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Abstract

Evolving swarms can be used both to solve real-world prob-
lems and to study biological and ecological phenomena. We
simulated an evolving swarm of birds under three different
types of climate-change-related environmental variation - a
temperate environment becoming tropical, a temperate en-
viroment becoming a desert, and a tropical environment be-
coming a desert. We found that desertification increased ex-
pirations within the swarm and decreased population stabil-
ity. The direction of the variation - tropicalification or de-
sertification - had a greater impact on the dynamics of the
swarm than the degree of variation when it came to these out-
comes. The environmental variation also affected the genetics
of the birds, with decreased food availability leading to col-
lision avoidance genes being downplayed, and searching be-
havior for food being changed. High-intensity environmental
variation led to less genetic stability post-change than lower-
intensity environmental variation.

Swarming and flocking behavior is ubiquitous through-
out all scales of biological and physical systems. Swarm-
ing simulations were first developed by Reynolds (1987)
using his boids, simple agents that moved according to a
set of basic rules. Much later swarming behavior simula-
tion work has focused on agent-based modeling, which is
centered around the modeling of populations of individuals
with rules governing their behavior (Mach and Schweitzer,
2003). Agent-based modeling has been used to study such
subjects as the dynamics of mountian pine beetle infesta-
tions of forests (Perez and Dragicevic, 2010) and the dy-
namics of how bacteria aggregate to form microfilms (Lar-
don et al., 2011). Recent advances in robotics have made it
possible to experiment with large-scale physical swarms of
robots (Rubenstein et al., 2012).

Swarm flying behavior is increasingly an area of inter-
est, with a variety of algorithms and applications being de-
veloped. Karaboga (2005) used simulations of bee swarm
flying to develop a numerical optimization method, and Su
et al. (2009) modeled flocking behavior in the presence of a
group leader. Optimization of heterogenous swarms of fly-
ing agents is challenging, but is potentially very useful in
applications such as crop polination (Nagpal et al., 2011;

Figure 1: Example of evolving swarm and environment.

Berman et al,, 2011). Flying swarms have also been ap-
plied in the lab to tasks such as chemical cloud detection
(Kovacina et al., 2002) and dynamic communications relays
(Hauert et al., 2008).

Evolving Swarms

One major concern of evolutionary biology, which has been
studied by both biologists and computer scientists, is the
evolution of collective behavior (such as group foraging and
swimming in schools) among a group of organisms. Previ-
ous studies have examined the evolutionary risks and ben-
efits of some of these behaviors, and have examined them
as optimization processes that could be stable or unstable
under different circumstances (Davies et al., 2012; Pulliam
and Caraco, 1984; Sibly, 1983). Artificial life researchers
have used computational systems to study the evolution of
parasitism (Ray, 1991), the collective behavior of flying and
swimming organisms (Reynolds, 1993; Zaera et al., 1996),
and the interactions of evolution and game theory (Eriksson
and Lindgren, 2002).

In recent years there has been some success in evolv-
ing collective behavior amongst flying artifical agents us-
ing SwarmEvolve and SwarmEvolve 2.0 Spector and Klein
(2002); Spector et al. (2005), which modeled 3D virtual
worlds and allowed for goal orientation, multiple species of
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birds, and evolution of the motion control equation itself.
This success has been followed by other work in evolving
coordinated flying groups (Knoester and McKinley, 2011)
as well as evolving other kinds of group behavior such as
wolf-pack hunting (Muro et al., 2011).

Evolution and Environmental Variation

In the study of evolution and ecology, environmental vari-
ation is receiving increasing attention as a factor due to
concerns about climate change. Ruel and Ayres (1999)
used Jensen’s inequality, a mathematical proof, to predict
some effects of environmental variation on biological sys-
tems. Other studies have found that environmental varia-
tion affects the ability of species to coexist (Chesson, 1986)
and that the more abrupt environmental variation of climate
change has different effects on population dynamics than
does natural environmental variation (Ruokolainen et al.,
2009). In microbial ecosystems, the resilience of popula-
tions has been linked to the degree of environmental varia-
tion, where harsh variations can trigger population collapse
(Sanchez and Gore, 2013). Several researchers (Visser and
Both, 2005; Stenseth and Mysterud, 2002) have studied the
potential effects of climate change on periodic animal and
plant life cycle events, and the effects of such mistiming on
food availability (Both, 2010). Recently, evolutionary game
theory (Weibull, 1997) has been applied to questions of en-
vironmental variation, climate change, and ecology (Johans-
son and Jonzén, 2012a,b).

