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Abstract. Evolutionary designs based upon Artificial Ontogenies are
beginning to cross from virtual to real environments. In such systems
the evolved genotype is an indirect, procedural representation of the
final structure. To date, most Artificial Ontogenies have relied upon an
error-free development process to generate their phenotypic structure.
In this paper we explore the effects and consequences of developmental
error on Artificial Ontogenies. In a simple evolutionary design task, and
using an indirect procedural representation that lacks the ability to test
intermediate results of development, we demonstrate the emergence of
ontogenic mechanisms which are able to cope with developmental error.

1 Introduction

Recently, evolved designs have begun to cross the boundary from the virtual to
the real [1,2]. Many of these designs are based upon Artificial Ontogenies [3,
4], which use an indirect encoding of the evolved object. Between genotype and
phenotype lies some developmental process responsible for assembling the phe-
notypic structure by interpreting instructions contained in the genotype.

While many such systems take noisy physics into account when evaluating
the fully developed phenotype [5-7], the problem of noise during development
is yet to be addressed, and to date, Artificial Ontogenies have not been shown
to be adaptive to errors caused by noisy development environments. With the
real-world assembly of evolved designs in mind, our interest here is on the ability
of Artificial Ontogenies to adapt to error during development. This is a line of
inquiry intimated by Stanley and Miikkulainen in their recent survey [4].

As we show, developmental error can complicate an otherwise trivial de-
sign task. Error during development results in a stochastic process wherein each
genotype, instead of reliably developing into a single phenotype, develops into an
entire distribution of heterogeneous phenotypic structures, with a correspond-
ing range of fitness values. As such, a credit-assignment problem arises: when a
genotype develops into a variety of heterogeneous phenotypes, how should the
entire range of related fitnesses be attributed to that genotype?

In this paper we begin to explore whether, without incorporating tests into
the developmental system, there is enough information available to the evolution-
ary process to allow for mechanisms to emerge which can cope with stochastic



development. We first evolve an indirect encoding in an error-free development
environment and demonstrate its failure when assembled in a stochastic environ-
ment. We then incorporate noise into the development environment used within
the evolutionary process. In this setup we are able to observe the emergence of
ontogenic mechanisms capable of overcoming developmental error.

2 Theory and Background

Artificial Embryogenies [4] distinguish themselves from other forms of evolution-
ary computation by treating the genotype as an indirect, or procedural encoding
of the phenotype. The genotype is decoded and transformed into a phenotype by
means of some developmental process. As a result, a single-point change to the
genotype can have multiple (or zero) effects upon the phenotype. This abstrac-
tion layer between genotype and phenotype allows for quite a bit of flexibility
during evolution, and has several demonstrated advantages [8,9,4,3,10]. An ad-
vantage of indirect encodings that we are particularly interested in is their ability
to specify intermediate morphological elements that are useful for ontogenesis,
but that do not exist in the final phenotype.

2.1 Genotypes as Assembly Plans

In distinguishing the direct encodings used in traditional GAs from the indirect
encodings used by Artificial Ontogenies, it is informative to consider the distinc-
tion between a blueprint and an assembly plan. A direct encoding is a descriptive
representation. It is like a blueprint in the sense that it conveys what the phe-
notype should look like, but carries no information about how to build it (or
whether in fact it can be built at all.) Examples of evolved direct encodings in-
clude Lipson’s Golems [2] and Fune’s LEGO structures [11]. Indirect encodings,
on the other hand, provide no information about what the final structure should
look like. Rather they are a procedural representation, and like an assembly plan,
give specific instructions on how to build the structure step by step.

