
Crossing the Fabrication Gap:
Evolving Assembly Plans to Build 3-D Objects

John Rieffel
DEMO Lab, Brandeis University

Waltham, MA 02454
jrieffel@cs.brandeis.edu

Jordan Pollack
DEMO Lab, Brandeis University

Waltham, MA 02454
pollack@cs.brandeis.edu

Abstract- Evolutionary Computation has demonstrated
the ability to design novel and interesting objects. Such
objects are increasingly being assembled in the physi-
cal world, albeit with some difficultly. An obstacle to
this assembly is that most evolved designs aredescriptive
representations: they specifywhat to build, but carry no
information on how to build it. Inferring a correspond-
ing assembly sequence for such an object is a complex
task for any but the most trivial designs. We offer an al-
ternative solution to this spectre of theFabrication Gap,
namely the direct evolution of assembly sequences. As
we show, such methods not only lead to the evolution of
buildable objects, but also lead to the emergence of novel
means of assembly as well.

1 Introduction

Beginning with Karl Sims’ seminal work on evolved
robots (1994), evolutionary computation has gained increas-
ing popularity as a means of automatically creating novel
designs of objects (Lohn et al., 2005) (Hornby, 2003),
structures (Funes, 2001) (Toussaint, 2003), and robots (Ko-
mosiński and Ulatowski, 1999) (Pollack et al., 2001) (Ven-
trella, 1994).

Recently, these evolved objects are beginning to be as-
sembled in the physical world. One of the earliest examples
of this physical assembly is Funes’ LEGO structures (2001),
which were evolved in a physically realistic simulation
which calculated joint strength between elements, and then
built by hand. Later, Hornby used parametric L-Systems
to produce both tables and mobile robots (2003). Most re-
cently, Lohnet al at NASA have created an antenna, due to
be launched into low earth orbit aboard a satellite (2005).

In none of these cases, however, was the transfer from
simulated to physical object in any sense automatic. Rather,
significant human effort was required to assemble the
evolved object in the real world. Funes’ LEGO tree, for
instance, was assembled horizontally and then slowly tilted
into place. Lohnet al’s evolved antennas had to be expertly
bent and soldered into place, with extreme care taken to pre-
serve the precise measurements specified by the evolved de-
sign.

A large source of this added effort is due to the fact that
most evolved designs aredescriptiverepresentations, and as
such specifywhatto build, but carry no information onhow
to build the specified object. The task of subsequently in-
ferring an assembly sequence for the evolved object usually
falls on human shoulders, thereby adding human involve-

ment back into what was until then an automatic process.
As we discuss below in Section 2, inferring an assembly
sequence for a predetermined object automatically, without
human intervention, is provably quite difficult.

We refer to this gap in knowledge and effort between
evolved design and assembly process as theFabrication
Gap- an echo of Jakobi’s Reality Gap (Jakobi et al., 1995)
between simulated and real-world robotics. Our interest is
in removing this human effort and bridging this Fabrication
Gap, with the goal of producing a system capable of Fully
Automated Design and Assembly.

The closest that the field of Evolutionary Design has
come to such automation is Hornby’s evolved tables (2001).
In that work, the evolved voxel-based representations were
converted into STL - a CAD format which could be parsed
by a rapid-prototyping machine. While this may reduce hu-
man involvement, it doesn’t eliminate it - and in fact, may
only defer it. Significant human effort was necessary to cre-
ate the means by which the rapid prototyping machine could
translate an STL file into a series of commands to the print-
head. More importantly, such a solution isbrittle - if one of
the servo-motors were faulty, or if the entire machine were
tilted at a slight angle, the printed object would no longer
resemble the original design. We are interested, therefore,
in more dynamic and adaptive methods.

This example raises the question: rather than rely on
some brittle translation between descriptive representation
and assembly process, why not evolve rapid prototyping
machine instructions directly? Doing so allows for the evo-
lution of howto build rather than merelywhatto build. This
can be accomplished via the use ofprescriptiverepresenta-
tions, such asassembly plans, which describe an object’s
assembly rather than its final specification. Better yet, not
only does this provide sufficient information on how to build
an evolved object, but it also provides a method of automat-
ing assembly, provided that the language of evolved assem-
bly plans is directly interpretable by some compatible man-
ufacturing system.