In this paper, we examine the effects of different forms of
environmental variation on the evolution of a flying swarm.

Model

Simulation is performed with the Brevis simulator (Harring-
ton, 2014), a scientific and artificial life simulator. Bre-
vis provides simulation and visualization capabilities via the
Java JVM and the programming language, Clojure. In ad-
dition to visualization, Brevis provides a number of simu-
lation features including neighborhood and collision detec-
tion, both of which are key to 3D swarm simulations.

Our model consists of a population of birds with 6 con-
tinuous genetic traits and a set of foods (energy sources).
The flight of a bird is controlled by its genes, similarly to
(Reynolds, 1987). Each bird uses the first bird and first food
in its list of neighbors, if there are any neighbors of either
type within the neighborhood radius (10,000 units, in this
case). The direction vectors between the bird and its neigh-
boring food and bird are then computed. If the respective
entity does not exist in the neighborhood a vector of mag-
nitude O is used. While we have chosen to use a neigh-
borhood size that is large enough to ensure that birds will
always have another bird and food in its neighborhood, al-
ternative default behaviors may be more favorable. The di-
rection vectors are then weighted based upon whether the
distance between the bird and the entity is “close* or “far,*
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Figure 2: Collision cost (a-c) and cost of living (d-f) vs mean
bird energy in tropicalification, desertification, and rapid de-
sertification simulations, with best-fit quadratic curves dis-
played.

where 2 distance genes determine this threshold for neigh-
boring birds and foods. The sum of the weighted vectors
is then taken as the bird’s new acceleration vector. A pla-
nar floor is positioned in the world at y = 0, and when birds
collide with the floor they “land,* such that they lose their
current velocity and acceleration, reorient to be perpendicu-
lar to the floor, and automatically push off with small initial
velocity and acceleration.

Energy

Energy is the currency of our simulation. Birds require en-
ergy to live, and foods produce energy over time. Each bird
is subject to a constant cost of living, which influences how
long a bird can survive between feedings. The energy in
foods are replenished a constant rate (0.1 units/timestep).
Energy is transferred between entities when collisions oc-
cur. A collision between two birds results in an energy loss
for both birds. Collisions between a bird and a food result
in a transfer of energy from the food to the bird at a rate of
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0.005 units/timestep. When a food’s energy reaches zero,
it is removed from the simulation and replaced by a newly
initialized and randomly positioned food. If a bird’s energy
reaches zero, it is removed by the simulation and replaced.
In our experiments we study a range of values for both the
cost of living for birds, and the cost of collisions between
birds.

Evolution

Each bird has a genome of 6 genes, which is used to control
its flight acceleration. Two genes are distance thresholds
that indicate whether an entity is considered close or far,
for neighboring foods and neighboring birds. The remain-
ing 4 genes are coefficients that specify the weights for the
close/far neighboring birds/foods. Distance threshold genes
are bounded by the hypotenuse of the area containing food
(565.69 units), while the remaining acceleration weighting
genes are within [—10, 10]. By using a fixed set of contin-
uous traits, the genetic diversity in the population is mostly
regulated by selection dynamics, whereas genetic diversity
in models utilizing discrete traits is more vulnerable to loss
of diversity via mutation.

Every time a bird runs out of energy, it is replaced. The
replacement is the mutant of a randomly selected living bird
that has been alive for more than 1 timestep 99% of the
time, and 1% of the time a completely randomly generated
bird is used as the replacement. Mutation is achieved by
adding/subtracting random values to each gene in the mu-
tant. Birds better able to survive implicitly have more op-
portunities to reproduce.

Experiments

We ran simulations of 250 birds each over 100,000
timesteps!. In each simulation, the birds randomly traversed
a world containing scattered food items, where a bird gains
energy from colliding with a food item. Birds were required
to maintain a certain level of energy in order to survive, and
could expire either from insufficient energy or from exceed-
ing a maximum lifespan, with any expired bird being re-
placed by a new bird.

Different environments were represented by different
food densities. The "uniform-high” environment, represent-
ing a tropical or other lush climate, was characterized by a
uniformly high food density. The “uniform-low” environ-
ment, representing a sparsely-vegetated climate such as a
desert or tundra, was characterized by a uniformly low food
density. The ’seasonal” environment, representing a temper-
ate climate, had “summers” of high food density and ”win-
ters” of low food density.

