
Competitive Environments
Evolve Better Solutions for Complex Tasks

Peter J. Angeline and Jordan B. Pollack

Laboratory for Artificial Intelligence Research
Computer and Information Science Department

The Ohio State University
Columbus, Ohio 43210

pja@cis.ohio-state.edu
pollack@cis.ohio-state.edu

Appears in:

Genetic Algorithms: Proceedings of the Fifth International Conference (GA93)

Edited by Stephanie Forrest

The Ohio State University May 5, 1993 1

Peter J. Angeline and Jordan B. Pollack
Laboratory for Artificial Intelligence Research
Computer and Information Science Department

The Ohio State University
Columbus, Ohio 43210
pja@cis.ohio-state.edu

pollack@cis.ohio-state.edu

Abstract

In the typical genetic algorithm experiment, the
fitness function is constructed to be independent
of the contents of the population to provide a con-
sistent objective measure. Such objectivity entails
significant knowledge about the environment
which suggests either the problem has previously
been solved or other non-evolutionary techniques
may be more efficient. Furthermore, for many
complex tasks an independent fitness function is
either impractical or impossible to provide. In
this paper, we demonstrate thatcompetitive fit-
ness functions, i.e. fitness functions that are
dependent on the constituents of the population,
can provide a more robust training environment
than independent fitness functions. We describe
three differing methods for competitive fitness,
and discuss their respective advantages.

1 INTRODUCTION

Competitive learning is a long standing topic in machine
learning (Samuel, 1959; Tesauro, 1992). Interest for using
competition in machine learning tasks stems from a desire
for a program to discover the strategic nuances of a com-
plex task directly from the first principles of interaction.
Appropriate complex structures arising purely from the
“physics” of the task environment would be the ultimate
validation of machine learning capability. Such is the
essence of emergent computation (Forrest, 1991).

A competitive learning process encourages an evolution-
ary development such that as new strategies are developed
by one learner, its opponent adjusts its abilities and discov-
ers new strategies of its own. This strategic “arms race”
ideally increases the overall ability of the learners until
they reach near optimal abilities. Unfortunately, there is a
possibility of competitive learners falling into local min-
ima where important task configurations are under-
explored, thereby leading to immature inductions
(Tesauro, 1992; Epstein, 1992).

One manner of forcing the competition into a variety of
representative strategic situations is to introduce a nonde-
terministic element into the competition. For instance,
Tesauro (1992) describes a neural network that learns to
play backgammon at an expert level purely from self-com-
petition, i.e., the network plays against itself and updates
its weights at the end of each game. Such a reflexive envi-
ronment would usuallymaximize the potential for the net-
work to fall into poor strategic minima if it weren’t for the
natural non-determinism of the dice roll in the backgam-
mon task (Tesauro, 1992; Epstein, 1992). The roll of the
dice occasionally forces play into board configurations
that have never been visited in any previous game and
consequently provides feedback to refine the network. In
tasks where there is no natural source of non-determinism,
an artificial random element must be introduced.

In genetic algorithms, the population represents a natural
source of diversity that, while not entirely random, can be
recruited to create non-deterministic competitive environ-
ments. Competitive populations have been under-
exploited in genetic algorithms; exactly why is unclear.
One possibility is that competitive environments are
thought to be too unstructured to guide a population
toward a particular goal unless the goal is suitably vague
or non-existent. Such an attitude could explain the relega-
tion of competitive evolutionary environments to the Arti-
ficial Life community (e.g., Ray, 1992; Lindgren, 1992).
Another possibility is that competition is considered too
expensive for practical problems; that it requires too many
evaluations of population members to determine an accu-
rate ranking. Without an accurate enough ranking, the nat-
ural dynamics of the evolutionary process might be
compromised.