When their genomes are described as assembly plans, Artificial Ontogenies
can be considered a form of Genetic Programming (GP) [12]. The genome, either
linear or in the form of the tree, consists of loci which are instructions to some
ontogenic agent. This agent (which is not necessarily external to the developing
structure), interprets each instruction and builds the emerging structure from
raw materials accordingly. In the case of Hornby [8,7,2], the instructions are
commands to a LOGO-like turtle which builds three dimensional structures out
of voxels. In the case of Toussaint [9], the instructions are for a system which
draws three-dimensional plants from component stems and leaves. Assembly
plans can be categorized as either ballistic or adaptive. Ballistic assembly plans
have no internal feedback mechanisms - they proceed uninterrupted until done,
regardless of the results of each action. Adaptive assembly plans, on the other
hand, are able to measure the results of their executed instructions, and change
their behavior accordingly.



2.2 The Effects of Noise during Development

Most Artificial Embryogenies (Fig. 1) rely upon a deterministic development
process. As such, there is a one-to-one relation between genotype and phenotype:
a given genotype will always develop into the same phenotype.
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Fig. 1. In a simple Artificial Ontogeny with a deterministic development, each genotype
consistently develops into a single phenotype and associated fitness

Introducing error into development causes a one-to-many genotype/phenotype
relationship. Since the result of each stage of the ontogeny is predicated upon
the result of the previous stage, an early error can drastically affect the outcome
of the final phenotype. Under these conditions a genotype may produce any
number of phenotypically heterogeneous results, as illustrated by Fig. 2. [13]
provides a more nuanced treatment of this phenomenon.
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Fig. 2. In a Artificial Ontogeny with a noisy development environment, each genotype
can develop into an entire range of phenotype, with a corresponding range of fitnesses

One possibility for overcoming developmental error is to include some form
of test into the genotype’s set of primitive instructions. However, incorporating
tests into each step of an ontogeny can be time consuming, particularly in the
context of an evolutionary search spanning thousands or millions of generations.
Another way to handle stochastic ontogenies might be to use systems capable
of modularity and parallelism such as generative grammars [8] or genetic regu-
latory networks [10]. Like tests, however, such methods come at the expense of
simplicity of the ontogenic process.



Before exploring more complex, albeit powerful, genotypes and ontogenies
it is worthwhile to first explore the capabilities and limits of a simple linear,
ballistic assembly plan, whose only feedback exists at the evolutionary scale.

2.3 Measuring Fitness Distributions

Rather than give each genotype only one chance to stochastically develop into a
phenotype, it may be more informative to allow each genotype multiple stochas-
tic developments. A genotype will then produce an entire distribution of pheno-
types, with a corresponding range of fitness values, per Fig. 3. Statistical mea-
surements of the resulting distribution can then be used to measure the fitness
of the genotype.
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Fig. 3. A noisy development environment leads to a distribution of phenotypic fitnesses.
Yield is the frequency with which the distribution reaches the maximum fitness

In the case where there is an achievable maximum fitness, gradient can be
further induced by considering yield: the frequency with which the maximum
fitness is attained (see Fig. 3). To illustrate this, consider the case where there
is a particular evolutionary goal in mind, such as the pre-defined letter shapes
on a grid in Kumar and Bentley’s recent work [3]. In this context, yield can
be described as the percentage of times that a given assembly plan is able to
successfully generate the goal phenotype.

With such a range of different statistical measurements available to compare
genotypes, choosing a specific scalar fitness function which somehow weighs and
combines the measurements into a single informative value can be difficult. In
this situation, Evolutionary Multi-Objective Optimization (EMOO) [14, 15] can
prove useful.

EMOO allows each measurement to exist as an independent objective. In-
stead of a scalar fitness value, each genotype is given a set of fitness values, one
for each objective. When comparing two sets of objective values, one is said to
Pareto dominate the other when it is at least as good in all objective dimen-
sions, and better in at least one dimension. Given a population of individuals,
the Pareto front consists of the set of individuals that are not dominated by any
other individuals. A more detailed mathematical explanation of EMOO can be
found in [14] and [15].



3 Experiments

The goals of our experiments are twofold: first to demonstrate that “naive”
indirect encodings evolved in an error-free development environment are brittle
in the face of error during ontogeny; and secondly to show how indirect encodings
evolved within a stochastic environment are able to adapt to error, and reliably
produce fit phenotypes.

