

1

1

1

1

1

1

3

3

3

1

1

1

1

2

2

1

0

0

1

1

1

1

1

0

0

0

0

0

2

2

2

4

4

1

1

1

1

1

3

3

3

3

1

0

1

6

0

1

0

0

1

1

0

1

0

0

0

0

0

0

0

2

4

4

1

1

1

1

1

1

3

3

3

5

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

3

4

4

1

2

1

3

1

3

3

5

5

0

0

3

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

1

3

3

2

2

2

2

3

3

3

3

3

5

0

0

0

0

0

0

1

1

0

2

0

0

0

0

0

0

0

1

1

6

3

6

0

0

2

2

3

0

0

3

7

0

0

0

0

0

0

1

1

0

0

2

2

0

0

0

0

0

0

1

6

6

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

2

4

4

4

0

3

0

1

1

1

6

1

0

0

0

0

0

0

0

0

0

3

0

0

0

0

0

0

2

0

0

0

4

4

4

4

3

0

3

3

1

1

1

1

1

0

0

0

0

0

0

0

3

3

3

0

0

0

0

0

0

0

0

0

4

4

4

3

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

5

2

3

0

0

0

0

0

2

0

0

0

0

4

4

1

3

3

0

3

1

1

1

1

1

2

2

0

1

1

1

5

5

2

2

2

0

0

0

2

2

0

0

0

4

4

0

1

3

3

3

0

0

1

0

0

2

2

2

2

0

1

5

5

1

2

2

2

2

2

2

2

2

2

4

4

4

0

0

0

1

3

0

0

0

1

1

2

2

2

2

2

1

1

1

2

1

2

1

2

2

3

1

2

2

2

4

4

0

0

0

0

0

0

0

0

1

1

1

0

2

0

0

2

1

1

1

2

2

1

1

1

3

3

3

3

0

0

6

6

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

2

2

2

2

2

1

1

3

3

3

4

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

2

2

2

2

0

0

1

3

3

3

4

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

0

0

2

2

2

0

0

3

0

Step 8 - Diversity = 1390

2

0

3

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

2

2

2

2

2

0

0

0

0

0

3

3

0

0

0

0

0

1

0

0

0

0

0

1

1

1

1

0

2

0

0

0

0

0

0

2

0

0

0

0

0

1

3

1

1

0

0

0

0

1

2

2

2

2

2

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

2

2

2

2

2

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

2

2

2

2

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

0

0

0

0

0

0

4

1

1

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

2

2

1

1

1

0

1

0

3

3

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

2

2

2

0

0

0

1

1

0

0

3

3

3

3

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

2

2

0

0

0

0

0

1

1

1

4

3

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

2

2

0

0

0

0

1

1

1

4

4

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

2

2

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

3

3

0

2

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

2

4

4

1

1

1

1

1

1

3

3

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

2

2

2

4

1

1

1

1

1

1

3

3

1

3

1

3

3

1

1

1

0

1

1

1

1

1

0

0

0

0

0

0

2

2

4

4

1

1

1

1

1

1

3

3

3

1

1

3

3

0

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

2

4

4

1

1

1

2

1

1

1

3

1

1

0

0

3

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

1

6

4

4

0

1

2

2

3

1

1

1

3

0

0

0

0

0

0

1

1

1

0

0

2

0

0

0

0

0

1

1

1

1

4

0

0

0

2

2

3

1

1

0

3

0

0

0

0

0

0

0

1

0

0

2

2

2

0

0

0

0

1

1

1

1

1

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

1

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

3

0

0

0

1

1

1

1

1

1

0

0

0

0

5

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

3

3

0

0

0

3

1

1

1

1

1

0

0

0

0

0

2

0

2

2

2

0

0

2

2

0

0

0

0

0

0

1

1

1

3

0

3

1

1

1

1

1

1

1

0

0

0

5

2

1

1

2

0

1

1

1

2

2

0

0

0

0

0

0

0

0

0

3

0

1

1

1

1

1

1

0

0

0

0

2

0

0

0

1

0

2

0

1

1

2

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

2

0

0

0

1

2

2

0

1

1

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

2

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

3

2

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

2

0

2

0

3

3

3

Step 12 - Diversity = 1046

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

2

2

1

1

1

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

1

1

1

0

0

0

0

0

0

2

2

2

2

1

1

1

0

0

0

0

0

0

0

0

0

2

2

0

0

0

0

0

0

1

0

0

1

1

0

0

0

2

2

2

2

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

2

0

0

0

0

0

0

1

1

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

2

2

2

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

2

0

0

0

0

1

1

1

0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

3

3

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

3

3

1

1

1

1

1

1

1

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

3

3

3

3

0

0

3

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

0

2

2

1

1

1

1

2

2

1

3

3

3

0

0

0

3

3

0

0

0

0

1

0

0

0

0

0

0

0

0

1

2

2

2

1

1

1

2

0

1

1

1

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

4

4

4

0

0

0

0

0

1

1

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

3

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

0

0

3

0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

3

3

3

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

0

2

0

0

0

0

0

0

0

0

0

3

3

1

1

1

0

1

1

0

0

0

0

0

0

0

0

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

2

2

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

Step 16 - Diversity = 812

Figure 3.3: As a result of the local competition among members of the population, search

focuses on most promising alternatives.

Such a geographically distributed model with local interactions has already been

used in the past to implement evolutionary search [38]. This model usually results in

multiple niches that are maintained in the population because local interactions induce a

delay for the di�usion of better niches. From a search strategy point of view, this feature

56

can be seen as the simultaneous exploration of di�erent sub-domains of the state space.

3.1.4 Management of the Commitment Degree

Successive competition phases result in most promising alternatives being represented

by larger and larger numbers of processor elements. Ultimately, if one waits until all the

population agrees on the same alternative before continuing the search on the next level,

the beam would be reduced to the exploration of a single alternative. On the contrary, if

the level of search is increased too frequently, the beam would become very wide. In that

case, many di�erent alternatives are represented in the population and each alternative

is represented by a small number of processor elements. So, the likelihood of a promising

alternative disappearing during a competition phase because of non-favorable random

sampling would be non-negligible.

Clearly, for the search to be e�cient, these two extremes must be avoided and

one wants to �nd a balance between the number of alternatives represented in the popu-

lation and a number of representative for each alternative large enough to allow a reliable

evaluation of their score in the random sampling operation. This goal is achieved by using

a strategy that controls the depth of the alternatives represented in the population and,

therefore, the level of search. The purpose of this meta-level strategy is to decide when

the commitment degree should be incremented. As described previously, this results in

each processor element moving downward by one level in the search tree by selecting

randomly one of the child nodes of the current alternative it represents. In our work, we

have been using two di�erent strategies to control the commitment degree. The �rst one

simply increases the commitment degree every n iterations, where n is a parameter set

at the begin of the run. The drawback of this strategy is that n has to be chosen astutely

in order to maintain the right balance between exploration and exploitation. Thus, this

strategy is brittle since the value of n has to be chosen a priori and depends highly on

57

the problem under consideration and the actual value of the commitment degree.

To correct those drawbacks, a second strategy has been designed. This strategy per-

forms a measure of the state of the population called the diversity measure which is an

estimate of the width of the beam. To compute this measure, each processor element

in the population counts the number of nodes in its neighborhood that correspond to

a di�erent alternative than itself. Then, this number is summed over all the members

of the population and the result is the diversity measure. This measure reects the

degree of convergence of the population. If only a few alternatives are represented in

the population then this measure is small because most of the processor elements rep-

resent the same alternative as their neighbors. On the other hand, if many alternatives

are explored, and each alternative is represented by a few processor elements, then the

diversity measure is large. As the population focuses on most promising alternatives

because of the competition phase, the diversity measure decreases (Figure 3.3 illustrates

this dynamics for the evolution of diversity). When this measure reaches an arbitrarily

�xed threshold (which is a parameter of the model), the meta-level strategy considers

that the width of the beam is small enough and the search can continue on the next level

of the tree. The drawback of this strategy is that it can take a long time for the diversity

measure to reach the given threshold if several alternatives lead to equivalent solutions.

This problem doesn't appear with the �rst strategy. A hybrid approach combining those

two strategies o�ers a good compromise, the �rst strategy preventing deadlocks by �xing

a limit on the number of iterations for any value of the commitment degree.

3.1.5 Parameters of SAGE

This section is a summary of the di�erent parameters of the SAGE search algorithm that

have been de�ned in the previous sections.

Population size : If the number of processor elements in the population increases then

58

the width of the beam can also be larger without decreasing the e�ciency of the

search. Therefore, the size of the explored state space is directly related to the size

of the population.

Number of iterations for the multiple-sampling strategy : This number modi-

�es the distribution of solutions returned during the construction phase by selecting

the best out of n successive calls to the construction procedure.

Neighborhood used in the competition phase : The size of the neighborhood used

in the competition phase controls the dynamics of evolution of the population. In-

deed, if the radius of this neighborhood is large then best alternatives will propagate

faster in the population and the search will focus quickly on the alternatives with

a high score, discarding apparently less promising alternatives. On the contrary, a

small radius allows the search to converge slowly. In the current implementation,

the distance between members of the population is de�ned as the Manhattan dis-

tance. The e�ect of the value of this parameter on the performance of the search

depends a lot on the reliability of the score returned by the construction phase.

Management of the commitment degree : As discussed in the previous section,

this parameter plays an important role in controlling the balance between explo-

ration and exploitation.

59

3.2 Application 1: The Abbadingo DFA Learning

Competition

3.2.1 Presentation

The aim of inductive inference is to discover an abstract model which captures the

underlying rules of a system from the observation of its behavior and thus to become

able to give some prediction for the future behavior of that system. This ability is

fundamental for learning and underlies the process of scienti�c discovery or the process

by which an animal can interpret its environment and exhibit planning activity in order

to achieve a goal. In the �eld of grammar induction, observations are strings that

are labeled \accepted" or \rejected" and the goal is to determine the language that

generates those strings. For example, given the binary strings in Table 3.1, one could

conjecture that they are instances of the language composed of strings of even length

while strings of odd length are not recognized by the language. Angluin and Smith

[7] have presented an excellent survey of the �eld, covering in particular the issue of

computational complexity and describing some inference methods for inductive learning.

Several representations have been proposed to describe the abstract models for grammar

induction like deterministic �nite state automata, boolean formula or propositional logic.

More recently, Pollack [79] proposed dynamical recognizers as an interesting alternative

to those symbolic approaches, leading to a wide range of Recurrent Neural Network

(RNN) architectures [109, 115, 23, 29] that had been employed for similar tasks. However,

none of them could compete in the Abbadingo competition because of the proposed

problems size.

The application of the SAGE search algorithm to this problem has been moti-

vated by the Abbadingo competition organized by Lang and Pearlmutter [54]. It is a

60

Accept Reject

01 0

10 1

0010 010

1001 111

010110 01001

00001111 10110

10111010 0111001

Table 3.1: A tiny training set of labeled strings for grammar induction.

challenge proposed to the machine learning community in which a set of increasingly

di�cult DFA induction problems have been designed. Those problems are supposed to

be just beyond the current state of the art for today's DFA learning algorithms and

their di�culty increases along two dimensions: the size of the underlying DFA and the

sparsity of the training data. Gold [32] has shown that inferring a minimum �nite state

automaton compatible with given data consisting of a �nite number of labeled strings

is NP-complete. However, Lang [53] empirically found out that the average case is

tractable. That is, randomly generated target DFAs are approximately learnable even

from sparse data when this training data is also generated at random. One of the aims

of the Abbadingo competition is to estimate an empirical lower bound for the sparsity

of the training data for which DFA learning is still tractable for the average case. The

competition has been set up as follows. A set of DFAs of various size have been randomly

generated. Then, a training set and a test set have been generated from each of those

DFAs. Only the labeling for the training sets have been released. Training sets are com-

posed of a number of strings which varies with the size of the target DFA and the level

of sparsity desired. The test sets are composed of a set of 1800 unlabeled strings. The

goal of the competition is to discover a model for the training data that has a predictive

error rate smaller than one percent on the test set. That is, at most 18 mismatches are

61

Problem Target DFA Target DFA Strings in

name states depth training set

1 63 10 3478

2 138 12 10723

3 260 14 28413

R 499 16 87500

4 68 10 2499

5 130 12 7553

6 262 14 19834

S 506 16 60000

7 65 10 1521

8 125 12 4382

9 267 14 11255

T 519 16 32500

Table 3.2: Parameters associated with the data sets for the Abbadingo DFA learning

competition.

allowed between the prediction and the true labeling. Since the labeling for the test sets

has not been released, the validity of a model can be tested only by submitting a candi-

date labeling to an \Oracle" implemented on a server at the University of New Mexico

[54] which returns a \pass/fail" answer. Table 3.2 presents the di�erent problems that

compose this competition. The size and the depth of the target DFA are also provided

as a piece of information to estimate how close a DFA hypothesis is from the target.

In the next sections, two algorithms are presented to address this grammar

induction problem. First, the construction procedure to be used in the SAGE search

algorithm is described. Then, a heuristic is presented which was �rst discovered by Rod

Price during the competition. This heuristic uses a counting technique which results

in an algorithm with much better generalization ability than the Trakhtenbrot-Barzdin

algorithm [105].

62

3.2.2 Description of the Implementation for SAGE

The construction procedure makes use of the state merging method described in [105]. It

takes as input the pre�x tree acceptor constructed from the training data. Then, a �nite

state automaton is iteratively constructed, one transition at a time until a valid �nite

automaton is generated (i.e., until every state has a \0" and a \1" outgoing transition).

The construction procedure begins with a single state (the initial state of the

DFA) which is attached to the root of the pre�x tree. Then, at each step of the construc-

tion, one of the states that has no outgoing transition is selected at random and the \0"

and \1" transitions are created for that state. Two cases are possible when considering

a new transition: either it goes to an existing state or it goes to a newly created state.

As the hypothesis DFA is constructed, states are mapped with nodes in the pre�x tree

and transitions between states are mapped with edges. When a new transition is created

going to an existing state, corresponding nodes in the pre�x tree are merged. When two

nodes in the pre�x tree are merged, the labels in the tree are updated accordingly and

the merging of more nodes can be recursively triggered so that the pre�x tree reects the

union of the labeled string su�xes that are attached to those nodes. Thus, as the DFA

is constructed, the pre�x tree is collapsed into a graph which is an image of the �nal

DFA when the construction procedure is �nished. This merging procedure provides the

mechanism to test whether a transition between two existing states is consistent with the

labeling and should be considered as a potential choice in the construction procedure.

Indeed, if there is an inconsistency in the labeling when trying to merge two nodes, this

means that the corresponding transition is not valid. The merging is then undone in or-

der to restore the state of the pre�x tree before the operation was performed. Figure 3.4

gives an example of the iterative construction of a DFA consistent with the training data.

It shows the di�erent steps of the collapsing of the pre�x-tree into a digraph image of the

63

hypothesis DFA. In this example, the accepted strings are f\0011", \011000", \1001",

\10101", \11101"g and the rejected strings are f\010001", \0110", \110010", \11100"g.

In stage (a), the pre�x-tree constructed from the training data is represented before

any operation has been performed on it. Nodes corresponding to accepted strings are

represented by a shaded square and nodes corresponding to rejected strings are circled.

The construction of a DFA is represented on the right of the pre�x-tree and starts by

assigning State 0 to the root. Then, the construction procedure creates two new states

(State 1 and State 2) corresponding to transitions on characters \0" and \1" respectively.

In stage (b), the outgoing transitions for State 1 are considered. The construction pro-

cedure makes the transition on character \0" loop onto State 1, which results in a new

node labeled \accepted" (the one after transitions \11", starting from State 1) after the

merging of the node labeled \state 1" and its left child. A new state (State 3) is also cre-

ated for the transition on character \1". Then, in stage (c), the construction procedure

creates the transition: State 2 �! State 3 on character \0". This results in the merging

of the left child of the node corresponding to State 2 with the node corresponding to

State 3. The pre�x-tree is then updated, taking into account the labels in the left subtree

of State 2. Stage (d) represents the pre�x-tree after the transition on character \1" from

State 2 (which loops onto itself) has been added. In stage (e), a transition from State 3

to State 0 on character \0" is selected by the construction procedure. Once again, this

results in the merging of the left child of the node corresponding to State 3 with the

one corresponding to State 0 and the updating of the labels by propagation. Finally,

stage (f) represents the pre�x-tree after the last transition has been added from State 3

to State 2. At the end of the construction, states 1 and 2 are the accepting states while

states 0 and 3 are rejecting. The pseudo-code describing this construction procedure is

given in Figure 3.5.

64

(a)

0

0

0

0

0

0

0 0

0

0

0

1

1

11

1

State 1

State 0

State 2

1

0

0

0

1

1

10

10

1

1 1

State 0

State 2 State 1

01

(b)

0

0

0

0

0

0

0 0

0

0

0

1

1

1

1

State 0

State 2

1

0

0

0

1

1

10

1

1 1

State 0

State 1
0

State 3

State 2 State 1

State 3

0

0

1

1

(c)

0

0

0

0

0

0

0

0

1

1

State 0

State 2

0

0

1

1

10

1

State 0

State 1
0

State 2 State 1

State 3

0

0

1

1

0

State 3

1

0 1

1

1

0

(d)

0

0

0

0

01

State 0
10 State 0

State 1
0

State 2 State 1

State 3

0

0

1

1

0

State 3

1

0 1

1

10

State 2
1

1

0

65

(e)

0

0

0

10 State 0

State 1
0

State 2 State 1

State 3

0

0

1

1

1

1

State 2
1

1

0

0

State 0

0

State 3

01

(f)

10 State 0

State 1
0

State 2 State 1

State 3

0

0

1

1

State 2
1

1

0

State 0

1
0

0

State 3

1 0

1

Figure 3.4: Illustration of the state merging method for DFA induction. Section 3.2.2

describes the di�erent steps in the merge process.

66

Begin with a single state mapped to the root of the pre�x tree

The list L of unprocessed states consists of that single state

do

Pick randomly a state S from L

Compute the set T0 of valid transitions on \0" from state S

Pick randomly a transition t0 from T0

if t0 goes to an existing state then

Merge corresponding nodes in the pre�x tree

else

Create a new state, map it to the corresponding node in the pre�x

tree and add it to L

endif

Compute the set T1 of valid transitions on \1" from state S

Pick randomly a transition t1 from T1

if t1 goes to an existing state then

Merge corresponding nodes in the pre�x tree

else

Create a new state, map it to the corresponding node in the pre�x

tree and add it to L

endif

until (L is empty)

/* The output is a DFA consistent with the training data */

Figure 3.5: Randomized construction procedure for DFA learning.

67

3.2.3 Description of the Evidence-Driven Heuristic

The state merging method implemented in [105] considers a breadth-�rst order for merg-

ing nodes, with the idea that a valid merge involving the largest sub-trees in the pre�x

tree has a higher probability of being correct than other merges. The evidence-driven

heuristic doesn't follow that intuition and considers instead the number of labeled nodes

that are mapped over each other and match when merging sub-trees in the pre�x tree.

Di�erent control strategies can be designed to explore the space of DFA constructions

exploiting this heuristic. Our implementation maintains a list of valid destinations for

each undecided transition for the current partial DFA and, as a policy, always gives pri-

ority to \forced" creation of new states over merge operations. The pseudo-code for this

algorithm is presented in Figure 3.6.

3.2.4 Experimental Results

Results for Problems in the Competition In a �rst stage, we have been using a

sequential implementation of SAGE to address this learning problem since small popula-

tions were enough to solve the smallest instances of the Abbadingo competition. Because

of the large amount of memory required to store the pre�x tree and to perform opera-

tions on it, a coarse grained architecture (for which each node has usually more memory

available compared to �ne-grained architectures) is more appropriate for a parallel imple-

mentation. We used a network of workstations to scale the population size and address

the most di�cult problem instances in the competition. In particular, the solution to

problems 5 and 7 involved around 16 workstations on average. This parallel implemen-

tation uses a server that manages the population of partial solutions and distributes the

work load among several clients. This architecture presents the advantage that clients

can be added or removed at any time.

68

Begin with a single state mapped to the root of the pre�x tree

The list S of existing states in the DFA construction consists of that state

The list T of unprocessed transitions consists of the two outgoing transitions

from that state, on \0" and \1"

For each t 2 T , compute:

. the subset Sdest(t) from S of valid destinations for t

. the merge count for each destination in Sdest(t)

do

Construct the subset T0 of transitions t 2 T for which Sdest(t) = ;

/* Transitions in T0 cannot go to any existing state */

if (T0 is not empty) then

Select t0 2 T0 outgoing from the shallowest node (break ties at random)

Remove t0 from T

Create a new state S0 mapped to the destination node for t0 in the pre�x tree

Add S0 to S

Add the two outgoing transitions from S0, t
0
0 and t01, to T

Compute Sdest(t
0
0) and Sdest(t

0
1) along with the corresponding merge counts

For each transition t 2 T , add S0 to Sdest(t) if it is a valid destination for t

and compute its merge count

else

/* Operate a merge */

Select t0 2 T with the highest merge count (break ties at random)

Merge the destination node for t0 in the pre�x tree with the destination

state corresponding to this highest merge count

Remove t0 from T

For each t 2 T , update Sdest(t) and the merge counts

endif

until (T is empty)

Figure 3.6: A DFA learning algorithm exploiting the evidence-driven heuristic.

69

SAGE has been able to solve problems 1, 2, 4, 5 and 7 from Table 3.2. To

solve problem 7, we proceeded in two steps. First, the construction procedure described

in section 3.2.2 has been extended with the evidence-driven heuristic in order to prune

the search tree. The construction procedure switches to this heuristic when the number

of states in the current DFA has reached a given size. Before that threshold size is

reached, the construction procedure remains unchanged. After about 10 runs, a DFA

with 103 states has been discovered early. Then, in a second step, more experiments

were performed using the original construction procedure but starting with the same

�rst few choices as those that had been made for the 103-state DFA. This resulted in

a DFA of size 65. This second step uses SAGE for local search, starting from a good

pre�x for the DFA construction. The appropriate size for the pre�x has been determined

experimentally. It is clear from those experiments that the density for the training data

available for problem 7 is at the edge of what SAGE can manage. This observation is

con�rmed by the analysis presented in the following section.

Table 3.3 presents the experimental setup along with the results for some of the

DFAs that passed the \Oracle" test. We decided to report in this table the values for

parameters that had been used when each problem was solved for the �rst time. Those

values could be tune to improve the performance (on average up to a fourfold factor).

Experiments for problems 1, 2 and 4 have been performed on a Pentium PC 200MHz.

For problems 5 and 7, a network of Pentium PCs and SGI workstations has been used.

The evidence-driven heuristic can solve all the problems in the �rst and the second group

in Table 3.2 except problem 5 for which the heuristic is misled.

Procedure for Generation of Problem Instances For the experimental analysis of

our algorithms, we constructed a set of problem instances, using the same procedure as

for the generation of Abbadingo challenges. First, a target DFA is randomly constructed.

70

Problem name 1 2 4

Population size 64 64 256 (+ best of

2 samples)

Neighborhood radius

for competition phase 1 unit 1 unit 1 unit

(de�ned with respect to

Manhattan distance)

Threshold value for

commitment degree 200 200 800

increment (radius

neighborhood = 1 unit)

Number of generations 200 1600 100

Results (size of DFA model) 63 states 150 states 71 states

Execution time 1 hour 40 hours 4 hours

(sequential) (sequential) (sequential)

Problem name 5 7 (step 1) 7 (step 2)

Population size 576 (+ best of 1024 4096

8 samples)

Neighborhood radius

for competition phase 1 unit 1 unit 1 unit

(de�ned with respect to

Manhattan distance)

Threshold value for

commitment degree 2400 2000 10000

increment (radius

neighborhood = 1 unit)

Number of generations 250 20 100

Results (size of DFA model) 131 states 103 states 65 states

Execution time 40 hours 2 hours 4 hours

(parallel) (parallel) (parallel)

(16 workstations) (16 workstations) (16 workstations)

Table 3.3: Experimental results for the SAGE search algorithm applied to problems 1,

2, 4, 5 and 7 of the Abbadingo competition.

