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Abstract

While it has been observed (Hornby et al., 2001) that devel-
opmental encodings in evolved systems may promote mod-
ularity, there has been little quantitative study of this phe-
nomenon. There has also been little study of the factors driv-
ing the emergence of hierarchical modularity - modularity on
multiple levels, in which the modules found at a finer-grained
level can serve as elements in a coarser-grained network that
is also modular - despite the fact that most fields with an inter-
est in modularity, including biology and engineering, define
hierarchy as an important aspect of modularity. We exam-
ine the effect of developmental encodings on the emergence
of multiple levels of modularity through the lens of two de-
velopmental systems, GRNEAT and GENRE, and find evi-
dence that developmental encodings promote this emergence
of modular hierarchy.

Introduction
Below, we examine interactions between development and
hierarchical modularity in artificial systems. Modularity, the
organization of a system into a hierarchical system of inter-
acting subparts, is observed in many systems both natural
and engineered (Koza, 1992; Simon, 1996; Hartwell et al.,
1999), and has become important as evolutionary systems
are used in increasingly complex applications. Simulations
of development, the process by which a mature phenotype
is constructed from an organism’s genetic code, have been
used in computational studies both in conjunction with and
distinct from simulations of evolution. We briefly discuss
modularity in evolution, followed by an overview of artifi-
cial development.

Modularity
Biological systems, including biological networks such as
neural networks and bacterial metabolic networks, and other
kinds of biological systems such as tissues (which are as-
sembled from cells), tend to be modular. The definition of
modularity is somewhat vague - though generally referring
to the degree to which a system is composed of separable,
recombinable components - and can be used differently in
different fields and subfields. Bolker (2000) attempted to

define a list of characteristics of modularity that would be
appropriate across different subfields and levels of study in
biology, including greater internal integration of modules
as compared to external integration, the ability to delineate
modules from their surroundings, and module performance
that is greater than the sum of its parts. Schilling (2002)
found that a variety of fields, including technology, psychol-
ogy, biology, American studies, and mathematics, define hi-
erarchical nesting as an aspect of modularity. It is worth
noting that the hierarchical aspect of modularity, the emer-
gence of which we explore in this paper, has not traditionally
been examined in simulated evolution studies, despite its im-
portance in how most fields define modularity. We chose to
focus on hierarchy because of this gap in the literature, and
because development is such a key factor in the formation
of many hierarchically modular biological systems, such as
organisms.

Evolutionary algorithms tend to produce nonmodular so-
lutions - though there are some exceptions, as in the coevo-
lutionary algorithm of Juille and Pollack (1996), which used
genetic programming to produce modular solutions to the in-
tertwined spirals problem. These nonmodular solutions are
often connected in complicated ways and perform better on
the task for which they are optimized than the more modular
solutions designed by human designers (Thompson, 2012)
(Vassilev et al., 2000). However, while this tendency against
modularity can produce well-performing solutions for sim-
ple problems, it makes it difficult for evolved systems to
solve complex problems (Kashtan and Alon, 2005). While
this issue can be addressed by building the encapsulation
of modules into algorithms, this does not illuminate how
modularity evolves in nature, and it means possibly miss-
ing out on some design benefit that comes with modular-
ity emerging rather than being hard-coded. In addition, al-
lowing modularity to emerge through an iterative process
may allow for nonmodular, high-performing species of solu-
tions to develop modularity over time while preserving their
strong performance.

In recent years, there have been several studies examin-
ing the emergence of modularity in both natural and sim-
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ulated evolution. (Lipson et al., 2002) found, in a study
of minimal substrate modularization, that modular separa-
tion is logarithmically proportional to rates of environmen-
tal variation, and suggested using variable rather than fixed
fitness criteria for the evolutionary design of engineered sys-
tems. This hypothesis was supported by the work of (Kash-
tan and Alon, 2005) in computational evolution studies, and
(Kashtan et al., 2007; Parter et al., 2007) in natural evolution
studies, which found that modularity evolves in response to
varying environments (called modularly varying goals) in
which individuals perform varying tasks that are decompos-
able into common subtasks. The requirement that subtasks
be performed in sequence, as a chain, has also been found to
promote the evolution of modularity (Calcott, 2014). An-
other possible explanation for modularity’s evolution was
proposed by (Clune et al., 2013), which suggested that mod-
ular networks evolve in response to a small decrease in fit-
ness for each connection in the network - a connection cost
- representing the energy cost of forming a link in a phys-
ical network. A similar energy cost imposed on the NEAT
neuroevolution algorithm, on a problem in which some so-
lutions that evolve are modular, has been found to increase
consistency in modularity emergence (Lowell and Pollack,
2014).