In this paper, we enumerate the advantages of competitive
fitness functions and show them to be a powerful unex-
plored resource in genetic algorithms. We describe three
types of competitive fitness functions as examples. The
first is a full competition model used in Axelrod (1989) to
evolve strategies for the Iterated Prisoner’s Dilemma. The
second is a bipartite competition in Hillis (1992) used to
evolve sorting networks. The third we introduce in this
paper and demonstrate its ability to evolve more robust

Competitive Environments Evolve Better Solutions for Complex Tasks

Competetive Environments Evolve Better Solutions for Complex Tasks Angeline and Pollack

The Ohio State University May 5, 1993 2

genetic programs (Koza, 1992; Koza, 1992b) than stan-
dard non-competitive fitness functions. We conclude with
a discussion of the various beneficial properties of compet-
itive fitness functions.

2 COMPETITIVE FITNESS FUNCTIONS

The standard fitness functions used in genetic algorithms
are exemplified by the functions studied in DeJong (1975).
Such functions return the same fitness for an individual
regardless of what other members are present in the popu-
lation. Their independence from the population’s composi-
tion allows these functions to provide an accurate and
consistent fitness measure throughout the evolutionary
process.

While global accuracy is easily computed when evolving
solutions for many simple optimization problems, it is
often impractical for problems with higher complexity.
The difficulty stems directly from the objectivity of the fit-
ness function, since objective accuracy often comes only
at the cost of significant knowledge about the search
space. For instance, consider the expense of a standard fit-
ness function for evolving an optimal strategy for a partic-
ular game. Such a function would need to test members of
the population against all possible strategic situations to
garner an objectively accurate measure. For anything but a
trivial game such a computation is immense. If a suitable
“expert” strategy were available, an independent fitness
function could still be constructed, however, the evolved
solutions would only be “optimal” with respect to this
“expert” rather than the original task.

In contrast, acompetitive fitness function is any calculation
for fitness that isdependenton the current population to
any degree. The dependency could be relatively minimal,
such as on a single population member, or fairly compre-
hensive in functions that use the entire population to deter-
mine a single strategy’s fitness. In essence, competitive
fitness is the original intention behind a fitness function
since it provides a measure of an individual’s ability rela-
tive to the current population rather than relative to the
global optimum.

Axelrod (1989) experiments with both an independent and
a competitive fitness function to evolve strategies for the
Iterated Prisoner’s Dilemma. For the independent fitness
function, a weighted sum of the scores against eight pre-
selected strategies was used, where the weights and repre-
sentative strategies were selected on the basis of knowl-
edge gained from previous experiments (Axelrod, 1984).
In the competitive fitness function, Axelrod (1989) tests
every population member against every other population
member, which presents an adaptive developmental envi-
ronment for the population. However, there is no mention
in the study about the relative abilities of the evolved strat-
egies. A schematic of the competitive pairings associated

with this method appears in Figure 1a. Assuming the size
of the population isn, the number of competitions exe-
cuted in a generation isn2. When the task to be solved is
quite complex and requires a large population or a signifi-
cant number of generations, this number of competitions
per generation may be prohibitive.

Hillis (1992) demonstrates a dependent fitness function
with an interesting competitive approach. The problem
explored in Hillis (1992) is to evolve a sorting network for
any arrangement of 16 integers with as few position
exchanges as possible. Notice that this task is not so differ-
ent from a game. The sorting networks represent various
strategies and the 16! potential arrangements of integers
represent the various board configurations. Clearly, using a
fitness function which tests all possible permutations on
each sorting network is impractical. Additionally, a static
subset of permutations would clearly encourage solutions
that sort only the chosen subset. Hillis (1992) reports that
even using a randomly selected subset of permutations that
changes every generation does not provide a sufficient
environment to evolve adequate sorting networks.

In order to maintain a consistently difficult set of permuta-
tions to evaluate the sorting networks, Hillis (1992) cre-
ates a second population for the experiment. Each member

(b)

(c)

Figure 1: Three types of competitive fitness func-
tions. (a) Full competition used in Axelrod (1989);
(b) Bipartite competition used in Hillis (1992); and
(c) Tournament fitness with each horizontal line
designating a competition and each upward arrow
designating the winner progressing in the tourna-
ment.

