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Abstract

Creating artificial life forms through evolutionary robotics faces a “chicken and egg” problem:
Learning to control a complex body is dominated by inductive biases specific to its sensors and
effectors, while building a body which is controllable is conditioned on the pre-existence of a
brain.

The idea of co-evolution of bodies and brains is becoming popular, but little work has been
done in evolution of physical structure because of the lack of a general framework for doing it.
Evolution of creatures in simulation has been constrained by the “reality gap” which implies that
resultant objects are not buildable.

The work we present takes a step in the problem of body evolution by applying evolutionary
techniques to the design of structures assembled out of parts. Evolution takes place in a simulator
we designed, which computes forces and stresses and predicts failure for 2-dimensional Lego
structures. The final printout of our program is a schematic assembly, which can then be built
physically. We demonstrate its functionality in several different evolved organisms.
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1 Introduction

In this technical report we describe our work in evolution of buildable designs using Lego1 bricks. Legos

are well known for their flexibility when it comes to creating low cost, handy designs of vehicles and

structures (see [20], for example). We estimated that they constitute a good ground for the first -to the best

of our knowledge- experiments involving evolution of computer-simulated structures that can be con-

structed and deployed in a real scenario.

Instead of incorporating an expert system of engineering knowledge into the program, which would

result in familiar structures, we provided the algorithm with a model of the physical reality and a purely

utilitarian fitness function, thus supplying measures of feasibility and functionality. In this way the evolu-

tionary process runs in an environment that has not been unnecessarily constrained. We added, however,

a requirement of computability to reject overly complex structures when they took too long for our simu-

lations to evaluate.

The results are encouraging. The evolved structures had a surprisingly alien look: they are not based in

common knowledge on how to build with brick toys; instead, the computer found ways of its own

through the evolutionary search process. We were able to assemble the final designs and confirm that they

accomplish the objectives introduced with our fitness functions.

After some background on related problems, we describe our physical simulation model for two-

dimensional Lego structures, and the representation for encoding them and applying evolution. We dem-

onstrate the feasibility of our work with photos of actual objects which were the result of particular opti-

mizations. Finally, we discuss future work and draw some conclusions.

1. Lego is a registered trademark of the Lego group.
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2 Background

In order to evolve both the morphology and behavior of autonomous mechanical devices which can be

manufactured, one must have a simulator which operates under several constraints, and a resultant con-

troller which is adaptive enough to cover the gap between simulated and real world.

Features of a simulator for evolving morphology are:.

• Universal - the simulator should cover an infinite general space of mechanisms.

• Conservative - because simulation is never perfect, it should preserve a margin of safety.

• Efficient - it should be quicker to test in simulation than through physical production and test.

• Buildable - results should be convertible from a simulation to a real object

There are several fields which bear on this question of physical simulation, including qualitative phys-

ics and structural mechanics, computer graphics, evolutionary design and robotics.

2.1 Qualitative Physics

Qualitative Physics is the subfield of AI which deals with mechanical and physical knowledge representa-

tion. It starts with a logical representation of a mechanism, such as a Heat Pump [7] or a String [8], and

produces simulations, or envisionments, of the future behavior of the mechanism. QP has not to our

knowledge been used as the simulator in an evolutionary design system.

2.2 Computer Graphics.

The work of Karl Sims [18], [19] was seminal in the fields of evolutionary computation and artificial life.

Following the work of [16], Sims’ evolved virtual creatures have both physical architecture and control

programs created by an evolutionary computation process.
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Despite their beautiful realism, Sims’ creatures are far from real. His simulations do not consider the

mechanical feasibility of the articulations between different parts, which in fact overlap each other at the

joints, nor the existence of real world mechanisms that could produce the forces responsible for their

movements.

2.3 Structural Mechanics/Structural Topology

The engineering field of structural mechanics is based on methods, such as finite element modelling [21],

to construct computable models of continuous materials by approximating them with discrete networks.