71

Then, it is used to generate two sets of labeled strings (the training set and the testing

set). This procedure is performed as follows:

� Generation of target DFAs: To construct a random DFA of nominal size n, the

following procedure is performed: A random digraph with 5
4
n nodes is constructed,

each vertex having two outgoing edges. Then, each node is labeled \accept" or

\reject" with equal probability, a starting node is picked, nodes that can't be

reached from that starting node are discarded and, �nally, the Moore minimization

algorithm is run. If the resulting DFA's depth isn't b(2 log2 n)� 2c, the procedure

is repeated. This condition for the depth of DFAs corresponds to the average case

of the distribution. It is a design constraint which allows the generation of a set

of problems whose relative complexity remains consistent along the dimension of

target size.

� Generation of training and testing sets: A training set for a n-state target DFA

is a set drawn without replacement from a uniform distribution over the set of all

strings of length at most b(2 log2 n) + 3c. The same procedure is used to construct

the testing set but strings already in the training set are excluded.

Comparative Performance Analysis In a comparative study, the performance of

the three approaches: Trakhtenbrot-Barzdin algorithm, evidence-driven heuristic and

SAGE has been evaluated against a set of random problem instances generated using

the procedure described in section 3.2.4. For each target DFA, the three algorithms were

evaluated across a range of density for the training data in order to observe the evolution

of each approach when working with sparser data. For the �rst two algorithms, 1000

problems were used while only 100 problems were used to evaluate SAGE because of the

requirement in computational resources. Indeed, while it takes at most one minute for

the Trakhtenbrot-Barzdin algorithm or the evidence-driven heuristic to return a solution

72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

S
uc

ce
ss

 r
at

e

Size training set

Evidence driven heuristic
Trakhtenbrot-Barzdin algorithm

SAGE: population = 64
SAGE: population = 256

SAGE: population = 1024

Figure 3.7: Comparison of the performance for the evidence-driven heuristic, the

Trakhtenbrot-Barzdin algorithm and SAGE on the task of grammatical inference with

randomly generated target DFAs of nominal size 32.

with a target DFA of size 64, three hours on average are necessary for SAGE with a

population of size 1024. This comparison has been performed for three values of the

population size for SAGE: 64, 256 and 1024 and for two values of the target nominal

size: 32 and 64 states (Figures 3.7 and 3.8 respectively).

In those experiments, the performance is the ratio of problems for which the

predictive ability of the model constructed by the algorithm is at least 99% accurate

(i.e., error rate smaller than 1%). This threshold is the same as the success criterion for

solving problems in the Abbadingo competition. Figures 3.7 and 3.8 show the depen-

dence of SAGE on the population size for its performance. Indeed, a larger population

results in a better reliability for the control of the focus of the search because of a larger

sample. For the set of problems generated for the purpose of this analysis, SAGE and

73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

S
uc

ce
ss

 r
at

e

Size training set

Evidence driven heuristic
Trakhtenbrot-Barzdin algorithm

SAGE: population = 64
SAGE: population = 256

SAGE: population = 1024

Figure 3.8: Comparison of the performance for the evidence-driven heuristic, the

Trakhtenbrot-Barzdin algorithm and SAGE on the task of grammatical inference with

randomly generated target DFAs of nominal size 64.

the evidence-driven heuristic clearly outperform the Trakhtenbrot-Barzdin algorithm.

With a population size large enough, SAGE also exhibits a performance consistently

better than the evidence-driven heuristic. However, it is di�cult to compare those two

approaches since SAGE is a general purpose search algorithm while the other is a greedy

algorithm using a problem-speci�c heuristic. For this reason, SAGE doesn't scale up as

well as the evidence-driven heuristic (or the Trakhtenbrot-Barzdin algorithm) for larger

target DFAs. The introduction of problem-speci�c heuristics in the construction proce-

dure becomes necessary for SAGE to address this scaling issue.

74

3.3 Application 2: Discovery of Short Constructions

for Sorting Networks

3.3.1 Description

An oblivious comparison-based algorithm is such that the sequence of comparisons per-

formed is the same for all inputs of any given size. This kind of algorithm has received

much attention since it admits an implementation as circuits: comparison-swap can be

hard-wired. Such an oblivious comparison-based algorithm for sorting n values is called

an n-input sorting network (a survey of sorting network research is in [48]).

There is a convenient graphical representation of sorting networks as shown in Figure 3.9,

which is a 10-input sorting network (from [48]). Each horizontal line represents an input

of the sorting network and each connection between two lines represents a comparator

which compares the two elements and exchanges them if the one on the upper line is

larger than the one on the lower line. The input of the sorting network is on the left of

the representation. Elements at the output are sorted and the largest element migrates

to the bottom line.

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 3.9: A 10-input sorting network using 29 comparators and 9 parallel steps.

Performance of a sorting network can be measured in two di�erent ways:

1. Its depth which is de�ned as the number of parallel steps that it takes to sort any

75

input, given that in one step disjoint comparison-swap operations can take place

simultaneously. Current upper and lower bounds are provided in [69]. Table 1

presents these current bounds on depth for n � 16.

Inputs 1 2 3 4 5 6 7 8

Upper 0 1 3 3 5 5 6 6

Lower 0 1 3 3 5 5 6 6

Inputs 9 10 11 12 13 14 15 16

Upper 7 7 8 8 9 9 9 9

Lower 7 7 7 7 7 7 7 7

Table 3.4: Current upper and lower bounds on the depth of n-input sorting networks.

2. Its length, that is the number of comparison-swap used. Optimal sorting networks

for n � 8 are known exactly and are presented in [48] along with the most e�cient

sorting networks to date for 9 � n � 16. Table 2 presents these results.

The 16-input sorting network has been the most challenging one. [48] recounts

its history as follows. First, in 1962, Bose and Nelson discovered a method for

constructing sorting networks that used 65 comparisons and conjectured that it was

best possible. Two years later, R. W. Floyd and D. E. Knuth, and independently

K. E. Batcher, found a new method and designed a sorting network using 63

comparisons. Then, a 62-comparator sorting network was found by G. Shapiro in

1969, soon to be followed by M. W. Green's 60 comparator network (see [36] and

[48]).

3.3.2 Related work

Since [48], no improvement has been made regarding the upper bound for the length

of sorting networks for n � 16. Some attempts have been made to improve the results

in Tables 1 and 2, but these attempts are limited by the number of computer resource

76

Inputs 1 2 3 4 5 6 7 8

Comparators 0 1 3 5 9 12 16 19

Inputs 9 10 11 12 13 14 15 16

Comparators 25 29 35 39 45� 51 56 60

Table 3.5: Best upper bounds currently known for length of sorting networks. Previ-

ously, the best known upper bound for the 13-input problem was 46.

available.

A well-known work in the �eld of evolutionary computation is Hillis' [38] which

addressed the problem of �nding 16-input sorting networks of short length. However,

despite a large amount of computer resource (a few hours on a 64K processors CM2)

and a strong bias (the search algorithm was initialized with the �rst 32 comparators of

Green's construction), the best result achieved was a 61-comparator sorter, one more

than Green's solution.

Parberry [69] addressed the problem of determining the smallest depth for n = 9

and n = 10. His work used an exhaustive search and required 200 hours on a Cray-2.

3.3.3 Implementation

A randomized construction procedure (for which a pseudo-code is presented in Fig-

ure 3.10) is run by each processor element in the population to generate valid sorting

networks. This iterative procedure determines at each step the list of signi�cant compara-

tors. A signi�cant comparator is one that swaps inputs for at least one input sequence

of the network. Then, one of them is randomly selected and the procedure is repeated

until the list of signi�cant comparators is empty, meaning that a valid sorting network

has been constructed. A run of this algorithm corresponds to the construction of a path

in the tree representing all valid and fair sorting networks; that is, valid sorting net-

works with no useless comparators. The score of processor elements is de�ned as the

77

Begin with an empty or a partial network N

do

Compute the set S of signi�cant comparators

if S is not empty then

Pick randomly a comparator from S and append it to N

endif

until (S is empty)

/* Now N is a valid and fair sorting network */

Figure 3.10: Randomized construction procedure run by each processor element.

length of the sorting network that has been constructed during the construction phase.

Eventually, ties are broken using the number of parallel steps in the sorting networks.

Valid sorting networks are built using the zero-one principle. This principle

tells us that one only needs to consider all 2n possible binary inputs instead of the n!

permutations of n distinct numbers. The algorithm in Figure 3.11 describes the details

of the principal operations introduced in the pseudo-code of Figure 3.10. This last

algorithm uses a direct implementation of the zero-one principle (i.e. manages a list of

the 2n vectors). Since the complexity of computing the set of signi�cant comparators

and of updating the list of unsorted vectors is a function of the size of the representation

for the set of unsorted vectors, if the structure used to represent this set is the explicit

list of those vectors (using a list or an array structure), this makes the complexity for

the randomized construction algorithm a function of 2n. In fact, we have been able

to improve the complexity of the construction algorithm by making it a function of �n

instead of 2n where � is the golden ratio for Fibonacci numbers: � = 1+
p
5

2
= 1:61803 : : :.

This has been done by representing the set of unsorted vectors as a list of classes instead

of an explicit list of those vectors. The details of this algorithm and the proof for

the complexity are presented in [47]. The complexity remains exponential but it is

unlikely that an algorithm exist that can construct any valid sorting network with a

better performance (i.e. smaller than exponential) since verifying the validity of sorting

78

Init

/* A sorted vector is a sequence of 1's starting from the least signi�cant bit

and all the remaining bits are 0's */

unsorted vectors = f1; 2; : : : ; 2n � 1g �

f20; 20 + 21; 20 + 21 + 22; : : : ; 20 + 21 + : : :+ 2n�1g

Compute the set S of signi�cant comparators

S = ;

for i = 1 to n� 1 do

for j = i+ 1 to n do

if there is an element e 2 unsorted vectors for which

the ith bit is a 0 and the jth bit is a 1 then

/* The pair (i; j) corresponds to a signi�cant comparator */

S = S
S
f(i; j)g

endif

endfor

endfor

Update of unsorted vectors after comparator (i,j) has been selected from S

new unsorted vectors = ;

for e 2 unsorted vectors do

/* Apply comparator (i,j) to vector e */

e0 e

if the ith bit of e is a 0 and the jth bit is a 1 then

e0 switch the ith and the jth bits of e

endif

if e0 is not a sorted vector and e0 62 new unsorted vectors then

new unsorted vectors = new unsorted vectors
S
fe0g

endif

endfor

unsorted vectors new unsorted vectors

Figure 3.11: Detail of the principal operations performed by the non-deterministic in-

cremental algorithm, using a direct implementation of the zero-one principle.

79

13-input problem 16-input problem

Population size 65,536 65,536

each processor implements each processor implements

16 processor elements 16 processor elements

Neighborhood radius

for competition phase 2 units 2 units

(de�ned with respect to

Manhattan distance)

Threshold value for

commitment degree 60000 or 80000 60000 or 80000

increment (radius

neighborhood = 1 unit)

Number of generations 350 to 450 500 to 650

Results Number of runs: 10 Number of runs: 10

For 6 runs: 45 comparators For 5 runs: 60 comparators

For 4 runs: 46 comparators For 3 runs: 61 comparators

For 2 runs: 62 comparators

Execution time about 3 hours for each run about 12 hours for each run

Table 3.6: Experimental results for the SAGE search algorithm applied to the 13-input

and the 16-input sorting network problem.

networks is intractable [45]. However, this improvement for the base of the exponent

resulted in a signi�cant speed up for our experiments (e.g., a factor of about four in the

construction procedure for 16-input sorting networks).

3.3.4 Experimental Results

Experiments were performed on a Maspar MP-2 parallel computer. The con�guration of

our system is composed of 4K processors. The peak performance of this system for 32-bit

integer computation is 17; 000 Mips. In the maximal con�guration a MP-2 system has

16K processors and a peak performance of 68; 000 Mips. Each processor implements one

or several of the elementary processor elements of the SAGE search algorithm, allowing a

population size of 4K or larger (we have been working with population size up to 64K).

80

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 3.12: Two 13-input 45-comparator sorting networks using 10 parallel steps.

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 3.13: A 16-input 60 comparator sorting network using 10 parallel steps.

81

SAGE has been able to �nd all best known upper bounds for the length of sorting

networks (for a number of inputs up to 16) and it even improved the upper bound for

the 13-input problem. Table 3.6 presents parameters and results of experiments for the

13-input and the 16-input problems.

For the 13-input problem, SAGE discovered a few sorting networks using 45

comparators (one comparator less than the best current known) and 10 parallel steps.

Two of them are presented in Figure 3.12. For the 16-input case, a few 60 comparator

sorting networks have also been discovered, each of them using 10 parallel steps. This is

as good as the best human-built sorting network designed by M. W. Green. Figure 3.13

presents one of these constructions.

3.4 Application 3: The Solitaire Game

3.4.1 Presentation of the game

This third problem is a one-player game which can also be stated as a combinatorial

optimization problem. The purpose of the game is to discover a sequence of moves

which is as long as possible. We decided to study this game because it is an interesting

example of a problem for which no heuristic is known to prune e�ciently the search tree

and it is not immediately amenable to search by evolutionary strategy algorithms like

GAs or GP. There is no previous research work in the literature about that problem

that could be compared to the experimental results presented in this section. Therefore,

the performance of SAGE on that particular problem has been evaluated against the

performance of \experimented" human players.

To play this game, one only needs a piece of paper with a grid layout and a

pencil. First, the player draws a �xed initial pattern composed of crosses, like the left

picture in Figure 3.14. The rule is that a cross can be added at an intersection of the

82

x x x x

x

x

x x x x

x

x

xxxx

x

x

xxxx

x

x

xxxx

x

x

x x x x

x

x

xb xb xb xb

xb

xb

xb xb xb xb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xb xb xb xb

xb

xb

x

x

x

@
@
@

x

@
@
@

x

�
�
�

x

x

�
�
�

x

x

x

@
@
@

x

x

x

Figure 3.14: The initial con�guration and a possible con�guration after 13 moves for the

Solitaire game. For a clearer picture, the grid layout is not drawn but is represented by

the rules on the border.

grid layout if and only if this cross allows the drawing of a line composed of 5 consecutive

crosses that do not overlap another line. This line may however be the continuation of

another line or may cross another line. That is, the new line can share at most one cross

with any other line. This new line can be drawn vertically, horizontally or diagonally.

The right picture in Figure 3.14 shows a possible con�guration of this game after a few

moves. Crosses of the initial pattern are circled in order to distinguish them from the

ones added by the player. Now, the goal of this game is simply to draw as many lines as

possible! If this game is played by hand, one can see that a good strategy is di�cult to

elaborate. After a few games, a score of 70-80 lines is relatively common. However, to

reach 90 lines is less obvious and a score greater than 100 lines is exceptional. Also, it

can be proved that the maximum number of moves for this game is �nite. However, no

tight upper bound has been established for this optimum.

83

Population size 4,096

Neighborhood radius

for competition phase 1 units

(de�ned with respect to

Manhattan distance)

Value of the threshold for 4 values have been tested:

commitment degree increase 4500, 5000, 5500, 6000

(radius neighborhood = 1)

Number of generations from 2000 (threshold = 6000)

up to 5000 (threshold = 4500)

Results Number of runs: 5 for each value of the threshold

For threshold = 4500: 103, 111, 111, 112, 112

For threshold = 5000: 108, 112, 113, 117, 118

For threshold = 5500: 113, 117, 118, 119, 122

For threshold = 6000: 103, 104, 106, 111, 115

Execution time from 6 hours (threshold = 6000)

to 12 hours (threshold = 4500)

Table 3.7: Experimental results for the SAGE search algorithm applied to the Solitaire

game.

3.4.2 Implementation

The construction procedure is a direct implementation of the rules of the game. At each

step of the construction, a choice is made from the list of all valid moves given the current

con�guration of the board.

3.4.3 Experimental Results

Table 3.7 presents the parameters and the results that have been achieved for a set of

experiments. Those experiments have been performed on the MasPar computer described

in section 3.3.4. So far, the best result is a 122 lines game con�guration. Figure 3.15

shows the �nal con�guration along with the con�guration of the game after the �rst 40

moves. It is interesting to notice that most of the moves at the beginning of the game

are located in the same area of the board. This strategy is one that we also discovered

84

xb xb xb xb

xb

xb

xb xb xb xb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xb xb xb xb

xb

xb

x

x

x

x

x

x

x

x

x

x

x

x

�
�
�

x

@
@
@

x

�
�
�

x

x

�
�
�

x

@
@
@

x

x

�
�
�

x

@
@
@

x�
�
�
x

x

@
@
@

x�
�
�

x

x

x

@
@
@

x

@
@
@

x

@
@
@x

x

�
�
�

x

x

@
@
@x x

x

�
�
�

x

@
@
@

x

@
@
@
x

x

�
�
�

xb xb xb xb

xb

xb

xb xb xb xb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xbxbxbxb

xb

xb

xb xb xb xb

xb

xb

x

x

x

x

x

x

x

x

x

x

x

x

�
�
�

x

@
@
@

x

�
�
�

x

x

�
�
�

x

@
@
@

x

x

�
�
�

x

@
@
@

x�
�
�
x

x

@
@
@

x�
�
�

x

x

x

@
@
@

x

@
@
@

x

@
@
@x

x

�
�
�

x

x

@
@
@x x

x

�
�
�

x

@
@
@

x

@
@
@
x

x

�
�
�

x

�
�
�

x

�
�
�

x

x

@
@
@

x

x

x

x

xx

x

�
�
�

x

@
@
@

x x

@
@
@

x

�
�
�

x

�
�
�

x

@
@
@x

x

�
�
�

x

x

x

x

�
�
�

x

�
�
�

x

@
@
@

x

@
@
@

x

�
�
�

x x

x

�
�
�

x

@
@
@

x

x

@
@
@

x�
�
�

x

�
�
�

x

x

x

@
@
@

x

x

�
�
�

x

x�
�
�

x

x

x

@
@
@

x

x

@
@
@

x

x

x

x

�
�
�

x

@
@
@

x

@
@
@

x

x

�
�
�

x

@
@
@

x

x

x�
�
�

x

x

x

@
@
@

x

x

x

@
@
@ x

x

x

�
�
� x

@
@
@x�

�
�

x

x

x

�
�
�

x

x

@
@
@x
x

x

�
�
�

x

@
@
@

x

x

�
�
�

x

Figure 3.15: The best con�guration found out for the Solitaire game, using 122 lines (on

the right); and the con�guration for this best play after 40 moves (on the left).

in order to achieve a good score while playing by hand.

3.5 Discussion

As discussed in section 3.1.2, the performance of SAGE relies heavily on the construction

procedure. Indeed, the construction procedure determines the distribution of solutions

when the search space is sampled. In practice, a few tries are often required to discover

an appropriate procedure which results in a good performance. As a rule of thumb,

the construction procedure should be designed so that early choices result in a reliable

discrimination between poor domains of the search space and domains that are worth

being explored. For instance, in the case of DFA learning, an incorrect merge performed

early in the construction of a DFA results in the propagation of more constraints than an

incorrect merge performed a few iterations later. Therefore, a mistake in early choices

is likely to result in the construction of DFAs whose size is much larger than the target

85

(and thus will have poor predictive ability).

The population-based model allows however some exibility for the design of

this procedure. Indeed, the ideal case would be that the score of each alternative be a

reliable information how to focus the search. Then, the selection of the best alternative

would be the appropriate way to continue the search. However, the availability of such

reliable information is unlikely for two reasons. First, the score evaluation can be subject

to a large variance due to the sampling technique itself. Second, the actual distribution

of solutions might not exhibit this nice \greedy choice" property. That is, the expected

value for a distribution is not representative of the best element for that distribution,

with respect to the distributions associated with the other alternatives.

However, because of the parallel exploration of several alternatives, SAGE is more ro-

bust against such aws. By adjusting the threshold that controls the increment of the

commitment degree, several high quality alternatives can be maintained in the popula-

tion until one of them consistently outperforms the others. An example which shows the

necessity of adjusting correctly this threshold is shown in Figure 3.16. We conducted

experiments to measure the probability of constructing a 10-input sorting network with

optimum length (that is using 29 comparators). The population size was set to 4; 096

and the neighborhood radius for the competition phase was set to 1. Then, 20 runs were

performed for each value of the threshold. Figure 3.16 shows that as the value of the

threshold decreases, allowing the population to converge to a reduced number of alter-

natives, the success rate of the search increases. However, when forcing the population

to converge even more by continuing to decrease the value of the threshold, the success

rate starts decreasing. This means that the distribution of solutions doesn't exhibit the

\greedy choice" property for that particular construction procedure. This example shows

the necessity of achieving a balance between exploration and exploitation.

86

0

10

20

30

40

50

60

70

80

90

100

40004500500055006000650070007500800085009000950010000

S
uc

ce
ss

 r
at

e

Threshold

10 inputs; Radius = 1

Figure 3.16: Example for the evolution of the success rate with respect to the value of

the threshold that controls the increment of the commitment degree.

3.6 Concluding Remarks

This chapter presents SAGE, a new algorithm for search in trees and directed acyclic

graphs which is based on a random sampling strategy to evaluate the score of inter-

nal nodes and the management of a population to allow the search to focus on most

promising alternatives in an adaptive manner. This distributed stochastic algorithm

admits a parallel implementation on both �ne-grained and coarse grained distributed

systems because of the loose central control. Indeed, the only information gathered at

the level of the population is the measure of diversity which is used to determine when

the commitment degree should be increased.

We have described the application of SAGE on three di�cult problems. For the

sorting network problem, this search algorithm has rediscovered the best upper bound

for the shortest constructions (up to 16-input sorters) and improved one of these upper

87

bounds by one comparator. For the Solitaire game, the performance is comparable to

the one of a human player who has a good expertise of the game. We haven't been

able to discover any problem-speci�c heuristics that would approach the results achieved

by SAGE for that game. Finally, the performance of SAGE has been analyzed on

the problem of DFA learning, inspired from the recent Abbadingo competition. Those

experiments have shown that for average size target DFAs (on the order of 64 to 128

states) SAGE compares favorably to the well-known Trakhtenbrot-Barzdin algorithm and

to a new evidence-driven heuristic. However, as the size of the target DFA increases,

SAGE doesn't scale up and requires a prohibitive amount of computer resource. To

search such a large state space, the introduction of problem-speci�c heuristics becomes

necessary.

We have seen that the construction procedure plays an important role in the

performance of search. This procedure must be designed carefully in order to exhibit

some properties appropriate for SAGE. Some problem speci�c knowledge and heuristics

can also be introduced when designing this procedure in order to reduce the size of the

search tree and to drive the search in a particular direction.

The class of problems that can be successfully tackled by SAGE has been referred

to in this dissertation as sequential construction problems. The construction procedure

associated with those problems de�nes an explicit partitioning of the space of candi-

date solutions by constructing a hierarchy of subsets over this space. The examples

of sequential construction problems that have been introduced in this chapter present

the property that early decisions in the construction process contribute signi�cantly to

the expected quality of solutions constructed starting with those initial decisions. This

property results in speci�c statistical regularities for the distribution of solutions in the

search space that can be captured by the hierarchical partitioning associated with the

construction procedure. SAGE implements a strategy that exploits this speci�c source

88

of information in order to drive the search.

The motivation for the design of SAGE is that the performance of traditional

search algorithms depends on the de�nition of heuristics that encode some speci�c regu-

larities associated with the problem domain. As illustrated in this chapter, such problem-

speci�c knowledge cannot always be formalized and is sometimes better stated in term

of statistical properties. Like SAGE, EC techniques can also be seen as tools to perform

statistical inference. However, sequential construction problems are not very appropriate

for an encoding in the framework of EC techniques because they are highly constrained.

As a result, the contribution of any component of a representation to the total quality

(or �tness) of the solution is highly dependent on the other components of this repre-

sentation. This feature, known as epistasis, results in a ill-structured search space which

makes di�cult for Evolutionary Algorithms to exploit the speci�c statistical properties

associated with the domain of sequential construction problems.

One important contribution of this work is to provide some insights concerning

the domain of stochastic search algorithms. The general idea for search algorithms is

to exploit some information about the search space. This information can be provided

either explicitly (hand-coded knowledge) or extracted by performing some form of sta-

tistical analysis. Then, this knowledge is exploited to decide how to focus the search.

However, the actual distribution of solutions in the search space is a source of important

information that has rarely been exploited in the context of tree exploration. We believe

that SAGE is a �rst example of a tree search algorithm able to exploit this information

e�ciently.