(a)

Competetive Environments Evolve Better Solutions for Complex Tasks Angeline and Pollack

The Ohio State University May 5, 1993 3

of the second population encodes a small set of permuta-
tions to be sorted by one of the sorting networks of the first
population withboth populations evolving from genera-
tion to generation. Fitness for the population of sorting
networks is defined to be how well the member sorts the
various permutations within the associated member of the
second population. The fitness of a member in the second
population is a measure of howpoorly the sorting network
sorts the set of permutations it contains. This bipartite
competition is illustrated in Figure 1b. With this fitness
function the system evolved a sorting network with only
61 position exchanges, which is a single exchange worse
than the best known sorting network for 16 numbers.

Assuming the sizes of the populations are the same and
when combined equaln, the bipartite competition in Hillis
(1992) uses a total ofn/2 competitions each generation.
This is far fewer than a full competition, as in Axelrod
(1989). However, while the fitness function used in Hillis
(1992) is an example of a competitive fitness function,
there is no method for determining which member of the
population is the best sorter. Because each sorting network
competes against a single member of the second popula-
tion there is no basis of comparisonbetween sorting net-
works. The score received by a sorting network is relative
to the difficulty of permutations it attempted and each sort-
ing network sees distinct sets of permutations. In addition,
the bipartite nature of the competition model used in Hillis
(1992) may be unnatural for some problems.

Pitting evolving members of a population against each
other to determine fitness creates an interesting tension in
the genetic algorithm. For instance, while the population
of sorting networks in Hillis (1992) is adapting to the spe-
cific permutations it is being tested against, the population
of permutations is searching for the set that forces the sort-
ing networks to perform as badly as possible. In order for
the sorting networks to reproduce from generation to gen-
eration consistently, they must generalize their sorting
ability rather than encode for a specific subset of permuta-
tions. The need to compensate for the continuing diversity
in the permutations inspires generalization in the sorting
networks. A similar dynamic occurs in the competitive
single population of Axelrod (1989). In the following sec-
tion, we describe a third type of competitive fitness func-
tion that uses a single homogenous population with fewer
competitions than full competition and still permits a best
member to be identified.

3 TOURNAMENT FITNESS
Rather than exhaustively testing each member against the
rest of the population, intournament fitness a single elimi-
nation, binary tournament is run to determine a relative fit-
ness ranking. Initially, the entire population is in the
tournament. Two members are selected at random to com-
pete against each other with only the winner of the compe-
tition progressing to the next level of the tournament.
Once all the first level competitions are completed, the
winners are randomly paired to determine the next level

winners. The tournament continues until a single winner
remains The fitness of a member of the population is its
height in the playoff tree, the player at the top is then the
best player of the generation. The competitive parings for
tournament fitness are illustrated in Figure 1c. The hierar-
chical nature of the ranking is strictly enforced, ties being
broken by random selection. In the case that the number of
competitors at a level is odd, a single population member
is passed to the next level of the tournament without a
competition, effectively receiving a “bye” for that round.
The total number of competitions for a population of size
n is:

(EQ 1)

which is one fewer comparison than required to play each
member of the population against a single “expert” strat-
egy in a comparable independent fitness function.

Quantification of performance on the task is unimportant
when using tournament fitness; all that is required is a con-
cept of “better” to compare two strategies. This removes
all need for determining exactly how much better one
player is than another - the resulting tournament hierarchy
is sufficient information for reproduction. Unless the com-
petition, i.e., the measure of “better”, is noisy, an optimal
player will always win the tournament. However, if the
environment is suitably complex and an optimal strategy is
not in the population, it is possible for an average or even a
comparatively poor strategy to win the tournament for a
particular generation. Thus this competitive fitness func-
tion can contain a level of noise associated with its ability
to rank any given population. How accurately the tourna-
ment ranks the population is dependent upon the set of
competitors met. For instance, if the best player in the
population competes in the initial round of the tournament
with the second best member, only the best player will
move up the hierarchy with the second best player being
assigned the minimal fitness.

