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Early Work:

• Samuel 1959, 1967

- learning checkers through self-play

• Barricelli 1963, Barricelli et al. 1967

- TacTix (game similar to Nim)

• Axelrod 1987

- iterated prisoner’s dilemma

Some Notable Results

• Several good results have been obtained 
through the use of self-play in general and 
coevolution in particular

• Below we sample some of these results

• (Not an exhaustive list!)



Sorting Networks: Hillis 1990

• Learner-teacher paradigm

• Coevolves sorting networks against inputs

• Obtains 61-comparator network (just one 
more comparator than best known for 16-
input problem)

Virtual Creatures: Sims 1994

• Virtual creatures in simulated physics 
environment

• Pair-wise competitions to gain control over 
a cube in the middle of the arena

• Coevolution of agent morphology and 
control

• Variety of interesting body plans and 
behaviors obtained

Backgammon: Tesauro 1995

• Neural network trained to evaluate board 
positions; achieves “strong master” level

• Temporal Difference learning used—not 
coevolution

• But, a compelling demonstration of learning 
through self-play

• Follow-up work by Pollack & Blair 1998 
that uses coevolution

Intertwined Spirals: Juillé & Pollack ’96

• Difficult classification problem motivated by 
study of neural networks

• 194 data points to classify

• Coevolves genetic-program classifiers, 
where payoff to Player i is:

• G(i, j) = #points “covered” by Player i that 
are not covered by Player j

• Found modular solutions to problem



CA Rules: Juillé & Pollack 1998

• Density classification task in CA:  

- if #1 > #0 in initial condition, ⇒ all 1

- otherwise, ⇒ all 0

• No perfect rule exists [Land & Belew 1995]

• Previous best known performance: 82.4% 
[Andre et al. 1996]

• Discovered rule with performance: 86.3%

HIV Resistance: Rosin et al. ’98, ’99

• Coevolves (in simulation) HIV-1 virus 
against anti-virals

• Finds highly resistant forms of HIV-1 
protease

• Finds effective protease inhibitors

Checkers: Chellapilla & Fogel ’99, ’00

• Coevolves weights of neural network used 
to evaluate game boards

• Combined with four-ply lookahead

• Initial work achieved “Class-A” designation

• Subsequent work produced “Expert” level

• (Just below Master and Grand Master)

Coevolutionary Algorithms

• “Competitive coevolution”

• “Cooperative coevolution” ⇒ 

“Compositional coevolution”

• Game theory provides some common 
ground
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result is typically the most-fit
individual in each population; 
the question of what the result
should be is now gaining more
attention.
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most coevolution research has
put aside the question of evolutionary
representation; this is an area that is
gaining more attention now.



Standard Evolutionary Algorithm

• Evaluation uses a fixed objective function

Population

f(  )score

Conventional Coevolution

• Individuals are evaluated by having them 
interact with each other

Population

G(i, j)

G(j, i) i

jscore for i

score for j

Cumulative score for Player i:
si = j=1, N G(i, j)

Conventional Coevolution

• In asymmetric games, each member of Pop. 1 
interacts with each member of Pop. 2

Population 1 Population 2

Interaction Patterns

• All vs. all is “canonical” but expensive

• All vs. previous-best 

• Tournament 

• See Angeline & Pollack 1993, Sims 1994

• Shared sampling [Rosin & Belew 1997]



All vs. Best

• Individuals interact with “best” individual(s) 
from previous generation

• Feasible for one or more populations

Population 1 Population 2

Tournament Evaluation

• Pairwise interactions in single-elimination 
tournament (single-population)

• Each individual’s score determined by how 
far individual progresses in tournament

winner

first round

Shared Sampling: Rosin 1997

• Purpose to enhance diversity in evaluation

• Based on their Competitive Fitness Sharing 
method (discussed below)

• Bias sampling of individuals with whom 
interaction (during evaluation) takes place 

• Sample “redundant” individuals less (relative 
to uniform); “rare” individuals more

• “Redundant” and “rare” determined by 
similarity in performance

Spatial Coevolution: Hillis 1990,
Pagie & Hogeweg 1997

• Individuals spatially arranged on a lattice

• Individuals interact only with neighbors

• In two-population system, interact with 
individuals in corresponding neighborhood 
of other population

Population 1 Population 2



Spatial Coevolution: Hillis 1990,
Pagie & Hogeweg 1997

• Spatial structure used to determine who 
interacts with whom (local neighborhoods)

• Spatial structure also used to control 
selection; e.g., each individual X is replaced 
by best individual in the local neighborhood

• Local neighborhood structure helps 
maintain population diversity; thus can 
provide help against various pathologies 
(discussed below)

Cooperative Coevolution
Potter and De Jong 1994

• Decompose problem into simpler sub-tasks 
that are easier to solve

• Combine sub-solutions to form solution to 
original problem

. . .