89

Chapter 4

Coevolution and the

Emergence of Adaptability

Chapter 2 describes the indirect partitioning methodology as a framework to capture

some speci�c statistical properties associated with a category of ill-structured multi-

objective problems. Indeed, when little information is available about the properties

of a problem domain, the design of heuristics is not possible and no explicit structure

can be identi�ed a-priori in order to support a statistical inference process. However, if

candidate solutions are evaluated with respect to some set of test cases, then an extra

piece of information is available. Indeed, this feature allows the de�nition of structures

over the state space which may then be exploited in order to capture some regularities

and drive the search process.

As discussed in section 2.1.3, the indirect partitioning methodology de�nes sub-

sets of candidate solutions by intention. In general, there is no direct procedure to con-

struct the members of any speci�c subset in this decomposition. Therefore, some special

mechanisms must be implemented in order to exploit properties that are captured by

90

structures constructed from those subsets. In section 2.1.3, the problem of constructing

an S-expression to tell apart two intertwined spirals was introduced in order to illustrate

this issue: given a subset of points from the training set, there exists no general purpose

computational procedure returning an S-expression that classi�es accurately those test

cases. Instead, some strategy must be de�ned to explore the space of S-expression un-

til such a candidate is identi�ed. Moreover, di�erent types of regularities or statistical

properties may be exhibited by the implicitly de�ned structure. Therefore, depending

on the properties a search algorithm attempts to exploit, some speci�c strategies must

also be de�ned.

The central strategy underlying the approach introduced in the next chapter of

this dissertation concerns the search for domains of the state space over which continuous

progress can be observed. Coevolution, a paradigm involving the embedding of evolving

agents in an environment that responds to their progress, is proposed as the basic concept

to implement this strategy. Indeed, continuous progress concerns a speci�c property

exhibited by individuals, namely: their ability to adapt in order to solve increasingly

di�cult problems. Therefore, the principles of operation underlying coevolution make

this paradigm a good candidate for capturing this dynamic property.

The next section presents a general description of the concept of coevolution.

It also introduces our motivations for exploiting this particular paradigm. This chapter

considers a methodology that describes coevolution from the perspective of search al-

gorithms. Indeed, the fundamental mechanisms underlying coevolution are still poorly

understood. Therefore, we believe that following a methodology that attempts to iden-

tify the underlying search strategies embedded in di�erent coevolutionary models will

contribute to a better understanding of this paradigm. Moreover, since coevolution cov-

ers a large variety of evolutionary models, the de�nition of a single formal framework

that captures all the di�erent features associated with coevolution may not be the most

91

appropriate approach for the study of this paradigm. This observation motivates the

experimental rather than theoretical methodology followed in this chapter. Then, a de-

scription of important landmarks in the research literature concerning the applications

of coevolution concludes this chapter.

4.1 Coevolution as a Paradigm for Capturing Dy-

namic Properties of Evolving Agents

In coevolution, individuals are evaluated in an environment which responds to their

progress (instead of a �xed environment or a �xed objective function). This de�nition

encompasses a large variety of possible models depending on the interactions between

agents and the environment in which they are evaluated (which could in fact be repre-

sented as another population of evolving agents). In the extreme, even �tness sharing (or

resource sharing) models [91, 46] could be considered as models of coevolution since they

satisfy that de�nition (agents are competing for resources and their �tness depends on

the performance of other agents with respect to the di�erent resources). In fact, it seems

that an exact de�nition of coevolution is not easy to state and di�erent research com-

munities might not agree on the same de�nition. Even in natural evolution, coevolution

is not that easy to identify [43].

For the following, the term coevolutionary learning will denote a learning pro-

cedure involving the coevolution of two populations: a population of learners and a

population of problems such that continuous progress is achieved on the long term. Fig-

ure 4.1 illustrates the interactions between the two populations in the canonical model

of coevolutionary learning. Arrows represent the contribution of the members of each

population to the �tness of individuals in the other population.

The central contribution of the next chapter is to propose and implement a

92

Learners Problems

Figure 4.1: Coevolution between a population of learners and a population of problems.

strategy that searches for domains of a state space over which continuous progress can

be observed. This means that the evaluation of individuals is a function of their ability to

progress and is no longer determined by some well-de�ned static objective function. More

precisely, from the perspective of this research work, the ability to progress is de�ned as

the likelihood that successive transformations of a candidate solution result in solutions of

increasing performance with respect to the task. In the case of multi-objective problems,

which are the focus of this research work, this means that individuals cover accurately

an increasing proportion of a set of test cases.

The ability to progress is a dynamic property whose exact evaluation by a com-

putational procedure is usually too expensive in terms of computer cycles. Therefore,

some alternative approaches should be investigated in order to estimate this property.

As stated in the beginning of that section, coevolutionary models involve the evaluation

of individuals in a dynamic environment. This means that individuals adapting faster to

changes in the environment get an evolutionary advantage in the race against the other

members of the population. Therefore, coevolution provides an appropriate framework

to capture the notion of adaptability. The idea of coevolutionary race is a recurrent

theme in the EC community and is often presented as a potential solution for the open-

93

ended emergence of continuously improving solutions [27]. However, as illustrated in

the following sections, adaptability doesn't necessarily means emergence of continuous

progress.

In the next sections, the behavior of di�erent coevolutionary models is studied

experimentally in order to identify the important issues that are relevant to this search

paradigm. This work is based on a case study: the discovery of cellular automata rules

that implement the majority classi�cation task.

4.2 Dynamics of Coevolution Between Two Popula-

tions: a Case-Study

4.2.1 Motivations

The goal of this section is to present to the reader a sample of the variety of behaviors

that can be observed in a coevolutionary setup. This analysis is based on an experimental

study illustrated with a combinatorial optimization problem: the discovery of cellular

automata rules to implement the majority classi�cation task.

Multiple reasons motivate the choice of that particular problem. First, while

being stated as an optimization problem, this problem exhibits several features that are

common to many learning tasks. For instance, the evaluation of candidate solutions is

based on their performance against an environment which o�ers a potentially in�nite

number of training examples. Also, this problem can be stated as an inductive learning

problem: the goal is to construct a model that covers with high accuracy a set of test

cases and eventually generalizes to instances outside the training set by capturing some

intrinsic property of the problem domain. For this reason, the concepts of search and

learning are used in an inter-changeable manner in this experimental study. Finally, the

94

encoding of this problem exhibits some interesting properties that allow the construction

of simple diagrams to illustrate the di�erent issues involved in coevolution.

The next section describes this problem along with a background about related

research work. As discussed previously, there are several di�erent alternatives to de�ne

the interactions between two coevolving populations. Depending on those interactions,

the resulting dynamics can be extremely di�erent. In a preliminary stage, this problem

is addressed in the framework of a simple evolutionary model. The purpose of this �rst

step is to provide a reference for the qualitative analysis of the coevolutionary models

that follow.

4.2.2 Description of the problem

One-Dimensional Cellular Automata

A one-dimensional cellular automaton (CA) is a linear wrap-around lattice composed

of N cells in which each cell can take one out of k possible states. A rule is de�ned

for each cell in order to update its state. This rule determines the next state of a cell

given its current state and the state of cells in a prede�ned neighborhood. For the model

discussed in this dissertation, this neighborhood is composed of cells whose distance is

at most r from the central cell. This operation is performed synchronously for all the

cells in the CA. For the work presented in this dissertation, the state of cells is binary

(k = 2), N = 149 and r = 3. This means that the size of the rule space is 22
2�r+1

= 2128.

Cellular automata have been studied widely as they represent one of the simplest

systems in which complex emergent behaviors can be observed. This model is very

attractive as a means to study complex systems in nature. Indeed, the evolution of such

systems is ruled by simple, locally-interacting components which result in the emergence

of global, coordinated activity.

95

20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

180

200
20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

180

200

Figure 4.2: Two space-time diagrams for the GKL rule.

The Majority Classi�cation Task

The task consists in discovering a rule for the one-dimensional CA which implements

the majority function as accurately as possible. This is a density classi�cation task, for

which one wants the state of the cells of the CA to relax to all 0's or 1's depending on

the density of the initial con�guration (IC) of the CA, within a maximum of M time

steps. Following Mitchell, Crutch�eld and Hraber [59], �c denotes the threshold for the

classi�cation task (here, �c = 1=2), � denotes the density of 1's in a con�guration and �o

denotes the density of 1's in the initial con�guration. Figure 4.2 presents two examples

of the space-time evolution of a CA for the Gacs-Kurdyumov-Levin (GKL) rule, with

�0 < �c in the left diagram and �0 > �c in the right one. For each diagram, the initial

con�guration is at the top and the evolution in time of the state of the CA is represented

downward.

The task �c = 1=2 is known to be di�cult. In particular, it has been proven

that, given a radius r and a su�ciently large N , there exists no rule such that the CA

relaxes to the correct state for all possible ICs [52]. Indeed, the density is a global

96

N 149 599 999

Das rule 0.823 +/- 0.001 0.778 +/- 0.001 0.764 +/- 0.001

ABK rule 0.824 +/- 0.001 0.764 +/- 0.001 0.730 +/- 0.001

GKL rule 0.815 +/- 0.001 0.773 +/- 0.001 0.759 +/- 0.001

Table 4.1: Performance of di�erent published CA rules for the majority classi�cation

task.

property of the initial con�guration while individual cells of the CA have access to local

information only. Discovering a rule that will display the appropriate computation by

the CA with the highest accuracy is a challenge, and the upper limit for this accuracy is

still unknown. Table 4.1 describes the performance for that task for di�erent published

rules and di�erent values of N . The GKL rule was designed in 1978 for a di�erent goal

than solving the �c = 1=2 task [59]. However, for a while it provided the best known per-

formance. Mitchell, Crutch�eld and Hraber [59] and Das, Mitchell and Crutch�eld [22]

used Genetic Algorithms (GAs) to explore the space of rules. The main purpose of this

work was to study the evolution of the di�erent strategies that were discovered by the

Genetic Algorithm to address the task. In particular, some epochs were observed such

that a transition between two epochs would often correspond to a signi�cant evolution in

the degree of complexity of the underlying strategy implemented by the new rules. The

concept of \particles" has also been introduced to describe at a higher level of abstrac-

tion the dynamics of the CA and, in some cases, the corresponding strategy implemented

by the rule to address the task. The GKL and Das rules are human-written while the

Andre-Bennett-Koza (ABK) rule has been discovered using the Genetic Programming

paradigm [4]. While this last rule improved the case N = 149, it doesn't generalize as

well as the GKL or the Das rule. More recently, Paredis [74] described a coevolutionary

approach to search the space of rules and showed the di�culty of coevolving consistently

two populations toward continuous improvement. A coevolutionary approach has also

97

been studied by Sipper [100] for the exploration of rules for non-homogeneous CA. In

that particular CA model, each cell has its own independent version of a rule. Capcar-

rere, Sipper and Tomassini [14] also reported that by changing the speci�cation of the

convergence pattern, from all 00s or all 10s to a pattern in which a block of at least two

consecutive 10s exists if and only if �0 > 1=2 and a block of at least two consecutive 00s

exists if and only if �0 < 1=2, then a two-state, r = 1 CA exists that can perfectly solve

the density problem in dN=2e time steps.

For the �c = 1=2 task, there is some strong evidence that the best rules are in

the domain of the rule space with density close to 0:5. An intuitive argument to support

this hypothesis is presented in [60]. It is also believed that the most di�cult ICs are

those with density close to 0:5 (since a few mutations are enough to switch from �0 < 1=2

to �0 > 1=2, and vice versa).

4.2.3 Learning in a Fixed Environment

The traditional methodology for evolutionary approaches to problem solving consists in

designing a representation for solutions and a �tness function. The absolute performance

of individuals is evaluated with respect to that �tness function and operators are used to

explore the state space, exploiting the current best solutions to focus the search. Usually,

a lot of e�ort goes into the design of the �tness function and/or the search operators

in order to take advantage of problem speci�c knowledge. When such knowledge is

unavailable about the structure or the regularities of the problem, the performance of a

canonical evolutionary approach is usually very limited.

In order to have a reference to compare the dynamics and the performance of

di�erent models, consider the following setup to address the �c = 1=2 task based on a

direct implementation of an evolutionary algorithm. This implementation is similar to

the one described in [59]. Each rule is coded on a binary string of length 22�r+1 = 128.

98

One-point crossover is used with a 2% bit mutation probability. The population size

is nR = 200 for rules and nIC = 200 for ICs. The population of ICs is composed of

binary strings of length N = 149. This population is �xed and it is initialized according

to a uniform distribution over �0 2 [0:0; 1:0]. The population of rules is also initialized

according to a uniform distribution over [0:0; 1:0] for the density. A natural de�nition

for the �tness of rules is the number of ICs for which the CA relaxes to the correct state:

f(Ri) =
X

j=1::nIC

covered(Ri; ICj)

where:

covered(Ri; ICj) =

8>>>>><
>>>>>:

1 if the CA using rule Ri and starting from initial

con�guration ICj relaxes to the correct state,

0 otherwise

At each generation, the top 95% reproduce to the next generation and the remaining

5% are the result of crossover between parents from the top 95% selected using a �tness

proportionate rule. We chose a small generation gap (the percentage of new individuals

in the next generation). This is not signi�cant for the experiments in this section but

it plays an important role in the next sections. Figure 4.3 describes the evolution over

time of the distribution for rules density. A common behavior resulting from such an

evolutionary setup is that the entire population focuses quickly to a small domain of the

search space. Eventually, occasional progress may be observed over time. The variance

for the �nal performance over several runs is usually important.

Several strategies have been proposed to improve the performance of evolution-

ary search. Usually, the central idea is to implement a mechanism maintaining diversity

in the population in order to avoid premature convergence. Mahfoud [56] investigated

thoroughly that domain of research and proposed several niching techniques based on

that idea. Resource sharing, �rst introduced in [91], is a technique that has also been

99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

100

200

G
en

er
at

io
n

Rules density

ru

le
s

Figure 4.3: Evolution of CA rules in a �xed environment: the population converges

quickly to a small domain of the search space. Occasional improvements may eventually

be observed.

used successfully to maintain diversity [46]. Resource sharing can be used when individ-

uals are evaluated against a number of training examples (or test cases) and a solution

is sought which covers as many of those training examples as possible. Then, the basic

idea consists in implementing a coverage-based heuristic by giving a higher payo� to

test cases that few individuals can solve. One way to implement this technique for the

evolution of CA rules is to de�ne the �tness of rules as follows:

f(Ri) =
X

j=1::nIC

weight ICj � covered(Ri; ICj)

where:

weight ICj =
1P

k=1::nR
covered(Rk ; ICj)

In this de�nition, the weight of an IC corresponds to the payo� it returns if a rule covers

it. If few rules cover an IC, its weight will be much larger than if many rules cover that

same IC. Figure 4.4 shows the evolution of the distribution for rules density over several

generations. It can be observed that diversity is maintained for about 500 generations

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

50

100

G
en

er
at

io
n

Rules density

ru

le
s

Figure 4.4: Evolution of CA rules in a �xed environment using resource sharing: multiple

niches corresponding to the exploration of di�erent alternatives are maintained in the

population.

during which di�erent alternatives are explored simultaneously by the population of

rules. Then, a solution is discovered that moves the search in the area where density

is close to 0:5. Afterward, several niches might still be explored, however the coding

that has been exploited to construct the �gures doesn't allow the representation of those

di�erent niches since all the rules have a similar density. Usually, this technique results

in better performance on average. However, it takes also more time to converge. This is

a trade-o� between speed and quality of solutions.

4.2.4 Coevolutionary Search: Learning in an Adapting Environ-

ment

The idea of using coevolution in search was introduced by Hillis [38]. In his work, a

population of parasites coevolves with a population of sorters. The goal of parasites is

to exploit weaknesses of sorters by discovering input vectors that sorters cannot solve

101

correctly while sorters evolve strategies to defeat parasites by sorting the corresponding

input vectors. Eventually, as a result of this competition, some sorters are discovered

that cannot be defeated (i.e., they are valid sorting networks). Several mechanisms were

introduced by Hillis in his system (e.g. diploid genotype, elimination of redundant com-

parators, parasite/host relationship, geographically distributed population. . .), making

di�cult to identify the contribution of each of them to the performance of the search.

Moreover, a strong bias was also introduced by initializing the population with the same

pre�x (�rst 32 comparators) as the best known construction. This reduces the size of

the space of input vectors from 216 = 65; 536 to 168 (out of which 17 are already sorted).

Hillis' experiments resulted in a 16-input sorting network with 61 comparators, one more

than the best known construction.

In the coevolutionary learning model under consideration in this analysis, there

are several di�erent possibilities to de�ne the interactions between the two coevolving

populations. Depending on those interactions, the underlying search heuristic imple-

mented by the dynamics of coevolution is also going to be very di�erent. Basically, two

fundamental cases can be considered in such a framework, depending whether the two

populations bene�t from each other or whether they have di�erent interests (i.e., if they

are in conict). Those two modes of interaction will be referred to as cooperative and

competitive respectively.

In the following sections, those modes of interaction are illustrated experimen-

tally in order to stress the di�erent issues related to coevolutionary learning. The problem

of the discovery of CA rules to implement the majority classi�cation task is used again

for that purpose.

102

Cooperation between Populations

In this mode of interaction, improvement on one side results in positive feedback on the

other side. As a result, there is a reinforcement of the relationship between the two

populations. From a search point of view, this can be seen as an exploitative strategy.

Agents are not encouraged to explore new areas of the search space but only to perform

local search in order to further improve the strength of the relationship. Following a

natural extension of the evolutionary case to the cooperative model, the �tness of rules

and ICs can be de�ned as follows for the �c = 1=2 task:

f(Ri) =
X

j=1::nIC

covered(Ri; ICj)

f(ICj) =
X

i=1::nR

covered(Ri; ICj)

For our experiments, the same setup as the one described in the previous section is used.

The population size is nR = 200 for rules and nIC = 200 for ICs. The population of

rules and ICs are initialized according to a uniform distribution over [0:0; 1:0] for the

density. At each generation, the top 95% of each population reproduces to the next

generation and the remaining 5% is the result of crossover between parents from the

top 95% selected using a �tness proportionate rule. This small generation gap has been

chosen because of the relative de�nition of the �tness. Indeed, a large generation gap

results in a dramatic change in the composition of the population. As a consequence, a

lot of variations in individuals' �tness can occur because of the relative de�nition of the

�tness. For instance, the best niche in one generation could be wiped out from the popu-

lation in the following generation. This is an important issue in all implementations that

use a de�nition for the �tness which depends on other members of the population. One

technique that addresses this issue is continuously updated sharing [66] which updates

the �tness of individuals during the reproduction process in order to maintain stable

niches. The decision for this case study has been to select a small generation gap as a

103

solution to this problem.

Figure 4.5 presents the evolution of the density of rules and ICs for one run using

this cooperative model. Without any surprise, the population of rules and ICs quickly

converge to a domain of the search space where ICs are easy for rules and rules consis-

tently solve ICs. In that particular example, the population of rules converges to high

density rules for which a CA usually relaxes to all 1's nearly independently of the initial

con�guration. This \niche" is then exploited by the other population which converges

to high density ICs. This is a stable con�guration for the two populations, resulting in

little exploration of the search space.

Competition between Populations

In this mode of interaction, the two populations are in conict. Improvement on one side

results in negative feedback for the other population. For the �c = 1=2 task, the �tness

de�ned in the cooperative case can be modi�ed as follows to implement the competitive

model:

f(Ri) =
X

j=1::nIC

covered(Ri; ICj)

f(ICj) =
X

i=1::nR

covered(Ri; ICj)

where covered(Ri; ICj) returns 1 if a CA using rule Ri and starting from ICj fails to

relax to the correct state. Otherwise, it returns 0. Here, the goal of the population of

rules is to discover rules that defeat ICs in the other population by allowing the CA

to relax to the correct state, while the goal of ICs is to defeat the population of rules

by discovering initial con�gurations that are di�cult to classify. For our experiments,

the setup for reproduction/selection is the same as the previous example. Figure 4.6

describes an example of a run using this de�nition of the �tness. In a �rst stage, the two

populations exhibit a cyclic behavior. Rules with low density have an advantage because

104

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

0

20

40

60

G
en

er
at

io
n

Rules density

ru

le
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

0

50

100

G
en

er
at

io
n

ICs density

IC

s

Figure 4.5: Coevolution of CA rules (top) and ICs (bottom) in a cooperative relationship:

the strong incentive for each population to propose easy problems to the other results in

little exploration of the search space.

105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

0

20

40

60

G
en

er
at

io
n

Rules density

ru

le
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

0

20

40

G
en

er
at

io
n

ICs density

IC

s

Figure 4.6: Coevolution of CA rules (top) and ICs (bottom) in a competitive relationship:

the two populations follow conicting goals, resulting in an unstable behavior.

106

there are more ICs with low density. In response to this, ICs with high density have

an evolutionary advantage and their number increases in the population. In turn, rules

with high density get an evolutionary advantage. . . This unstable behavior exhibited by

the two populations is an instance of the Red Queen e�ect [18]: �tness landscapes are

changing dynamically as agents from each population adapt in response to the evolution

of members of the other population. The performance of individuals is evaluated in a

changing environment, making continuous progress di�cult. A typical consequence is

that agents have to learn again what they already knew in the past. In the context of

evolutionary search, this means that domains of the state space that have already been

explored in previous generations are searched again. Then, a stable state is reached:

in this case, the population of rules adapts faster than the population of ICs, resulting

in a population focusing only on rules with high density and eliminating all instances

of low density rules (a �nite population is considered). Then, low density ICs exploit

those rules and overcome the entire population. The population of rules can't respond

since all low density rules have been wiped out. Therefore, the population of rules gets

no feedback and no gradient is available to drive the search since their �tness is always

0. All ICs get maximum �tness of 1. The two populations will stay in this stable state

unless a \lucky" rule is discovered that can defeat some ICs.

Resource Sharing and Mediocre Stable States

Resource sharing has been presented earlier as a strategy which allows the simultaneous

exploration of di�erent alternatives by maintaining several niches in the population.

This section describes some experiments where resource sharing is introduced in the

competitive model of interaction presented in the previous section. The �tness of rules

107

and ICs is then de�ned as follows:

f(Ri) =
X

j=1::nIC

weight ICj � covered(Ri; ICj)

where:

weight ICj =
1P

k=1::nR
covered(Rk ; ICj)

and

f(ICj) =
X

i=1::nR

weight Ri � covered(Ri; ICj)

where:

weight Ri =
1P

k=1::nIC
covered(Ri; ICk)

This framework allows the presence of multiple niches in both populations, each

niche corresponding to a particular competence relevant to defeat some members of the

other population. Figure 4.7 describes one run for this de�nition of the interactions

between the two populations. It can be seen that the unstable behavior which was ob-

served in the previous section doesn't occur any more and that two species coexist in the

population of rules: a species for low density rules and another one for high density rules.

Those two species drive the evolution of ICs toward the domain of initial con�gurations

that are the most di�cult to classify (i.e., �0 = 1=2). However, the two populations have

entered a mediocre stable state. That is, a stable con�guration is reached that involves

multiple average performance niches which coexist in both populations. There are two

possible reasons for the existence of a stable state:

� any slight alteration of an individual in one niche results in no improvement or a

smaller performance.

� the gap an individual in one niche must bridge to solve problems already solved by

other niches is too large. This comes from the representation scheme or the search

operators: the sequence of transformations (with respect to the search operators)

108

Initial Con�gurations

Rules

1 1 1 1 0 0 0

1 1 1 1 0 0 0

1 1 1 1 0 0 0

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1

Table 4.2: An interaction matrix representing a stable state.

that should be followed by an individual to improve its performance is too long

or has a very small probability of occurring. As a result, individuals receive no

feedback from problems they cannot solve (since they are consistently defeated by

those problems) to drive search.

In this example, the matrix of interactions between the two populations which describes

the outcome for each pair (rule; IC) looks like the one in Table 4.2. ICs are concentrated

around the �0 = 1=2 threshold and they can be divided into two groups: those with

density �0 < 1=2 and those with density �0 > 1=2. This distribution means that ICs can

be exploited consistently by rules with low and high density which are both present in

the second population (because a CA implementing a low density rule relaxes mostly to

all 0's for any IC and mostly to all 1's when implementing a high density rule). However,

this is a mediocre stable state in the sense that coexisting species are too specialized to

defeat only a subset of the possible opponents and the likelihood for improving their

performance is small.