Of course, accomplishing this requires the high-fidelity
simulation of an object’s assembly. Physically realistic sim-
ulations are not new to Evolutionary Design - in fact, even
Sims’ robots were evolved in a physical simulation (1994).
Most such Evolutionary Design systems (for instance (Ko-
mosiński and Ulatowski, 1999; Ventrella, 1994; Hornby,
2003; Pollack et al., 2001)), however, only simulate the be-
havior of a complete object, not its corresponding assembly
process.

One of the fews examples of a system whichdoessimu-

late assembly (or rather, growth) is Bongard’s work (Bon-
gard and Pfeifer, 2003), which used a Gene-Regulatory
Network-based (GRN) Artificial Ontogeny to grow agents
starting from a single “cellular” unit. However, while this
GRN system proved to be quite effective for design of mor-
phology, it does not easily present itself as a means of de-
scribing automated manufacture. Since our interest is in
producing assembly sequences which can be automatically
interpreted, we will instead directly evolve simple assembly
sequences containing instructions to a manufacturing sys-
tem such as a rapid prototyping machine.

In this paper we describe our framework for simulating
such a system. As we show, not only does Evolutionary De-
sign in such a system produce assembly processes for novel
objects, but it also produces novelmeans of assemblyas
well. Although recent papers of ours have mentioned this
emergence of novelty in passing, here we provide a method
of measuring it, and provide a quantitative comparison of
the phenomenon across two different environments. This
analysis provides insight into how such novelty can be en-
couraged and harnessed, in order to bridge the Fabrication
Gap.

2 Assembly Sequence Planning

As we mentioned , most Evolved Designs which were sub-
sequently assembled in the real world have required signifi-
cant human effort. The source of this effort is largely in the
form of figuring out how to build, in a sequential manner, an
object resembling the evolveddescriptiverepresentation.

In the field of engineering, the task of inferring a se-
quence of assembly instructions given a particular structure
a priori is known asAssembly Sequence Planning, or As-
sembly Sequencingand is a rather richly studied topic. Al-
though the process of determining an assembly sequence
may come readily to humans, it often much harder to com-
putationally solve, and has in fact been demonstrated to be
NP-complete in the general case (Kavraki et al., 1993).

Computational approaches to sequence planning for a
given object usually involve the much easier inverse prob-
lem of disassembly planning- that is, exploring all the
ways of removing parts one at a time. Doing so, how-
ever, makes the critical assumption that every stage of as-
sembly is bothreversibleandsymmetric. And even within
those constraints, the problem is demonstrably rather com-
plex (Goldwasser et al., 1996; Kavraki et al., 1993). Need-
less to say, without those constraints descriptive Evolution-
ary Design Systems are capable of generating designs of ob-
jects whose assembly sequence is, optimistically, extremely
difficult if not impossible to produce automatically.

Of course, anyone who has taken apart a home appliance
and then put it back together, only to be left with a remain-
ing mysterious screw, knows that assembly and disassembly
are rarely symmetric, reversible processes in the real world.

3 Direct Evolution of Assembly Plans

As we discussed in our introduction, faced with such diffi-
culties in inferring an assembly sequence from an evolved

descriptive representation, it might be better to avoid the
problem entirely by directly evolving assembly sequences.
In this realm, the language of assembly no longer needs to
be constrained to reversible and symmetric operations, and
as a consequence, the domain ofbuildableevolved struc-
tures is greatly expanded - because they no longer need to
beunbuildableas well.

It is this last aspect that we would particularly like to ex-
plore the consequences of in this paper. By directly evolving
assembly sequences, and unconstrained to reversible and
symmetric assembly methods, Evolutionary Design can ar-
rive at not just novel objects, but novel means of assembling
those objects. Of course, there is no “free lunch” in this
process. By allowing evolutionary design to range over the
entire space of assembly sequences, we greatly increase the
search domain, and other methods may be needed to intelli-
gently constrain the search. As a final advantage, however,
consider that evolved assembly sequences can be directly
interpreted by a compatible manufacturing system, and so
allow for fully automated designandassembly, offering the
prospect of removing the human from the loop entirely.