Fortunately, the inherent noise of tournament fitness func-
tions is not a serious problem given that the fitness ranking
is being created to decide the proportions for reproduction.
Consider that the worth of a single competition, in terms
of reproduction, is inversely proportional to how high in
the tournament the competition occurs. In other words, the
higher the level of the competition, the less it is worth in
terms of reproductive advantage. For example, consider a
single competition in the initial round of the tournament.
The first competition determines which half of the rank-
ings the two competitors will reside. The loser will have a
fitness that will place it in the lowest 50% of the popula-
tion’s ranking. The winner will at least be in the upper
50% giving it a reasonable chance for reproducing. With
each successive round of competitions, exponentially
decreasing subsets of the population are divided into win-
ners and losers until the last competition decides between

n

2i
i 1=

n()log

∑ n 1−=

Competetive Environments Evolve Better Solutions for Complex Tasks Angeline and Pollack

The Ohio State University May 5, 1993 4

best and second best for the generation. At this level, the
difference in the probability of reproducing is negligeable
with any reasonably sized population.

Once a tournament has been run, any standard selection
method can be used to designate parents for the next gen-
eration. Because all the population members that lost at
the same level of the tournament will have the same fitness
values, tournament fitness naturally de-emphasizes their
worth relative to each other. This is more beneficial than
over-committing to an erroneous complete ordering of the
population. Selecting between members with the same fit-
ness must be at random which promotes better mixing of
the alleles and discourages premature convergence. In
fact, in many situations tournament fitness will naturally
discourage convergence since as a particular strategy
becomes too numerous it will be forced to literally com-
pete against copies of itself. This is akin to a predator/prey
system where the prey has been hunted to such low popu-
lation levels that the predators are forced to feed on each
other.

Tournament fitness sets up the same oppositional tension
as in Hillis (1992), but in a more comprehensive manner
and requires only a single population. Because it is
unlikely that all strategies have been represented in past
populations, complex developing strategies may contain
flaws that may be exploited by a variety of simpler play-
ers. This is much like a relatively good chess player being
beaten by a novice who only knows the “fool’s mate”
strategy. Since for any complex strategy there may be
numerous ways for it to be beaten, a complex ecology of
strategies for the task can develop during the course of the
run with only the most robust strategies consistently
appearing at the top of the tournament. These complex
strategic ecologies are similar to those described in Ray
(1992) and Lindgren (1992) but are relative to the specific
task being solved.

4 EXPERIMENTS
To test the tournament fitness function, we ran several
experiments using our Genetic Library Builder (GLiB)
(Angeline and Pollack, 1993; Angeline and Pollack, 1992)
modified to perform a hierarchical tournament as
described in the previous section. GLiB is based on Koza’s
genetic programming paradigm (GPP) (Koza, 1992; Koza,
1992b) which uses a primitive programming language
arranged in expression trees for the representation of pop-
ulation members. The primitive language relies on a sim-
ple and uniform syntax to remove the possibility of
generating a non-viable expression trees during recombi-
nation. Crossover in GPP simply swaps randomly selected
subtrees between the expression trees. Koza has demon-
strated the ability of GPP to evolve solutions for a signifi-
cant number of engineering problems (Koza, 1992). Our
system, GLiB, is an extension to GPP that induces new
language elements by non-deterministically creating sub-
routines that are protected from further alteration by
recombination. New subroutines are formed with a muta-

tion operator calledcompression, as shown in Figure 2.
The result of evolution in GLiB is a modular program to
perform the task. For additional information on GLiB, see
Angeline and Pollack (1993).