109

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

0

10

20

30

G
en

er
at

io
n

Rules density

ru

le
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

0

20

40

60

G
en

er
at

io
n

ICs density

IC

s

Figure 4.7: Coevolution of CA rules (top) and ICs (bottom) in a competitive relationship,

using resource sharing in both populations: the two populations converge to a mediocre

stable state involving a number of sub-optimal niches.

110

4.3 Background on Coevolutionary Search

With the emergence of the �eld of evolutionary computation, researchers have taken

inspiration from nature for the design of new search strategies. Along those lines, coevo-

lution has been the object of a lot of attention. Indeed, coevolution is inherent in Nature

where any living system's reproductive success is based on how it performs with respect

to others for exploiting �nite resources, �nding mates or socializing . . . As a problem

solving paradigm, coevolution has been proposed as elegant approach to problems that

involve multiple criteria or can be decomposed into sub-tasks. Axelrod's work [9] on the

Prisoners' Dilemma was certainly among the �rst applications of coevolution. His aim

was the study of the emergence of cooperation in evolution when competition seems to

be the driving force toward progress. The idea of using coevolution for problem solv-

ing was introduced by Hillis [38]. Since then, several models have been developed by

researchers using a similar methodology. The next sections review some of this work.

Following the two modes of interaction discussed previously, this review is divided into

two parts. The �rst part addresses competition-based models while the other is dedicated

to cooperation-based models.

4.3.1 Competition between Populations

Competitive coevolution involves at least two species or populations, each of them seeking

to defeat members of the other one(s). This framework has been used to address a variety

of problems, each approach proposing some speci�c techniques to address the problems

inherent to this model, like the Red Queen e�ect. Two models of competitive coevolution

have been widely exploited in the EC community: predator/prey and parasite/host. The

di�erence between those two models is subtle and, so far, it has not been relevant from

an arti�cial evolution point of view. According to Roughgarden [94], parasite/host is a

111

form of symbiosis in the sense that there is a long-term physical relationship between

the parasite and the host. On the contrary, in the predator/prey model, there is no such

long-term physical relationship.

Hillis' work marked a signi�cant breakthrough by showing that coevolution may

improve search performance [38]. In his work, a population of sorters (the hosts) coevolve

with a population of input vectors (the parasites). The goal of sorters is to construct

sequences of comparator-swaps that sort the input vectors that are proposed by the

parasites while parasites search for input vectors that are di�cult to sort. In a sense,

this can be seen as an implementation of a coverage-based heuristic: a construction is

sought that sorts correctly every possible input vector, thus resulting in a sorting net-

work. This heuristic adaptively focuses the search for solving problem instances (i.e.,

input vectors) that are the most di�cult for the population of networks. Several mech-

anisms help to prevent indirectly the unstable behavior associated with the Red Queen

e�ect. For instance, parasites represent a set of input vectors instead of a single input

vector. This reduces the chance that a single parasite implements only di�cult input

vectors with respect to the current population of hosts. Also, the distributed popula-

tion introduces some robustness in the search by maintaining di�erent alternatives in

the two populations. The use of diploid genomes, another feature implemented by Hillis,

allows the introduction of a pressure toward shorter sorting networks because individuals

that contain more redundancy (i.e., that have more homozygous pairs) are more robust

to crossover. Because of the representation scheme, such individuals represent shorter

networks.

Following Hillis' approach, Husbands used a similar architecture and imple-

mented a geographically distributed model of coevolution to address a generalized version

of the job-shop scheduling problem [40].

Paredis [73] used competitive coevolution between a population of solutions and

112

a population of problems as a search strategy for applications in inductive learning [71]

and constraint satisfaction problems [70]. In both applications, a set of test cases is

identi�ed and a concept or solution that covers accurately this test set is searched. To

encourage continuous progress, Paredis implemented a steady-state model and intro-

duced life-time �tness evaluation (LFTE), a mechanism that averages the performance

of individuals over a sliding window covering several generations in order to evaluate in-

dividuals against a signi�cant number of problems. This mechanism provides candidate

solutions with a gradient involving the recent history, thereby helping search.

Pursuer/evader games have also been used as a test problem for research in

coevolution. In particular, Cli� and Miller [18, 19] illustrate the di�culty of design-

ing experiments in which non trivial behaviors (i.e., evasion and preying strategies) do

emerge. Detecting when such behaviors occur and analyzing the outcome of coevolu-

tionary simulations in the context of the pursuer/evasion model is also a di�cult task.

In their work, several tools were developed to track progress and detect loss of traits re-

sulting from the Red Queen e�ect. Sims' block-creatures [99] and Reynolds' experiments

with the game of tag [86] are also two successful applications of competitive evolution.

In all those works, the emergence of complex behaviors was observed. However, speci�c

selection and evaluation strategies were chosen in order to maintain a variety of di�er-

ent strategies in the population and to allow signi�cant progress for the performance of

evolved agents over time.

Rosin's work on coevolutionary learning [93] addresses the di�erent issues related

to competitive evolution in the context of adversarial problems (e.g., game strategies).

The goal of his work is to de�ne a framework for coevolutionary search that results in

continuous progress on the long term. In a theoretical analysis [92], Rosin and Belew

described a coevolutionary environment and proved it allows the discovery of perfect

game strategies, provided a \strategy-learning algorithm" (i.e., an algorithm able to learn

113

strategies that defeat a given set of opponents) is available. Relying on the existence of

such a learning algorithm, a covering competitive algorithm is designed which results in

polynomial-time learnability in the logarithm of the size of the �rst-player and second-

player strategy space, and the speci�cation number. The speci�cation number is de�ned

as the size of the smallest teaching set for the �rst-player. A �rst-player teaching set

is de�ned as a set of second-player strategies such that for any imperfect �rst-player

strategy, there is a strategy in the teaching set that defeats it. The idea of this covering

competitive algorithm is to call alternatively for the �rst-player and for the second-player

the strategy-learning algorithm with the set of all previously seen opponent strategies.

This algorithm returns a strategy that can defeat all those opponent strategies, therefore

bootstrapping coevolutionary learning. However, those requirements are di�cult to im-

plement in practice. In particular, the existence of the strategy-learning algorithm is a

strong assumption. In [91, 93], Rosin introduced several heuristics to overcome the aws

inherent in coevolutionary search and to implement some of the concepts introduced in

his theoretical analysis. In the framework he proposed, the strategy-learning algorithm

is introduced implicitly in the design of the credit assignment procedure. Competitive

�tness sharing is introduced in order to maintain di�erent strategies in the population

game strategies. A Hall of fame keeps track of the best individuals from previous gen-

erations and encourages long-term progress by also evaluating new individuals against

a sample of this hall of fame. A phantom parasite heuristic prevents a solution that

is perfect with respect to the current population of adversaries to take over the entire

population (which would result in a loss of diversity).

More recently, Pollack, Blair and Land [80] used a simple coevolutionary ap-

proach to the game of backgammon with signi�cant success. One goal of this work was

to prove that the noisy evaluation of players resulting from the dice roll plays an impor-

tant role in the search of game strategies. In particular, a simple coevolutionary setup

114

involving the current best strategy and a challenger constructed by mutating this top

strategy was enough for the discovery of strong players.

4.3.2 Cooperation between Populations

Scalability is an important issue in Arti�cial Intelligence. However, the design of large

scale complex structures that are able to perform a given task in an e�cient and co-

ordinated manner is di�cult. The traditional methodology in engineering is to design

a top-down decomposition, de�ning at each level the interactions and controls between

the di�erent modules. Usually, such a design includes a central control system that

coordinates the activity of the di�erent modules.

The coevolutionary paradigm has also been proposed as a potential solution to

this problem. For instance, Potter [81] developed a cooperative model in which a number

of populations explore di�erent decompositions of the problem. The central idea of this

approach is to have each population specializing on a particular functionality that is

relevant to address the problem and, at the same time, the functionalies discovered

by the di�erent populations can be recombined into a composite solution that solves

the task. In Potter's work, a prede�ned strategy determines how a composite solution

is constructed from the modules implemented by those populations. Then, a credit

assignment strategy focuses the search on individuals in each population that participate

in better composite solutions. Eventually, if a good decomposition is discovered, the

computational e�ort to construct a solution to the problem is greatly reduced. Indeed,

an appropriate decomposition of the problem enables incremental improvement because

orthogonal dimensions for search have been identi�ed: each module can be searched

independently for local improvement of the composite solution. On the contrary, the

search for a monolithic solution that would address the entire problem can be much

more expensive because of epistasis: without the notion of modularity, the di�erent

115

elements of the representation are strongly interdependent, making the search more

di�cult because of a large number of local optima. Potter, DeJong and Grefenstette

exploited this approach to cooperative coevolution for function optimization [82] and for

the design of control systems [83].

Moriarty also used a coevolutionary approach as a search paradigm to construct

modular structures [65]. In the system he developed, named SANE, each \module"

corresponds to one hidden unit of a neural network. Entities undergoing evolution encode

the connections and the weights between an hidden unit and neurons in the input and

the output layer. At a higher level of abstraction, a population of network speci�cations

represents composite solutions. Each network speci�cation identi�es a set of hidden

units that contribute to the composite solution. Search is performed in the population

of hidden units for neurons that participate in high quality networks. In the other

population, the space of network speci�cations is searched for good \teams" of hidden

units that result in high performance composite solutions. SANE has been applied

successfully to several sequential decision tasks like the pole balancing problem [62],

game playing [61] or robot arm control [63].

Another approach to cooperative coevolution is the one exploited by Paredis [72].

In his work, a population of solutions and a population of permutations performed on the

genotype of the �rst population coevolve. The motivation underlying this work is to limit

the disruptive e�ect of search operators by discovering an appropriate representation

(that is, a representation that is more robust and makes progress more likely). Paredis

performed his experiments in a GA framework using one-point crossover. Solutions

for which functionally related genes are grouped together on the genotype are more

robust to this operator. The goal of the population of permutations is to discover such

arrangements for genes. Success was reported with a setup involving multiple copies

of the same problem. As a result of the cooperative interactions, a permutation would

116

emerge that group together the bits corresponding to the same instance of a problem,

allowing a more e�cient exploration of the solution space for each problem with the

mutation operator.

As discussed in section 4.2.4, the drawback of cooperative coevolution from a

search point of view is that the positive reinforcement between the members of each pop-

ulation usually results in fast convergence to an average performance solution because

there is little pressure toward exploration. Di�erent mechanisms have been introduced

to address this issue by maintaining diversity. For instance, Potter introduces some ran-

domness in the selection of the components for the construction of composite solutions

instead of selecting systematically the best component from each population. In the

case of Moriarty's work, multiple composite solutions are explored in parallel by the

population of network speci�cations instead of focusing on a single modular decompo-

sition. In a way, this approach combines both bottom-up and top-down search. In the

case of Paredis' work, the noisy evaluation of individuals' �tness also prevents premature

convergence.

4.4 Discussion

This chapter describes our motivation for exploiting coevolution as a paradigm to capture

a speci�c property of evolving agents de�ned as adaptability. Adaptability corresponds

to a dynamic property exhibited by individuals. Therefore, evaluating those individuals

in a changing environment, as it is the case in coevolution, may be a potential strategy

to capture that property.

However, depending on the rules that control the interactions between the mem-

bers of the coevolving populations, a lot of diversity may be observed for the resulting

dynamics of the system. That is, the trajectory followed by each population to explore

117

its respective search space may correspond to extremely di�erent strategies. Those issues

have been illustrated in the previous sections with the problem of discovering cellular

automata rules that implement the majority classi�cation task. The fundamental models

of cooperation and competition have been analyzed in this framework in order to inter-

pret the resulting dynamics of coevolution from an evolutionary search point of view and

to identify the underlying search heuristics.

In summary, it appears that none of the canonical models described in this chap-

ter can achieve alone the goal of coevolutionary learning, that is: continuous progress

on the long term. The reason is that the underlying search heuristics implemented in

those models are too simplistic and introduce a pressure only in the direction of ex-

ploration or exploitation. In the next chapter, the concept of the \Ideal" trainer is

described. This paradigm exploits a coevolutionary framework in which the underlying

heuristics introduce a pressure toward adaptability while driving search to allow con-

tinuous improvement. This result is achieved by maintaining an appropriate balance

between exploration and exploitation among the two coevolving populations, and by in-

troducing a meta-level strategy which controls the direction of evolution. This paradigm

is illustrated with two applications presented in chapter 6.

118

Chapter 5

Coevolving the \Ideal"

Trainer: a Paradigm for

Achieving Continuous Progress

From the perspective of this research work, continuous progress corresponds to the iden-

ti�cation of domains of the state space which correlate better with the operators em-

bedded in a search algorithm. This approach is proposed as an alternative to other

search paradigms when little knowledge is available about the regularities of a problem

domain. However, as illustrated in chapter 4, implementing a coevolutionary framework

that exhibits continuous progress is a non-trivial task. Indeed, the dynamics of coevolu-

tion is an emergent phenomenon which results from the de�nition of rules controlling the

interactions between coevolving agents. Therefore, the designer has little control over

the global behavior of the system. In extreme cases, a slight change in the de�nition of

those rules may even result in dramatic variations for the dynamics of the coevolving

119

Gradient
information

toward
increasing
difficulty

Learners Problems

Figure 5.1: Introduction of gradient information in the \Ideal" trainer approach to co-

evolutionary learning.

populations.

One observation that may illustrate the complexity of achieving continuous

progress is that, even in Nature, evolution doesn't seem to pursue any other goal than

to favor the emergence of species that have a better ability to survive and reproduce in a

particular evolving and/or adapting environment. While continuous progress in Nature

could be de�ned as an improvement of living systems ability to survive when compared

to anterior generations, the measure of survival ability is a function of the environment

in which those organisms are evaluated. Since this environment is in perpetual change,

the notion of continuous progress doesn't necessarily make sense in that context: contin-

uous progress can be measured only against a �xed reference. On the contrary, problem

solving is a goal directed process. That is, a task has been identi�ed and a solution to

that particular task is sought. Therefore, some mechanisms must be implemented in

order to drive coevolutionary search toward solutions that can achieve the goal.

The next section reviews the most important obstacles that prevent coevolution

from achieving continuous progress in the context of problem solving. In response to

those issues, the central contribution of this chapter consists in the statement of two

120

speci�c conditions whose implementation is necessary for allowing the emergence of con-

tinuously improving solutions: 1) the need to maintain useful feedback from the training

environment, and 2) the need for a meta-level strategy to ensure progress in the long

term. This second requirement is represented in Figure 5.1 with an external control which

introduces a gradient for the discovery of problems of increasing di�culty. Finally, a new

paradigm, referred to as the \Ideal" trainer, is proposed. This paradigm is based on a

speci�c framework which allows the implementation of those two requirements. The next

chapter illustrates this paradigm with two applications. The �rst one is a follow up of

the majority classi�cation task introduced in chapter 4. The second application exploits

the \Ideal" trainer paradigm to propose a modular approach to inductive learning.

5.1 Coevolutionary Learning: Learned Lessons

5.1.1 Adaptability is a Relative Measure

Coevolution has been presented in chapter 4 as a paradigm to capture adaptability.

That is, coevolution introduces a pressure such that individuals that adapt faster to the

changing environment get an evolutionary advantage. From the perspective of search,

this means that fewer transformations of those individuals by the search operators are

necessary to improve their performance. Or, from a learning point of view, this means

that agents have captured some intrinsic properties underlying the evolution of the train-

ing environment that allow them to react to those changes.

This description also means that adaptability is de�ned with respect to the way

the training environment evolves. Therefore, the underlying search strategy implemented

by the dynamics of coevolution depends on the changes that are observed in the training

environment. However, the goal of coevolutionary learning is to observe continuous

progress. This means that the goal is to capture the right type of adaptability: the

121

ability to solve problems of increasing di�culty. Capturing adaptability for its own sake

is not a su�cient condition to observe continuous progress because adaptability is relative

to the dynamics of evolution of the training environment.

5.1.2 Continuous Progress is an Absolute Measure

On the other hand, continuous progress is a global property: it is de�ned with respect to

some absolute measure of performance. Therefore, this information must be introduced

one way or another in the coevolutionary framework if the goal of coevolutionary learning

is to be achieved.

In general, such an absolute measure for the evaluation of individuals' perfor-

mance is not necessarily available. In fact, in Nature, it is not even sure whether such an

absolute measure exists (e.g., what absolute measure could compare the performance of

a mammal to the performance of an ameba? Each of those two species is specialized to

exploit some very speci�c resources.) However, for problem solving, an absolute measure

of performance usually exists. In some cases, it might however be intractable to evaluate

this measure because it would involve too much computer resources. For instance, the

absolute performance of a game strategy would be evaluated by playing against a poten-

tially in�nite set of opponent strategies. In such instances, some other methods must be

employed. For the applications presented in this dissertation, the absolute performance

of individuals can either be evaluated exactly or estimated with reasonable accuracy.

5.2 Coevolutionary Learning: Conditions for Success

The purpose of the next sections is to identify two important requirements for achieving

continuous progress in the framework of coevolutionary learning.

122

5.2.1 Need for Maintaining Useful Feedback

Adaptability is the primal component underlying the ability for an agent to exhibit

continuous progress. However, capturing adaptability is possible only if the population

of evolving agents is exposed to a gradient. That is, some information is available allowing

di�erentiation between the members of the population.

In order to illustrate this notion, consider a simple multi-objective problem in-

volving a set T = fT1; : : : ; Tng of training examples. The goal is to isolate a candidate

solution that covers all the test cases Ti's. Now, consider a coevolutionary framework

involving a population of candidate solutions and a training environment composed of a

subset of T (this subset is changing over time in response to the evolution of candidate

solutions). Let 	(t) be the subset of candidate solutions that cover all the problems

proposed by the training environment at time t ((t) will also be called the solution

set at time t). Here, the attention is focused on the evolution of the successive solution

sets 	(t)'s. The rules that control the interactions between the population of candidate

solutions and the training environment are not directly relevant to the discussion.

Figure 5.2 illustrates an instance where individuals in the solution set 	(t) are

exposed all of a sudden to a training environment which is much more di�cult (corre-

sponding to a tiny solution set 	(t+1)). In that case, the likelihood that one of those

agents is already a member of 	(t+1) or that transformations operated to those agents

result in the discovery of a solution in 	(t+1) is very little. No gradient information is

available to the population of agents to drive the search since all the individuals have

same performance.

Such dynamics is typical of mediocre stable states which were introduced in

section 4.2.4. Mediocre stable states correspond to a similar situation involving multiple

\niches" and for which no useful feedback is returned to the evolving agents. In that

123

ψ(t+1)

ψ(t)

Figure 5.2: If the di�culty of problems proposed by the training environment increases

too quickly, there is a small probability that an individual in the solution set 	(t) be

mapped to the solution set 	(t+1) by the search operators: no gradient is available to

drive search toward the target solution set (represented by the dark area).

case, all the agents in a niche cover the same subset of problems proposed by the training

environment and fail to cover the others.

Therefore, the evolution of the training environment should always result in little

variations for the successive solution sets 	(t)'s in order to always expose the population

of evolving agents to a gradient. This is a requirement for capturing adaptability.

5.2.2 Need for a Meta-Level Strategy

As discussed before, capturing adaptability for its own sake is not a su�cient condition

to achieve continuous progress. This can be illustrated with the diagram in Figure 5.3.

In that example, the solution sets evolve progressively and provide a gradient for search.

This dynamics facilitates the emergence of adaptability. However, even if the target

solutions (represented by the dark area in Figure 5.3) are members of the di�erent

solution sets, the evolution of the 	(t)'s doesn't introduce any pressure to drive the

124

search toward this target. This dynamics is typical of the Red Queen e�ect: while

evolving agents adapt to the changing environment, there is no high-level strategy to

drive search toward solutions with increasing performance with respect to the global

task.

ψ(t)

ψ(t+2)

ψ(t+3)

ψ(t+1)

Figure 5.3: The pressure toward adaptability is not enough to drive search toward the

target solution set (represented by the dark area): a high-level strategy is necessary to

control the evolution of the solution sets 	(t), 	(t+1), 	(t+2) . . . toward that target.

Indeed, continuous progress is de�ned with respect to some absolute measure.

Therefore, if adaptability is to result in continuous progress (and the emergence of high

quality solutions), the training environment must propose problems of increasing di�-

culty. This can be achieved only if this absolute notion of di�culty is introduced in

the system in the form of a meta-level strategy. The purpose of the meta-level strategy

is to prevent cyclic behaviors by providing a direction for the evolution of the training

environment.

In summary, two requirements should be satis�ed simultaneously in order to

achieve continuous progress:

125

1. the training environment should facilitate adaptability by always exposing the pop-

ulation of evolving agents to a gradient, and

2. problems of increasing di�culty should be proposed by the training environment.

Figure 5.4 illustrates the dynamics for the evolution of the solution sets resulting from

the implementation of those two conditions. The sets 	(t), 	(t+1), 	(t+2) . . . converge

progressively toward the target solutions. At each step in this evolution, the gap between

two consecutive solution sets can be bridged by the evolving agents.

ψ(t)

ψ(t+1)

ψ(t+2)

ψ(t+3)

ψ(t+4)

ψ(t+5)

Figure 5.4: Continuous progress is possible by allowing the progressive evolution of the

solution sets 	(t), 	(t+1), 	(t+2) . . . toward the target solution set (represented by the

dark area).

The next section introduces the concept of the \Ideal" trainer. This paradigm

proposes a framework to implement those requirements. This framework de�nes the

rules of interactions between the coevolving populations such that continuous progress

emerge from the resulting dynamics.

126

5.3 Coevolving the \Ideal" Trainer: Presentation

From the analysis of the experiments presented in section 4.2 and from the discussion

in the previous sections of this chapter, at least two reasons seem to prevent continuous

progress in coevolutionary search. The �rst one, identi�ed as the occurrence of mediocre

stable states, is that the training environment provided by the population of problems

returns little information to the population of learning agents because a stable con�g-

uration is reached in which the credit is distributed according to a �xed pattern. The

second reason is that the dynamics of the search performed by the two coevolving pop-

ulations doesn't drive individuals toward domains of the state space that contain most

promising solutions because there is no \high-level" strategy to play that role. This is a

consequence of the Red Queen e�ect which usually results in the cyclic behavior observed

in the competitive model of coevolution.

The idea of the \Ideal" trainer is based on the introduction of explicit mecha-

nisms to implement the two requirements identi�ed in section 5.2. The purpose of those

mechanisms is to control the evolution of the population of problems. In fact, the central

strategy underlying the concept of the \Ideal" trainer can be described with the following

statement:

\The best way for adaptive agents to learn is to be exposed to problems that

are just a little more di�cult than those they already know how to solve."

This strategy covers exactly the two fundamental requirements discussed previously:

the need to maintain useful feedback (by exposing agents to problems \a little more

di�cult" than those they know how to solve) and the need for a meta-level strategy (to

propose problems of increasing di�culty). The implementation of this strategy requires

the de�nition of the following terms:

� a distance measure to formalize the concept of \a little more di�cult", and

127

� a partial order over the space of problems in order to control the evolution of the

training environment toward problems of increasing di�culty.

As a result, this search procedure always maintains a gradient to drive the exploration

of the space of solutions (i.e., the learning agents). That is, the training environment

proposes a variety of problems covering a range of di�culty without exposing the learners

to problems that are too di�cult or too easy. Indeed, if problems are too di�cult, none

of the learning agents can solve them. On the contrary, if they are too easy, all the

agents can solve them. In both cases, those problems are useless for learning since they

provide little feedback. Also, a \high-level" strategy is implemented in order to allow

continuous progress by proposing problems of increasing di�culty, thereby preventing

some of the negative e�ects associated with the Red Queen. By maintaining this constant

pressure toward slightly more di�cult problems, a race is induced among learners such

that learners that adapt better have an evolutionary advantage. The underlying heuristic

implemented by this evolutionary race is that adaptability for solving increasingly di�cult

problems is the driving force.

From the perspective of learning, the ability of individuals to adapt faster to a

changing environment means that those individuals have captured some of the intrinsic

mechanisms that control the evolution of the training environment. In the context of the

\Ideal" trainer, a meta-level strategy controls the evolution of the training environment

toward problems of increasing di�culty. Therefore, the pressure toward adaptability

implemented in this framework may eventually result in the emergence of individuals

that are able to generalize their performance to unseen problems. That is, they are

likely to have a better performance when faced with even more di�cult problems.