4 A Framework for Exploring
Assembly Sequence Design

Our goal in this paper is to simulate a system which is capa-
ble of Fully Automated Design and Assembly by means of
the evolution of assembly plans in a realistic assembly envi-
ronment. Such a system is analogous to a rapid prototyping
machine capable of executing assembly plans, coupled to
an evolutionary algorithm capable of generating new plans.
Our framework for exploring these issues is based upon the
Open Dynamics Engine (ODE)1 the widely used open-
source physics engine, which provides high-performance
simulations of 3D rigid body dynamics.

Assembly is performed by a LOGO-like turtle, acting as
a print head, capable of movement in the X-Z plane, and of
depositing bricks in the environment. When strung into a
sequence, commands to the turtle (move, rotate, put brick,
take brick) form anassembly plan. Commands which would
cause the turtle to move outside the target area, or place a
brick where a brick already exists, are ignored. The speed
of an ODE simulation is heavily influenced by the number
of objects being simulated. Consequently, the maximum
number of objects placed by any assembly plan was limited
to 25.

Since our recent work has demonstrated the ability of
similar systems to discover scaffolding implicitly duringthe
course of evolution (Rieffel and Pollack, 2004a; Rieffel and
Pollack, 2004b), here we allow for theexplicit placement of
scaffolding. The turtle is capable of placing both perma-
nent ones (shown as black in the animation frames), and
temporary ones(shown in gray) which are removed once the
assembly is completed. This aspect is analogous to similar
features of modern rapid prototyping machines, which can
lay thin water-soluble support structures that are dissolved
once manufacture is complete.

1www.ode.org

Figure 1: Assembly has three stages. In the first, both per-
manent and temporary bricks are placed. In the second, ad-
jacent permanent bricks are glued together, and scaffolding
is removed. Finally, the remaining structure settles.

Our simulated assembly falls into three stages (Figure
1). In the first, the turtle interprets the assembly plan, mov-
ing and placing bricks as directed. In this stage, each brick
is a separate component in the environment, subject to grav-
ity and interactions (such as collisions) with other objects.
Once assembly is complete and the structure is stable, ad-
jacent permanent bricks are glued together (but not to the
floor), and then scaffolding elements are removed. Finally,
once the scaffolding is gone, the final structure is allowed to
come to a rest before being evaluated.

4.1 Set Up

The genotypes of our Evolutionary Algorithm were assem-
bly plans, consisting of a sequential set of parameterized
instructions to the situated development system described
above.

Rather than using a single fitness function, we
used a simple Evolutionary Multi Objective Optimization
(EMOO) Algorithm (Coello, 1999) over a set of objectives,
described in more detail below. Initial population size was
30 individuals, each with a randomized length of between
8 and 40 instructions. After each generation was evaluated,
the N non-dominated individuals (i.e. pareto front) were
selected as parents, and N new individuals generated us-
ing two-point crossover (60%) and mutation (2% per locus).
In order to limit population sizes, duplicate genotypes were
rejected, and duplicate objective values were limited using
crowding (Mahfoud, 1995), with a limit of 3 individuals
per bin.

B

A

Figure 2: Illustration of the Development Environment.
In both setups, the fitness function is measured over the
smaller box (A). Within that box structures are rewarded
for maximizing the “shaded” gray regions under the black
structure. Note that the uppermost overhang does not con-
tribute any shade, because it exists outside of the fitness
bounds. In Setup A, the range of the turtle is limited to the
smaller box (A). In Setup B, the range of the turtle extends
to the outer box (B).

Our design task was to create a structure which max-

imizes the total open volume beneath a structure, thereby
encouraging structures which both maximize height and
maximize the number of empty spaces beneath the struc-
ture.(Figure 2) In order to measure the “shaded” fitness of
each structure, a bitmap was generated by sampling box
A in Figure 2 - the central100 × 100 region (bricks are
10 × 10 × 20) in the X-Z plane.

The specific objectives of our EMOO where therefore:

• Length of Assembly Plan. (minimizing)

• Mass - number of bricks in the entire world, not just
the sample region. (minimizing)

• Number of shaded bits. (maximizing)

The first two objectives exist for more than just deter-
rence against bloat, per (De Jong et al., 2001). Rather, they
also reward assembly plans for efficiency in terms of time
(the length objective) and in terms of material (the mass ob-
jective). Physical prototyping machines are slow, and re-
quire expensive material - therefore any reduction in print
time or print material is highly valuable.

4.2 Early Examples Novel Assembly in Evolutionary De-
sign

In earlier work (Rieffel and Pollack, 2005), we used an en-
vironment in which the range of the turtle was limited to the
same box as fitness was measured in (box A in the Figure 2).