Each simulation switched from one environment to an-
other at the halfway point, with three types of environmen-

'Simulation code used for this study will be made publicly ac-
cessible upon completed documentation via the Brevis website:
http://brevis.golemics.org
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Figure 3: Collision cost (a-c) and cost of living (d-f) vs total
expired birds in tropicalification, desertification, and rapid
desertification simulations, with best-fit lines displayed for
d-f.

tal variation being tested. The first two types, uniform-
high to uniform-low and seasonal to uniform-low, represent
desertification of tropical and temperate environments, re-
spectively. The third type, seasonal to uniform-high, repre-
sents the encroaching of tropical climates onto previously-
temperate environments. We refer to these as “tropicalifica-
tion,” "desertification”, and “’rapid desertification.”

For each type of environmental variation, we sampled
across different values for two parameters, meant to approx-
imate certain real-world ecosystem dynamics. The first, col-
lision cost, takes away a certain amount of energy from a
bird that collides with another bird, and is meant to approx-
imate the effects of competition. The second, cost of living,
is the amount of energy that a bird must take in over a cer-
tain time period in order to stay alive. Simulations for all
three types of environmental variation were run with col-
lision costs of 0.001, 0.01, 0.03, 0.05, and 0.1, and costs
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Figure 4: Collision cost (a-c) and cost of living (d-f) vs to-
tal accumulated energy in tropicalification, desertification,
and rapid desertification simulations, with best-fit quadratic
curves displayed for d-f.

of living of 0.05, 0.15, 0.25, 0.35, and 0.45. Each set of
collision cost and cost of living parameters was used in 25
simulations.

Results and Discussion

We look at how our two parameters that mimic ecological
dynamics, collision cost and cost of living, are associated
with three different variables - mean bird energy, total ex-
pired birds during the last quarter of the simulation, and to-
tal accumulated energy during the last quarter of the simu-
lation. We measured mean bird energy three quarters of the
way through each simulation, so that we would see their val-
ues midway through the post-environmental-change period,
once the birds had had some chance to adapt to the new en-
vironment. Total expired birds and total accumulated energy
were measured for the last quarter of each simulation, so that
the measurements would start after the birds had had the op-
portunity to adapt to the new environment and so that there
would be enough time remaining for a cumulative metric to

be reasonable.

We first looked at how collision cost and cost of living
are associated with mean bird energy. In Fig.2(a)-2(c), we
can see how collision cost is associated with mean bird en-
ergy for all three types of environmental variations. The dif-
ferences between tropicalification, desertification, and rapid
desertification here are very subtle. Both types of deserti-
fication showed slightly wider ranges of mean bird energy
across simulations with the same collision cost. However,
increasing collision cost had minimal effect on mean bird
energy.

The effect of cost of living on mean bird energy, shown
in Fig. 2(d)-2(f), depended on what sort of environmen-
tal variation took place in the simulation. As with collision
cost, both forms of desertification produced wider ranges of
results for the same cost of living, suggesting that deserti-
fication causes more unpredictability regarding mean bird
energy than tropicalification. In all simulations, mean bird
energy fell as cost of living increased and birds needed to
expend more energy in order to survive. However, in the
tropicalification simulations, the decline in mean bird en-
ergy gradually leveled off as cost of living increased, while
in both types of desertification simulations, this leveling off
was less clear. This suggests that the birds may have been
more resilient to increased energy needs when food became
more plentiful rather than more scarce.

Next, we looked at how collision cost and cost of living
influenced the total number of expired birds in the simula-
tions. In both cases, the type of environmental variation -
tropicalification vs desertification - made the biggest differ-
ence, with desertification of any kind leading to more ex-
pired birds.

When collision cost was correlated with total expired
birds, as shown in Fig. 3(a)-3(c), we found that there was
a small increase of expired birds as collision cost increased,
and this was true for both tropicalification and desertification
simulations. This is an intuitive result, as the steeper sud-
den drops in a bird’s energy caused by higher collision cost
would make it more likely to fall under the energy thresh-
old needed for it to stay alive. Desertification situations, in
which once-plentiful food became more scarce, also unsur-
prisingly led to more expired birds than the reverse situa-
tion. In the desertification simulations, the number of ex-
pired birds at the same collision cost was not only slightly
higher but also more variable than in the tropicalification
simulations, and rapid desertification was correlated with
slightly more variability than slow desertification. If we re-
call that collision cost is meant to approximate competition
for territory between birds, this result makes sense. As food
becomes more sparsely distributed, more birds will need to
feed from the same areas of the map. There is a tradeoff
between being able to find food and being able to avoid col-
lisions. In different simulations this tradeoff may play out
with slightly different dynamics, leading to greater variabil-
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ity. Since the change in food geography is more drastic in
rapid than in regular desertification, the effect is greater in
rapid desertification. Total expired birds over different ex-
perimental runs could be grouped into five clusters, which
correspond to the different costs of living in different runs,
suggesting that cost of living plays a greater role in bird ex-
pirations than collision cost.