The subject of our experiments is the game of Tic Tac Toe
(TTT) also called Noughts and Crosses. Figure 3 outlines
the primitive language we use for evolving modular TTT
programs. The primitivespos00 to pos22 are the data
points representing the nine positions on the TTT board.
For the remaining primitives, the return value is either one
of these positions orNIL. The binary operators and andor
each take two arguments. When both arguments are non-
NIL, and returns the second. If either argument isNIL then

Figure 2: Compression of tree representation used
in GLiB. The subtree is removed from the individ-
ual and replaced by a new function call defined with
the removed subtree. The expansion of a com-
pressed function reverses the process by replacing
the compressed function name with the original
subtree.

or

d0

d0

not or

d2notand

d1

(defunnewfunc (p1 p2 p3)
(or (not (and p1 p2))

(or (notp3) d2)))

not

compression

newfunc

d1 not

d0

d0

and
and

not

d2

not

d2

pos01

pos11

pos21

pos00 pos02

pos10

pos20

pos12

pos22

Figure 3: Primitives used to evolve modular pro-
grams to play Tic Tac Toe.

pos00 .. pos22 - board positions
and - binary LISP “and”
or - binary LISP “or”
if - if <test> then <arg1> else <arg2>
open - returns <arg> if unplayed else NIL
mine - returns <arg> if player’s else NIL
yours - returns <arg> if opponent’s else NIL
play-at - places player’s mark at <arg>

Competetive Environments Evolve Better Solutions for Complex Tasks Angeline and Pollack

The Ohio State University May 5, 1993 5

it returnsNIL. Or returns the first non-NIL argument and
returnsNIL otherwise. Theif primitive is the standard con-
ditional statement. It returns the value returned by its sec-
ond argument when the <test> is non-NIL otherwise it
returns the value returned by the third argument. Theplay-
at primitive takes a single argument. If the argument is a
position and no player has placed a mark there, then the
current player’s mark is placed at that position and the turn
is halted. Otherwise,play-at will return whatever it is
passed. Finally, the operatorsmine, yoursandopentake a
position and return it when the mark in that position fits
the test. Otherwise, they too returnNIL.

The language outlined above is general enough to cover
any number of two player games on a nine position board.
Consequently, there is no guarantee that a random pro-
gram in this language will observe the rules of TTT or
even place a single mark on a TTT board. If the program
does not make a valid move during a game, then its turn is
forfeited, providing a significant advantage for its oppo-
nent. We consider legal moves to be a part of the environ-
ment’s complexity and consequently should be induced by
our learning method.

Obviously, the choice of primitive language in GLiB and
GPP dictates how difficult a given concept is to learn. The
primitive language for TTT above is more general than
necessary to solve the task for two reasons. First, the typi-
cal approach in machine learning is to separate the learn-
ing of the control task from the learning of the evaluation
task, often with the control task being assumed (e.g.,
Tesauro, 1992; Berliner, 1977). We feel that such a separa-
tion inhibits the complete learning process. Our learners
must acquire both control and evaluation abilities within
the same structure at the same time. Consequently, we do
not expect our programs to induce the complete concept
but only portions. Which portions of the complete task
they do acquire and how the task is generalized often illu-
minates much more about the learning process than com-
plete acquisition. Second, we wish to study the acquisition
of higher-level features associated with the tasks rather
than provide them a priori as in most learning systems
(e.g., Samuel, 1966; Rumelhart et. al., 1986; Tesauro,
1990). This goal requires a representation in which these
features can be discovered by the learner during the learn-
ing process, such as the language described above.

To compare the ability of the programs evolved by stan-
dard independent fitness functions and tournament fitness,
we created a collection of “expert” TTT players of varying
strategic ability. The three experts used in this experiment
were RAND, NEAR and BEST. RAND simply chooses a
legal position at random to determine its move for a given
board configuration. At the other extreme is BEST which
chooses the optimal position to play on each move. No
strategy, evolved or otherwise, can win a game against
BEST. NEAR, the third algorithm, performs near opti-
mally except that it can be forked by its opponent. A fork
is any TTT board configuration where a player has more
than one winning move, guaranteeing an opportunity to

win on its next turn. Unless forked, NEAR will either
draw or beat its opponent. Both NEAR and BEST non-
deterministically choose between equal moves in order to
force more robust play from the developing programs.