We phrase our problem as a type of Genetic Programming [12] in which we
are evolving a linear assembly plan to build a predefined “goal” structure. In
this case, we chose an arch (Fig. 4), in part for the expected level of difficulty,
and in part for historical reasons - its presence in Winston’s seminal work on
Machine Learning [16].

W

Fig. 4. The goal structure. Note: vertical bricks are black, horizontal bricks are grey

The genotype consists of a linear set of parameterized instructions for a
LOGO-turtle like builder, the ontogenic agent. The turtle is capable of moving
along a vertical 2-D plane, and placing and removing 221 bricks within the plane.
Table 1 lists the instructions used. Note that assembly plans are completely
ballistic: there are no instructions that can test the state of the world or the
results of the most recent instruction.

Table 1. Parameterized Assembly Instructions

[Instruction |Parameters |
(M)ove +2, +1, -1, -2

(R)otate  |+90, -90, +180

(P)ut Brick |(a)head, to (r)ight, to (1)eft, (b)ehind
(T)ake Brick|(none)

Because genotypes are linear sequences of instructions, they are amenable to
both crossover and mutation. In order to allow for a broader syntactic range of
acceptable genotypes, the builder is tolerant of redundant instructions (such as
putting a brick where a brick already exists), as well as instructions which would
force it off of the grid.



3.1 Physics

Bricks placed by the turtle are subject to a simple physics model. They must
either be supported by the floor of the plane or by another brick. Bricks unsup-
ported from below will fall until they hit a supporting surface.

By adding noise to the physics of the development environment, we can
induce developmental errors. Bricks placed vertically on a surface have a 50%
chance of staying in place, and a 50% chance of falling to either side. Similarly,
bricks placed horizontally such that they are cantilevered have a 50% chance of
remaining in place and a 50% chance of falling. Naturally, surrounding bricks
may act as supports, and reduce the chance that a brick will fall. Bricks that fall
will drop until they find a resting place. Once a brick has settled it is considered
“glued” in place until it is removed or one of its supporting bricks is removed.
Table 2 summarizes the rules of the stochastic physics. Note that the turtle
itself is imperturbable. Its position on the plane remains constant regardless of
whether the brick it has placed falls or not.

Table 2. Basic Rules for Stochastic Physics

Vertical Bricks have a 50% chance of falling to either side.

|
Cantilevered Bricks have a 50% chance of falling Wiz ﬂ”B

The developmental error of our assembly is therefore of a very specific nature:
each instruction in the assembly plan is always reliably executed by the builder,
but the result of that instruction may vary.

3.2 Algorithm

As mentioned above, we chose to phrase the problem as one of Evolutionary
Multi-Objective Optimization (EMOO) [14,15]. The specific objectives vary
between experimental setups, and are discussed in detail for each.

Evaluation Individuals are evaluated by interpreting their assembly plans within
the specified environment and measuring the properties of the resulting struc-
ture. For non-stochastic environments, each assembly plan only needs to be build
once. For stochastic environments, assembly plans are built several times in order
to gather statistical properties of their phenotypic distribution.



Generation and Selection Population size is variable - new children are added
and evaluated until the population is doubled. New individuals are generated by
a combination of two-point crossover (70%) and single-point mutation (30%).
Once the new population has been generated and evaluated, the population is
culled by and keeping only non-dominated individuals, i.e. the Pareto front.

3.3 Evolving Without Developmental Noise

As a first demonstration, consider a “naive” assembly plan evolved in an error-
> Yy
free development environment. The objectives used for this run are as follows:

length of genome (shorter is better)
genotypic diversity
number of squares missing from goal structure (fewer is better, 0 is best)

sum of number of missing squares and extra squares(fewer is better, 0 is
best)

The length objective exists in order to find minimal solutions, as well as a
deterrent to bloat [17,18]. Because of the small number of objectives, and due to
the propensity of the system to find a large number of genotypically similar, and
therefore redundant solutions, we follow the lead of [17] by adding a diversity
metric. This metric is calculated as the average hamming distance between the
genome and all other genotypes in the population.