Artificial Development
Artificial development, also known as artificial embryology,
is an area of artificial life that models biological processes
of development, in which there are layers of abstraction be-
tween a genotype and a phenotype. The phenotype begins
with a seed or embryo and progresses toward maturity ac-
cording to a set of rules or interactions. The individuals
on which evolutionary or other forces are acting are these
processes by which the embryo develops. Developmental
systems and other forms of indirect encodings of solutions
can be contrasted with direct encodings, in which each com-
ponent of the phenotype is made explicit in the genotype.
As the problems being solved by evolutionary computation
have grown in complexity, scalability has become an im-
portant aspect of the design of new evolutionary compu-
tation techniques, and certain properties of developmental
systems, such as compact genotypes, lend themselves well
to scalability (Bentley and Kumar, 1999; Hornby and Pol-
lack, 2001a), which motivated much early research on artifi-
cial development (Tufte, 2008). A system that uses artificial
development may be called a generative or developmental
system.

Often, these developmental encodings are based on bi-
ological developmental processes and principles. Dour-
sat (2009) used lower-level developmental processes such
as cell division/differentiation and morphogen gradients to
create a self-patterning “organic canvas,” and (Miller and
Banzhaf, 2003) created a model for the programming of
a cell, using cell division and simulated chemical environ-

Figure 1: Visualization of an example brick “table” structure
produced by GENRE.

ments, that was able to recreate a French flag and other
patterns. Other approaches have involved the use of sim-
ulated gene regulatory networks (Guo et al., 2009), the ex-
ploitation of biological principles of degeneracy (Whitacre
et al., 2010), and the evolution of grammars to generate pro-
grams or expressions in a given language (O’Neill and Ryan,
2001).

Below, we provide a brief overview of the two different
generative systems used in this study.

GENRE
GENRE (Hornby and Pollack, 2001b) is a developmen-
tal system that was designed to create more complex vir-
tual creatures than had been created using earlier artificial
life techniques. It took a grammatical approach, evolving
Lindenmayer systems (L-systems), (Lindenmayer, 1968),
parallel grammatical rewriting rules originally designed to
model plant growth, that took in parameters and would
generate creatures with hundreds of components. The L-
systems were applied iteratively to rewrite strings of com-
mands through which to construct creatures or other struc-
tures, such that complex strings were constructed from sim-
ple ones. Hornby analogized the parallel nature of the rules,
and the repetitive structures that they tended to produce, to
concurrent cell division. The system outperformed a non-
generative system on performance, creature size, and natural
look, when applied to the design of mobile robots and block-
based “table” structures. Hornby et al. 2001 observed that
the generated robots appeared to exhibit modular properties,
but did not attempt to quantify this. An example GENRE-
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Figure 2: Visualization of an example artificial gene regula-
tory network (GRN) produced by GRNEAT.

produced structure can be seen in Fig.1.

GRNEAT
GRNEAT (Cussat-Blanc et al., 2015) evolves artificial gene
regulatory networks, or GRNs (Banzhaf, 2003), which are
simplified models of the genetic regulatory networks seen
in biological systems, and used to control various kinds of
agents. The GRNEAT algorithm evolves lists of proteins,
which are then developed into network models with ma-
trices of enhancing and inhibiting weights between nodes,
mimicking the developmental module function of biologi-
cal GRNs. The protein lists are used to initialize a GRN,
which then updates its weights by calculating interactions
between the proteins. It is based on NEAT (Stanley and
Miikkulainen, 2002), a well-known algorithm for evolving
neural networks, and retains NEAT’s major distinguishing
features: initialization with small networks, a crossover op-
erator that preserves subnetworks during GRN recombina-
tion, and the use of speciation to give growth opportunity
to potentially promising innovations. However, a key differ-
ence is that artificial GRNs are inherently a developmental
encoding, as biological gene regulatory networks are, while
NEAT is a direct encoding algorithm. An example GRNEAT
network, visualized in Gephi (Bastian et al., 2009), can be
seen in Fig.2

Methods
To test the effects of development on hierarchical modular-
ity, we used the GENRE algorithm, which uses L-systems
to model parallel cell division, and the GRNEAT algorithm,
which evolves protein lists for construction of artificial gene
regulatory networks in a manner mimicking NEAT’s neu-
roevolution methods, both of which are described briefly