These tools are in broad use in the engineering community, carefully supervised and oriented towards

particular product designs, and are often quite computationally intensive. Applications of genetic algo-

rithms to structural topology optimization ([3], [17]) are related to our work. This type of application uses

genetic algorithms as a search tool to optimize a shape under clearly defined preconditions. The GA is

required, for example, to simultaneously maximize the stiffness and minimize the weight of a piece sub-

ject to external loads.

fig. 1. Distribution of material for a piece that optimizes weight and
stiffness. From Chapman, Saitou and Jakiela [3]. (Permission for
reproduction pending). This strange shape looks like a distant relative of our
evolved Lego objects.
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2.4 Evolutionary Design

Evolutionary Design, that is, the utilization of evolutionary computation techniques for industrial design,

is a new research area where Peter Bentley’s Ph.D. Thesis [2] is ground-breaking work. Bentley uses a

GA to evolve shapes for solid objects directed by multiple fitness measures. His evolved designs include

tables, prisms, even vehicle profiles.

Bentley’s search algorithms use combinations of fitness measures (“Size”, “Mass”, “No Fragmenta-

tion”, “Flat Upper Surface”, “Supportiveness”, etc.) that include some physical constraints, like center of

mass positioning or total weight. Lacking a more complete physical model, he relies on specific measures

to guide evolution in each case.

2.5 Evolutionary Robotics

Many researchers are working today on the evolution of control software for real robots. Evolutionary

Robotics has become a field on its own [15]. Some rely on carefully designed simulations [4], while oth-

ers apply evolution directly in the real robot [6]. Hybrid techniques [13] are a mixture of the two.

Lund, Hallam and Lee [11], [14] have evolved in simulation both a robot control program and some

parameters of its physical body (sensor number and positioning, body size, etc.). Their last paper [14]

addresses the possibility of co-evolving a robot controller and auditory morphology for the task of

(cricket) phonotaxis. They contemplate the possibility of designing a Lego robot simulator.

3 The Physical Model

Simulation is the main problem for application of evolutionary techniques to real world problems. The

actual world is too complex to be simulated, and frequently the ‘reality gap’ between simulation and

physical embodiment will drastically reduce the usefulness of what was simulated.
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On the other hand, modelling is the tool that makes engineering possible. This means that Simulation

is not wrongper se, and the formidable capacity for rapidly calculating the equations of a model is a

defining property of our modern computers.

When it comes to modelling physical bodies, the continuum is source of both representational prob-

lems and uncomputability. Computational models of the world usually rely on a discretization of the ele-

ments being examined.

The resistance of the plastic material (ABS-acrylonitrile butadiene styrene) of Lego bricks far sur-

passes the force necessary to either join two of them together or break their unions. This makes possible

for a model to obviate the resistances of the material and consider the strain forces over a group of bricks

as acting only at their union areas. If a Lego structure will break, It will do so at the unions, but the actual

bricks will not be disrupted.

This characteristic of Lego structures makes their discretization for modelling an obvious step. Instead

of imposing an artificial mesh for simulation purposes only, these structures are already made of rela-

tively large discrete units.

3.1 Description of the model

Based on elementary statics of rigid bodies, our model considers the union between two bricks as a rigid

joint between the centers of mass of each one, located at the center of the actual area of contact between

them (fig 1). This joint has a measurable torque capacity. That is, more than a certain amount of force

applied at a certain distance from the joint will break the two bricks apart. The fundamental assumption

of our model is this idealization of the union of two Lego bricks together.
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fig. 2.  A support model for three Lego bricks.

Only two-dimensional systems of forces have been considered so far. Using the family of Lego bricks

of width 1 available at our lab (fig. 3.) we can consider complex 2-dimensional combinations of bricks

and model them as a superimposed system of point masses joined together with a network of rigid joints

(fig. 9.).

fig. 3.  The family of Lego bricks used in our experiments: Sizes 1x4, 1x6,
1x8, 1x10, 1x12 and 1x16.

0(4)

1(16)

2(12)

5 5
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We have measured the resistance of such joints to external forces and torques and simplified the model

to consider only the torques being applied at the joint. The resistance to radial forces is considered infi-

nite. Our measurements indicate that even the weakest type of joint can support a relatively big load when

it is applied radially only, with zero torque. Our next generation simulator will probably incorporate these

forces for an improved model.