An interesting phenomenon that we noticed is that oc-
casionally, evolved structures would be unstable once scaf-
folding was removed. This instability then caused the struc-
ture to tumble into a final, structurally distinct shape, often
with higher fitness. Figure 3 provides an example of this
phenomenon.

This phenomenon of “dynamic assembly”, as we call it,
is an interesting exploitation of the system as we designed it,
and is a preliminary example of the novel types of assembly
process that can arise from evolving assembly plans directly
in a realistic environment.

From the perspective of Assembly Sequence Planning
(Section 2), this process of assembly via toppling is a good
example of a non-reversible assembly sequence - the struc-
ture’s final location is a result of the assembly’s interaction
with its environment, rather than purely a direct result of
an assembly instruction. Any purely sequential disassem-
bly sequence of the arch would not be able to produce a
matching inverse of the action.

Of course, this raises the question of whether there is any
particular advantage to such novel assembly, or whether it
is a mere curiosity. We can seek to answer this by exploring
the following issues: What are the evolutionary incentives
of dynamic assembly? Are solutions which use dynamic
assembly any morefit than those without? Are solutions
which use dynamic assembly any more efficient, either in
terms of time (assembly plan length) or in terms of material
(mass of final structure).

Figure 3: A novel dynamic assembly method discovered in Setup A (Section 4.2) . Once the assembly is complete (Frame
1), scaffolding is removed and remaining bricks glued together (Frame 2), the larger section topples onto the smaller
section, balancing there to form a T. This resulting shape has significantly higher fitness (49%) than the original structure
(10%)(Frame 1)

4.3 Measuring Novel Assembly

This novel “dynamic assembly” of structure can be mea-
sured by calculating a structure’s fitness immediately af-
ter scaffolding is removed, and comparing this value to the
structure’s final fitness once stabilized. This difference cor-
responds to the amount of fitness contributed by dynamic
assembly.

fdynamic = ffinal − finitial (1)

Similarly, as a measurement of efficiency in terms
of time and material, we can calculate the fitness-per-
instruction and fitness-per-brick of each solution by divid-
ing each solution’s fitness by its assembly plan length and
mass.

4.4 Comparing Assembly Environments

Armed with this means of measuring dynamic assembly and
efficiency, we ran two sets of experiments in slightly dif-
ferent environments. The first environment (Setup A) was
identical the original environment from our earlier experi-
ments. In the second, we made a small change: Rather than
limiting the turtle to the same box that fitness was evaluated
over, it was allowed to range over a larger,200 × 200 box
(labeled B Figure 2). Otherwise, all of the objectives, and
the 25 brick limit, remain unchanged. This slight adjust-
ment allows the turtle to place bricks outside of the fitness
box - which then fall into it during the final settle phase of
development. Table 1 summarizes the differences between
environments.

Table 1: Comparison of Setup A and Setup B
Setup A Setup B

runs 11 16
Turtle Range 200 × 100 100 × 100

Fitness Range 100 × 200 100 × 100

4.4.1 Results

Table 2 contains representative results derived from Setup
A. The figures on the left hand side show the structure be-
fore scaffolding was removed, and the figures on the right

hand side show the final, stable structure.(Full color images
of all results, as well as animations, are available at the au-
thor’s web page2). As can be seen, structures tend towards
stable arch-like structures with two legs.

Table 4 shows representative structures evolved in Setup
B (black spheres have been placed in the upper corners of
the box over which fitness is measured). As can be inferred
from variety of structures shown in the table, unlike the
setup in Setup A, which produced relatively stable arch-like
structures, this small change results in a significantly num-
ber of structures which are assembled dynamically.

Figure 4 provides a direct comparison of the contribution
from dynamic assembly across the two regimes. Data were
generated by averaging the values of the best individual in
each generation across runs.Table 3 summarizes the values
in Figure 4, and provides some further comparisons. Al-
though both regimes produce equally fit structures, the con-
tribution of dynamic assembly towards fitness in Setup B is
significant, whereas solutions in Setup A contain very lit-
tle dynamic assembly. This suggests that a relatively small
change in the environment can significantly change both the
type of of structure, and the means of assembly.