Figure 3: Illustration of two intertwining spirals, which must
be distinguished from each other in the intertwining spirals
problem.

above. We chose to compare GRNEAT to NEAT because,
as stated above, GRNs are developmental by nature, so we
could not simply compare a developmental GRN encoding
to a nondevelopmental one. We ran GENRE on the brick-
table-building problem that was one of its original test prob-
lems in (Hornby et al., 2001), which rewards individuals for
minimizing the number of bricks and maximixing height,
surface area, volume, and stability, and compared the results
to those obtained by a non-developmental evolutionary al-
gorithm that is packaged with GENRE for the purpose of
running comparisons. We ran the GRNEAT evolutionary
process on the problem of distinguishing two intertwined
spirals, also called the intertwined spirals problem (Lang,
1988), which is illustrated in Fig.3, with fitness being mea-
sured by error ranging from -1 to 0, and compared the results
to those obtained by running both feedforward and recurrent
versions of the NEAT4J open source Java implementation of
NEAT (Simmerson, 2006) on the same problem.

Key parameters for GENRE and for GRNEAT/NEAT are
listed in Table 1 and Table 2 respectively. While the com-
parisons between GRNEAT and NEAT were done primar-
ily using simulations of 250 generations, we also did a set
of runs of GRNEAT that were only 10 generations, to see
whether any modularity that existed was actually emerging
over time or was present early in the simulation. We did
not do 10-generation runs for NEAT because it had made al-
most no progress at solving the intertwining spirals problem
after only 10 generations. In the NEAT4J implementation
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of NEAT, there is an option to allow or disallow recurrent
neural networks. We decided to allow recurrency for a more
even comparison, as GRNEAT produces recurrent networks.
To prevent either the GRNs or neural networks simply mem-
orizing a sequence of outputs rather than learning a mapping
from coordinates to spiral ID, in both GRNEAT and NEAT,
we used a fresh copy of the pre-initialized network for each
new input.

Problem Version Trials Generations Num R, P, C
GENRE 10 100 10, 2 , 2

Nongenerative 10 100 1, NA, NA

Table 1: Key parameters in GENRE experiments. R is the
number of production rules, P is the number of parameters
per rule, C is the number of condition-successor pairs per
rule.

Problem Version Trials Generations pC, pM, PopSize
GRNEAT 20 10 0.25, 0.75, 500
GRNEAT 20 250 0.25, 0.75, 500

NEAT 20 250 0.25, 0.75, 500

Table 2: Key parameters in GRNEAT experiments. pC is
probability of crossover, pM is probability of mutation, Pop-
Size is Population Size.

In order to look at the quantitative modularity of
GENRE’s and its non-developmental counterpart’s brick ta-
ble structures, we needed to represent the structures as net-
works. In order to do that, we defined each brick as a node,
and each case of a face of one brick touching a face of an-
other brick as a link. The link structure was binary, with
all links being represented in the adjacency matrix as hav-
ing a value of 1, and all other elements of the adjacency
matrix having a value of zero. This was not necessary for
GRNEAT/NEAT, as both GRNs and neural networks are al-
ready represented as networks, with links having non-binary
weights. Since GRNEAT produces both a matrix of en-
hancement weights and a matrix of inhibition weights, we
combined them into a single weight matrix by subtracting
the inhibition factors from the enhancement factors.

Many artificial life and theoretical biology studies of
modularity use the metric Q, defined by the approach of
(Newman and Girvan, 2004). This approach determines Q
by looking at the percentage of edges in the network that
connect nodes in the same module, and substracts the ex-
pected value for that percentage in a network with the same
number of modules but random connections. The modules
are defined by a previous part of the algorithm that splits the
network into the modules that would maximize Q. Mathe-
matically, the equation for Q in the Newman-Girvan algo-

rithm is:

Q =
k∑

s=1

[
ls
L
−
(
ds
2L

)2
]

(1)

where L is the number of edges, K is the number of mod-
ules, ds is the sum of degrees of nodes in module s, and ls
is the number of edges in that module.