Table 1. resumes our measures of the torque capacities of the Lego joints we use.

These measures are relative: They vary from one brick to another, and by undetermined factors such as

temperature, humidity, aging, etc. The table shown reflects an attempt at taking a conservative measure:

The number we need to use is the minimum that any Lego union of certain characteristics is guaranteed to

support and not, for example, the average.

In our simulations we used the conservative figures above and additionally set the gravitational con-

stant to 1.2 times its actual value - thus allowing for an extra 20% error margin.

Our model of ‘rigid’ joint means it will exert any reaction torque necessary to avoid breaking, up to a

certain limit. All we are using is this concept of amaximum load. In a stable system, the actual torque

being exerted by certain body at any given joint is underdetermined.

Joint
size(knobs)

Approximate
torque capacity

(N-mx10-6)

1 10.4

2 50.2

3 89.6

4 157.3

5 281.6

6 339.2

7 364.5

Table 1. Estimated minimal torque capacities of the basic types of joints
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This means for example that if two bricks are supporting the weight of a third one between them (fig.

2.), the load could be considered to be distributed among each of the two joints in any legal combination.

Since only one joint is enough in this case, we could consider that all the weight is on the left joint, and

none on the right one. This can be verified by removing the right supporting brick: The middle one will

not fall, because the union with the leftmost brick is strong enough to support its weight.

Our model is thus based on the following principle:As long as there is a way to distribute the weights

among the network of bricks such that no joint is stressed beyond its maximum capacity, the structure will

not break.

3.2 A Greedy Generalized Network Flow Algorithm

The algorithmic rendering of our model is still under development. However, it allows us to make the

model calculations and obtain the results we are presenting. However, even in its initial state, it worked

well enough to use as a basis for fitness testing of structures which were indeed buildable.

This algorithm must find whether or not there exists a distribution of the combined gravitational forces

generated by the center of mass of each brick, such that no joint is stressed beyond its maximum capacity.

For each given brick we consider the network of all the joints in the structure as a flow network that

will absorb this weight and transmit it to the ground. Each joint can support a certain fractionα of such a

force, given by the formula

(1)

for each bodyb and joint j, where Kj is the maximum capacity of the joint, dx(j,b) is the distance

between the body and the joint along the horizontal axis, and wb the weight of the body.

If a given bodyb is fixed and each edge on the graph on fig. 9. is labeled with the correspondingaj,b

according to (1), a network flow problem ([5], chapter 27) is obtained where a net flow of 1.0 between a

α
j b,

K
j

d
x

j b,( ) w
b

----------------------------=
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sourceb and the two sinks at (5,0) and (20,0) represents a valid distribution of the weight ofb in the struc-

ture.

The complete problem is not reducible, however, to a network flow algorithm, due to the fact that there

are multiple forces to be applied at different points, and the capacity of each joint relative to each body

varies with the mass of the body and thex-distance between body and joint.

Leaving aside the study of better algorithmic implementations, we have simply implemented a greedy

algorithm: Once a solution has been found for the distribution of the first mass, it is fixed, and a remaining

capacity for each joint is computed that will conform a reduced network that must support the weight of

the next body, and so on.

The fundamental consideration to be done here is that, even if our algorithm does not find all possible

solutions, it finds many of them. Any structure that is ‘approved’ by our simulation possesses a load dis-

tribution that does not overstress any joint, and thus it will not fall under its own weight. It will stand. Our

evolutionary algorithm might be limited by the simulation when it fails to approve a structure that was

physically valid, but still may succeed by working only in the space of ‘provable’ solutions.

3.3 Time complexity

A second compromise in our simulation will come from the fact that our initial implementation of the

simulation algorithm does not scale well. Its worst case running time would beO(3n), wheren is the num-

ber of bricks. Fortunately, in the actual examples, many bricks are connected only to one or two others,

thus reducing the number of combinations.

Again this combinatorial explosion problem will ultimately constrain the search space. Only the solu-

tions that can be found by our algorithm in a reasonable time are useful to our evolutionary runs.