Figures 5 and 6 respectively compare the average value
of the fitness per brick and fitness per assembly plan instruc-
tion for the best individual of each generation. In each case
the values are close, and variance is rather high.

In Figure 5, the slightly lower fitness per brick of Setup
B suggests that some material bloat occurs in the slightly
larger environment. This slight bloat in material could be
due to the fact that extraneous bricks outside of the fitness
range (Box A in Figure 2) do not have a deleterious effect
upon fitness the way that extra bricks within the box do -
and yet may serve a useful function, for instance as a coun-
terbalance during dynamic assembly.

On the other hand, the fitness per assembly plan instruc-
tion (Figure 6) is slightly higher for Setup B. This suggests
that while solutions evolved in the larger environment may
not be more efficient in terms of material, they gain effi-
ciency in time. In other words, assembly plans in Setup
B tend to be shorter than equivalently fit assembly plans
evolved in Setup A. This efficiency can easily be attributed
to the novel methods of dynamic assembly that are discov-

2www.cs.brandeis.edu/˜jrieffel/situated-development/

Table 2: Structures Evolved in Setup A. The left-hand
images show the structure before scaffolding (grey) is re-
moved, and the right-hand images show the final, stable
structure. The small black sphere shows the location of the
turtle.

Fill With Scaffolding Final

84%

80%

90%

95%

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

1600

Generation

F
itn

es
s

 mean fitness, (Setup B)

mean fitness, (Setup A)

dynamic assembly contribution (Setup B)

dynamic assembly contribution (Setup A)

Figure 4: Comparison of fitnesses and fitness contribution
from dynamic assembly between Setup A and Setup B. Data
is averaged across 11 runs for Setup A, and 16 runs for
Setup B. Although maximal fitness is equivalent across both
regimes, Setup B contains significantly more examples of
dynamic assembly

Table 3: Comparison of values between Setup A and B
Setup A Setup B

Mean Vals at Generation 3000
σ σ

ffinal 1552 205 1579 174
fdynamic 258 306 1136 539
ffinal/brick 138 25 111 24
ffinal/instr 48 11 54 16

0 500 1000 1500 2000 2500 3000
20

40

60

80

100

120

140

Generation

F
itn

es
s

P
er

 B
ric

k

Setup B

Setup A

Figure 5: Average Fitness Per Brick between Setup A and
Setup B.

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

Generation

F
itn

es
s

P
er

 In
st

ru
ct

io
n

Setup B

Setup A

Figure 6: Average Fitness Per Assembly Plan Instruction
between Setup A and Setup B.

ered in the larger assembly environment.
Figures 7, 8 and 9 provide illustrations of such dynamic

assembly, and demonstrate how this efficiency is accom-
plished. Of the three, the most interesting is the “T” shape
in Figure 9. The initial fitness, immediately after scaffold-
ing has been removed but before the structure has settled is
below 1% of maximum. Once scaffolding is removed, how-
ever, the left column is unbalanced, and so topples onto the
right-hand column - tottering back and forth until coming

to a rest perfectly balanced atop it. An corresponding non-
dynamic assembly process would require substantial extra
scaffolding in order to create an equivalent structure.

5 Discussion and Conclusion

We began by introducing the notion of the “Fabrication
Gap” that can arise as a consequence of evolving descrip-
tive representations of designed objects. This gap, between
the specified object and the unknown,a priori, assembly
sequence which can produce it, is an obstacle to the full au-
tomation of both design and assembly, since it often requires
substantial human intelligence and insight to cross.

We have presented one way to avoid, rather than cross,
this gap - by evolvingprescriptiveassembly plans instead
of descriptiveblueprints, and by accurately simulating the
entire process of an object’s assembly. Doing so produces
a result which is not only buildable, but also one which im-
mediately presents itself for automation, thereby clearing
the way for Fully Automated Design and Assembly.

An added benefit of this evolution inassembly space
rather than design space arises from Evolutionary Algo-
rithms’ ability to exploit aspects of their substrate. In our
case, this means that Evolutionary Design can discover
novel means of assembly, not just novel designs. We’ve
also shown how a small change to the assembly environ-
ment results in a significantly higher occurrence of these
phenomena.

The most obvious of these novel assembly methods
is what we’ve termed “dynamic assembly”, in which the
evolved process builds multiple sub-assemblies supported
by scaffolding which, once scaffolding is removed, become
unstable and topple into a significantly more fit final shape.
As we’ve shown, such dynamic assembly methods are of-
ten more efficient in time than corresponding non-dynamic
solutions.