As with the previous figure, in Fig. 3(d)-3(f), we see that
desertification of any sort increases the overall number of
expired birds. Under all three types of environmental vari-
ance, we see that increases in the energy needed to live lead
to increases in the number of expired birds, as the birds have
a more difficult time maintaining the higher levels of en-
ergy. We also see that in the desertification simulations, the
rate at which expired birds increase with cost of living in-
creases, which can clearly be seen with the increased slopes
(P = 0.032 and P = 0.036) of the best-fit lines in the deser-
tification graphs as compared to the tropicalification graph.
However, there is little difference between the two types of
desertification - going from a high-energy environment to a
low-energy one seems to be just as much of a problem in this
case as going from a seasonal, temperate environment to a
low-energy one.

Finally, we looked at how our varying parameters influ-
enced the total accumulated energy in the simulations. Un-
surprisingly, it was much higher overall - by more than a
factor of three - in the tropicalification simulations where
food started out adequate and became plentiful, regardless
of these parameters. In Fig. 4(a)-4(c), we can see that colli-
sion cost had little influence on total accumulated energy, but
desertification was connected to bimodal levels of total ac-
cumulated energy at low and moderate collision costs, with
some simulations accumulating a high level, and some at
the same collision cost accumulating a low level. This may
be an indication that sometimes, under these collision costs,
the birds were able to evolve reasonably quickly to be able to
find the sparser food, and sometimes they were not. Again,
there is a potential tradeoff between being able to find the
food and being able to avoid collisions, as the same num-
ber of birds feeds from fewer food sources. The observed
bimodality was less strong with the regular desertification
than with the rapid desertification, indicating a gradual slide
into bimodality as the intensity of environmental variation
increases.

In Fig. 4(d)-4(f), the plots of the two different types of
desertification simulations against energy cost of living are
similar to each other, but under rapid desertification, there
was slightly more variance (P = 0.0013) in total accumu-
lated energy, especially at low cost of living. This may be
because of the greater instability in the system introduced by
the more rapid change.

Overall, desertification vs tropicalification had a greater
impact than degree of desertification across the board, with
the results from the two different types of desertification be-

ing very similar.

Evolution of Genes

We also tracked the effects of environmental variation on
our swarms at the genetic level. This is depicted for three
simulations, one of each environmental variation type, in
Figs. 5(a)-5(c). Each bird has 6 evolving genes to control
flight acceleration, which are described in more detail in the
”Model” section above. The distance genes neighborD and
foodD set the thresholds for how close a neighboring bird or
food source, respectively, has to be to the bird to be consid-
ered “close” vs ’far.” The other four genes specify weights
for close/far neighboring birds and foods. In this way, neigh-
bor acceleration genes (neighborC and neighborF) assist in
collision avoidance while food acceleration genes (foodC
and foodF) assist in finding food.

Under conditions of rapid desertification (with the envi-
ronmental variation taking place halfway through, as in all
the simulations), the weights of neighbor acceleration genes
go quickly to zero or near zero, flatlining by the time the
simulation is 70% complete. Under regular desertification
this process is slower, not completing until more than 80%
of the way through the simulation, and under tropicalifica-
tion it does not quite happen at all. This suggests that a
switch from a more food-rich to a food-scarce environment
particularly selects for birds that seek out neighbors rather
than avoiding them, as the presence of other birds can mean
the presence of food, but it also suggests that this is a use-
ful trait in general (particularly at such a low collision cost),
as the magnitudes of weights of the neighbor acceleration
genes decreased significantly even in tropicalification.