We inserted anad hoc limiting parameter into our code to cut off the simulation when it has failed to

find a solution after a certain maximum number of iterations.
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4 Representation

Our initial representation to perform evolutionary computation over these structures borrows the standard

tree mutation and crossover operators from genetic programming [10]. We have implemented a tree nota-

tion for two-dimensional Lego structures. Each node on the tree represents a brick and has one size

parameter (either 4, 6, 8, 10, 12 or 16 for the available brick sizes) and four potential sons, each one rep-

resenting a new brick linked at one of its four corners. When a union is present, a joint size parameter

determines the number of overlapping knobs in the union.

fig. 4.  Example of genetic encoding of bricks

The diagram on fig. 4. represents a 10-brick with its 4 joint sites labeled 0, 1, 2, 3, that is linked to a 6-

brick by two overlapping knobs. The corresponding tree could be written in pseudo-Lisp notation as

(10 NIL (2 (6 NIL NIL NIL)) NIL NIL) (2)

A problem with this representation, similar in origin to the problem of valid function parameters in

genetic programming, is that it is underconstrained: Only some trees will encode valid Lego structures.

No more than one brick can be at each corner, so every node can have at most three sons, not four as the

encoding allows. Joint sizes must also be compatible with each other and in general, two bricks cannot

overlap each other. The following extension to (2), for example, is illegal because both 10-bricks would

share the same physical space

(10 NIL (2 (6 NIL NIL NIL (4 (10 NIL NIL NIL)))) NIL NIL) (3)

0 1

23

10

6
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4.1 Mutation and Crossover

There are two possible mutations:

1. Mutation of the joint and brick sizes at any random point

2. Addition of a single brick at a random empty joint

To implement mutation, a random joint in the tree (or the root) is selected, and, if NIL, mutation 2 is

applied, otherwise mutation 1.

Crossover, in turn, Regarding crossover, the basic crossover operator involves two parent trees out of

which random subtrees are selected. The offspring generated has the first subtree removed and replaced

by the second.

After mutation or crossover operators are applied, a new, possibly invalid specification tree is formed.

The resulting is expanded one node at a time and overlapping is checked. Whenever an overlap is found

the tree is truncated at that site.

With this procedure, a maximum spatially valid subtree is built as the result of crossover or mutation.

Once a valid tree has been obtained, the physical model is constructed and the structure tested for

gravitational correctness. If approved, fitness is evaluated and the new individual is added to the popula-

tion.

4.2 Steady State GA with low evolutionary pressure.

Our goal is not to optimize the evolutionary algorithm, but to show that evolution is indeed possible and

our models are physically sound. We use a straightforward steady-state genetic algorithm:
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1. While maximum fitness < Target fitness

2. Do Randomly select mutation or crossover.

3. Select 1 (2 for crossover) random individual(s) with fitness

proportional probability.

4. Apply mutation or crossover operator

5. Generate physical model and test for gravitational load

6. If the new model will support its own weight.

7. Then replace a random individual with it.(chosen with

inverse fitness proportional probability)

These are the basic parameters used in the GA runs:

Population Size:1000

Mutation/Crossover rate: 1.

4.3 Parallel Asynchronous GA

We are using a parallel version of this algorithm that runs on an SGI Onyx, a 16 processor MIMD

machine. Our parallel GA is asynchronous, that is, each processor iterates independently over steps 1

through 7, without any synchronization states.

Fitness evaluations are the interface between a learning evolutionary algorithm and its environment. In

complex, dynamic scenarios, fitness evaluations are time consuming. In many cases -imagine a GA hav-

ing to generate a control program for obstacle avoidance in a robot- a fitness evaluation can be several

orders of magnitude slower than the underlaying GA. Algorithms are then required that may run hun-

dreds of parallel fitness assays independently, without synchronizing before the next round.
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fig. 5. Our parallel GA works as a population server, under the assumption
that fitness evaluations are slow and asynchronous.

Our algorithm conceives the population as a genetic server that feeds individuals to all available eval-

uators and receives fitness values from them. This type of algorithm can run on parallel MIMD machines

as well as computer networks where different machines evaluate data for a central genetic engine.