At this point we have made no claims about therobust-
nessof these novel assembly methods, and all likelihood
they are quite brittle. In recent work (2004a), however, we
demonstrated the ability of evolved assembly plans to dis-
cover robust assembly methods in the face of noise during
assembly, albeit in a simpler physics model - and we hope
to translate those methods into this richer environment.

As described, these examples of dynamic assembly are
highly specific to the environment in which they were
evolved. Moreover, even though our interest is in phys-
ical assembly, we have presented only simulated results.
Any system which evolves solutions in simulation and then
hopes to translate them into reality faces the spectre of the
so-called“reality gap” (Jakobi et al., 1995). Ultimately we
will need high fidelity simulations of assembly mechanisms.
One option is to allow evolution to modify and fine-tune our
simulation environment to better reflect a physical assembly
system. Bongard and Lipson’s recent work inadaptive sim-
ulation (Bongard and Lipson, 2004), which uses a genetic
algorithm to co-evolve a robotic controller and the parame-
ters of an ODE-based simulation to compensate for unan-
ticipated morphological changes in the robot, offers one
promising approach to fine-tuning simulation to match re-

ality.
The goal of Fully Automated Design and Assembly is,

however, a worthwhile one. Ultimately, our work aims
to autonomously generate robotic designs which can then
be automatically assembled by an autonomous manufac-
turing system, all without any human involvement. Imag-
ine, for instance, being able to send 100 identical rover-
manufacturing plants to Mars, each of them landing in a dif-
ferent environment - some in craters, some in sandy deserts,
etc. And yet each one, once it has surveyed its landing site,
could then co-adapt its rover designs and its manufacturing
process to local conditions, in order to create mobile rovers
closely adapted to its specific environment.

References

Bongard, J. and Pfeifer, R.: 2003,Morpho-functional Ma-
chines: The New Species (Designing Embodied Intelli-
gence), Chapt. Evolving complete agents using artificial
ontogeny, pp 237–258, Springer-Verlag, Berlin

Bongard, J. C. and Lipson, H.: 2004, Once More Unto the
Breach: Automated Tuning of Robot Simulation using
an Inverse Evolutionary Algorithm, inProceedings of
the Ninth Int. Conference on Artificial Life (ALIFE IX),
pp 57–62

Coello, C. A. C.: 1999, An updated survey of evolutionary
multiobjective optimization techniques: State of the art
and future trends, in P. J. Angeline, Z. Michalewicz, M.
Schoenauer, X. Yao, and A. Zalzala (eds.),Proceedings
of the Congress on Evolutionary Computation, Vol. 1, pp
3–13, IEEE Press, Mayflower Hotel, Washington D.C.,
USA

De Jong, E. D., Watson, R. A., and Pollack, J. B.: 2001,
Reducing bloat and promoting diversity using multi-
objective methods, in L. Spector, E. Goodman, A. Wu,
W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S.
Pezeshk, M. Garzon, and E. Burke (eds.),Proceedings
of the Genetic and Evolutionary Computation Confer-
ence, GECCO-2001, pp 11–18, Morgan Kaufmann Pub-
lishers, San Francisco, CA

Funes, P.: 2001,Evolution of Complexity in Real-World
Domains, Ph.D. thesis, Brandeis University, Dept. of
Computer Science, Boston, MA, USA

Goldwasser, M., , Latombe, J., and Motwani, R.: 1996,
Complexity measures for assembly sequences, inProc.
IEEE Int. Conf. on Robotics and Automation, pp 1581–
1587, Minneapolis, MN

Hornby, G. S.: 2003,Generative Representations for Evolu-
tionary Design Automation, Ph.D. thesis, Brandeis Uni-
versity, Dept. of Computer Science, Boston, MA, USA

Hornby, G. S. and Pollack, J. B.: 2001, The advantages
of generative grammatical encodings for physical de-
sign, in Proceedings of the 2001 Congress on Evo-
lutionary Computation CEC2001, pp 600–607, IEEE
Press, COEX, World Trade Center, 159 Samseong-dong,
Gangnam-gu, Seoul, Korea

Jakobi, N., Husbands, P., and Harvey, I.: 1995, Noise and
the reality gap: The use of simulation in evolutionary

Figure 7: Another dynamic assembly sequence from Setup B. This is 22 instructions long, with a final mass of 10. Initial
fitness is 31%, final fitness is 47%, a 52% increase.