When applying the \Ideal" trainer concept to a speci�c task, multiple di�culties

must be overcome in order to implement accurately the di�erent concepts introduced in

this section. So far, our methodology has consisted in constructing an explicit structure

128

over the space of problems by de�ning a partial order with respect to the relative di�culty

of problems among each other. In our current work, the concept of \relative di�culty"

has been de�ned by exploiting some a priori knowledge about the task. The de�nition

of this topology over the space of problems makes possible the implementation of the

two goals required in our coevolutionary learning approach. Indeed, since learners are

evaluated against a known range of di�culty for problems, it is possible to monitor

their progress and to expose them to problems that are just \a little more di�cult". In

this framework, learners are always exposed to a gradient for search and it is possible to

control the evolution of the training environment toward problems of increasing di�culty

in order to ensure continuous progress.

In the future, our goal is to eliminate some of those explicit components by

introducing some heuristics that automatically identify problems that are appropriate

for the current set of learners. The work of Rosin [93] already describes some methods

to address this issue.

5.4 Related Work

The idea of introducing a pressure toward adaptability as the central heuristic for search

is not new. Schmidhuber [96, 97] proposed the Incremental Self-Improvement system

in which the ability to exhibit continuous progress is the measure that is optimized.

In that work, the �tness is an explicit measure of progress over time: a history of

the transformations that have been performed on the current solution is stored and

is used to monitor the evolution of the performance of that solution. When progress

stops, the search procedure backtracks (i.e., undoes the transformations that have been

operated) and explores new transformations. However, the basic process to perform

search in that work di�ers in many ways from the approach described in this dissertation.

129

In particular, Schmidhuber's work takes root in traditional tree search algorithms and

may not exploit some of the advantages associated with evolutionary-inspired search

algorithms like robustness and an e�cient implementation on distributed architectures.

The concept of an ideal trainer has also been introduced by Epstein [25] in the

context of game learning. However, this work addresses the issue of designing the \Ideal"

training procedure which would result in high quality players rather than coevolving

the training environment in response to the progress of learners. Epstein exhibited

some evidence that a combination of training against a perfect player and self-playing

is a better learning procedure than pure self-training or playing only against a perfect

player. The idea underlying this result is that the perfect player gives information about

the perfect play skeleton in the search tree while self-playing allows the exploration of

variations of that perfect framework in order to increase robustness of the strategy.

5.5 Concluding Remarks

In this chapter, the concept of the \Ideal" trainer has been introduced in the context of

coevolutionary learning. The underlying idea implemented in this strategy is to always

propose some problems that challenge the population of learners without exposing them

to problems that are too di�cult. In the literature, di�erent approaches have been pro-

posed to address the issues associated with the Red Queen e�ect [73, 93]. However, to

our knowledge, explicit methods to force continuous progress and to prevent mediocre

stable states in the context of evolutionary search have never been tested. In the frame-

work described in this chapter, some explicit mechanisms have to be introduced in order

to implement this strategy. One goal for the future is to replace those explicit mecha-

nisms with some general purpose heuristics that would construct, for instance, a partial

order over problems as they are generated or that would adaptively maintain the bal-

130

ance between cooperation and competition without requiring the de�nition of a distance

measure.

As a consequence of the strategy implemented in the \Ideal" trainer coevolution-

ary framework, an evolutionary race is maintained among the learners such that learners

adapting faster to the new challenges get an evolutionary advantage. As a result of this

pressure toward adaptability, learners that have a higher generalization ability are likely

to emerge from this race. From a machine learning point of view, the issue of generaliza-

tion is particularly important. Traditional techniques for achieving good generalization

consist in introducing some explicit mechanisms in order to drive the search toward the

discovery of compact models. For instance, this approach has been used to construct

neural networks with fewer hidden nodes (e.g., for applications in time-series prediction

[110]) or, in genetic programming, to construct S-expressions with a minimum number of

primitives [42, 116]. This idea of model compactness in learning, also known as Occam's

razor, has always been seen as a requirement for generalization and is at the origin of

techniques implementing the Minimum Description Length (MDL) principle [87, 88] or

the Minimum Message Length (MML) principle [107, 108]. However, there is no such

explicit pressure in the \Ideal" trainer framework. Instead, the pressure toward better

generalization occurs as a side-e�ect of the evolutionary race. This feature is particularly

interesting because the de�nition of mechanisms that implement the MDL or the MML

principle is dependent on the representation language.

The next chapter presents two applications of the \Ideal" trainer concept. The

�rst one is a follow up of the experiments with the cellular automata problem introduced

in chapter 4. This application resulted in the discovery of new CA rules which improve

signi�cantly over previously best known rules for the majority classi�cation task.

The second application exploits the \Ideal" trainer concept to implement a

bottom-up approach to inductive learning. A system, named Modular Inductive Learn-

131

ing (MIL), has been developed which involves a population of local models (the learners)

that coevolve with a population of domains de�ned over the input space (the problems).

By maintaining an appropriate balance between accuracy of local models and size of do-

mains, the dynamics of the evolutionary race implemented in MIL allows the emergence

of classi�cation theories with good generalization ability.

132

Chapter 6

Applications of the \Ideal"

Trainer Paradigm

6.1 Application 1: Discovery of CA Rules for the Ma-

jority Classi�cation Task

6.1.1 Presentation

This section describes the application of the \Ideal" trainer paradigm described in sec-

tion 5.3 to the majority classi�cation problem for CAs (i.e. the �c = 1=2 task). This

application is a natural follow up of the experiments presented in section 4.2. Indeed, this

experimental analysis has provided us with insights about the di�erent issues involved

in coevolutionary learning. Therefore, studying the dynamics of search performed in the

framework of the \Ideal" trainer for that same problem will provide us with useful infor-

mation to perform a comparative analysis. Moreover, this problem o�ers an interesting

challenge allowing us to compare our approach to the results that have been achieved by

133

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 c

or
re

ct
 c

la
ss

ifi
ca

tio
n

Density initial configurations

N = 149
N = 599
N = 999

Figure 6.1: Distribution of performance for the GKL rule for �0 2 [0:0; 1:0].

other researchers.

6.1.2 Experimental Setup

For the majority classi�cation task, it is believed that Initial Con�gurations (ICs) become

more and more di�cult to classify correctly as their density gets closer to the �c threshold.

This hypothesis is supported by the distribution of the performance for the GKL rule for

�0 2 [0:0; 1:0] presented in �gure 6.1. Therefore, our idea is to construct a framework

that adapts the distribution of the density for the population of ICs as CA-rules improve

at performing the task. The following de�nition for the �tness of rules and ICs has been

used to achieve this goal.

f(Ri) =

nICX
j=1

weight ICj � covered(Ri; ICj)

where:

weight ICj =
1PnR

k=1 covered(Rk ; ICj)

134

and

f(ICj) =

nRX
i=1

weight R0i �E(Ri; �(ICj))� covered(Ri; ICj)

where:

weight R0i =
1PnIC

k=1 E(Ri; �(ICk))� covered(Ri; ICk)

where covered(Ri; ICj) returns 1 if a CA using rule Ri and starting from initial con�gu-

ration ICj relaxes to the correct state. Otherwise, it returns 0. covered(Ri; ICj) returns

the complement of covered(Ri; ICj).

This de�nition implements a competitive relationship with resource sharing.

However, a new component, namelyE(Ri; �(ICj)), has been added in the de�nition of the

ICs' �tness. Indeed, in order to apply the concept of the \Ideal" trainer to the majority

classi�cation task, the space of ICs has been decomposed into equivalence classes, each

equivalence class corresponding to all the ICs having the same density. The underlying

idea behind the de�nition of those equivalence classes is that randomly chosen ICs with

the same density are considered as having similar di�culty. This setup also allows the

construction of a new set of ICs at each generation according to a given distribution for

the density. Indeed, the strategy of generating a new set of ICs at each evolutionary

step appears to result in the discovery of rules that are more reliable because they are

evaluated against a variety of ICs. For this reason, each individual in the population of

ICs represents a density instead of a �xed instance of an initial con�guration.

The purpose of the new component E(Ri; �(ICj)) is to penalize ICs with density

�(ICj) if little information is collected with respect to the rule Ri. Indeed, we consider

that if a rule Ri has a 50% classi�cation accuracy over ICs with density �(ICj) then this

is equivalent to random guessing and this Ri shouldn't contribute to the �tness of ICj .

On the contrary, if the performance of Ri is signi�cantly better or worse than the 50%

threshold for a given density of ICs this means that Ri captured some relevant properties

135

to deal with those ICs. Once again, the idea is that the training environment should be

composed of ICs that provide useful information and, therefore, it should avoid proposing

problems (i.e., ICs) that are too di�cult or too easy. To achieve this goal, the purpose

of the component E(Ri; �(ICj)) is to maintain a balance between the search for new ICs

that are more di�cult while still being covered by some rules. In fact, this component

extends the model of competitive coevolution by introducing a form of cooperation.

In order to achieve continuous progress, our implementation exploits an intrinsic

property of the �c = 1=2 task. Indeed, CA-rules that cover ICs with density �0 < 1=2

(resp. �0 > 1=2) with high performance are usually successful to also cover ICs with

density �00 < �0 (resp. �00 > �0). Therefore, as ICs become more di�cult, their density

approaches �0 = 1=2 but rules don't have to be tested against easier ICs. Following this

idea, we de�ned E(Ri; �(ICj)) as the complement of the entropy of the outcome between

rule Ri and ICs with density �(ICj):

E(Ri; �(ICj)) = lg(2) + p lg(p) + q lg(q)

where: p is the probability that an IC with density �(ICj) defeats the rule Ri and

q = 1 � p. E() implements the distance measure discussed in section 5.3. Its purpose

is to maintain the balance between the search for more di�cult ICs and ICs that can

still be solved by some rules. In practice, the entropy is evaluated by performing some

statistics over the population of ICs.

6.1.3 Experimental Results

Experiments were performed with di�erent sizes for the population of rules and ICs.

The best rule whose performance is reported in Table 6.2 resulted from the experiments

that used the largest population size. In those experiments, 6 runs were performed for

5; 000 generations, using a size of 1; 000 for both populations. Each rule is coded on a

136

Coevolution 00010100 01011111 01000000 00000000

rule 00010111 11111100 00000010 00010111

00010100 01011111 00000011 00001111

00010111 11111111 11111111 11010111

Das rule 00000111 00000000 00000111 11111111

00001111 00000000 00001111 11111111

00001111 00000000 00000111 11111111

00001111 00110001 00001111 11111111

ABK rule 00000101 00000000 01010101 00000101

00000101 00000000 01010101 00000101

01010101 11111111 01010101 11111111

01010101 11111111 01010101 11111111

GKL rule 00000000 01011111 00000000 01011111

00000000 01011111 00000000 01011111

00000000 01011111 11111111 01011111

00000000 01011111 11111111 01011111

Table 6.1: Description of the current best rule and published rules for the �c = 1=2

task.

binary string of length 22�r+1 = 128. One-point crossover is used with a 2% bit mutation

probability. The population of rules is initialized according to a uniform distribution over

[0:0; 1:0] for the density. Each individual in the population of ICs represents a density

�0 2 [0:0; 1:0]. This population is also initialized according to a uniform distribution over

�0 2 [0:0; 1:0]. At each generation, each member generates a new instance for an initial

con�guration with respect to the density it represents. All rules are evaluated against

this new set of ICs. The generation gap is 5% for the population of ICs (i.e., the top 95%

ICs reproduce to the next generation). There is no crossover nor mutation. The new

5% ICs are the result of a random sampling over �0 2 [0:0; 1:0] according to a uniform

probability distribution. The generation gap is 80% for the population of rules. New

rules are created by crossover and mutation. Parents are randomly selected from the top

20%. All runs consistently evolved some rules that score above 82%. Table 6.1 describes

lookup tables for the current best CA rule and other rules discussed in the literature.

137

N 149 599 999

Coevolution 0.863 +/- 0.001 0.822 +/- 0.001 0.804 +/- 0.001

Das rule 0.823 +/- 0.001 0.778 +/- 0.001 0.764 +/- 0.001

ABK rule 0.824 +/- 0.001 0.764 +/- 0.001 0.730 +/- 0.001

GKL rule 0.815 +/- 0.001 0.773 +/- 0.001 0.759 +/- 0.001

Table 6.2: Performance of di�erent published CA rules and the new best rule for the

�c = 1=2 task.

The leftmost bit corresponds to the result of the rule on input 0000000, the second bit

corresponds to input 0000001, . . . and the rightmost bit corresponds to input 1111111.

Figure 6.2 describes the evolution of the density of rules and ICs for one run.

As rules improve, their density gets closer to 1=2 and the density of ICs is distributed

on two peaks on each side of �c = 1=2. In that particular run, it is only after 1; 300

generations that a signi�cant improvement is observed for rules and that, in response,

the population of ICs adapts dramatically in order to propose more challenging initial

con�gurations. This shows that our strategy to coevolve the training environment and

the learners has been successfully implemented in the de�nition of the �tness functions.

Figure 6.3 presents three examples of the space-time evolution of a CA for this

new best rule. For the left diagram, where �0 < �c and the middle one, where �0 > �c, the

CA relaxes to the correct con�guration. The third diagram shows an instance for which

the CA doesn't relax to any of the two desired convergence patterns. Indeed, contrary

to the GKL rule, the CA doesn't always relax to one of the two �xed con�gurations for

this new rule.

As a comparison, [4] used a population of size 51; 200 and runs were performed

for 50 generations. In their work, the training environment was composed of a �xed

training set of 1000 ICs constructed from a uniform sampling from the space of all ICs

(thus, the distribution for the density of ICs in the training set is binomial, centered

138

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

0

100

200

300

G
en

er
at

io
n

Rules density

ru

le
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

0

50

100

150

G
en

er
at

io
n

ICs density

IC

s

Figure 6.2: Coevolutionary learning between CA rules (top) and ICs (bottom): the dif-

�culty of problems proposed by the population of ICs adapts in response to the progress

of the population of rules in order to maintain a challenging environment and to allow

continuous progress.

139

20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

180

200
20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

180

200
20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

180

200

Figure 6.3: Three space-time diagrams describing the evolution of CA states: in the

�rst two, the CA relaxes to the correct uniform pattern while in the third one it doesn't

converge at all to a �xed point.

on 1=2). In experiments described in [22, 59], the learning environment is composed of

a set of 100 ICs sampled at each generation according to a uniform distribution over

�0 2 [0:0; 1:0]. Those authors acknowledged that this distribution for the sampling of

the space of ICs, while helpful to bootstrap the search, might no longer provide useful

information once some average performance rules have been discovered.

6.1.4 Performance Comparison: Fixed vs. Adapting Search

Environment

The purpose of this section is to illustrate experimentally that the search performed in a

framework where the environment responds appropriately to the progress of individuals

does result in an improved performance. This analysis is composed of a set of three

experiments. In all experiments, a population size of 200 is used for rules. For each set

of experiments, the population of ICs is generated as follows:

140

� Experiment 1: rules are evaluated in an environment composed of 200 ICs drawn

at each generation from an unbiased distribution. This means, that the distribution

of the density of ICs is binomial centered on 0:5.

� Experiment 2: rules are evaluated in an environment composed of 200 ICs drawn

at each generation from a biased distribution, such that the distribution for the

density of ICs is uniform.

� Experiment 3: rules are coevolving with a population of ICs composed of 200

individuals. The \Ideal" trainer framework is implemented to control the evolution

of the population of ICs.

For all those experiments, the de�nition for the �tness of rules is identical:

f(Ri) =

nICX
j=1

weight ICj � covered(Ri; ICj)

where:

weight ICj =
1PnR

k=1 covered(Rk ; ICj)

This de�nition implements resource sharing in order to allow multiple species in the

population of rules. In the coevolutionary experiments, the de�nition for the �tness of

ICs is the same as the one introduced in section 6.1.2:

f(ICj) =

nRX
i=1

weight R0i �E(Ri; �(ICj))� covered(Ri; ICj)

where:

weight R0i =
1PnIC

k=1 E(Ri; �(ICk))� covered(Ri; ICk)

and:

E(Ri; �(ICj)) = log(2) + p log(p) + (1� p) log(1� p)

The representation for rules and ICs is also identical to the one in previous experiments.

In the coevolutionary experiments, each individual in the population of ICs represents

141

0

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95 100

R
at

io
 o

f r
un

s

Performance

Coevolutionary Learning
Evolution: unbiased distribution

Evolution: biased distribution

Figure 6.4: Distribution of the ratio of runs achieving a speci�c performance after 500

generations.

a density �0 2 [0:0; 1:0]. At each generation, each member generates a new instance for

an IC with respect to the density it represents. For each set of experiments, 100 runs

were performed. For the three sets of experiments, the generation gap is 80% for the

population of rules (i.e., the top 20% reproduces in the next generation). For the third

set of experiments, the generation gap is 3% for the population of ICs.

At each generation, the best rule with respect to the number of ICs it covers

is evaluated against 5; 000 ICs drawn randomly according to the unbiased distribution.

Then, after 500 and 1; 000 generations respectively, the average of the performance for

the best 10 top rules is computed. An average over a window of size 10 is considered

in order to smooth the noisy evaluation for the performance of rules. Figures 6.4 and

6.5 describe the evolution of the ratio of runs for which this average is above a given

performance (given on the x axis).

142

0

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95 100

R
at

io
 o

f r
un

s

Performance

Coevolutionary Learning
Evolution: unbiased distribution

Evolution: biased distribution

Figure 6.5: Distribution of the ratio of runs achieving a speci�c performance after 1000

generations.

The following observations can be made from those �gures. First, the \Ideal"

trainer framework always results in a higher ratio of success. In particular, there is a

100% success rate for generating a rule of performance above 67% (about 96% of success

with the biased distribution and about 74% of success with the unbiased distribution).

Moreover, coevolution also results in the discovery of rules of higher performance (a few

rules with performance above 82% were discovered).

Second, the experiments with the biased distribution resulted in a higher success

rate than the experiments with the unbiased distribution. Indeed, in the case of an

unbiased distribution, rules are exposed to ICs with density close to 0:5, which are the

most di�cult. As a result, there is little information about the gradient and a large

number of runs don't even discover rules that do signi�cantly better than random guess.

However, for those few runs were good rules have been discovered, the unbiased setup

proposes a better environment to continue improvement than the biased setup. The

143

reason is that the biased environment doesn't o�er a challenging environment anymore

to the population of rules because most of the ICs are covered by those rules. As a

result, there is almost no gradient to drive the search. On the contrary, the unbiased

environment still presents a gradient for search and results in the discovery of rules

that have better performance than the best rules discovered in the experiments with the

biased distribution, both after 500 and 1; 000 generations.

6.1.5 Analysis of Experiments

The goal of this section is to provide some insights about the role of coevolution in the

discovery of the new improved rule whose performance is presented in Table 6.2. This

analysis is performed with the data gathered from the 6 runs discussed in section 6.1.2.

Those runs exploited a population size of 1; 000 for rules and ICs and were performed

for 5; 000 generations.

Dynamics of Coevolutionary Search

In the work of Mitchell, Crutch�eld and Hraber [59], \epochs of innovation" were ob-

served in the evolution of the GA. Each of those epochs corresponds to the discovery

of more elaborate strategies to perform the task. The discovery of such new strategies

usually results in a signi�cant increase in the performance of rules. For the majority

classi�cation task, two such strategies have been identi�ed:

� the block expanding strategy for which the size of uniform domains (i.e., blocks of

all 0's or all 1's) progressively increases. The underlying idea is that a large block

of cells with identical state is more likely to occur if there is a majority of cells in

that particular state in the initial con�guration. Rules implementing that strategy

have usually a performance in the range 0:65 to 0:70.

144

� the particle-based strategy for which the resulting computation performed by the

cellular automata is more elaborate. At a higher level of abstraction, this computa-

tion can be described in terms of interacting \particles". The underlying principle

of particle-based computation is that information about local properties of the state

of the cellular automata is computed and propagated by \particles". As described

by Crutch�eld, Mitchell and Hraber [59], the analysis of the space-time diagram

for the dynamics of the cellular automata reveals some domains that correspond to

the recurrence of identical patterns, and particles corresponding to the boundary

between such domains. Then, the interactions between those particles result in

the processing of this information about local properties and eventually decide of

the �nal outcome. That is, whether the cellular automata relaxes to all 0's or all

1's. The performance of rules that implement accurately such a strategy is usually

above 0:75.

The issue addressed in this section is to determine whether similar epochs of improvement

also occur in the coevolutionary runs. The answer to this question would provide some

information about the dynamics of the search performed by the \Ideal" trainer framework

and whether it presents some signi�cant di�erences compared to experiments performed

in [59].

Figure 6.6 plots the evolution of the performance of the top individual for the

�rst 200 generations. Each individual is evaluated against 5; 000 ICs drawn according

to the unbiased distribution. It appears that epochs corresponding to the 0:65 � 0:70

performance do occur. A transition from performance between 0:65 and 0:70 to rules

with performance above 0:75 also occur in all those runs. Then, some slow improvement

over several hundreds of generations is observed.

In all of those 6 runs, some rules were discovered with performance between

82% and 84%. However, for the run that resulted in the best rule (run #4), another

145

(1)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

S
co

re
 to

p
in

di
vi

du
al

Generation

Score of top individual (evaluation against 5,000 ICs)

Run coevolution - pop = 1000

(2)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

S
co

re
 to

p
in

di
vi

du
al

Generation

Score of top individual (evaluation against 5,000 ICs)

Run coevolution - pop = 1000

(3)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

S
co

re
 to

p
in

di
vi

du
al

Generation

Score of top individual (evaluation against 5,000 ICs)

Run coevolution - pop = 1000

(4)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

S
co

re
 to

p
in

di
vi

du
al

Generation

Score of top individual (evaluation against 5,000 ICs)

Run coevolution - pop = 1000

(5)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

S
co

re
 to

p
in

di
vi

du
al

Generation

Score of top individual (evaluation against 5,000 ICs)

Run coevolution - pop = 1000

(6)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

S
co

re
 to

p
in

di
vi

du
al

Generation

Score of top individual (evaluation against 5,000 ICs)

Run coevolution - pop = 1000

Figure 6.6: Evolution of the performance of the top individual in the �rst 200 generations

for each run.

146

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
co

re
 to

p
in

di
vi

du
al

Generation

Score of top individual (evaluation against 5,000 ICs)

Run coevolution - pop = 1000

Figure 6.7: Evolution of performance of top individual for the 4th run.

important transition occurs around generation 2; 500, as shown in Figure 6.7. In order to

determine whether this transition also results in a signi�cant modi�cation of the lookup

table for the corresponding rules, the evolution of the hamming distance between the

top rule of each generation and the overall best rule is plotted in Figure 6.8. It appears

that this transition corresponds to some changes in the lookup table involving between

10 and 15 entries (out of 128).

Another approach to analyze the contribution of coevolution in the search pro-

cess is to study the evolution of the distribution for the density of ICs. Figure 6.9

plots this distribution for run #4 at generations: 20, 50, 100, 250, 1000 and 2500. At

generation 20, the ICs are almost uniformly distributed between the densities 0:20 and

0:80. Low and high densities are no longer represented at that time since some \block-

expanding" rules have already been discovered (as shown in Figure 6.6-(4)). Then, this

distribution progressively converges to a two-peak distribution centered on the 0:50 den-

sity. However, it appears that this distribution doesn't change too much after 1000

147

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

H
am

m
in

g
di

st
an

ce

Generation

Hamming distance between top individual and best coevolution rule

Run coevolution - pop = 1000

Figure 6.8: Hamming distance between top individual and best rule for the 4th run.

generations. The problems posed by the population of ICs no longer o�er a dynamic

training environment to the population of rules because the boundary for the maximum

di�culty of problems has been reached (since problems with density immediately above

and below 0:50 are not represented in the population of ICs as a result of implemen-

tation choices). Coevolution doesn't seem to contribute signi�cantly after generation

1; 000. However, it is likely that its role in the early generations might have driven the

search in some areas of the rule space where progress is still possible. Unfortunately,

this last point seems di�cult to prove since it would rely on some properties about the

structure of the rule space that are still unknown.