Our experiments cover four different learning situations.
For the first three, we use an independent fitness function
consisting of one of the above experts. A single competi-
tion against an expert is scored by the number of moves
the evolved program makes with a 5 point bonus for a
draw and a 20 point bonus for a win. A program’s average
score over four games is its fitness. These runs represent a
range of independent fitness functions that might be used
for this task. In fact, NEAR is very similar to the expert we
used in earlier experiments with GLiB to induce a modular
genetic program that could fork (Angeline and Pollack,
1993).

The final experiment uses the tournament fitness function
as described in the previous section and is labeled POP in
the results. Scoring a single competition between two pro-
grams was as described above. A program was deemed
“better” than its opponent if it had the greater score after
two games, with each player taking the first move in one
game. As described in the last section, if the scores were
equal the winner of the competition was chosen at random.

Each of the experiments used a population size of 256 and
ran for a total of 150 generations. All experiments used
roulette wheel selection with linear scaling (Goldberg,
1989) and a scaled fitness maximum of two. Other than the
method of training, all other factors were equal. The
parameter settings used were as listed in Angeline and Pol-
lack (1993).

 In order to observe the training ability of each of the vari-
ous fitness functions, the evolved program with the best
fitness from each experiment played a total of 2000 games
against each of the three experts to evaluate its abilities.
Results for the four experiments are shown in Table 1. As
can be seen from the table, none of the evolved modular
programs induced the optimal TTT program. This is due in
part to our low level primitive language and our insistence
that GLiB acquire both control and evaluation in the same
program. More interesting is the difference in ability of the
programs induced using the three expert algorithms. The
program evolved using RAND is fairly poor, only able to
beat the RAND expert a little more than half the time
while appearing totally incompetent against the better
experts. NEAR’s evolved protege embodies a more able
concept that displays a broader ability to compete. The
program acquired using BEST appears to have induced the
ability to draw opponents in many situations but is weak in
its ability to win, even against RAND.

Of even more interest is the final experiment which used
tournament fitness. The program induced in this experi-
ment is clearly a more robust player if not more proficient
than any of those induced using one of the experts. The
fact that the program evolved by tournament fitness was
the only evolved program that could draw BEST, and did

Competetive Environments Evolve Better Solutions for Complex Tasks Angeline and Pollack

The Ohio State University May 5, 1993 6

so fairly frequently, shows it acquired a more sophisticated
algorithm for TTT than those induced by the independent
fitness functions.

An important question raised by these experiments is why
none of the programs evolved using the independent fit-
ness functions could draw BEST. This is straightforward if
the quality of environment presented by each fitness func-
tion is considered in turn. First, RAND provides no pres-
sure for a program to induce a complex winning strategy.
Simply hard coding only three positions in a row will
guarantee the program will win a few games against
RAND. But such a strategy is easily thwarted by NEAR
and BEST. When using BEST as the strategy in the inde-
pendent fitness function, no program ever receives posi-
tive feedback for making three in a row, and consequently
none of the evolved programs induce this ability very
broadly. Programs perform well against BEST when they
can play almost anywhere on the board and maximize the
number of moves they make before being beaten. This
translates into a program that plays several moves but
can’t put those moves together to form a winning combi-
nation. When NEAR is used to evolve solutions, the pro-
grams emphasize setting up forks, since this is NEAR’s
only flaw and the scoring function emphasizes wins
strongly. Once a program evolved using NEAR is able to
fork it and win, there is no reason to improve and little
pressure to develop the ability to consistently draw an
opponent. This type of strategy is sufficient to perform
well against RAND, but is easily defeated by BEST which
protects itself from being forked.