Pop. 1 Pop. 2 Pop. N

score for s1 = s2 = . . . = sN ←− G(s1, s2, . . . , sN )

Cooperative Coevolution
Potter and De Jong 1994

• Exhaustive mixing (all vs. all) too expensive

• Sampling is more feasible; cheapest to 
interact with “best” from each population

. . .

Pop. 1 Pop. 2 Pop. N

score for s1 ←− G(s1, s
∗

2
, . . . , s∗

N
)

Game Theory and Coevolution

• “Competitive” coevolution epitomized by 
two-player zero-sum game, e.g., checkers

• “Cooperative” coevolution epitomized by 
N-player variable-sum coordination game:

- all players obtain payoff when they play a 
certain joint strategy profile; otherwise they 
obtain no (or poor) payoff



Pathologies, Monitoring, Remedies

• Early results sparked interest in 
coevolution, but various pathologies 
quickly became evident

• Why coevolution fails to produce desired 
results is often unclear

• We discuss these pathologies and outline 
several attempts to remedy them

Concept: Gradient

• The evaluation of individuals depends on other, 
coevolving individuals.

• Gradient refers to the evaluational information 
provided by those coevolving individuals, 
particularly to the ability to distinguish 
individuals on the basis of their interactions 
with coevolving individuals.

• Roughly, gradient allows an algorithm to tell 
which individuals appear better.

Disengagement

• The event that gradient is lost; i.e., individuals 
can no longer be distinguished.

• Typically, the algorithm stalls or drifts, as it can 
no longer tell which individuals are better.

• Imagine a school with grade inflation.  All 
students receive an A.  Then grades can no 
longer be used to distinguish the better 
students.  The students and the curriculum are 
disengaged.

Stalling/Drift

• When lack of gradient persists over 
evolutionary time, stalling or drift can occur.

• If the algorithm only replaces individuals with 
strictly better ones (e.g., a hillclimber), it will 
stall.  The population stops changing.

• Otherwise, the algorithm will essentially 
perform a random walk.



Disengagement, Stalling, and Drift
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Cycling/Intransitivity

• Cycling typically refers to an oscillation in 
some metric of algorithm performance.

• If there is an offline metric of performance, we 
may observe the performance of coevolved 
individuals going up and down through 
evolutionary time.

• Or, we may observe that present individuals 
beat some past individuals but lose to others.

Cycling/Intransitivity

• Intransitivity is a 
characteristic of a problem 
domain.

• Rock-paper-scissors is a 
canonical example of an 
intransitive domain.

• Coevolutionary algorithms 
have been observed to cycle 
on intransitive domains, but 
may cycle on any domain.
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Cycling/Intransitivity
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Evolutionary Forgetting

Pop. t
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Concept: Underlying Objectives

• Multiobjective algorithms simultaneously 
optimize several different objective functions.

• Consider “capabilities” as objectives.

• Similarly, coevolutionary domains might have 
a set of underlying objectives that must be 
optimized to produce good individuals.

y

x

Overspecialization/Focusing

• When individuals improve on some underlying 
objectives at the expense of others.

• For instance, coevolving game players may focus 
on defeating certain (types of) opponents and 
not evolve to defeat others.



Overspecialization/Focusing
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The Red-Queen Effect:
van Valen 1973

• In biological coevolution, the observation that 
despite constant genetic change, the extinction 
probability of a species does not change 
because of changes in the environment.

• In evolutionary computation, the observation 
that changes which improve the quality of an 
individual do not increase its selection 
probability because of changes to other 
coevolving individuals.

The Red-Queen Effect

• Most troubling is that the Red-Queen Effect 
prevents us from distinguishing improvement 
from stall/drift when monitoring an algorithm 
online.  New individuals appear as capable as 
previous ones relative to the present context.