5 Results

For each experiment below we prepare a custom fitness function that will serve both as a measure for the

evolutionary selection process and as a tag that reflects our interest in a computer generated structure.

When our algorithm finds a new maximum fitness, it saves this 'champion' and offers it as a new and

improved candidate solution for the problem.

Throughout the experiment reported in this paper, fitness values have been a combination of three

measures:

1. Length (in a certain direction). We use this fitness measure when the structure wanted has to be as

long or as big as possible, given or not other constraints.
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2. Normalized distance to a target point.To avoid an inverse (the smaller the better) fitness, when the

algorithm is trying to reach a fixed point we use 1-(distance from structure to target)/(distance form

(0,0) to target) as a normalized measure in the range (0,1).

3. Supportiveness.To maximize the external weight that a structure can support, we divide the maximum

load supported by a candidate by the target supportiveness we are trying to obtain. This is a fitness

measure in the interval (0,1)

We demonstrate the effectiveness of our evolutionary structure and Lego simulator on a set of fitness

cases resulting in useful computer designed structures.

5.1 The Bridge

The goal of our first experiment was to evolve a structure to go over from one table to another in our lab.

fig. 6.  Our ‘Lego Bridge’ is an evolutionary algorithm that will attempt to
create a self-supporting Lego structure that, attached to a base plate fixed at
one table, reaches another table without any support outside the plate.

Lab Table

Lego Plate

Bridge

The other table

Target
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Consider a big Lego square plate fixed to the edge of a table in our lab. Our simulation will permit us

to predict wether or not a linear structure, made of our family of Lego bricks which starts at the edge of

the table and projects itself without any additional support towards the table on the opposite side of the

lab, will collapse under its own weight or not.

Our fitness function was set to be the normalized distance from the object to the target point, at Lego

coordinates (-150,0).

fig. 7.  The ‘Lego bridge’ defined by the scheme of fig. 8. is sitting on our
lab table.

Our initial results were encouraging. The genetic algorithm reliably builds a structure that goes up and

away from the launching base and then has to lower the tip of the structure to get to the target point.

An example successful run is presented in fig. 8., fig. 9. and the picture of the resulting built Lego

bridge in fig. 7. The target fitness of 0.96 was reached after 133,000 generations1.

1. Since this is a steady-state genetic algorithm, the concept of ‘generation’ is equivalent to the number of
iterations, same as the total individuals generated and tried.
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fig. 8.  Brick Structure evolved for a Lego ‘bridge’ spanning 1.20m over the

edge of the table1.

fig. 9.  Physical model for the structure on fig. 8. Centers of mass have been
marked with circles. Each star is a joint between two of them. Line thickness
is proportional to the capacity of each joint. Line colors represent joint
stress: Red is minimum stress, yellow is maximum..

The following is a graph of maximum and average fitness values over the run which produced the pre-

vious model:

1. In all our brick diagrams the spacial coordinates x, y are expressed in “Lego width units”, 1 lwu = 8 mm.
Note that thex scale is compressed at a variable rate for visualization of the entire schematic. The num-
ber on top is the fitness value..
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fig. 10. Maximum and average fitness values

5.2 Long Bridge

Bouyed by our initial success, in our second experiment we used our parallel implementation and left the

algorithm running a whole week to see how large a self-supporting structure we could obtain.

The fitness measure for this experiment is just the length, or stretch over the table measured along the

x axis. We had to use an iteration cutout to prevent overly complex designs from slowing down our net-

work flow algorithm. Our program thus rejects potentially correct structures when the fitness evaluation

takes too long.

After 3,240,000 generations the structure evolved was 1.67 meters long (207 Lego units), made out of

97 bricks.
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fig. 11.Scheme evolved for the ‘Long Bridge’ experiment.

fig. 12.Long Bridge

This experiment reveals one of the limitations of the model. The structure shows an appreciable down-

wards bending that was not considered in it.

On the other hand, assuming that the model is correct, it is not possible to do much better than our

algorithm did. Analysis showed that the height of a minimal self-supporting structure grows exponen-

tially with length.
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5.3 Scaffold

fig. 13.Scaffold.