On the other hand, the program evolved by tournament fit-
ness is forced to play against a number of differing strate-
gies from the collection of strategies developing in the
population. Some of these strategies will be simplistic and
provide little difficulty while others will be equally com-
petent on the task. We explore this and other advantages of
competitive fitness functions in the next section.

5 DISCUSSION

One of the primary advantages of competitive fitness func-
tions is their ability to adapt to the level of complexity of

the population. In the experiment above, NEAR and BEST
present difficult adversaries from the beginning and do
nothing to identify preferred performance in the early pop-
ulations. Such a large difference between the ability of the
initial population and the strategy in the independent fit-
ness function can inhibit the evolution of solutions if not
compensated for in the function explicitly. For instance, in
previous experiments with NEAR, we awarded a fitness
bonus for evolved programs that successfully blocked a
win (Angeline and Pollack, 1993). With a competitive fit-
ness function, this problem is removed since the popula-
tion is its own measure. As the ability of the individual
members of the population increases on the task, the diffi-
culty of the fitness function evolves with them. Since the
function is dependent on the population, it tracks through
the population’s non-linear development without the need
for measuring the average member’s ability explicitly.
Additionally, the open-endedness of a competitive fitness
function is dependent on the open-endedness of the repre-
sentation for the population members.

As we stated above, ecologies of strategies develop in
competitive fitness functions that provide a more consis-
tently difficult environment than independent fitness func-
tions. As evolution continues, the ecological balance will
shift in the population to take advantage of exploitable
strategic niches. The question still remains as to what pre-
vents the population from wandering aimlessly through
the space of strategies rather than moving towards more
complex solutions. Given that the population maintains
some level of diversity, this is straightforward. Because
there are many differing strategies that could be met in any
generation, only solutions that can perform well against a
number of them will consistently be in the upper tiers of
the tournament and be able to continually reproduce. The
constantly changing competitive environment forces the
developing programs to generalize their abilities, as in Hil-
lis (1992).

One advantage for tournament fitness over the bipartite
competition used in Hillis (1992) is that proper counterex-
amples of various strategic difficulty are evolved within a
single population removing the need for distinct popula-
tions to be maintained and separate fitness functions to be

Table 1: Performance of best evolved program from each experiment against the various “experts.”

Fitness
Function

Used

Evolved Program vs. RAND Evolved Program vs. NEAR Program vs. BEST

Wins Draws Losses Wins Draws Losses Draws Losses

RAND 1125 0 875 0 0 2000 0 2000

NEAR 802 104 1094 144 123 1733 0 2000

BEST 310 535 1155 0 360 1640 0 2000

POP 781 471 748 61 588 1351 481 1519

Competetive Environments Evolve Better Solutions for Complex Tasks Angeline and Pollack

The Ohio State University May 5, 1993 7

constructed. The adaptability of the content of the single
population may be more beneficial to the evolutionary
development of solutions than a predetermined bipartite
population. Of course, which form of competition is
appropriate for a given task will be somewhat problem
dependent.

6 CONCLUSIONS
In this paper, we argue that competitive fitness functions
have many advantages over the independent functions that
are typically used in genetic algorithms. Not the least of
these advantages is that a competitive fitness function
requires only a minimal understanding of the search space
for a complex task. This removes the need for task knowl-
edge that may be extremely difficult to engineer out of the
problem. Furthermore, by employing all strategies repre-
sented in the population as potential counterexamples, the
fitness function automatically adapts to the nuances of
both the individual problem and the specific progression of
populations in a particular run. Finally, the experiments
above and those in Hillis (1992) demonstrate that using the
population as the reservoir for comparison is preferable to
using an exemplar for the task when an objective measure
of fitness is unavailable. Using a competitive environment
permits the evolutionary process to acquire a more general
solution that approximates global optimality relative to the
task rather than relative to the provided exemplar.