In the tropicalification simulation, the thresholds for con-
sidering a neighboring bird close” as set by neighbor dis-
tance genes increased over time, while those of food distance
genes decreased. This was not true in either of the deserti-
fication simulations - while the distance thresholds fluctu-
ated after rapid desertification, apparently unable to stabi-
lize after the shock to the system, their averages over time
stayed nearly level, and during regular desertification it was
the food distance thresholds that gradually increased. The
fact that food was easier to find in the “tropics” may have
meant that there was no need for relatively faraway foods to
be considered “close” and easily detectable for birds, while
with neighbors more spead out rather than flocking to the
same food sources, there was evolutionary selection pressure
to be able to detect and avoid colliding with less-predictably-
located neighbors. In desertification the reverse pressure
would naturally be exerted for food, though it is is inter-
esting that in the more intense desertification situation, in
which the birds were adjusting to a larger change, they were
unable to evolve this threshold pattern over the time given
by the simulation.

Unsurprisingly since our modeling of environmental vari-
ation centered around food availability, food acceleration
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genes were notably influenced by type of environmental
variation. Under regular desertification, the weight mag-
nitudes of the foodF genes go nearly to zero, and there is
some slight maintenance of the weight magnitudes of the
foodC ones. Under rapid desertification, all food accelera-
tion genes had high (though gradually decreasing) weight
magnitudes when food was plentiful, but those of foodC
genes go nearly to zero while those of foodF genes main-
tain better - the opposite of the tropicalification simulation,
in which the weight magnitudes of foodF genes go nearly
to zero while those of foodC genes maintain better. This
makes sense, as in the former case, food is more likely to
be far away from any given point in the world, while in the
latter, food is likely to be nearby and there is less need to be
able to deal productively with faraway food.

For comparison, we look at the results of simulations with
a higher collision cost and cost of living (both 0.15), which
are visible in Figs. 6(a)-6(c). In these, we see the weight
magnitudes of neighbor acceleration genes neighborC and
neighborF going nearly to zero in all three simulations even
before the environmental variation - even with the strongly
increased collision cost, the increased cost of living ap-
pears to make finding food more important than being able
to avoid neighbors. Distance genes foodD and neighborD,
whose thresholds go to zero in the other simulations, fluctu-
ate after rapid desertification, especially foodD - while in the
slower cases, the birds are adapting relatively quickly to new
needs around food, the larger perturbation of food availabil-
ity in the rapid desertification scenario appars to make these
genetics unstable, as also happened with lower collision cost
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and cost of living.

The food acceleration genes show an intriguing pattern
- in both simulations where the environment starts out sea-
sonal, the weight magnitudes of the foodF genes quickly in-
crease (and do so further after the environmental change),
but in the rapid desertification simulation the foodC genes
start out with higher weight magnitudes that start to decrease
before increasing again but fluctuating after desertifiction.
One might assume that this is because the rapid desertifi-
cation scenario is the only one in which food started out at
its most plentiful, making it less necessary to need to seek
out faraway food and more necessary to seek out close food,
however, this does not explain why this was still the case af-
ter desertification. Once again, as with the distance genes in
the same scenario, the rapid, intense environmental variation
is connected with a lack of genetic stability that is not seen
with the other forms of environmental variation. Indeed, the
post-change lack of genetic stability in the population seems
to be a characteristic of the rapid desertification scenario at
these moderate collision cost and cost of living parameters,
and is even seen to a lesser extent using the more survival-
friendly parameters discussed previously. In all cases food
acceleration genes play a much greater role than when cost
of living was lower.

We have simulated a swarm of birds evolving genetically
and behaviorally to three different types of environmental
variation, meant to approximate types of variation seen in
the real world during times of climate change - a temperate
seasonal environment to a tropical one, a seasonal enviro-
ment to a desert, and a tropical environment to a desert. We
found that desertification in particular led to negative out-
comes such as increased expired birds and decreased popu-
lation stability (as indicated by the amount of variation on
such metrics as mean bird energy or total accumulated en-
ergy between simulations that used the same parameters).
The direction of the variation - tropicalification or deserti-
fication - had a greater impact on these outcomes than the
intensity of the variation (seasonal to desert vs tropical to
desert). The environmental variation also affected the genet-
ics of the birds, with decreased food availability leading to
selection against collision avoidance genes, and food avail-
ability influencing whether bird ability to find nearby food
or faraway food was favored. A greater intensity of environ-
mental variation led to less stability in population genetics
post-environmental shift. In the wake of concerns about cli-
mate change, it is increasingly important to be able to pre-
dict how populations will fare under environmental varia-
tion. As Sanchez and Gore (2013) found that harsher envi-
ronmental variation led to decreased resilience in microbial
populations, we have found that it led to decreased genetic
resilence in our simulated birds. In addition, we have iden-
tified the type rather than just the intensity of variation as
another factor influencing resilience.
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