Indeed, the underlying pressure toward adaptability implemented by the co-

evolutionary framework works only if some appropriate properties are exhibited by the

search space. In the case of the majority classi�cation task, it has been shown experi-

mentally that incremental improvement is favored by coevolution. That is, by starting

with simple problems and then gradually increasing the di�culty of problems as rules

148

(1)

0

0.01

0.02

0.03

0.04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

tr
ib

ut
io

n

Density

Distribution of ICs density

Gen: 20 - pop = 1000

(2)

0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

tr
ib

ut
io

n

Density

Distribution of ICs density

Gen: 50 - pop = 1000

(3)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

tr
ib

ut
io

n

Density

Distribution of ICs density

Gen: 100 - pop = 1000

(4)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

tr
ib

ut
io

n

Density

Distribution of ICs density

Gen: 250 - pop = 1000

(5)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

tr
ib

ut
io

n

Density

Distribution of ICs density

Gen: 1000 - pop = 1000

(6)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

tr
ib

ut
io

n

Density

Distribution of ICs density

Gen: 2500 - pop = 1000

Figure 6.9: Distribution of ICs' density for generations: 20, 50, 100, 250, 1000 and 2500.

149

become better, it is possible to build up from the current best rules and discover even

better ones. This means that some implicit properties about the problem are exploited.

Since the properties of the search space are determined by the choice for the

representation to describe rules, it would be interesting to identify whether some relevant

features that would favor adaptability are implemented in this representation language.

At this stage of the research concerning cellular automata and the implemen-

tation of the majority classi�cation task with CAs, it is only possible to conjecture.

One theory is that \particles" are used as building blocks in the representation of rules

and that some particular combinations of particles allow the emergence of rules with

better adaptability. Indeed, since particles correspond to boundaries between di�erent

domains, the relevant entries associated with a given particle can be identi�ed in the

lookup table of a rule. However, the process of identifying the entries corresponding

to a given particle in lookup tables is tedious since no tools seem to exist to perform

that task automatically (partly because the identi�cation of domains is also a di�cult

task). Moreover, it is common that di�erent particles share multiple entries in the rule

description.

Analysis of New Best Rule (Coevolution Rule)

It appears that the number patterns involved for the de�nition of the di�erent domains

(and therefore the number of particles) is much larger in the case of the new best rule

compared to the GKL rule (for instance). One of the most important feature in the case

of the GKL rule is that all-white and all-black domains emerge very early by wiping

out the small isolated islands of 1's and 0's. Such early \loss of information" doesn't

seem to occur in the case of the coevolution rule. In order to compare qualitatively

di�erent rules, the entries in the lookup tables associated with those rules are grouped

into classes. Each class corresponds to the entries associated with input patterns having

150

0

2

4

6

8

10

12

14

16

18

20

22

0 1 2 3 4 5 6 7

N
um

be
r

of
 1

’s
 in

 lo
ok

up
 ta

bl
e

Number of 1’s in input vector

Coevolution
Das
ABK
GKL

Figure 6.10: Distribution for the count of 1's in the lookup tables associated with rules

for di�erent densities of the input pattern.

the same density. The number of elements in each class is: f1; 7; 21; 35; 35; 21; 7; 1gwhich

correspond respectively to input patterns having a number of 1's in the range 0 to 7.

Then, for each class, the count of entries that return a 1 in the lookup table is evaluated.

The distribution for this count is plotted in Figure 6.10 for the four rules: coevolution,

Das, ABK and GKL. From this �gure, it appears that, as the rules are getting better

(in terms of performance for the � = 1=2 task), the count of 1's for low density input

pattern is getting higher. This means that the loss of information occurring in early

time steps due to isolated islands of 0's and 1's being wiped out is delayed. In fact, there

might be a trade-o� between avoiding losing too much information and the emergence

of particles. Indeed, the creation of particles requires the formation of stable patterns in

space and time which, in turn, requires some loss of information about local properties

of the initial con�guration.

The data for the plots in Figure 6.10 is reported in Table 6.3 which presents also

the distribution for the count of 0's. This table shows an interesting property for this

151

Density Coevolution GKL Das ABK

input pattern # 1's # 0's # 1's # 0's # 1's # 0's # 1's # 0's

0 0 1 0 1 0 1 0 1

1 0 7 0 7 0 7 0 7

2 6 15 3 18 5 16 4 17

3 15 20 13 22 14 21 14 21

4 20 15 22 13 21 14 21 14

5 15 6 18 3 16 5 17 4

6 7 0 7 0 7 0 7 0

7 1 0 1 0 1 0 1 0

Table 6.3: Distribution for the count of 1's and 0's in the lookup table with respect to

the density of the input pattern

distribution. Indeed, for those four rules, there is a symmetry for the distribution of the

count of 1's and 0's (reading one distribution top-down and the other bottom-up). That

same property has been tested and is also satis�ed for a few more high performance rules

(i.e., performance around 85% for N = 149) that have been discovered using coevolution.

The reasons why such a property emerged haven't been understood yet.

6.1.6 Concluding Remarks

The application of the \Ideal" trainer paradigm to the majority classi�cation task imple-

mented by CAs resulted in the discovery of a new rules which improves very signi�cantly

over the performance of previously known rules (by at least four points for N = 149; 599

and 999).

The dynamics of search implemented by the \Ideal" trainer paradigm have been

illustrated with diagrams (Figure 6.2) describing the evolution of rules and ICs (or,

more precisely, the evolution for the distribution of rules density and ICs density). The

analysis of those diagrams con�rms that the conditions for achieving continuous progress

are indeed implemented in the coevolutionary framework. That is, the population of ICs

152

exposes the population of rules to problems that are not too di�cult with respect to

their actual performance and that the population of rules is challenged with problems of

increasing di�culty over time.

The performance of the \Ideal" trainer paradigm has been also compared with

two evolutionary learning procedures that propose a static training environment. That

is, the distribution for the density of ICs doesn't adapt in response to the progress of the

population of rules. Experiments with an unbiased (binomial) distribution and a biased

(\uniform") distribution have been performed. In both cases, and with similar compu-

tational resource involved, the \Ideal" trainer setup consistently performed signi�cantly

better.

6.2 Application 2: a Modular Approach to Inductive

Learning

6.2.1 Modular Approaches to Inductive Learning: Presentation

In the �eld of inductive learning, among approaches for the construction of a classi�cation

theory or a continuous model of an observed system (e.g., time series prediction) are the

following: (1) to construct a single model that is de�ned over the entire input space,

or (2) to construct many local models from the query vectors or from the superposition

of local approximators. Locally weighted learning techniques [8] or radial basis function

networks (RBF) [13] are examples of the second approach.

Modular Inductive Learning (MIL) is a bottom-up approach to inductive learn-

ing which attempts to �nd a balance between those two approaches. The inductive

learning strategy implemented in MIL consists in exploring at the same time a space of

local models and a space of decompositions of the input space. Two goals underlie the

153

D2

D2

D1

D1

C2
C1

C3

C1 C2

C3

Local Models

Composite Classification Theory

Input Space Decompositions

Figure 6.11: The space of decompositions and the space of local models are explored

simultaneously. If some decompositions characterizing the domain of specialization of

some local models (represented in dark) are discovered, then a composite classi�cation

theory may be constructed. In that example, the composite solution is de�ned as follows:

if (x; y) 2 D2 then C1 else if (x; y) 2 D1 then C3 else C2

strategy implemented in MIL for the exploration of those two spaces. The �rst one is

to discover some local models that propose an accurate approximation of the training

data over some domain of the input space, along with decompositions of the input space

that capture the domains of \specialization" of those local models. The central idea

motivating that strategy is that a composite classi�cation theory with good accuracy

over the entire input space may then be constructed. This strategy is illustrated with

the diagram in Figure 6.11.

The second goal consists in discovering a composite solutions using as few components

154

as possible while still exhibiting a high accuracy with respect to the training data. The

motivation for that goal is to induce classi�cation theories that also generalize to input

data outside the training set. This is a direct application of Occam's razor.

The challenge of Modular Inductive Learning is to implement the right balance between

accuracy and the complexity of the �nal classi�cation theory (that is, the number of

components in its description).

6.2.2 Related Work

Similar approaches to modular inductive learning have been proposed by researchers.

For instance, this strategy has been investigated for concept learning in the �eld of

Inductive Logic Programming [24, 30, 31, 37]. In those works, the idea is to use niching

to construct multi-modal concepts, i.e. concepts represented in Disjunctive Normal Form

(DNF). In such a multi-modal concept, a niche corresponds to each disjunct. A bias is

introduced in the �tness function for the evolution of more general concepts resulting in

a composite solution with fewer components. Darwen [21] also used that principle for the

construction of modular solutions to the game of prisoner's dilemma. In his work, niching

is used for the discovery of a variety of di�erent strategies. Then, a gating algorithm

allows the construction of a composite solution from those elementary strategies. The

function of the gating algorithm is to determine which elementary strategy would be the

most appropriate given the recent history of interactions with the opponent. Along those

lines, Potter [81] proposed a model of cooperative coevolution in which each population is

dedicated to the exploration of the search space associated with a component of a problem

solution. In that system, the interactions between populations is de�ned explicitly by the

designer. Potter also developed a speci�c scheme to adapt the number of collaborating

populations in response to the decomposability and the dimensionality of the problem.

As discussed in Section 4.3.2, this model provides a paradigm for extending EC methods

155

by introducing explicitly the notion of modularity as a strategy to address problems of

increasing complexity.

However, in these related works, the decomposition strategy is very simplistic.

It is usually hard coded or it involves a simple learning procedure. The emphasis on

�nding accurate local models introduces a bias toward a particular type of composite

models which may not result in classi�cation theories that generalize well.

On the contrary, the goal of MIL is to introduce more exibility by exploring simulta-

neously the space of decompositions and the space of local models. The central idea

underlying this strategy is that the dynamics of search in those two spaces may result

in the discovery of classi�cation theories with better generalization ability.

6.2.3 Issues Concerning the Automatic Decomposition of Prob-

lems

There has been some attempts in the past to address the problem of modular inductive

learning using the same strategy as MIL but with limited success (e.g., Rosca's Evo-

lutionary Divide-and-Conquer (EDC) framework [89, chapter 7]). Indeed, the correct

implementation of this strategy is very complex because it involves a search along dif-

ferent interdependent dimensions, namely the space of decompositions and the space of

local models.

When constructing composite solutions, the problem of determining the con-

tribution of each component to the total performance of the system is known as the

credit assignment problem. Being able to identify important components in a composite

system is a valuable source of information for controlling the search for improvements

of that system. Therefore, the issue of credit assignment must be addressed in order

to The process of assigning credit can be performed according to di�erent strategies,

depending on the properties of the problem and the available knowledge concerning its

156

decomposability. At one extreme, explicit strategies consider each component individ-

ually and evaluate their usefulness to address the global problem. This approach is

possible when a problem can be clearly decomposed into independent subproblems. At

the other extreme, implicit strategies don't compute directly any performance value for

components. Instead, those strategies favor the emergence of high quality components

by exploiting some indirect mechanisms. Moriarty's SANE system [65] or Angeline and

Pollack's work on the emergence of modularity [6] are two examples that illustrate such

implicit strategies.

Moreover, for the same reasons which prove that there is no universal search

algorithm doing uniformly better than random search over all possible state space (\No

Free Lunch" theorem [114]), there exists no \universal" strategy for modular inductive

learning in terms of automatically constructing an optimum decomposition and deter-

mining its components across all possible problems. Therefore, there is necessarily an

explicit bias in any system implementing the idea of modular inductive learning and, as

a result, the performance of such a system will depend on the properties of the classi�ca-

tion (or modeling) task under consideration. This explicit bias depends on the strategy

which controls search in the space of decompositions and the space of local models along

with the representation language that de�nes those state spaces. One of our motivations

in the design of the architecture of the MIL system is to propose a framework in which

the di�erent mechanisms addressing those issues are clearly identi�ed.

6.2.4 Applying the \Ideal" Trainer Paradigm

The motivation for exploiting the \Ideal" trainer paradigm for addressing the problem

of modular inductive learning originated from the requirement for inducing theories with

high generalization ability. Indeed, by maintaining a pressure toward adaptability, the

\Ideal" trainer paradigm favors the emergence of agents that capture some intrinsic

157

toward
increasing difficulty

(larger domains)

Gradient information

(local models)
Learners

(domains)
Problems

Coverage-based
strategy

Figure 6.12: Extension of the \Ideal" trainer concept for Modular Inductive Learning.

properties of the changing environment. This side e�ect of adaptability is fundamental

to the notion of generalization because it allows the construction of compact descriptions.

The central idea of the MIL system is to exploit that feature as the fundamental strategy

to control search in the space of decompositions and the space of local models. A typical

scenario for the dynamics of search performed by MIL could be described as follows. In

a �rst stage, a classi�cation theory composed of several local models and covering the

entire training set is constructed. Usually, this initial solution has poor generalization

ability. Then, pressure is introduced in order to focus the search toward the exploration

of local models that �t larger domains of the input space. This pressure toward larger

domains induces an evolutionary race between local models resulting in the emergence

of local models that generalize better outside those domains. By making sure that the

entire input space is always covered by some local models, this strategy may result in

the discovery of compact composite solutions(i.e., theories involving fewer components)

with good accuracy.

In summary, the MIL system is a natural extension of the \Ideal" trainer concept.

Learners correspond to local models (or concepts) while problems correspond to domains.

158

Then, as represented in Figure 6.12, a coverage-based heuristic is introduced in the

population of domains. This heuristic allows the creation of niches which specialize on

di�erent regions of the input space. By maintaining this coverage of the input space, it

is always possible to construct composite classi�cation theories composed of high quality

local model.

The next sections describe the technical details of our particular implementa-

tion for MIL. First, the global architecture of the system is presented. Evolutionary

search is performed at di�erent levels of abstraction. At the lowest level, the space of

decompositions (domains) and the space of local models are explored. Then, a third

population explores the space of pairs (Domain, Solution) for good matches. Finally,

a fourth population explores the space of composite solutions constructed from pairs in

the former population. Section 6.2.6 describes the rules of evolution that control search

in each population and the interactions between members of di�erent populations.

6.2.5 Architecture of the MIL System

Our approach to Modular Inductive Learning combines several mechanisms:

� A coverage-based heuristic implemented using competition for resources. The goal

of this heuristic is to maintain niches such that all training examples are covered. As

a result, composite solutions that cover the entire input space with good accuracy

may be constructed. Here, each training data is considered as a resource which

is shared among pairs (Domain, Solution). A resource is \exploited" by a pair

if it is selected by the domain. The e�ciency of the pair to exploit a resource is

determined by a measure of cooperation performance between the domain and the

solution.

� Adaptation at the level of pairs (Domain, Solution) in order to isolate solutions

159

that have better accuracy over a given domain.

� Pressure toward larger domains, providing that some solutions still have a reason-

able accuracy over that new domain. The de�nition of the measure of cooperation

performance introduces a bias which controls the balance: domain size vs. accu-

racy. As discussed in section 6.2.3, some explicit bias must be introduced in order

to de�ne a preference toward a particular type of decomposition.

� Parallel search allowing the simultaneous exploration of di�erent alternatives for

the construction of composite solutions. Here again, a balance between the ex-

ploitation of current composite solutions and the exploration for new decomposi-

tions must be maintained.

Those heuristics work at di�erent levels of granularity: composite solutions,

pairs (Domain, Solution), domains and solutions. To embed all those mechanisms in

a single system, the architecture described in Figure 6.13 has been implemented.

The elementary entities are domains and solutions. A population of evolving structures

correspond to each of them. The population of pairs is composed of pairs of pointers

to elements in the population of domains and solutions. Each composite solution is

composed of a list of pointers to pairs. The list provides an order for the selection of the

component generating the output value in response to input vectors. The last element

of the list corresponds to the default component for generating the output when none of

the previous domains in the list matches the input vector.

This architecture and Hierarchical SANE [64] have many features in common.

SANE (Symbiotic, Adaptive Neuro-Evolution) [62] is an evolutionary inspired system

for the design of neural networks applied to problems in reinforcement learning. In its

�rst implementation, SANE was composed of a unique population of evolving agents,

each agent representing one hidden unit of a neural network. The �tness of agents is

160

Composite Solutions

Pairs

Domains Solutions

Figure 6.13: Architecture of the Modular Inductive Learning system

based on the evaluation of neural networks constructed from randomly selected groups

of hidden units. While being successful, a major drawback of this architecture concerns

its inability to keep track of groups of hidden units that resulted in high quality neural

networks. Hierarchical SANE addressed this issue by introducing a population of network

speci�cations (or blueprints), each speci�cation being composed of a list of pointers to

the population describing hidden units. This architecture allows a better control of the

balance between exploitation and exploration. This balance is achieved by keeping track

of successful groups of hidden units in order to perform local search (exploitation) and by

sampling the space of groups of hidden units to explore new solutions. The �rst SANE

algorithm exploited only a sampling strategy to construct solutions and distribute credit,

but it didn't keep track explicitly of successful groups of hidden units.

161

6.2.6 Rules of Evolution

This section describes the rules of evolution for the di�erent populations that compose the

MIL system. A �tness is designed to evaluate individuals in each population. However,

the di�erent populations do not evolve independently. First, the MIL system imple-

ments a \bottom-up" approach by searching for pairs (Domain, Solution) that provide

a high accuracy model over large domains of the input space, and composite solutions

constructed from those pairs. Second, MIL also implements a \top-down" approach by

focusing search on pairs that participate in the best composite solutions and the domains

and solutions that compose the best pairs.

The following sections describe in detail the rules of evolution for each popula-

tion.

Composite Solutions

� Representation: Each composite solution is represented by a list of pointers to

pairs.

� Search operators: A greedy algorithm is used for constructing composite solutions

from a given set of pairs. The output of this algorithm is an ordered list of pairs.

At each step of the construction, priority is given to the pair covering the largest

number of training examples not covered yet by the other pairs selected so far.

Local search is performed by adding a group of randomly selected pairs to those in

the current description of a composite solution and, then, by running the greedy

construction algorithm. A recombination operator is de�ned using a similar tech-

nique. In that case, the initial set of pairs is composed of the genetic material

(i.e., the set of pairs) of the parents and the o�spring is the output of the greedy

construction procedure.

162

� Fitness evaluation: In the current implementation, the �tness of composite solu-

tions is a measure of their absolute performance over the entire problem. It is

de�ned as the number of training cases correctly covered in the case of a classi�-

cation problem or the sum of squared error over the training set for the induction

of continuous models.

� Selection strategy: The top 10% individuals with respect to the �tness are kept for

the next generation.

Pairs (Domain; Solution)

� Representation: Each pair is represented by a pointer to a domain and a pointer

to a solution.

� Search operators: Adaptation is implemented at that level. Given a pair (Domain,

Solution), the population of solutions is sampled and if a solution is found that has

better accuracy over the domain than the current one, it replaces that solution.

This adaptation strategy is performed at each generation and for every member

of the population of pairs. No recombination operator has been de�ned. Instead,

new o�springs are created by mutating an existing pair (i.e., by selecting a new

domain or a new solution) selected according to a �tness proportionate rule.

� Fitness evaluation: The coverage-based heuristic is implemented at that level. Re-

source partitioning is exploited in order to implement this heuristic: each training

example is seen as a resource which is shared among the pairs that cover it. The

contribution of a training example to the �tness of a pair depends on the perfor-

mance of the pair relatively to others on that particular domain of the input space.

This strategy is implemented by de�ning a weight for each training data:

wk =
1P

Pairi:(Di;Si)
covered(k;Di)� Fcoop(Di; Si)

163

where: covered(k;Di) returns 1 if the domain Di selects the kth test case and

returns 0 otherwise. A small value for wk means that the kth test case is covered

accurately by a large number of individuals. Therefore, it is considered \easy"

and a small credit is given to individuals that cover it. Conversely, a large value

for wk means that few individuals cover the kth test case, resulting in a high

payo�. Fcoop(Di; Si) represents the performance of the cooperation between a

domain and a solution. That is, it is a function of Si's accuracy over the domain

Di. The cooperation performance takes a value in the range: 0 (no cooperation,

i.e. poor accuracy of Si over Di accuracy) to 1 (maximum cooperation, i.e. perfect

match). Depending on the inductive learning problem under consideration, the

de�nition of Fcoop(Di; Si) can take di�erent forms. For applications to classi�cation

problems, the following de�nition for the measure of cooperation performance has

been considered:

Fcoop(Di; Si) = exp(�
% mismatches Si over Di

�
)

For the induction of continuous models, this measure has been de�ned as follows:

Fcoop(Di; Si) = ��(average squared error of Si over Di)

where:

��(x) = 1�
1

1 + exp(�x��
�

)

Only one parameter, namely � , is introduced in the de�nition of the measure of

cooperation performance for classi�cation problems. However, in the case of contin-

uous models, a second parameter (named �) is introduced for the de�nition of this

measure. Indeed, for classi�cation problems, a boolean information is associated

with each training example (the test case is classi�ed correctly or not). However, for

continuous models, the piece of information associated with each training example

164

is a function of the error between the value returned by the model and the actual

value. The underlying idea in the de�nition of ��(x) is to perform a discretization

operation in order to reduce the dependence of the measure of cooperation per-

formance Fcoop(Di; Si) on the continuous value for the accuracy of Si over Di: if

x < �, ��(x) � 1 while ��(x) � 0 if x > �. The purpose of the parameter � is

to de�ne a threshold to perform this discretization. During evolutionary search,

the value of � is adapted to match the average squared error of the current best

composite solution.

As discussed previously, some subjectivity is necessary in order to de�ne a pref-

erence toward a particular strategy for controlling the automated decomposition

of problems (and the induction of modular classi�cation theories). In the case of

MIL, this subjectivity is introduced in the de�nition of the measure of cooperation

performance: Fcoop(Di; Si). Indeed, Fcoop(:) de�nes explicitly a total order over

pairs (Di; Si). Therefore, it embeds the control of the balance between domain size

and accuracy over domains.

Finally, the �tness of a pair is de�ned as:

fitness(Di; Si) =
X

tk : test cases

covered by Di

wk � Fcoop(Di; Si)

As a consequence of this de�nition, the contribution of a test case to the �tness of

a pair is smaller if a large number of pairs cover that test case with good accuracy.

The additive de�nition for fitness(Di; Si) is also at the origin of the pressure

toward larger domains. It gives an advantage to pairs that cover a larger number

of training examples, providing the penalty introduced by the value of Fcoop(Di; Si)

(due to a smaller accuracy of Si over Di) is compensated by the larger size of the

165

domain.

� Selection strategy: The top 50% individuals with respect to the �tness are kept in

the next generation along with the pairs that are used by the top 10% composite

solutions (i.e., the composite solutions that reproduce).

Domains (respectively Solutions)

� Representation: The architecture of this system is not dependent on a particular

representation to describe domains and solutions. For instance, S-expressions or

neural networks can be used.

� Search operators: The de�nition of the search operators depends on the choice of

the representation for domains (respectively solutions). Those operators construct

o�springs from individuals selected according to a �tness proportionate rule.

� Fitness evaluation: The �tness of a domain (respectively solution) is the sum of

the �tness of the pairs that have a pointer to that domain (respectively solution).

Here, the idea is simply to give more attention in the search process to domains

and solutions that are used by a large number of pairs and, indirectly, composite

solutions.

� Selection strategy: The top 50% individuals according to the �tness are kept in the

next generation along with the domains (respectively solutions) that are used by

the pairs that reproduce.

Elitist Strategy

In order to maintain in the di�erent populations all the elements which are used to de�ne

the best composite solutions or the best pairs with respect to their respective de�nition

of the �tness, an elitist strategy is implemented. This strategy ensures that all the pairs

166

that are used by the top 10% composite solutions are present in the next generation

along with the domains and solutions that are used in the description of those pairs.

In the same way, this strategy ensures that all the domains and solutions that are used

by the top 50% pairs are also present in the next generation. This strategy avoids a

collapse in the performance of composite solutions which would be observed if some of

their components (pairs, domains or solutions) were to disappear. The elitist strategy

helps to maintain the trade-o� between the exploitation of the current best composite

classi�cation theories and the exploration of new decompositions.