Treating the goal and result structures as 2-D bitmaps, the third objective
can be calculated as the sum of the bitwise AND of the goal and the inverse of the
result, >, ;(goal(i, j) ® —result(i, j)), and the fourth objective as the sum of the
bitwise XOR of the goal structure and the result: }°; .(goal(i, j) @ result(i, j)).
As an example, consider the leftmost structure in Fig. 6: three squares are absent
from the goal structure, and there are nine extra squares. The third objective
would therefore be 3, and the fourth objective would be 12.

The last metric, which adds the number of missing square and extra squares,
may seem cumbersome, but earlier attempts which simply tried to minimize
the number extraneous bricks ended up rewarding long, diverse assembly plans
which simply moved about but did not place any bricks. By combining missing
squares and extra squares, this behavior is avoided.

Results With this set-up, the system is able to find a minimal assembly plan
capable of building the arch in Fig. 4, as shown in the sequence of frames in
Fig. 5. The corresponding genotype is: [R(+90) M(-2) P(r) P(a) P(l) M(-1)
R(+90) M(-2) P(r) M(+2) P(1) P(b) P(r) P(b) M(-2) P(b)]

Not surprisingly, when that same minimal assembly plan is then built with
a noisy development environment it completely fails to build the goal struc-
ture - even given repeated attempts. Figure 6 shows a sample of the resulting
phenotypes.
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Fig. 5. “Naive” Assembly Plan for Arch. Frames are read left-to-right, top to bottom.
The dark grey square is location of the builder
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Fig. 6. A sample of the resulting phenotypes when built with noise

3.4 Evolving With Developmental Noise

Our second approach is to integrate a noisy development environment into the
evolutionary process itself - such that every candidate genotype is evaluated in
the noisy physics. Instead of being built once, each assembly plan is evaluated
50 times, and statistical measures used as evolutionary objectives. The set of
measurements that most consistently yielded the best results are:

e length (shorter is better)
e number of missing squares:

e best, average and yield percentage (no missing bricks)
e sum of extra squares and missing squares:

e best, average and yield percentage (perfect structure)

Note the absence of the diversity metric used in the first experiment. Such a
large number of objectives here results in a relatively large Pareto front with a
sufficient amount of diversity.

Results The evolutionary system described above is typically able to generate
assembly plans with yields above 70%. The result we present below is 82 instruc-
tions long, and reached a 70% yield during its 50 evolutionary evaluations. When
evaluated a further 500 times, its yield drops to 65%. This discrepancy can be
attributed to the relatively small sample size used in evolution. Table 3 below
shows some samples of the range of phenotypes produced by this assembly plan
over the course of multiple developments. It is able to perfectly build the goal
structure (far left) 65% of the time. It was able to produce a structure without
any squares missing from the structure (middle figures) an additional 8% of the
time. The remainder of results (right hand figures) contained some, but not all,
of the goal structure.



Table 3. Samples of the distribution of phenotypes of the robust assembly plan

LI s

Structure Intact: 73% Partial Structure: 27%
Perfect:65%| Extra Bricks:8%

In a typical run, by the time a genotype with 64% yield is achieved, the evo-
lution has run through 26300 generations, and more than 100,000,000 genotype
evaluations (where each genotype is evaluated 50 times!), and the population
consists of more than 3000 individuals. Beyond this point we therefore suspect
that the limitation on further maximizing yield lies largely in the computational
effort involved in evaluating such large populations.

Emergence of Ontogenic Scaffolding When a genome’s fitness is based upon
the statistical properties of its phenotypic distribution we can think of the role
of evolution as learning to shift phenotypic fitness distributions, rather than
individual values, towards the optimal. For instance, given two genotypes, the
one that on average produces more fit individuals can be considered the better
one. In this context, the value of the indirect encoding as assembly plan comes
into play. Because assembly plans have the ability to describe how a structure is
to be built, they can include instructions which place intermediate elements into
the structure whose role is to ensure that later elements of the structure stay in
place. We call these elements ontogenic scaffolding. Once all of the elements of
the final structure have been placed, the ontogenic scaffolding can be removed,
leaving behind a stable final structure. This ontogenic scaffolding is evident in
the results above.