Relative Overgeneralization

• The phenomenon in Cooperative Coevolution 
where components that perform well with a 
large number of other individuals are favored 
over components that are part of an optimal 
solution.
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Relationships: Gradient

• Disengagement is a loss of gradient.

• Stalling or drifting can result from a lack of 
gradient which persists through evolutionary 
time.

• Forgetting or overspecialization may result 
from drift.

Relationships: 
Underlying Objectives

• Overspecialization is focusing on one underlying 
objective at the expense of others.

• Cycling may result from oscillating between two 
underlying objectives.

• Relative overgeneralization has been argued to 
result from the loss of an underlying objective 
in Cooperative Coevolution.

About Remedies

• Forgetting remedies are typically about 
distinguishing individuals.  

– If individuals cannot be distinguished, some might be 
lost to drift and forgetting may occur.

• Disengagement remedies have traditionally kept 
suboptimal individuals in the population. 

– Empirically, greedy algorithms which consolidate around 
present best tend to disengage.

– Suboptimal individuals may provide gradient.

Cycling

Ways to address cycling include:

• Fitness sharing

• Memory mechanisms

• Enrich the environment

• Multiple populations



Cycling: Bullock 1995

• “True” coevolution is direct reciprocal 
evolution between two populations

• “Diffuse” coevolution entails evolutionary 
change in response to traits in several 
other populations

• Diffuse coevolution leads to more robust 
strategies

• Follow-up by Hornby & Mirtich 1999

Cycling: Rosin & Belew 1995

• Zero-sum games (symmetric or 
asymmetric)

• Competitive fitness sharing

• Score you get against an opponent is 
divided by sum of all scores obtained 
against that opponent

Cycling: Rosin & Belew 1995

  1  +   1  +   1  + 0 = 3

  1  +   1  +   0  + 0 = 2

  1  +   0  +   0  + 0 = 1

  0  +   0  +   1  + 1 = 2

Standard fitness calculation:

A B C D
W 1 1 1 0
X 1 1 0 0
Y 1 0 0 0
Z 0 0 1 1

Cycling: Rosin & Belew 1995

A B C D
W 1 1 1 0
X 1 1 0 0
Y 1 0 0 0
Z 0 0 1 1

1/3 + 1/2 + 1/2 + 0 = 4/3

1/3 + 1/2 +   0  + 0 = 5/6

1/3 +   0  +   0  + 0 = 1/3

  0  +   0  + 1/2 + 1 = 3/2

Competitive fitness sharing:

3    2    2    1



Cycling:  Juillé & Pollack 1996

• Fitness based on unique “covering”

• Individuals in Population 1 interact with 
opponents in Population 2

• Fitness of an individual determined by 
comparing performance with other 
individuals in same population

• Points for beating opponents that others 
do not beat

Cycling: Juillé & Pollack 1996

  1  +   1  +   1  + 0 = 3

  1  +   1  +   0  + 0 = 2

  1  +   0  +   0  + 0 = 1

  0  +   0  +   1  + 1 = 2

Standard fitness calculation:

A B C D
W 1 1 1 0
X 1 1 0 0
Y 1 0 0 0
Z 0 0 1 1

Cycling: Juillé & Pollack 1996

A B C D
W 1 1 1 0
X 1 1 0 0
Y 1 0 0 0
Z 0 0 1 1

Covering calculation:

W X Y Z
W 0 1 2 2
X 0 0 1 2
Y 0 0 0 1
Z 1 2 2 0

Cycling: Juillé & Pollack 1996

  0  +   1  +   2  + 2 = 5

  0  +   0  +   1  + 2 = 3

  0  +   0  +   0  + 1 = 1

  1  +   2  +   2  + 0 = 5

Covering calculation:

W X Y Z
W 0 1 2 2
X 0 0 1 2
Y 0 0 0 1
Z 1 2 2 0



Cycling: Equilibria & Dynamics

• Rosin & Belew 1997 prove that any fitness 
equilibrium without fitness sharing is also a 
fitness equilibrium with fitness sharing (in 
zero-sum game)

• Juillé & Pollack 1996 show that their 
“covering” method can lead to stable 
polymorphisms

