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Abstract. Recombination in the Genetic Algorithm (GA) is supposed to enable the
comporent charaderistics from two parents to be extraded and then ressembled in
different combinations — hopefully producing an dfspring that has the good
charaderistics of both parents. However, this can only work if it is possgble to identify
which parts of eat parent should be etraded. Crossover in the standard GA takes
subsets of genes that are adjacent on the genome. Other variations of the GA propcse
more sophisticated methods for identifying good subsets of genes within an individual.
Our approad is diff erent; rather than devising methods to enable succesgul extradion of
gene-subsets from parents, we utili ze variable-size individual s which represent subsets of
genes from the outset. Joining together two individuas, creding an ‘offspring’ that is
twice the size straight-forwardly produces the sum of the parents' charaderistics. This
form of component assmbly is more dosely analogous to combination of symbiotic
organisms than it is to sexua recombination. Whereas sxua recombination, modeled by
crosover, occurs between similar individuals and exchanges subsets of genes, symbiotic
combination, as modeled in ou operator, can occur between entirely urnrelated spedes
and combines together whole organisms. This paper summarizes our reseach on this
approach to recombination in GAs and describes new methods that illustrate its potential.

1 Introduction

The natural process of symbiogenesis [Merezhkovsky 1909] is the aedion of new
spedes from the genetic integration of symbionts, organisms in symbiotic relationship.
Symbiogenesis has enabled some of the mgjor transitions in evolution [Maynard-Smith
and Szahmary 1995], including the origin of eukaryotes which include dl plants and
animals. This kind of genetic integration is quite different from the transfer of genetic
information in sexual reproduction. Sexua recombination occurs between similar
organisms (i.e. of the same spedes) and involves the exchange of parts of the genome in
amutualy exclusive manner. That is, every gene aqjuired from one parent is a gene that
canna be aquired from the other parent. In contrast, symbiotic combination can occur
between geneticdly unrelated organisms (i.e. different spedes) and can invave the
integration of whole genomes. The resultant composite may have dl the genes from one
organism and at the same time a@uire any number of genes from the second organism.
Our reseach has been investigating whether this form of genetic combination has any
potentia to inspire an alternate form of evolutionary algorithm. This has first required us
to address ®me old arguments abou the utility of ordinary crosover in the standard GA



[Holland 1975. To this end, we developed a hierarchicd building-block problem that
exemplifies the utility of sexual recombination as demonstrated by crosover [Watson et
al 1998 Watson & Polladk 1999b, Watson 2@0]. Moreover, our experiments also
ill ustrated a well-known limitation o crosover — that is, it relies on the heuristic of bit
adjacency to identify appropriate subsets of genes during recmbination. Clealy, we
canna in genera rely on this heuristic, and when the adjacency of the genes is not
correlated with gene interdependency, the subset of genes extraded from a parent by
crosover is unlikely to contain a meaningful component of the parents abiliti es
[Altenberg 1995]. Figure 1 ill ustrates the problem of crossover in a poor-linkage problem
- i.e. where the bits of ablock (aset of interdependent genes) are distributed.

A:0 1010011
B: 10000110

C: 11010011

Figure 1: Sexual recombination (crossover). Parents, A and B, eat contain a useful
subset of genes that are distributed on the genome (three genes per parent, shown in
bold). The desired off spring, C, should take the good genes from both parents as sown.
One-point or n-point crosver canot do this. In principle, uniform crossover could
provide the dossover that we need but the probability of this is equivalent to random
guessng at eat locus where parents disagreeon al ele values [Watson & Pollad 19994)].

Thus we see that building-blocks in the standard GA are, at best, only represented
implicitly by virtue of the proximity of genes on the genome. In poor-linkage problems
we need some expli cit medhanism to represent the unity of bits comprising a block. This
is where amecdhanism based on symbiotic combination might be useful. Put simply, if
ead organism represents just one building-block, then a cmmbination operator can put
different organisms together straight-forwardly produwcing an organism twice the size
with bah building-blocks intad. A simple representation for an individual in this <heme
utili zes ‘unspedfied’ genes - then symbiotic combination can be described as a genetic
operator ading on partially-spedfied individuals (Figure 2).