Consider the frames in Figs. 7 through 9 below, which show a typical develop-
ment from the robust assembly plan discussed above. (Animated versions of these
images can be found at http://www.cs.brandeis.edu/”jrieffel/arches.html

)

The assembly begins with Fig. 7. The assembly plan first places horizontal
bricks to the left and right of what will become the first leg of the structure.
Their presence guarantees that the leg will stay in place. The plan then places
the first and second vertical bricks - both parts of the goal structure. Note the
“redundant” instruction in the sixth frame for Fig. 7. Although it appears
extraneous in this particular sequence, it proves useful in situations where the
first attempt at laying the second brick fails: in which case the fallen brick ends
up acting as scaffolding for the subsequent attempt.

In the following frames of Fig. 7 the assembly plan proceeds to lay scaffolding
for what will be the leftmost leg and leftmost cantilever of the arch.

The assembly continues in Fig. 8 as the plan continues to lay bricks that are
simultaneously scaffolding for the leftmost cantilever and for the left leg of the
arch. Once scaffolding is laid on both sides, both vertical bricks of the left leg



Fig. 7. Robust Assembly Plan Steps 1-18: In the first steps, the builder lays scaffolding

are placed. By the final frames of Fig. 8 all the bricks of the final structure are
in place.
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Fig. 8. Robust Assembly Plan Frames 19-49: more scaffolding is lain and the arch is
completed

All that remains is for the builder to remove the scaffolding, as it does in
Fig. 9, leaving, finally, the complete goal structure.

4 Conclusion

We have demonstrated that using only evolutionary-scale feedback, ballistic as-
sembly plans can be evolved to overcome a noisy development environment.
They are able to do this largely my means of ontogenic scaffolding - interme-
diate and temporary structural elements necessary for reliable assembly of the
goal structure. Our result of an assembly plan capable of 70% yield is typical of
our system. Running the evolution for longer can likely result in higher yields,
but search grows harder over time as the size of the Pareto-front population
increases - a consequence of using multi-objective optimization.

It is worth noting that the assembly of the structure shown in Figs. 7- 9 falls
into two distinct ontogenic phases - in the first phase the structure is built with
the aid of scaffolding, and in the second, the scaffolding is removed. The presence
of two distinct phases, as opposed to a process in which scaffolding is created and
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Fig. 9. Robust Assembly Plan Frames 50-80: scaffolding is removed

removed for each element of the final structure, is likely due to the specific search
gradient created by the two objectives which compare the assembled structure to
the goal structure. Evolved assembly plans can first improve along the dimension
of missing bricks until they begin to reliably generate all of the parts of the goal
structure. Once this is achieved, then can then focus on minimizing the number
extraneous bricks in the structure.

Ontogenic scaffolding, while demonstrably useful, provides a challenge for
evolutionary design. To begin with, assembly plans which place and then re-
move scaffolding will by necessity be longer than those that don’t. Secondly, any
intermediate assembly plan which places scaffolding but doesn’t remove it may
incur a penalty for the extraneous structure - the cost of exploration, therefore,
tends to be high. Finally, for sufficiently complex structures, the scaffolding itself
may require meta-scaffolding. These conditions, among others, combine to make
the evolution of ontogenic scaffolding, even in simple environments, a non-trivial
task.

Our next step will be to explore methods of evaluating assembly plans in noisy
environments without a goal structure provided a priori. Without the ability to
measure yield, the task is complicated quite a bit. Ultimately, we suspect that
more powerful and versatile encodings - such as generative representations [8,
9], or gene-regulatory networks [10], equipped with ontogenic-level feedback, will
be better able to adapt to stochastic assembly.
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