Figure 8: A dynamic assembly sequence from Setup B. 20 instructions, 14 mass. Initial fitness: 27%, Final Fitness: 62%,
a 129% increase. The black spheres mark the upper corners of the fitness bounds.

Figure 9: The most extreme example of dynamic assembly from Setup B. With only 17 instructions, and a mass of 13.
Initial fitness is 0.4% (no typo), Final fitness is 80%. The black spheres mark the upper corners of the fitness bounds.
The near-zero initial fitness is due to the fact that the overhanging brick is outside of the fitness bounds, and therefore
contributing no shade.

robotics, inProc. of the Third European Conference on
Artificial Life (ECAL’95), pp 704–720, Granada, Spain

Kavraki, L. E., Latombe, J.-C., and Wilson, R. H.: 1993, On
the complexity of assembly partitioning,Information
Processing Letters48(5), 229–235

Komosiński, M. and Ulatowski, S.: 1999, Framsticks:
Towards a simulation of a nature-like world, creatures
and evolution, in D. Floreano, J.-D. Nicoud, and F.
Mondada (eds.),Proceedings of the 5th European Con-
ference on Advances in Artificial Life (ECAL-99), Vol.
1674 ofLNAI, pp 261–265, Springer, Berlin

Lohn, J. D., Hornby, G. S., and Linden, D. S.: 2005,
An Evolved Antenna for Deployment on NASA’s Space
Technology 5 Mission, in U.-M. O’Reilly, R. L. Riolo,
T. Yu, and B. Worzel (eds.),Genetic Programming The-
ory and Practice II, Kluwer

Mahfoud, S. W.: 1995,Niching methods for genetic algo-
rithms, Ph.D. thesis, University of Illinois at Urbana-
Champaign, Urbana, IL, USA

Pollack, J. B., Lipson, H., Hornby, G., and Funes, P.: 2001,
Three generations of automatically designed robots,Ar-
tifial Life 7(3), 215–223

Rieffel, J. and Pollack, J.: 2004a, The Emergence of On-
togenic Scaffolding in a Stochastic Development Envi-
ronment, in K. D. et al. (ed.),Genetic and Evolution-
ary Computation–GECCO 2004. Proceedings of the Ge-
netic and Evolutionary Computation Conference. Part
I, pp 804–815, Springer-Verlag, Lecture Notes in Com-
puter Science Vol. 3102, Seattle, Washington, USA

Rieffel, J. and Pollack, J. B.: 2004b, Artificial ontogenies
for real world design and assembly, in M. B. et al. (ed.),
Ninth International Conference on the Simulation and
Synthesis of Living Systems (ALIFE9) Workshop: Self-
Organization and Development in Artificial and Natural
Systems (SODANS), pp 37–41, MIT Press

Rieffel, J. and Pollack, J. B.: 2005, Situated develop-
ment: Using artificial ontogenies to evolve buildable 3-
d objects, inGenetic and Evolutionary Computation–
GECCO 2004. Proceedings of the Genetic and Evolu-
tionary Computation Conference. (to appear)

Sims, K.: 1994, Evolving virtual creatures, inProceedings
of the 21st annual conference on Computer graphics and
interactive techniques, pp 15–22, ACM Press

Toussaint, M.: 2003, Demonstrating the evolution of
complex genetic representations: An evolution of arti-
ficial plants, inProceedings of the 2003 Genetic and
Evolutionary Computation Conference (GECCO 2003),
Springer-Verlag, New York

Ventrella, J.: 1994, Explorations in the emergence of mor-
phology and locomotion behavior in animated charac-
ters, in R. A. Brooks and P. Maes (eds.),Proceed-
ings of the 4th International Workshop on the Synthesis
and Simulation of Living SystemsArtificialLifeIV ,
pp 436–441, MIT Press, Cambridge, MA, USA

Table 4: Structures Evolved in Setup B before (left) and
after (right) the grey scaffolding is removed. Black spheres
have been placed in the upper corners of the box over which
fitness is evaluated. The larger sphere is the location of the
turtle

Initial Final

5% 84%

2% 81%

27% 62%

31% 47%

0.4% 80%