This method is very useful for examining a single layer
of modularity in binary networks (i.e. networks where there
is either a connection between two nodes or there is not).
However, the weights of links between nodes in GRNs can
vary by several orders of magnitude. Both GRNs and recur-
rent neural networks may benefit from a modularity metric
that can account for directedness. And the Newman-Girvan
approach only looks for one layer of modularity, rather than
for hierarchical modularity. Accordingly, we used the “Lou-
vain method,” which was designed for speed, maximization
of community detection, and the detection of hierarchical
levels of modularity, to determine Q (Blondel et al., 2008).
In the Louvain method, each node in the network is initially
assigned to its own module, and the modularity Q is cal-
culated according to the following equation for a weighted
graph:

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ (ci, cj) (2)

where Aij represents edge weight between nodes i and j,
m represents half the sum of the graph’s edge weights, δ is
a delta function, ci and cj are node communities, and ki and
kj are the sums of the weights of all edges attached to node
i and node j respectively.

Then, for each node, the algorithm calculates the change
in modularity, the equation for which depends on whether
the version of the algorithm for directed or undirected graphs
is being used, for moving that node into the module of each
of its neighbors. Once this change is calculated for all mod-
ules that the node is connected to, the node is moved into
the module that would result in the greatest modularity in-
crease (or left in place if no modularity increase is possible).
If no increase is possible, the first level of Q is equal to the
current modularity of the network. Subsequent, hierarchical
levels of Q are calculated the same way in subequent phases
of the algorithm, by using the modules from the previous
level as nodes in a new network. For our study, we used An-
toine Scherrer’s MATLAB implementation of the Louvain
method (Scherrer, 2008).

Because modularity can be positive or negative (where
negative modularity means that there is less internal integra-
tion among modules than one would expect to see in a ran-
dom graph), we defined a level of modularity as occurring
when the Louvain algorithm produces a positive modularity
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Figure 4: The mean number of levels of hierarchical mod-
ularity produced by a developmental network-evolving sys-
tem, GRNEAT, was higher than that produced by the non-
developmental one on which it is based, NEAT. The 95%
CIs for GRNEAT and NEAT were 1.85-2.05 and 1.09-1.51.
Number of trials N = 20, p < 0.0001

value, with an allocation of nodes into modules that (if there
are lower levels ) involves combining some or all modules
from the next-lowest level. To determine whether the num-
bers of hierarchical levels of Louvain modularity were equal
in our sets of results, we used Welch’s t-test, a variant of the
traditional Student’s t-test that is robust to non-normality in
data and difference in variance between samples. We did not
test for differences in the actual Q values of the lowest or
other levels, as they were tangential to the question of hier-
archy. In practice, Q values for specific levels were between
0.12 and 0.52 for both GRNEAT and NEAT (with most be-
ing between 0.2 and 0.4, indicating moderate amounts of
single-level modularity), and between 0.3 and 0.72 for both
GENRE and its direct encoding counterpart.

Results and Discussion
Our first comparisons were between a set of 20 trials of
GRNEAT on the intertwined sprials problem and 20 trials
of NEAT with recurrency allowed on the intertwined spri-
als problem, with mutation probability = 0.75 and crossover
probability = 0.25, across 250 generations. In Fig.4, we can
see that the best solutions produced in the GRNEAT trials
had a mean number of levels of modularity of 1.95, while
those produced in the NEAT trials had a mean number of
levels of modularity of 1.3, a full 33% lower. This differ-
ence in the means was statisically significant (p < 0.0001).
The emergence of multiple levels of modularity in one GRN
is shown in Fig.5.

We wanted to examine whether the increased levels of
modularity seen in GRNEAT were something that was
emerging rather than something hard-coded into all GRNs.

Figure 5: a) A GRNEAT-produced GRN with the links light-
ened for easier viewing. The nodes are colored according
to the 8 first-level modules found by the first phase of the
Louvain algorithm, which found that this level of modular-
ity had Q = 0.3018. b) A single module of the GRN. c) The
network of the next level of hierarchy, with each of its node
representing, and color-coded as, a module from the previ-
ous level. d) The same next-level network, with Q = 0.3266,
with the nodes colored in five new colors according to the
5 second-level modules found by the second phase of the
Louvain algorithm.