A:-1---0-1 A:-1--00-1
B: 1-0-0--- B: 100-0--0
C: 110-00-1 C: 110-00-1

Figure 2: * Symbiotic combination’. Left) Combination of partially-spedfied individuals
produces an ofspring that is twice the size of the parents with the sum of their
charaderistics. Here we represent unspedfied genes, or don't cares, by “-”. Each parent
represents a single building-block explicitly and the offspring is creaed hy taking
spedfied genes from either parent where available. Right) Where @nflicts in spedfied
genes occur we resolve dl conflictsin favour of one parent, e.g. the first parent.

Previous work [Watson & Pollack 1999a, 2000a], implemented the ‘I ncremental
Commitment GA’, ICGA, using this operator. The ICGA can be described as a simplified
and ceneralized version of the Messy GA [Goldberg et a 1989], which also uses
combination o partialy spedfied individuals. But our implementation of the ICGA had
important limitations, as we shall discuss In this paper we introduce amuch richer model
of symbiotic combination: The Symbiogenic Evolutionary Adaptation Model, SEAM. In
addition to symbiotic combination, as used in the ICGA, the key fedures of SEAM are
group evauation of individuals which removes the neal for partia evaluation, and a



‘Pareto coevolution” method that segregates competition to maintain diversity and
prevent large sub-optimal individuals from repladng small optimal individuals. These
new fedures overcome the limitations of the ealier ICGA and fadlit ate the goplicaion
of symbiotic combination more effedively.

The remainder of this paper is organized as follows. Sedion 2 summarizes relevant
badkground work. Sedion 3 details our Symbiogenic Evolutionary Adaptation Model.
Sedion 4 gves results for the standard GA, ICGA and SEAM on the hierarchicd
buil ding-block problem with random linkage. Sedion 5concludes.

2 Background: Approachesto Building-Block Combination

Our previous work describes a formal building-block problem that exemplifies the dass
of problems for which recombinative algorithms like the GA are well-suited. This
problem, which we cdl Hierarchicd If-and-Only-If (HIFF), was first introduced in
[Watson et al 199§ (Equation 1). This function interprets a string as a binary tree and
reaursively decompases the string into left and right halves. Each block at each level in
the hierarchy has two solutions — all ones and al zeros — and the function has two
corresponding dobal optima. Although each building-block is identifiable via its fitness
contribution, a succesul algorithm must maintain competing solutions for ead block
and seach combinations of blocks to find complete solutions. This discovery and
combination grocesscontinues through a hierarchicad structure which is consistent in the
nature of the problem at each level [Watson and Polladk 1999b]. On this class of
problem, mutation based algorithms canna be guaranteed to succeda in lessthan time
exporential in N (the size of the problem in hits), whereas an idedized recombinative
agorithm has an upper bound in time to solution of order NIg’N [Watson 2@00].
However, Equation 1 states the fitnessof a string asauming tight linkage i.e. two hits that
form a block at the lowest level are ajacant on the genome, and two size-2 blocks that
form ablock at the next level are dso adjacent, and so on The successof the regular GA
is dependent on tight genetic linkage — and the focus of our ongoing reseach is on
solving the problem with randomized linkage.

01, if |B]=1, and (b,=0 or b=1)
F(B)= E [Bl+ F(B) + F(B,), if (IBl>1) and (Ti{b=0} or Ti{b=1})
H FB) +F®B,), otherwise. Eq.l

where B is a block of bits, {b,,b,,...b}, |B| is the size of the block=k, b, is the ith
element of B, B, and B, are the left and right halves of B (i.e. B ={b,,...b},
B.={b,,..,--b}). The length of the string evaluated must equal 2° where p is an
integer (the number of hierarchicd levels). Noticethat this function gives no reward
to nulls and therefore naturally evaluates partially spedfied strings.