Acknowledgments

This research is supported by the Office of Naval Research
under contract #N00014-92-J-1195. We are indebted to
David Fogel and two anonymous reviewers who made
informed comments on this work. We also thank Greg
Saunders and Ed Large for additional feedback and proof-
reading help.

References

Angeline, P. and J. Pollack, (1993) “Coevolving high-level
representations.” To Appear inArtificial Life III .

Angeline, P. and J. Pollack, (1992) “The evolutionary
induction of subroutines.”The Fourteenth Annual Confer-
ence of the Cognitive Science Society, Bloomington Indi-
ana.

Axelrod, R., (1989), “Evolution of strategies in the iterated
prisoner’s dilemma.”Genetic Algorithms and Simulated
Annealing, L. Davis editor, Morgan Kaufman

Axelrod, R., (1984),The Evolution of Cooperation, Basic
Books.

Berliner, H., (1977), “Experiences in evaluation with
BKG- a program that plays backgammon”,Proceedings of
IJCAI, 1977.

DeJong, K., (1975),An Analysis of the Behavior of a Class
of Genetic Adaptive Systems, Doctoral dissertation, Uni-
versity of Michigan.

Epstein, S., (1992), “Learning expertise from the opposi-
tion: the role of the trainer in a competitive environment.”,
The Proceedings of AI 92, 236-243.

Forrest, S., (1991), “Emergent computation: self-organiz-
ing, collective, and cooperative phenomena in natural and
artificial computing networks”, InEmergent Computation,
S. Forrest editor, Cambridge, MA: MIT Press.

Goldberg, D., (1989), Genetic Algorithms in Search, Opti-
mization, and Machine Learning, Reading, MA: Addison-
Wesley Publishing Company, Inc.

Hillis, D., (1992), “Co-evolving parasites improves simu-
lated evolution as an optimization procedure”, InArtificial
Life II, edited by C. Langton, C. Taylor, J. Farmer and S.
Rasmussen. Reading, MA: Addison-Wesley Publishing
Company, Inc.

Holland, J., (1975),Adaptation in Natural and Artificial
Systems, Ann Arbor, MI: The University of Michigan
Press.

Koza, J., (1992),Genetic Programming,Cambridge, MA:
MIT Press.

Koza, J., (1992b), “Genetic Evolution and Co-Evolution
of Computer Programs.” InArtificial Life II, edited by C.
Langton, C. Taylor, J. Farmer and S. Rasmussen. Reading,
MA: Addison-Wesley Publishing Company, Inc.

Lindgren, K., (1992), “Evolutionary Phenomena in Simple
Dynamics”, InArtificial Life II, edited by C. Langton, C.
Taylor, J. Farmer and S. Rasmussen. Reading, MA: Addi-
son-Wesley Publishing Company, Inc.

Ray, T., (1992), “An Approach to the Synthesis of Life.”
In Artificial Life II, edited by C. Langton, C. Taylor, J.
Farmer and S. Rasmussen. Reading, MA: Addison-Wesley
Publishing Company, Inc.

Rumelhart, D., Smolensky, J., McClelland, J., and Hinton,
G., (1986), “Schemata and sequential thought processes in
PDP models.” InParallel Distributed Processing: Explo-
rations into the Microstructure of Cognition, Volume 2, D.
Rumelhart, J. McClelland and the PDP Research Group
eds., Cambridge, MA: MIT Press.

Samuel, A., (1966), “Some studies in machine learning
using the game of checkers, II - recent progress.” IBM
Journal of Research and Development 11, 601-617.

Samuel, A., (1959), “Some studies in machine learning
using the game of checkers.”, IBM Journal of Research
and Development 3, 210-229.

Tesauro, G., (1992), “Practical issues in temporal differ-
ence learning”,Machine Learning 8, 257-277.

Tesauro, G., (1990),“Neurogammon: a neural network
backgammon program.”IJCNN Proceedings III, 33-39.