6.2.7 Experiments in Classi�cation: the Intertwined Spirals Prob-

lem

Presentation

The intertwined spirals problem is an inductive learning problem which consists in clas-

sifying points into two classes according to two intertwined spirals. Figure 6.14 shows an

example of a perfect solution for that problem along with the two spirals used for train-

ing. In Juill�e and Pollack [46], this problem has also been addressed using coevolution

as a mean to introduce a coverage-based heuristic in the search. In that work, a com-

petitive �tness was de�ned which resulted in the implementation of niching in the space

of phenotypes (and, as a consequence of the mapping genotype-to-phenotype, niching

also occurred in the space of genotypes). This niching technique allows the simultaneous

exploration of di�erent classi�cation theories until one alternative eventually takes over

the entire population because it covers all the test cases. This approach resulted in a sig-

ni�cant improvement in the quality and performance of classi�cation theories compared

to an absolute de�nition of the �tness.

The induction strategy implemented in the MIL system uses a di�erent approach.

167

194 hits

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 6.14: A perfect classi�cation for the intertwined spirals exploiting a decomposition

of the input space into four domains.

Indeed, in this former work, each evolving agent represents a complete solution and the

mechanism for modularization is embedded in the representation language itself. The

four-argument \IFLTE" instruction which implements the if (: : : � : : :) then : : : else : : :

statement is part of the primitive set and allows the description of modular concepts.

On the contrary, in modular inductive learning, the modularization mechanism is imple-

mented by the greedy procedure that constructs composite classi�cation theories from

pairs (Domain, Solution) and by the coverage-based strategy which controls the explo-

ration of the space of pairs (and therefore modularity). Modularization is performed by

decomposing the input space into domains which then become sub-problems. Therefore,

in MIL, the credit assignment strategy that controls modularization is explicit whereas

this strategy is implicit in [46].

168

Experimental Setup

We used the Genetic Programming [50] paradigm to address this problem. The set of

terminals is composed of fX;Y;<g. They correspond respectively to vector coordinates

in the input space and the ephemeral random constant. The sets of primitives to describe

domains and solutions are di�erent. This choice has been made arbitrarily with the

idea that the goal of domains is to decompose the input space rather than providing a

description for each class. Therefore, the language used to describe domains has a smaller

expressive power than the one that describes solutions. For domains, the primitive

set is composed of f+;�;�;%g, while for solutions the primitive set is composed of

f+;�;�;%; sin; cosg. The population size is 1; 000 for domains and solutions, 2; 000 for

pairs and 200 for composite solutions. The adaptation stage for pairs exploits a sample

of solutions of size 50. For all the experiments described in this section, data is averaged

over 100 runs.

Experimental Results

As shown in Figure 6.15, such a strategy allows the construction of a classi�cation theory

early in the run. Experiments were performed for di�erent values of the parameter � .

This parameter controls the balance between the size of domains and the accuracy over

domains. As described in Figure 6.15, if the pressure toward large domains is too large

(i.e., for large values of �), a perfect classi�cation theory cannot be constructed. In

that case, the pressure toward accuracy is too weak and domains are allowed to expand

quickly. Then, it becomes too di�cult to discover a local model with high accuracy

over those large domains. Figure 6.16 describes the evolution of the average number

of components for the best composite solution at each generation. This �gure shows

that, initially a large number of components is required to cover accurately the entire

input space. However, as the search goes on, accurate solutions over larger domains are

169

130

140

150

160

170

180

190

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

N
b

hi
ts

Generation

Tau = 0.5

Tau = 0.25

Tau = 0.1

Tau = 0.005
Tau = 0.01
Tau = 0.05

Figure 6.15: Evolution of average score for best composite solutions.

discovered and the number of components required to construct a classi�cation theory

decreases.

Another way to describe the dynamics of the search is to plot the evolution of

the pair (number of hits, number of components in composite solution) with the genera-

tion number as the parametric variable. This trajectory is represented in Figure 6.17 for

the same values of the parameter � as in Figures 6.15 and 6.16, for the �rst 300 genera-

tions. Following Occam's razor, the goal of modular inductive learning is to construct a

composite solution with few components which has high accuracy over the training data.

Therefore, the goal is to reach the bottom-right corner of the diagram in Figure 6.17 or,

more precisely, the point with coordinates (194; 1), which corresponds to a monolithic

perfect classi�cation theory. Thus, Figure 6.17 highlights the fact that the trajectory

for the pair (accuracy, model size) during evolutionary search plays an important role

170

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

N
b

co
m

po
ne

nt
s

Generation

Tau = 0.5

Tau = 0.25

Tau = 0.1

Tau = 0.005
Tau = 0.01
Tau = 0.05

Figure 6.16: Evolution of average number of components for best composite solutions.

to determine whether this target area can be reached. In particular, in the case of this

experimental setup, it appears that it is necessary to go through a stage where a large

number of components are involved in the best composite solutions before constructing

compact solutions with high accuracy.

From those experiments, the following observations can be made with respect to

the e�ect of the parameter � on the dynamics of search. First, if � is large, there is more

pressure toward larger domains. This results in classi�cation theories with poor accuracy

over the entire input space because the population of local models is exposed to arbitrary

domains of large size for which accurate models are di�cult to infer. On the contrary, if �

is small, there is more pressure toward accuracy. In that case, domains size can increase

only if there exists some local models with good accuracy over those larger domains.

This strategy usually results in composite solutions with a large number of components

171

0

2

4

6

8

10

12

14

16

18

20

22

24

26

125 130 135 140 145 150 155 160 165 170 175 180 185 190 195

N
b

co
m

po
ne

nt
s

Nb hits

Tau = 0.5

Tau = 0.25

Tau = 0.1

Tau = 0.005
Tau = 0.01
Tau = 0.05

Figure 6.17: Trajectory of the pair (accuracy, model size) during evolutionary search.

because local models tend to specialize on small domains, thereby preventing them from

generalizing on larger domains. For small values of � , it also takes more time to construct

a classi�cation theory that covers the entire input space because more components are

necessary.

6.2.8 Experiments in Time Series Prediction: theWolfe Sunspots

Database

Presentation

The Wolfe sunspot data is a record of the average number of sunspots observed each

month since the year 1700. The curve of the average number of sunspots per year for

the time period 1700 to 1995 is shown in Figure 6.18. The goal is to construct a model

for this data set such that some prediction can be made for the number of sunspots for

172

1700 1750 1800 1850 1900 1950 2000
0

20

40

60

80

100

120

140

160

180

200

220
Observed data
Prediction

1700 1750 1800 1850 1900 1950 2000
0

0.5

1

1.5

2

2.5

3
Square error / 1000

training set prediction set

Figure 6.18: Above: the Wolfe sunspots data: average number of sunspots per year and

prediction for run number four. Below: squared error of the prediction for that same

run.

years beyond the observation period.

For that particular problem, over-�tting is an important issue, especially because

the training data is noisy and sparse. Two basic approaches have been explored in the

literature for addressing this issue. The �rst one is cross-validation. This technique

divides the set into a training set and a validation set. Learning is performed from the

training set and the validation set is used to detect over-�tting. The second approach

uses a measure of complexity of the model. This measure is usually an estimate of the

size of the model, which can be given by the number of free parameters in the case of

neural networks [110] or the size of an S-expression [44].

Following Weigend, Huberman and Rumelhart [110], a normalized squared error

is considered for the experiments presented in this section to evaluate the performance

of a model on the training set and its prediction ability for input vectors outside the

173

training set:

ES =
1

�2
:
1

jSj
:
X
i2S

(xi � x̂i)
2

The purpose of the division by the variance (�2 = 1535) is to remove the dependence

on the dynamic range of the data. Then, the average is taken to make the measure

independent of the size of the data set S.

The nature of time series prediction problems is very di�erent from classi�cation

problems illustrated in section 6.2.7 with the intertwined spirals. Indeed, the evaluation

of the model against an input vector doesn't return a boolean answer but a value which

is a function of the di�erence between the model's prediction and the actual value.

Therefore, some speci�c mechanisms must be introduced for evaluating the performance

of pairs (domain, local model). In the current implementation of the MIL system, this

issue has been addressed by introducing the threshold function ��(x) in the de�nition

of the �tness of pairs. This function has been described in detail in section 6.2.6.

For the induction of continuous models, coevolutionary learning provides an

environment in which the evolutionary race between local models forces the emergence

of prediction models that have a better ability to generalize. The appropriate balance

accuracy vs. number of components in composite solutions is determined by controlling

the dynamics of coevolution between local models and domains. If local models over-�t

the data, then composite solutions are composed of a large number of components and,

therefore, are poor predictor. On the contrary, if the pressure toward larger domain is

too strong, a single-component composite solution is discovered early in the evolutionary

search but it has poor accuracy and, therefore, poor generalization ability. The idea is

to capture the region for the value of the parameters of the MIL system for which the

dynamics of the search is at the edge between those two behaviors. Our conjecture is

that if parameters are in this region, solutions will be discovered that generalize better

for input vectors outside the training set.

174

A speci�c search strategy has been designed in order to implement this idea.

This strategy is composed of two stages. In a �rst stage, coevolution is set up such

that priority is given to accuracy. The purpose of this stage is to discover a variety of

local models that are de�ned over di�erent sub-domains of the input space. At each

generation, the value of the parameter � is set to the average squared error for the

best composite solution discovered so far. As a result of this strategy, there is always a

pressure toward the discovery of local models that have better accuracy. In the second

stage, the evolutionary race is implemented among the local models. This is done by

relaxing the pressure toward accuracy, allowing the emergence of larger domains. In

practice, this is done by keeping � constant in the de�nition of Fcoop(Di; Si) for the

remaining of the run. As a result, only local models with better generalization ability

will survive. The run stops when a single component (monolithic) model is discovered.

If no such model emerge in the evolutionary race after a �xed number of generation

and only multi-component composite solutions are constructed then it is considered that

the search failed to discover some relevant features to induce a monolithic model. This

means that the local models are too specialized over subsets of the training data and

those runs are discarded.

A criterion is de�ned to determine when the system switches from the �rst stage

to the second. This criterion is given by the number of components in the current

best composite solution. When this number is larger than the number of training data

divided by a �xed constant � (� = 5 in our experiments), the second stage begins. It

the second stage is not entered after a �xed number of generations, this means that the

population of domains failed to capture the regions of the input space for which the

models discovered by the population of solutions have a high accuracy. Therefore, those

runs are also discarded.

175

Experimental Setup

Those experiments also use Genetic Programming to search for prediction models. The

set of terminals is composed of fx1; : : : ; x12;<g. fx1; : : : ; x12g constitutes the lag space

and corresponds to the 12 past input values from the series. < is the ephemeral ran-

dom constant. The sets of primitives for domains and solutions are the same as for

the intertwined spirals problem. There is no particular reason for the choice of those

terminals and a di�erent choice might result in a better performance. The population

size is 1; 000 for domains and solutions, 2; 000 for pairs and 200 for composite solutions.

The adaptation stage for pairs is based on a sample of solutions of size 50.

Experimental Results

We experimentally determined a range of values for which the dynamics of the coevolu-

tionary search is close to the threshold for the emergence of single component composite

solutions. The results for ten runs are presented in Table 6.4. This table describes at

which generation the system switches from stage one to the second stage and at which

generation a single-component solution is discovered. For two runs, the system never en-

tered the second stage (runs 5 and 9). For two other runs, no monolithic model has been

discovered (runs 1 and 10). For the other runs, monolithic models have been discovered

whose predictive performance is comparable to the best known (see Table 6.5) in three

cases (runs 2, 3 and 4).

Figure 6.19 describes the evolution of the number of components in the current

best composite solution and the normalized squared error over the training set and the

two prediction sets (between years 1921-1955 and years 1956-1979) for one of those

runs (namely, run 4). Three phases can be identi�ed. The �rst one corresponds to

the initial stage during which local models are constructed. During that stage, priority

is given to accuracy and the value of Etraining decreases. As a result, the number of

176

0 50 100 150 200 250 300

10
−1

10
0

Training: 1700 − 1920

Generalisation: 1921 − 1955

Generalisation: 1956 − 1979

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

Nb components

Figure 6.19: Results for run number four: Evolution of the number of components in

the best composite solution and of the normalized squared error over the training and

prediction sets.

177

Run Stage 2 Single Training Generalization Generalization

(generation #) component error Epredict(1921�1955) Epredict(1956�1979)

(generation #) 1700-1920

1 32 3 components 0.067292 0.139104 0.335573

2 28 261 0.085308 0.120646 0.209681

3 25 135 0.102575 0.138104 0.156038

4 32 131 0.103196 0.092878 0.255542

5 | |{ |{ |{ |{

6 40 276 0.085170 0.128788 0.543431

7 45 304 0.096550 0.153255 0.336291

8 20 69 0.127450 0.128760 0.292228

9 | |{ |{ |{ |{

10 32 12 components 0.061501 0.206863 0.424998

Table 6.4: Description of experimental results for 10 runs with the Wolfe Sunspots

database.

Model Training Generalization Generalization

1700-1920 Epredict(1921�1955) Epredict(1956�1979)

Tong and Lim [104] 0.097 0.097 0.28

Weigend et al. [110] 0.082 0.086 0.35

Table 6.5: Related experimental results in the literature.

178

components in composite solutions increases. Then, starting with generation 32, the

evolutionary race takes place among the di�erent local models. The pressure toward

larger domains results in the emergence of local models which generalize better and,

therefore, composite solutions with a decreasing number of components. At the same

time, adaptation continues to improve the performance of local models. In particular,

at the begin of the second stage, adaptation still seems to be the main force in action

and the number of components in the composite solutions continues to increase. Once

some local models are discovered that can generalize over larger domains, the number

of components decreases. Eventually, a single-component solution is discovered. In that

run, this happens at generation 131. After that generation, adaptation continues and the

value of Etraining decreases. Over-�tting is observed and the prediction error is increasing

(especially for Epredict(1921�1955) in that run). In this experiment, big variations can be

observed for the normalized squared error over the prediction set (for instance around

generation 200 for Epredict(1921�1955)). This feature is a drawback of the representation

scheme and the search operators implemented in Genetic Programming. Indeed, in

GP a single mutation can modify considerably the behavior of a model. Therefore, S-

expressions may not be the best representation for that problem, even if it results in

good performance for a signi�cant number of experiments. However, the architecture

of the MIL system does not depend on a particular representation language or on some

speci�c search operators. The implementation described in this chapter can easily be

extended to embed some other representation languages like neural networks.

6.2.9 Concluding Remarks

This section describes the MIL system which proposes a framework exploiting the \Ideal"

trainer paradigm in order to address problems in inductive learning. The important issues

for the automatic decomposition of problems and the discovery of the corresponding

179

components have been discussed. In particular, it has been concluded that some explicit

bias has to be introduced in order to control the balance between accuracy of local models

and size of domains. Depending on that bias, the resulting dynamics for search may vary

signi�cantly and, as demonstrated with the intertwined spiral problem, the quality of

the �nal classi�cation theory may also vary signi�cantly.

The MIL system has been illustrated with two di�erent applications: a classi�-

cation problem and a time-series prediction problem. We believe that the central idea

which consists in implementing an evolutionary race between local models is fundamen-

tal for the discovery of solutions with high generalization ability. The two applications

presented in this section illustrate this strategy and demonstrate the relevance of coevo-

lutionary learning for addressing the issue of generalization. In particular, they demon-

strate that the control of the dynamics of coevolution is critical for the discovery of high

quality models. Those two applications also validate the central strategy underlying the

notion of the \Ideal" trainer. That is, by proposing problems of increasing di�culty to

a population of learning agents, agents are likely to capture some intrinsic properties of

the problem domain, allowing them to generalize to unseen problems.

180

Chapter 7

Conclusion

7.1 Summary

The motivation for the research work presented in this dissertation takes ground from

a fundamental result in the �eld of search algorithms which states that there is no

such thing as a \universal" search procedure. That is, any search algorithm embeds

some mechanisms that make it more appropriate to capture some speci�c regularities

or structural properties. Therefore, when addressing a new problem, one should always

make sure the underlying regularities of the problem domain correlate with those the

search algorithm can capture.

For many ill-structured problems, the identi�cation and formalization of the in-

trinsic structural properties of the domain in the framework of heuristic search paradigms

is not always possible. In fact, experience seems to show some evidence that evolution-

ary computation techniques may be an appropriate framework to address such prob-

lems. Even if the underlying search strategies embedded in evolutionary algorithms are

not completely understood, their exibility and robustness usually result in reasonable

181

performance.

In this dissertation, EC techniques are described from the perspective of statisti-

cal inference procedures. It is observed that the principle of operation of EAs is based on

a knowledge-gathering process resulting from the sampling of the search space. However,

the structure that supports this process is an integral part of the EA and can not be

dissociated from it. As a result, EAs don't always provide an appropriate framework to

exploit certain kind of regularities.

The motivation of the research work presented in this dissertation is to extend

the EC paradigm by proposing new methodologies that are based on the same principles

of operation but expand their domain of applications. More precisely, the idea of this

work is to make more explicit the structure that underlies the statistical inference process.

Doing so results in more exibility for the de�nition of this structure, providing a more

appropriate framework to capture the regularities of a problem domain.

Two speci�c methodologies have been identi�ed for the de�nition of such struc-

tures: the explicit partitioning methodology and the indirect partitioning methodology.

Then, new strategies have been introduced, based on the exploitation of speci�c sta-

tistical properties that can be captured in the framework of those methodologies. The

technical contribution of this dissertation is based on the description of algorithms that

implement those strategies.

In the �rst algorithm, named SAGE, the structure that supports the statistical

inference process is based on the explicit partitioning methodology. SAGE is innovative

in the sense that sampling techniques haven't been proposed before as a strategy to

search trees and directed acyclic graphs. This search algorithm has been implemented

on a variety of distributed architectures, SIMD and MIMD, and achieved impressive

results on di�cult problems. In particular, SAGE has been able to discover some new

constructions for sorting networks with fewer comparators than the previously known

182

best constructions. Also, SAGE successfully tackled some di�cult problems in DFA

induction, ending up as a co-winner in the Abbadingo competition [54].

The indirect partitioning methodology has been exploited as a framework to im-

plement a strategy which is based on the search for domains of the state space over which

continuous progress can be observed with respect to a predetermined search procedure.

Coevolution has been proposed as a paradigm to implement this strategy. Indeed, since

coevolution is based on the evaluation of evolving agents in a dynamic environment, it

provides an appropriate framework to capture such ability for continuous improvement.

In the EC community, coevolution has also been proposed as a potential solution for

achieving open-ended evolution, that is the emergence of agents of increasing complex-

ity. The term coevolutionary learning denotes the application of this notion to the �eld

of machine learning.

However, multiple impediments may prevent coevolution from achieving contin-

uous progress. Those impediments have been illustrated in chapter 4 and discussed in

section 5.1. As a result of this preliminary work, two fundamental conditions have been

identi�ed in order to observe continuous progress: the need to maintain useful feedback

from the training environment and the need for a meta-level strategy to ensure progress

in the long term. The \Ideal" trainer concept has been introduced as a paradigm that

implements those two requirements. The central idea of this paradigm is to maintain an

evolutionary race among the evolving agents and to force the evolution of the training

environment toward problems of increasing di�culty.

The performance of this paradigm has been illustrated with the discovery of new cellular

automata rules to implement the majority classi�cation task that signi�cantly outper-

form the previous best known rules for that task. Then, the concept of the \Ideal"

trainer has been extended to the design of a system named Modular Inductive Learning

(MIL). MIL exploits the idea of an evolutionary race among a population of local models

183

to accurately cover large domains of the input space. This system has been illustrated

with a classi�cation problem and a time-series prediction problem.

7.2 Contributions and Discussion

Beyond the signi�cant experimental results that have been achieved by applying the

di�erent techniques introduced in this dissertation, this research work also contributes

to the understanding of fundamental issues in evolutionary computation.

First, by describing EC techniques as tools for performing statistical inference,

some fundamental limits have been identi�ed with respect to the class of problems that

may be addressed successfully by these techniques. In particular, sequential construction

problems introduced in section 2.1.2 exhibit some properties, like epistasis, that make

them extremely di�cult for an evolutionary algorithm like GAs.

Second, an extensive analysis of the coevolutionary paradigm supported by mul-

tiple experiments have made clear that some speci�c mechanisms must be introduced in

order to allow the open-ended emergence of agents of increasing performance. In this

research work, those mechanisms have been made explicit in the form of a meta-level

strategy that controls the direction of evolution for the training environment. However,

we believe that the \absolute" reference provided by the meta-level strategy can be

approximated with some simple strategies that would be embedded in evolving agents

themselves. This dissertation also demonstrates the importance of the dynamics of co-

evolution for achieving continuous progress. In particular, maintaining an appropriate

balance between problems di�culty and agents performance is critical. If problems di�-

culty don't increase fast enough, evolving agents tend to specialize and may not be able

to improve when they are exposed to more challenging problems. On the other hand,

if problems di�culty increase too quickly, agents get little feedback and are unlikely to

184

progress.

Third, in chapter 5, adaptability has been presented as a fundamental condition

for continuous progress. In the EC community, adaptability is also referred to as evolv-

ability. Evolvability has been the object of a lot of attention recently [3, 106]. Indeed,

evolutionary algorithms appear to be quite limited to address issues like scalability. In

particular, de�ning a structure supporting the statistical inference process is not a su�-

cient condition for scalability. This has been illustrated in chapter 3 with SAGE where it

was concluded that scalability could be achieved only by introducing more information

about the problem domain as the search space grows.

From a machine learning point of view, adaptability means that some intrinsic proper-

ties about the training environment have been identi�ed, allowing an agent to generalize

its performance to unseen problems. Therefore, exposing learning agents to problem

instances of increasing di�culty may allow them to capture relevant information for ad-

dressing the issue of scalability. The research work presented in this dissertation supports

that idea and proposes the \Ideal" trainer as a paradigm to implement successfully this

strategy.

7.3 Future Research

The research work presented in this dissertation is the source of several open questions

and challenges for the future. In particular, some important issues that could be ad-

dressed are the following:

� In the conclusion of chapter 3, the introduction of problem-speci�c heuristics is

proposed as a strategy for SAGE to address the issue of scalability. This idea orig-

inated from the experiments in DFA induction for which the search space grows

exponentially as the size of target DFAs increases. However, introducing heuristics

185

also reshapes the probability distribution of solutions in the search space. As a

result, the sampling-based strategy may no longer capture some relevant informa-

tion to drive search. The analysis of the interactions and the trade-o� between

knowledge-based search (i.e., heuristic) and statistical inference in the context of

SAGE is a natural extension of this research work.

� As discussed in the previous section, the implementation of the \Ideal" trainer

concept presented in this dissertation relies on some explicit strategies in order to

maintain pressure toward adaptability and to provide a direction for the evolution

of the training environment. This last strategy is based on the explicit de�nition

of a partial order over the space of problems. However, this methodology assumes

that the space of problems has been identi�ed and that any element of arbitrary

\di�culty" can be accessed. For many problems, this methodology cannot be

applied directly. For instance, consider a model of coevolution between agents

that implement a game strategy (to play chess or Go for instance). In that case,

it is not possible to construct a game strategy of arbitrary di�culty. Otherwise,

this would mean that the problem of discovering the best game strategy has been

solved. Instead, some mechanisms must be implemented in order to approximate

the dynamics associated with the \Ideal" trainer concept. Rosin [93] proposed

several heuristics that extend the coevolutionary paradigm in order to address this

type of issue. Such heuristics are based on the construction of structures, like the

\hall of fame", that encode a sample of important solutions discovered in previous

generations in order to provide a gradient for search. Designing such heuristics

would make a very signi�cant addition to the implementation described in this

dissertation by providing more exibility for addressing new classes of problems.

� The MIL system has been introduced as an application of the \Ideal" trainer con-

186

cept for addressing problems in inductive learning (see section 6.2). A natural

extension of this system concerns the embedding of multiple representation lan-

guages for the description of domains and solutions. Indeed, in such a \cultural"

system [1], the evolutionary race would also involve a competition between the

di�erent representation schemes. Any representation language is more appropri-

ate to describe concisely some speci�c structures or regularities. Therefore, this

cultural environment would favor the emergence of those languages that capture

more e�ciently and reliably the regularities of the current problem. Such a sys-

tem may eventually result in the construction of composite solutions that combine

multiple representation schemes in their description, thereby taking advantage of

the properties associated with each language.