In [Watson & Pollakk 1999%] we started investigation into solving Shuffled HIFF,
(SHIFF) where the paosition d bitsin the problem is randomly re-ordered. One gproach
to addressproblems of poor linkage is ®en in the Mesgy GA [Goldberg et a 1989 and
the Linkage Learning GA [Harik & Goldberg 1996 which use a moving locus
representation of genes — eat gene is represented by a locug/allele pair. This enables
genes to be re-ordered on the genome and potentialy allows interdependent genes to
colled together. However, there is one feaure of the Messy GA that is quite simple, and



potentially effedive, yet is generally under-emphasized. This is the fedure of
underspedfi cation — individual s that spedfy only a subset of genes.

Fully-spedfied individuals, as used in the standard GA, may contain good building-
blocks but seledion ading on these individuals will also promote garbage genesriding on
the same string (see ‘parasites’ [Goldberg et a 1989], and “hitch-hikers’ [Forrest &
Mitchell 1993, [Vekaria& Clack 1999]). Consequently, a crosover operator using full y-
spedfied individuals must, one way or another, expresswhich subsets of genes represent
good schemata to exclude garbage genes from recombination events. The interesting
property of approaches using partially-spedfied individuals is that individuals represent
schemata explicitly; and it is the normal operation o seledion in the GA, operating on
these sub-strings, that permits the succesgul identification o good bul ding-blocks.

In the problem classwe aldress large buil ding-blocks at higher levels of the hierarchy
produce significant high-order interdependencies. For a multi-level building-block
problem like this we must use amethod of gradually increasing spedfication that allows
blocksto be acumulated through many incremental stages (unlike the two-phase method
of underspedfication seen in the Messy GA). To enable this, previous work employed a
size-penalty augmentation to the fitnessfunction. This enables the size of stringsto grow
gradualy, only committing to gene aleles when these genes return significant fitness
contributions, hence, Incremental Commitment GA [Watson & Polladk 199%]. Using the
ICGA we showed that the feaure of underspedfication is aufficient to enable successon
a poar-linkage problem and that the other feaures of the Messy GA, in particular the
moving-locus fegures which are often the focus of related work, are not required.

However, our ICGA was not withou its own complicaions. The first, is that the
approach requires a diversity maintenance tedhnique to ke the population from
converging. As in earlier work with the standard GA, we used a resource-based fitness
sharing method that utilized considerable knowledge of the problem structure.
Spedficdly, it maintained a ‘resource level’ for ead building-block in the problem.
Since then we have found an off-the-shelf diversity maintenance technique, deterministic
crowding [Mahfoud 195], that works very well for our problem [Watson & Pollack
200Qq]. Deterministic cowding, DC, is naturaly implemented in a steady state GA as
described in Figure 3.

e Initidlize popuation.
e  Repea until stopping conditi on:
*  Pick two parents at random from the population, p1 & p2.
*  Produce apair of off spring wsing recmbination, cl1 & c2.
»  Par-up ead df spring with one parent acording to the pairing rule below.
» For eat parent/offspring pair, if the off spring is fitter than the parent then
replacethe parent with the off spring.
Pairing rule: if H(pl1,cl)+H(p2,c2) <H(pl,c2)+H(p2,cl) then pair p1 with c1, and
p2 with ¢2, else pair pl with ¢2, and p2 with cl, where H gives the genotypic
Hamming dstance between two individuals.

Figure 3: Pseudo-code for asimple form of a GA using deterministic crowding.

The most important feaure of DC is that offspring only compete with their own
parents. Additionally, offspring and potential replaces are paired to maximize their
similarity. This sgregated competition introduces tolerance for lower-fitnessindividuals
in dfferent niches and reduces the presaure for convergence Note that DC does not



segregate mating like other diversity maintenance techniques, e.g. ‘thresholding
[Goldberg et a 1989]. In DC, an individual may mate with any other regardlessof their
simil arity or dissmil arity, but it only competes with similar individuals.