After working with bridges, we decided we might meet a scaffold. Evolve a structure growing along the y

axis instead of, from the top of the table down to the floor.

The fitness measure was set to be the distance from the object to a target point in the floor, 0.76 m

below the table surface.

The answer was found very quickly. The structure has an alien look but does the job. It evolved in

40,000 generations.
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5.4 Crane Arm

fig. 14.Crane with evolved crane arm.

In the ‘crane’ experiments we applied our evolutionary environment to a practical problem: To build the

arm of a crane which could carry a load. This is our first experiment in designing a structure which would

withstand some dynamics of Lego movement when actually built.

A general crane base was designed providing a motor and a stand base for the arm. Two identical par-

allel arms are needed to hold an axle at the tip from which the hook will hang.

The algorithm should try to find an arm as strong as possible, given the imposed restrictions. To build

the crane we use two arms, with the added benefit of doubling the maximum load.

The fitness function was designed to reward having a brick in the right place (.5 m from the base), and

for carrying as much weight at the tip before breaking.

A crane arm was found that supports a cargo of 92g. Combining two arms we obtained a crane (fig.

14.) that supports a maximum weight of 180 grams at the tip.
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We were not able to evolve a crane arm as strong as we imagined. Later analysis showed that the arm

obtained is indeed optimal (given our model), because it uses the maximum torque provided by the base

on which we want the arm to attach. No matter what shape, no arm could overcome this externally

imposed limitation.

5.5 Rotating Crane Arm

In the same spirit as the previous experiment, we added a degree of freedom making our first “3d” design.

The rotating crane also consists of a human design that provides the evolutionary algorithm with a suffi-

cient set of constraints so as to guarantee that the evolved structure will be useful.

In this case we designed a rotating base with a motor to pull from a hook. A diagonal arm has to be

evolved, providing height and strength for lifting heavy loads.

The fitness measure used was a combination of the length of the arm and the maximum load supported

at the tip. Restrictions were imposed to match the base we designed and to force the arm to grow diago-

nally.

We obtained a crane that would support a weight of 250 grams at a height of 19.2 cm. and a distance of

16 cm.

It was interesting to observe how a counterweight structure was evolved, but located at the top, not the

base as in real cranes. This is the structure that we actually built for the crane shown in fig. 15. Subse-

quently a stronger and much bigger structure was found in which the counterweight “touched down” and

attached itself to the base.
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fig. 15.Rotating crane.

6 Future Work

The greedy algorithm for assigning partial torques is the first pass using a somewhat limited under-

standing of the statics involved. Lego, with its sticking force, is a lot more complex to simulate than sim-

ple building blocks, but we have not fully exploited all possible efficiencies. As it stands (sic) the

algorithms appears to be equivalent to a multi-commodity flow problem, which in certain cases is NP-

complete ([9], [12]).

Secondly as a first pass, our simulator is quite limited. We are working to move to the third dimension

with a greater variety of blocks, and some understanding of the dynamic stresses which would be

involved in basic Lego mechanisms driven by Lego motors. This would open the field for evolving active

pieces of machinery, including vehicles.

Thirdly, our basic steady-state GA, and our parallel model are elementary approaches which do not

take into account many of the advances in the fields of evolutionary computation. The weakness of our

tree representation, which generates many infeasible solutions, is apparent, and the need for modular con-
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figurations of blocks, such as the well-known bricklayers patterns, which hold increased stresses ought to

be extractable from our learning algorithms as modular components which survive selection [1].

7 Conclusions

We have shown that under some constraints, a simulator for objects can be used in an evolutionary com-

putation, and then the objects can be built. This is a little different from evolving controllers for existing

robots, and is a step on the way to the full co-evolution of morphology and behavior we believe is neces-

sary for the development of robots and brains of higher complexity than humans can engineer.

By keeping inductive biases andad hoc ingredients to a minimum, we believe that we have only

scratched the surface of what is achievable. If we can reach the 3-d version and provide limited dynamics

simulation, we will have opened the door to many possibilities and created a new and fertile area for evo-

lutionary machine research.
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