� The representation problem is a recurrent issue in the �eld of arti�cial intelli-

gence. In the �eld of evolutionary computation, a lot of e�ort is also dedicated to

the design of an appropriate representation and of relevant search operators when

addressing a particular problem by exploiting some speci�c knowledge about the

problem domain. Indeed, the performance of any search procedure depends on the

existence of a correlation between the properties of the landscape associated with

the state space and the type of information that can be captured and exploited

by the algorithm. This is a direct interpretation of the No Free Lunch theorem

[114]. Therefore, as a follow up of the work on coevolutionary learning and the

\Ideal" trainer concept discussed in this thesis, an important domain of research

concerns the exploration of mechanisms that should be implemented in the repre-

sentation language (and the search operators) in order to improve adaptability of

evolving agents. Wagner and Altenberg [3, 106] addressed this issue and presented

modularity as one important feature discovered by natural evolution in order to

187

boost the evolvability of living organisms. Some other mechanisms like morpho-

genesis, learning or scalability may also be some relevant candidates that should

be introduced in the representation language in order to help evolvability.

� Di�erent methodologies have been explored for the design of systems exhibiting

complex behaviors. Those methodologies are usually based on a decomposition

into multiple interacting low-level behaviors. The purpose of this decomposition is

to reduce the complexity of designing a monolithic solution to the task by looking

for some nearly independent features. However, the de�nition of those low-level

behaviors and the construction of an architecture that controls their interactions is

a task of increasing di�culty as the system becomes more complex. The subsump-

tion architecture proposed by Brooks [12] is one methodology which addresses this

issue. However, there are some limits for the complexity of systems based on that

architecture: as the number of layers in the architecture increases, it becomes more

and more di�cult to specify their interactions. Following a similar strategy, Albus

[2] proposed a uni�ed framework, the Real-time Control System (RCS), that ties

together many components of the mind that have been identi�ed | like percep-

tion, behavior generation, knowledge representation, planning, learning, . . .| into

an arti�cial intelligent agent. Albus' idea is that the goal of designing a topology

which de�nes the interactions between the di�erent component of a complex sys-

tem can be achieve more e�ciently by following some systematic design principles.

However, such knowledge-based methodologies present a bottleneck for the design

of highly complex systems because they still rely on the identi�cation of low-level

components and, especially, on the de�nition of a strategy to control how those

components interact. A lot of applications that involve the processing of a large

amount of information at di�erent degrees of granularity and di�erent levels of ab-

188

straction like vision systems, robot controllers or planning in complex environments

(e.g. game strategies) don't seem amenable to implement such methodologies. For

the design of such systems, search-intensive methodologies taking advantage of

recent improvements in massively parallel technologies may o�er an attractive al-

ternative and/or addition to engineering-based approaches. In this dissertation,

the problem of generating cellular automata rules to implement the majority clas-

si�cation task has been successfully addressed. This classi�cation task requires the

computation of a global property of the system based on the processing of local

information. While being very simple, this example still identi�es some important

issues and it demonstrates that the methodologies exploited to address this prob-

lem, in particular the \Ideal" trainer concept, may be extended to tackle the task

of designing large complex systems. Therefore, the study of hybrid techniques com-

bining knowledge-based and search-intensive approaches is certainly a promising

methodology for the design of intelligent systems.

The debate whether complex cognitive tasks can be implemented in a digital

machine is still open [17]. Among those who think this is possible, there is still a lot

of disagreement about the amount of computational resource that would be required

to achieve an \arti�cial intelligence" that would exhibit a behavior similar to natural

systems. However, it is likely that the exploration of new methodologies for the design

of large complex systems constitutes an important part of the answer to the challenge of

AI.

189

Bibliography

[1] Myriam Z. Abramson and Lawrence Hunter. Classi�cation using cultural co-

evolution and genetic programming. In John R. Koza, David E. Goldberg, David B.

Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the

First Annual Conference, pages 249{254. MIT Press, 1996.

[2] James S. Albus. The engineering of mind. In Pattie Maes, Maja j. Mataric, Jean-

Arcady Meyer, Jordan B. Pollack, and Stewart W. Wilson, editors, Proceedings

of the Fourth International Conference on Simulation of Adaptive Behavior, pages

23{32. MIT Press, 1996.

[3] Lee Altenberg. The evolution of evolvability in genetic programming. In Kenneth E.

Kinnear, Jr., editor, Advances in Genetic Programming, chapter 3, pages 47{74.

MIT Press, 1994.

[4] David Andre, Forrest H. Bennett III, and John R. Koza. Evolution of intricate long-

distance communication signals in cellular automata using genetic programming. In

Arti�cial Life V: Proceedings of the Fifth International Workshop on the Synthesis

and Simulation of Living Systems, pages 16{18, 1996. Nara, Japan.

[5] Peter J. Angeline. Two self-adaptive crossover operations for genetic programming.

In Peter J. Angeline and Kenneth E. Kinnear, Jr., editors, Advances in Genetic

190

Programming II, chapter 5, pages 89{109. MIT Press, 1995.

[6] Peter J. Angeline and Jordan B. Pollack. Coevolving high-level representations.

In C. Langton, editor, Arti�cial Life III, pages 55{71. Addison-Wesley: Reading

MA, 1994.

[7] Dana Angluin and Carl H. Smith. Inductive inference: Theory and methods.

Computing Surveys, 15:237{269, September 1983.

[8] Christopher G. Atkeson, Andrew W. Moore, and Stephan Schaal. Locally weighted

learning. Arti�cial Intelligence Review, 11:11{73, 1997.

[9] Robert Axelrod. The evolution of strategies in the iterated prisoner's dilemma.

In Lawrence Davis, editor, Genetic Algorithms and Simulated Annealing. Morgan

Kaufmann, 1989.

[10] Thomas B�ack and Hans-Paul Schwefel. An overview of evolutionary algorithms for

parameter optimization. Evolutionary Computation, 1(1):1{24, 1993.

[11] Eric B. Baum. On optimal game tree propagation for imperfect players. In Pro-

ceedings of the Tenth National Conference on Arti�cial Intelligence, 1992.

[12] Rodney A. Brooks. Intelligence without representation. Arti�cial Intelligence,

47:139{159, 1991.

[13] D. S. Broomhead and D. Lowe. Multivariate functional interpolation and adaptive

networks. Complex Systems, 2:321{355, 1988.

[14] M. S. Capcarrere, M. Sipper, and M. Tomassini. Two-state, r=1 cellular automaton

that classi�es density. Physical Review Letters, 77(24):4969{4971, December 1996.

[15] Gail Carpenter, Stephen Grossberg, Natalya Markuzon, John Reynolds, and David

Rosen. Fuzzy artmap: A neural network architecture for incremental supervised

191

learning of analog multidimensional maps. IEEE Transactions on Neural Networks,

3:698{713, 1992.

[16] Pang C. Chen. Heuristic sampling: a method for predicting the performance of

tree searching programs. SIAM Journal on Computing, 21:295{315, April 1992.

[17] Paul M. Churchland. Matter and consciousness : a contemporary introduction to

the philosophy of mind. MIT Press, 1988.

[18] Dave Cli� and Geo�rey F. Miller. Tracking the red queen: Measurements of adap-

tive progress in co-evolutionary simulations. In The Third European Conference

on Arti�cial Life, pages 200{218. Springer-Verlag, 1995. LNCS 929.

[19] Dave Cli� and Geo�rey F. Miller. Co-evolution of pursuit and evasion ii: Simula-

tion methods and results. In Pattie Maes, Maja J. Mataric, Jean-Arcady Meyer,

Jordan Pollack, and Stewart W. Wilson, editors, Proceedings of the Fourth Interna-

tional Conference on Simulation of Adaptive Behavior, pages 506{515, Cambridge,

Massachusetts, 1996. MIT Press.

[20] Joseph C. Culberson. On the futility of blind search. Technical report, University

of Alberta, July 1996. TR 96-18.

[21] Paul James Darwen. Coevolutionary Learning by Automatic Modularisation with

Speciation. PhD thesis, University of New South Wales, Australia, 1996.

[22] Rajarshi Das, Melanie Mitchell, and James P. Crutch�eld. A genetic algorithm dis-

covers particle-based computation in cellular automata. In Yuval Davidor, Hans-

Paul Schwefel, and Reinhard Manner, editors, Parallel Problem Solving from Na-

ture - PPSN III, LNCS 866, pages 344{353. Springer-Verlag, 1994.

192

[23] S. Das and M. C. Mozer. A uni�ed gradient-descent/clustering architecture for �-

nite state machine induction. In Neural Information Processing Systems, volume 6,

pages 19{26, 1994.

[24] Kenneth A. De Jong, William M. Spears, and Diana F. Gordon. Using genetic

algorithms for concept learning. Machine Learning, 13:161{188, 1993.

[25] Susan L. Epstein. Toward an ideal trainer. Machine Learning, 15:251{277, 1994.

[26] Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning archi-

tecture. In Touretzky, editor, Advances in Neural Information Processing Systems

2. Morgan Kau�man, 1990.

[27] Sevan G. Ficici and Jordan B. Pollack. Challenges in coevolutionary learning:

Arms-race dynamics, open-endedness, and mediocre stable states. In Christoph

Adami, Richard K. Belew, Hiroaki Kitano, and Charles E. Taylor, editors, Pro-

ceedings of the Sixth International Conference on Arti�cial Life, Cambridge, Mas-

sachusetts, 1998. MIT Press.

[28] Lawrence J. Fogel. Autonomous automata. Industrial Research, 4:14{19, 1962.

[29] M. L. Forcada and R. C. Carrasco. Learning the initial state of a second-order

recurrent neural network during regular-language inference. Neural Computation,

7(5):923{930, 1995.

[30] Attilio Giordana and Filippo Neri. Search-intensive concept induction. Evolution-

ary Computation, 3(4):375{416, 1995.

[31] Attilio Giordana, Filippo Neri, Lorenza Saitta, and Marco Botta. Integrating

multiple learning strategies in �rst order logics. Machine Learning, 27:209{240,

June 1997.

193

[32] E. Mark Gold. Complexity of automaton identi�cation from given data. Informa-

tion and Control, 37:302{320, 1978.

[33] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

[34] David E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation,

analysis, and �rst results. Complex Systems, 3:493{530, 1989.

[35] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search

through randomization. In Proceedings of the Fifteenth National Conference on

Arti�cial Intelligence, pages 431{437. AAAI Press / MIT Press, 1998.

[36] Milton W. Green. Some improvements in nonadaptive sorting algorithms. Techni-

cal report, Stanford Research Institute, Menlo Park, California, c.1969.

[37] David Perry Greene and Stephen F. Smith. Competition-based induction of deci-

sion models from examples. Machine Learning, 13:229{257, 1993.

[38] W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an opti-

mization procedure. In Chris Langton et al., editors, Arti�cial Life II. Addison

Wesley, 1992.

[39] John H. Holland. Adaptation in Natural and Arti�cial Systems. The University of

Michigan Press, 1975.

[40] Phil Husbands. Distributed coevolutionary genetic algorithms for multi-criteria

and multi-constraint optimisation. In T. Fogarty, editor, Proceedings of Evolution-

ary computing, AISB Workshop Selected Papers, pages 150{165. Springer-Verlag,

1994. LNCS 865.

194

[41] Hitoshi Iba and Hugo de Garis. Extending genetic programming with recombina-

tive guidance. In Peter J. Angeline and Kenneth E. Kinnear, Jr., editors, Advances

in Genetic Programming II, chapter 4, pages 69{88. MIT Press, 1995.

[42] Hitoshi Iba, Hugo de Garis, and Taisuke Sato. Genetic programming using a

minimum description length principle. In Kenneth E. Kinnear, Jr., editor, Advances

in Genetic Programming, chapter 12, pages 265{284. MIT Press, 1994.

[43] Daniel H. Janzen. When is it coevolution? Evolution, 34(3):611{612, 1980.

[44] Harri J�aske. Prediction of sunspots by gp. In Jarmo T. Alander, editor, Proceedings

of the Second Nordic Workshop on Genetic Algorithms and their Applications,

pages 79{87, 1996.

[45] D. Johnson. The np-completeness column: an on-going guide. J. Algorithms, 3:298,

September 1982.

[46] Hugues Juill�e and Jordan B. Pollack. Co-evolving intertwined spirals. In Proceed-

ings of the Fifth Annual Conference on Evolutionary Programming, pages 461{468.

MIT Press, 1996.

[47] Hugues Juill�e and Jordan B. Pollack. Improved algorithm for sorting network

design validation. Submitted to Mathematical Systems Theory, 1998.

[48] Donald E. Knuth. The Art of Computer Programming, volume 3: Sorting and

Searching. Addison Wesley, 1973.

[49] Donald E. Knuth. Estimating the e�ciency of backtracking programs. Math.

Comp., 29:121{136, 1975.

[50] John R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, 1992.

195

[51] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-

grams. MIT Press, 1994.

[52] Mark Land and Richard K. Belew. No perfect two-state cellular automata for

density classi�cation exists. Physical Review Letters, 74(25):5148{5150, 1995.

[53] Kevin J. Lang. Random dfa's can be approximately learned from sparse uniform

examples. In Proceedings of the Fifth Annual ACM Workshop on Computational

Learning Theory, pages 45{52, 1992.

[54] Kevin J. Lang and Barak A. Pearlmutter. Abbadingo one: Dfa learning competi-

tion. http://abba{dingo.cs.unm.edu, 1997.

[55] Kevin J. Lang and Michael J. Witbrock. Learning to tell two spirals apart. In

Proceedings of the 1988 Connectionist Summer Schools. Morgan Kaufmann, 1988.

[56] Samir W. Mahfoud. Niching methods for genetic algorithms. Technical report,

University of Illinois at Urbana-Champaign, May 1995. IlliGAL Report No. 95001.

[57] Steven Minton, Mark D. Johnston, Philips Andrew B, and Philip Laird. Solving

large-scale constraint satisfaction and scheduling problems using a heuristic repair

method. In Proceedings of the Eighth National Conference on Arti�cial Intelligence,

pages 17{24, 1990.

[58] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[59] Melanie Mitchell, James P. Crutch�eld, and Peter T. Hraber. Evolving cellular

automata to perform computations: Mechanisms and impediments. Physica D,

75:361{391, 1994.

196

[60] Melanie Mitchell, Peter T. Hraber, and James P. Crutch�eld. Revisiting the edge

of chaos: Evolving cellular automata to perform computations. Complex Systems,

7:89{130, 1993.

[61] David E. Moriarty and Risto Miikkulainen. Discovering complex othello strategies

through evolutionary neural networks. Connection Science, 7(3):195{209, 1995.

[62] David E. Moriarty and Risto Miikkulainen. E�cient reinforcement learning

through symbiotic evolution. Machine Learning, 22:11{33, 1996.

[63] David E. Moriarty and Risto Miikkulainen. Evolving obstacle avoidance behavior

in a robot arm. In Pattie Maes, Maja J. Mataric, Jean-Arcady Meyer, Jordan

Pollack, and Stewart W. Wilson, editors, Proceedings of the Fourth International

Conference on Simulation of Adaptive Behavior, pages 468{475, Cambridge, Mas-

sachusetts, 1996. MIT Press.

[64] David E. Moriarty and Risto Miikkulainen. Hierarchical evolution of neural net-

works. Technical Report AI96-242, University of Texas, Austin, Texas, 1996.

[65] David Eric Moriarty. Symbiotic Evolution of Neural Networks in Sequential Deci-

sion Tasks. PhD thesis, University of Texas at Austin, USA, 1997.

[66] Christopher K. Oei, David E. Goldberg, and Shau-Jin Chang. Tournament se-

lection, niching, and the preservation of diversity. Technical Report IlliGAL No.

91011, University of Illinois at Urbana-Champaign, 1991.

[67] Una-May O'Reilly and Franz Oppacher. The troubling aspects of a building block

hypothesis for genetic programming. In L. D. Whitley and M. D. Vose, editors,

Foundations of Genetic Algorithms 3. Morgan Kaufmann, 1995.

[68] Andrew J. Palay. Searching with Probabilities. Pitman, 1985.

197

[69] Ian Parberry. A computer-assisted optimal depth lower bound for nine-input sort-

ing networks. Mathematical Systems Theory, 24:101{116, 1991.

[70] Jan Paredis. Co-evolutionary constraint satisfaction. In Yuval Davidor, Hans-Paul

Schwefel, and Reinhard Manner, editors, Parallel Problem Solving from Nature -

PPSN III, LNCS 866, pages 46{55. Springer-Verlag, 1994.

[71] Jan Paredis. Steps towards co-evolutionary classi�cation neural networks. In

Brooks and Maes, editors, Arti�cial Life IV, pages 102{108. MIT Press, 1994.

[72] Jan Paredis. The symbiotic evolution of solutions and their representations. In

Larry J. Eshelman, editor, Proceedings of the Sixth International Conference on

Genetic Algorithms, pages 359{365. Morgan Kaufmann, 1995.

[73] Jan Paredis. Coevolutionary computation. Arti�cial Life, 1996. To appear.

[74] Jan Paredis. Coevolving cellular automata: Be aware of the red queen! In Thomas

B�ack, editor, Proceedings of the Seventh International Conference on Genetic Al-

gorithms, pages 393{400. Morgan Kaufmann, 1997.

[75] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solv-

ing. Addison-Wesley, 1984.

[76] Charles C. Peck and Atam P. Dhawan. Genetic algorithms as global random search

methods: An alternative perspective. Evolutionary Computation, 3(1):39{80, 1995.

[77] Charles C. Peck III. Analysis of Genetic Algorithms from a Global Random Search

Method Perspective with Techniques for Algorithmic Improvement. PhD thesis,

University of Cincinnati, 1993.

[78] Riccardo Poli, William B. Langdon, and Una-May O'Reilly. Analysis of schema

variance and short term extinction likelihoods. In John R. Koza, Wolfgang Banzhaf,

198

Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Gar-

zon, David E. Goldberg, Hitoshi Iba, and Rick L. Riolo, editors, Proceedings of the

Third Annual Genetic Programming Conference, pages 284{292. Morgan Kauf-

mann, 1998.

[79] Jordan B. Pollack. The induction of dynamical recognizers. Machine Learning,

7:227{252, 1991.

[80] Jordan B. Pollack, Alan Blair, and Mark Land. Coevolution of a backgammon

player. In Chris Langton, editor, Proceedings of Arti�cial Life V. MIT Press, 1996.

[81] Mitchell A. Potter. The Design and Analysis of a Computational Model of Co-

operative Coevolution. PhD thesis, George Mason University, Fairfax, Virginia,

1997.

[82] Mitchell A. Potter and Kenneth A. De Jong. A cooperative coevolutionary ap-

proach to function optimization. In Yuval Davidor, Hans-Paul Schwefel, and Rein-

hard Manner, editors, Parallel Problem Solving from Nature - PPSN III, LNCS

866, pages 249{257. Springer-Verlag, 1994.

[83] Mitchell A. Potter, Kenneth A. De Jong, and John J. Grefenstette. A coevolution-

ary approach to learning sequential decision rules. In Larry J. Eshelman, editor,

Proceedings of the Sixth International Conference on Genetic Algorithms, pages

366{372, San Mateo, California, 1995. Morgan Kau�mann.

[84] Armand E. Prieditis. Machine discovery of e�ective admissible heuristics. Machine

Learning, 12:117{141, 1993.

[85] G. Rawlins, editor. Foundations of Genetic Algorithms. Morgan Kaufmann, 1991.

[86] Craig W. Reynolds. Competition, coevolution, and the game of tag. In Brooks

and Maes, editors, Arti�cial Life IV. MIT Press, 1994.

199

[87] J. Rissanen. Modeling by shortest data description. Automatica, 14:445{471, 1978.

[88] J. Rissanen. Stochastic complexity. Journal of the Royal Statistical Society,

49(3):223{239, 1987.

[89] Justinian Rosca. Hierarchical Learning with Procedural Abstraction Mechanisms.

PhD thesis, University of Rochester, Rochester, New York, USA, 1997.

[90] R. S. Rosenberg. Simulation of genetic populations with biochemical properties.

PhD thesis, University of Michigan, 1967.

[91] Christopher D. Rosin and Richard K. Belew. Methods for competitive co-evolution:

Finding opponents worth beating. In Larry J. Eshelman, editor, Proceedings of

the Sixth International Conference on Genetic Algorithms, San Mateo, California,

1995. Morgan Kau�mann.

[92] Christopher D. Rosin and Richard K. Belew. A competitive approach to game

learning. In Proceedings of the Ninth Annual ACM Conference on Computational

Learning Theory, 1996.

[93] Christopher Darrell Rosin. Coevolutionary Search Among Adversaries. PhD thesis,

University of California, San Diego, 1997.

[94] Jonathan Roughgarden. The theory of coevolution. In Douglas J. Futuyma and

Montgomery Slatkin, editors, Coevolution. Sinauer Associates Inc, 1983.

[95] J. D. Scha�er and A. Morishima. An adaptive crossover distribution mechanism for

genetic algorithms. In The Second International Conference on Genetic Algorithms,

pages 36{40, 1987.

200

[96] J�urgen Schmidhuber. On learning how to learn learning strategies. Technical

report, Fakult�at f�ur Informatik, Technische Universit�at M�unchen, November 1994.

FKI-198-94.

[97] J�urgen Schmidhuber. Discovering solutions with low kolmogorov complexity and

high generalization capability. In A. Prieditis amd S. Russell, editor, Machine

Learning: Proceedings of the twelfth International Conference, pages 188{196. Mor-

gan Kaufmann, 1995.

[98] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley,

Chichester, UK, 1981.

[99] Karl Sims. Evolving 3d morphology and behavior by competition. In Brooks and

Maes, editors, Arti�cial Life IV, pages 28{39. MIT Press, 1994.

[100] Moshe Sipper. Coevolving non-uniform cellular automata to perform computa-

tions. Physica D, 92:193{208, 1994.

[101] Rok Sosic and Jun Gu. 3,000,000 queens in less than one minute. SIGART Bulletin,

22:22{24, 1991.

[102] Harold S. Stone and Janice M. Stone. E�cient search techniques - an empirical

study of the n-queens problem. IBM Journal Research Development, 31:464{474,

1987.

[103] Gil Syswerda. Uniform crossover in genetic algorithms. In J. D. Scha�er, editor,

Proceedings of the Third International Conference on Genetic Algorithms. Morgan

Kaufmann, 1989.

[104] Howell Tong and K. S. Lim. Threshold autoregressive, limit cycles and cyclical

data. Journal of Royal Statistical Society. Series B, 42:245, 1980.

201

[105] B. A. Trakhtenbrot and Ya M. Barzdin. Finite Automata: Behavior and Synthesis.

North Holland Publishing Company, 1973.

[106] G�unter P. Wagner and Lee Altenberg. Complex adaptations and the evolution of

evolvability. Evolution, 50(3):967{976, June 1996.

[107] C. Wallace and D. Boulton. An information measure for classi�cation. Computer

Journal, 11:185{194, 1968.

[108] C. Wallace and P. Freeman. Estimation and inference by compact coding. Journal

of the Royal Statistical Society, 49(3):240{265, 1987.

[109] R. L. Watrous and G. M. Kuhn. Induction of �nite state languages using second-

order recurrent networks. Neural Computation, 4(3):406{414, 1992.

[110] Andreas S. Weigend, Bernardo A. Huberman, and David E. Rumelhart. Predicting

the future: A connectionist approach. International Journal of Neural Systems,

1(3):193{209, 1990.

[111] L. D. Whitley, editor. Foundations of Genetic Algorithms 2. Morgan Kaufmann,

1993.

[112] L. D. Whitley and M. D. Vose, editors. Foundations of Genetic Algorithms 3.

Morgan Kaufmann, 1995.

[113] Patrick Henry Winston. Arti�cial Intelligence. Addison-Wesley, 1984. Second

edition.

[114] David H. Wolpert and William G. Macready. No free lunch theorems for search.

Technical report, Santa Fe Institute, July 1995. SFI-TR-95-02-010.

[115] Z. Zeng, R. M. Goodman, and P. Smyth. Learning �nite state machines with

self-clustering recurrent networks. Neural Computation, 5(6):976{990, 1994.

202

[116] Byoung-Tak Zhang and Heinz M�uhlenbein. Balancing accuracy and parsimony in

genetic programming. Evolutionary Computation, 3(1):17{38, 1995.

[117] Anatoly A. Zhigljavsky. Theory of Global Random Search. Kluwer academic, 1991.

volume 65 of Mathematics and Its Applications (Soviet Series).

203