Cycling: Nolfi & Floreano 1998

• Robotic pursuit and evasion

• Observe cyclic dynamics

• Hypothesize that a more complex 
environment may dampen cyclic dynamic

• Added obstacles and walls

• Found to provide significant performance 
boost in some runs

• On average, though, delays onset of cycling

Cycling: Hornby & Mirtich ’99

• Virtual pursuit and evasion with simulated 
physics of wheeled car-like agents

• Round arena with large obstacle in center

Agents

Arena
Obstacle

Cycling: Hornby & Mirtich ’99

• Use multiple populations for each role of 
the game (c.f. Bullock 1995)

• Pursuers and evaders obtained under 
“diffuse” coevolution were more effective 
than those obtained from “direct” 
coevolution



Cycling: Hornby & Mirtich ’99

Species 0 Species 1 Species 2 Species 3

Species 0 Species 1 Species 2 Species 3

Pursuers

Evaders

... ... ...

Cycling: Hornby & Mirtich ’99

Species 0 Species 1 Species 2 Species 3

Species 0 Species 1 Species 2 Species 3

Pursuers

Evaders

... ... ...

Cycling: Hornby & Mirtich ’99

• Runs using direct coevolution exhibit cyclic 
behavior and disengagement

• Runs using diffuse coevolution stay close to 
50% wins for pursuers and evaders

Disengagement: Rosin & Belew ’97

• “Phantom parasite” used with competitive 
fitness sharing to handle disengagement

X

Y

a

b

c

phantom



Disengagement: Juillé & Pollack ’98

• Density classification task in CA

• Purely competitive evaluation ⇒ cycling

• Competitive fitness sharing ⇒ disengage

• Penalize initial conditions with densities 
that cause rules to perform near random

• Should be applicable to other domains, e.g., 
sorting networks

Disengagement: Juillé & Pollack ’98

f(ICj) =

nR∑

i=1

W (R′

i
) × E(Ri, ρ(ICj)) × covered(Ri, ICj))

Disengagement: Olsson ’98

• Asymmetric zero-sum games

• Evolve only one population, leaving the 
other population fixed

• Evolve Pop. 1 until individual found that 
beats all individuals in Pop. 2

• Then evolve Pop. 2 until individual found 
that beats all individuals in Pop. 1

Disengagement: Paredis ’99

• Asymmetric zero-sum games

• Steady-state algorithm

• “X-method” to decide which population 
gets a new individual

Proportion of Evaluations Won by Pop. 1 Individuals

0 1

1

Pr(Pop. 1 creates new individual) Pr(Pop. 2 creates new individual)



Disengagement: Cartlidge & Bullock ’02

• Moderating “parasite virulence”

• Non-monotonic function of performance

f(x, λ) =
2x

λ
−

x2

λ2

 = 0.75

f ’ indicates peak 
fitness at 

Forgetting: Boyd 1989

• Studies IPD where players can make 
mistakes

• Tit-For-Tat enters mutual retaliation

• Contrite Tit-For-Tat is resistant to invasion

• All-Cooperate cannot invade via drift

• Noise distinguishes CTFT from All-C

Forgetting: Pollack & Blair ’98

• Backgammon naturally resists forgetting

• All aspects of skill are continuously needed

• A simple hill-climber is thus able to achieve 
fairly impressive performance

• Estimated to achieve skill comparable to 
TD-Gammon rev. 1992

Forgetting: Memory Mechanisms

• Augment evaluation by interacting with 
individuals stored in the memory

PopulationMemory



Forgetting: Memory Mechanisms

• Best-of-Generation (BOG) methods

• Most-fit individual from the m most recent 
generations retained in memory

• Sample n of the m individuals with 
replacement to augment evaluation of 
population

Forgetting: Memory Mechanisms

• Sims 1994, Cliff & Miller 1995: m = 1, n = 1

• Potter & De Jong 1994: m = 1, n = 1

• Rosin & Belew 1997: m = , n = 25 & 50

• Nolfi & Floreano 1998a: m = 10, n = 10

Forgetting: Memory Mechanisms

• BOG memory is shown to help

• Broadens selection pressure

• Stabilize algorithm behavior

• Alleviate forgetting

Monitoring: Best Elite Opponent
Sims 1994

• Introduces Best Elite Opponent, the model for 
most subsequent monitoring techniques.

– individuals of population 1 all compete against most-fit 
of previous generation from population 2 (best elite).