Because the average fitness of the NEAT neural networks
after 250 generations was notably worse than that of the
GRNEAT GRNs, and the networks notably smaller (see
Fig.6), we also wanted to compare the NEAT networks to
GRNs of more similar fitness and size. Accordingly, we
compared the 20 250-generation GRNEAT trials to 20 10-
generation trials (Fig.7, and, as the 10-generation GRNEAT
GRNs were similar in size and fitness to the NEAT neural
networks, we compared the 10-generation GRNEAT trials
to the NEAT trials (Fig.8)

We can see from these figures that the mean hierarchi-
cal modularity of GRNEAT-produced GRNs (along with the
size) has increased by nearly a third (a mean 1.5 levels of
modularity vs 1.95 levels) between the 10th and 250th gen-
erations. We can also see tentative evidence (with a p value
that is low but not statistically significant) that GRNEAT
GRNs already have greater hierarchical modularity after 10
generations than NEAT recurrent neural networks have after
250, despite being nearly the same size, which is sugges-
tive that this increased hierarchy is not solely a function of
network size.

While the most obvious difference between GRNEAT
and NEAT is the artificial development aspect, it is pos-
sible that there is some other factor influencing the devel-
opment of hierarchical modularity. Therefore, we looked
at a different developmental system using a very different
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Figure 6: 250 generations of GRNEAT produced top so-
lutions with greater mean fitness than 250 generations of
NEAT. 250 generations of NEAT still had greater fitness than
10 generations of GRNEAT.

mechanism of development, GENRE, and compared it to
the direct encoding algorithm packaged with its implemen-
tation on the GENRE homepage (Hornby, 2001), as dis-
cussed in the Methods section. One useful aspect of look-
ing at GENRE’s brick-table structures is that the default fit-
ness function for these structures encourages minimizing the
number of blocks while maximizing other structural crite-
ria. While, because of the nature of the block structures,
the GENRE network representations were much larger than
the GRNEAT or NEAT representations, they were actually
smaller than those of the direct encoding alternative (640
blocks vs 768 blocks). Therefore, the possibility of network
size being a major contributor to the different levels of hier-
archy produced by a developmental vs a direct encoding is
addressed.

As can be seen in Fig.9, there is a statistically significant
(p = 0.0246) difference between the levels of hierarchical
modularity produced by GENRE as compared to its nonde-
velopmental alternative, where the GENRE-produced struc-
tures had an average of 4.7 levels, and the others had an
average of 4.2.

Notably, in both cases, the number of levels was far higher
than for GRNEAT or NEAT, regardless of development, and
the network sizes were much larger, which suggests that
network size may play some role in the number of levels
of hierarchical modularity. However, the fact that GENRE
structures have more levels than do a nondevelopmental al-
gorithm optimizing for the same fitness function, in the same
number of generations, despite being 17% smaller, provides
further evidence that the developmental encoding is doing
some of the work in the emergence of this hierarchy.

Figure 7: Networks produced by GRNEAT after 250 gen-
erations had greater mean levels of hierarchical modularity
than networks produced by GRNEAT after 10 generations.
The 95% CIs for GRNEAT and 10-generation GRNEAT
were 1.85-2.05 and 1.28-1.72. Number of trials N = 20, p
= 0.0014

Conclusion and Future Work

This work opens up two different areas of study. One is the
study of the effects of developmental encodings on the emer-
gence of modularity. This is an underexplored area, with the
potential to contribute to our understading of the emergence
of modularity in general. To our knowledge, this is the first
time that developmental encoding effects on the emergence
of modularity have been quantified. Another is the study of
hierarchical modularity. While modularity is an active area
of research, as we outlined earlier in this paper, the hierar-
chical aspect of modularity has been ignored in modularity-
emergence studies despite the importance of hierarchy in bi-
ological and other understandings of modularity. This paper
takes a first step toward remedying this oversight.

Our results suggest several more specific avenues for fu-
ture work. It may be useful to compare other develop-
mental systems to similar nondevelopmental ones, to see
whether the same effect is observed. Even though GENRE
and GRNEAT use very different mechanisms for encod-
ing development, increasing the number of systems stud-
ied may provide more evidence that the effect seen here is
mechanism-independent. Another possibility would be to
adjust different parameters within the developmental sys-
tems, to see if other factors can be identified that promote the
emergence of hierarchical modularity. Finally, it would be
interesting to study the effects of development in biological
systems, as was done in (Kashtan et al., 2007; Parter et al.,
2007) to determine the effect of varying goals on modularity.
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Figure 8: The mean number of levels of hierarchical mod-
ularity produced by only 10 generations of GRNEAT was
higher than that produced by 250 generations of NEAT. The
95% CIs for 10-generation GRNEAT and NEAT were 1.28-
1.72 and 1.09-1.51. Number of trials N = 20, p = 0.2
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