– “The most ‘interesting’ results occurred when the all 
vs. best competition pattern was used.”

• While this is used as a competition pattern, it can 
be used to monitor progress: track the outcome of 
each generation's competitions.



Monitoring: CIAO Plots
Cliff and Miller 1995

• Introduce Current Individual vs. Ancestral 
Opponents (CIAO) plots.

• Pursuers chase evaders in a 2-D simulated world.

• Two-population coevolutionary algorithm: one of 
pursuers, the other of evaders.

• “We use the term fitness ambiguities to refer to 
such cases where qualitative trends in time-series 
of instantaneous fitness measures could feasibly 
be interpreted as either continuing progress or as a 
breakdown of the co-evolutionary process.”

Monitoring: CIAO Plots
Cliff and Miller 1995

• Play current elites against elite opponents from all 
previous generations.

• Display outcomes in a bitmap image.

• Used as a monitor of progress: if progress has occurred, 
present elites should be able to defeat elite opponents 
from previous generations.
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Example Pursuer CIAO Plot

Monitoring: Master Tournament
Floreano and Nolfi 1997

• Also a predator/prey robot experiment.

• Two populations, one of predators, one of prey.

• Introduce Masters Tournament: all best predators 
compete against all best prey.

• Masters Tournament reveals more than CIAO 
plots:

– shows at which generation the overall best of each 
population occurred

– shows at which generation the most ‘interesting’ 
tournaments occur

Monitoring: Hall of Fame
Rosin and Belew 1997

• “To ensure progress, we may want to save 
individuals for an arbitrarily long time and continue 
testing against them.”

• Introduces Hall of Fame

– stores best of each generation

– new individuals are tested against a sample of Hall of 
Fame members.

• While this is used as a memory mechanism, it can 
also function as a monitor: track performance of 
new individuals by testing against the members of 
the hall of fame.



Summary

• Outlined early work and notable results.

• Discussed work on pathological algorithm 
behavior and proposed remedies

• Raised the question: what do we really want 
coevolution to do?

What Do We Want Coevolutionary 
Algorithms To Be Doing?

• Creating Arms Races (Ficici & Pollack 1998).  
“The key to successful coevolutionary learning 
is a competitive arms race between opposed 
participants.”

• Optimizing Robustness (Wiegand 2003).  
“CCEAs…are adaptive optimizers of 
robustness.”

What Do We Want Coevolutionary 
Algorithms To Be Doing?

• Complexifying (Stanley & Miikkulainen 
2004).  “Complexification encourages 
continuing innovation by elaborating on 
existing solutions.”

• Implementing Solution Concepts (Ficici 
2004).  “We assert that pathologies in 
coevolutionary optimization arise when 
algorithms fail to implement the required (or 
desired) solution concepts.”

Looking Forward

• Solution Concepts

– Addresses question of what a coevolutionary 
algorithm should output

• Pareto Coevolution

– Treats evaluational issues

• Cooperative Coevolution and Robustness

– Treats composing evolved subparts into wholes

• NEAT and Complexification

– Treats issues of representation



Looking Forward:
Solution Concepts

• Formally specifies which individuals are part 
of solutions

• Fundamental questions:

– Are common/intuitive notions of solution 
reasonable?

– What solution concepts do we know, and how 
can we find new ones?

– Given a solution concept, how do we know if an 
algorithm actually approximates it?

Looking Forward: 
Pareto Coevolution

• Focuses on discriminating among and evaluating 
candidate solutions.

• Fundamental questions:

– Which individuals are “good,” and why?

– How do we turn the Pareto Optimal Set into a working 
solution?

– How can we deal with the “curse of dimensionality”?

– Are memory or archive mechanisms necessary?

Looking Forward:
Cooperative Coevolution

• Evolving populations of parts which can be 
assembled into capable wholes.

• Fundamental questions:

– What makes a good subpart?

– What makes a good whole?

– Does CCEA find global optima?

– Should CCEA be producing “robust” individuals?

Looking Forward:
NEAT and Complexification

• Focuses on representing complicated 
objects in open-ended domains.

• Fundamental questions:

– Can we remedy pathologies by elaborating on/
complexifying present solutions, versus simply 
altering them?

– Can continuous, open-ended progress be 
achieved?
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