The alvantage of DC with resped to ou previous method of diversity maintenanceis
that it does not require any knowledge of the problem’s building-block structure. It also
aleviates complications in the size-penalty that arose from the distorted fitness values
given by the fitness $aring medchanism. However, the ICGA dill neals a size-penalty
that requires knowledge of how fitnessis expeded to grow with string length. Moreover,
the ICGA aso depends on being able to evauate partialy spedfied strings. These ae
handed quite naturaly in our test problem but, in general, an oljedive function may not
be &leto evaluate astringthat is not full y-spedfied.

Goldberg et a [1989] suggest that one way to overcome the need for partial evaluation
isto use competiti ve templates, bit-strings that are used to fill -in the unspedfied bits of an
individual. The template provides a context in which the partia individual can be
evaluated. However, Goldberg et a also show that the use of random strings as templates
would produce too much ‘badkground noise’ to identify the relatively small fitness
contribution of alow-order schemarepresented by an individual. And they also argue that
the use of a single random template used for all evaluations (reducing the influence of
random noise) cannot evaluate aschemain an appropriately diverse range of contexts to
assssits proper value. They propose that one way forward isto use a‘locdly optimized’
template provided by some other seach method However, this approach asaumes that
the “highest order non-linearity expeded in the problem” is bounded and, in fad, quite
low-order, as Goldberg et al assume. In this case, an appropriately optimized template is
quite eay to find. But, in problems with strong high-order interdependencies, like the
classwe aldress the task of providing an appropriately optimized template is only one
step easier than solving the whole problem. Nonetheless a form of templating will be
useful in solving the problem of partial evaluationin our new algorithm, SEAM.

3  The Symbiogenic Evolutionary Adaptation Model, SEAM

This sdion introduces the ‘Symbiogenic Evolutionary Adaptation Model’, SEAM,
which utili zesthreemain ideas. First, asin the ICGA, SEAM uses ymbiotic combination
that combines whole small organisms, rather than sexual recombination that recombines
parts of fully-spedfied organisms. Seand we use groups of other individuals from the
popuation to provide the templates and predude the need for partial evaluation. And the
third new component of SEAM is to use what we cdl ‘Pareto coevolution' which
segregates competition to maintain diversity, and prevents large sub-optimal strings from
repladng small optimal strings (removing the need for a size-penalty).

Group templating

The use of other organisms to provide templates is inspired by the co-adaptation o
symbiotic organisms in an eosystem. We think of the templates as different
environmental contexts, or niches, provided by different combinations of neighboring
organisms. Algorithmicdly, the templates test the performance of a given schema in the
context of many other diff erent schemata provided by ather optimized individuals. In this
way we do not neal to use adifferent seach technique to provide the templates as
Goldberg et a propose — rather, the organisms that are used as templates, and the



organisms that use the templates, are dl creded by the same unified process As more fit
large individuals are discovered by the dgorithm, they provide better templates for
discovering individuals for the next hierarchicd level in the problem. This use of
individuals that are co-adapted to fill -in for one-ancther provides eff edive templates and
predudes the need for partial evaluation in the dgorithm. Group evaluation is used in a
coude of exigting agorithms, [Moriarty 1997, Potter 1997], and we have dso
investigated related eff eds of group evaluation ouselves [Watson & Pollack 1999]. But
the technique has not been conneded to the use of templates in the Messy GA, nor has it
been integrated with genetic operators that combine organisms together permanently.

Naturally, this method d templating will return different fithess €ores depending on
which individuals are chosen for the template. As Goldberg et a caution, an accurate
measure of fitnessfor the individual in question might require prohibitively many trials.
To dleviate the badkground nose of a template, individuals in SEAM are as®ss®d in
pair-wise mmpetitions. That is, two individuals, A and B, are evaluated using the same
additional individuals to provide the template/context for evaluation (Figure 4).

A:-11---00 B: --1010--
1: -0--1-0- 1: -0--1-0-
2:10-0-11- 2:10-0-11-
3:1-1--1-- 3:1-1--1--
4: --0-01-1 4: --0-01-1
A’:11101100 B:10101001

Figure 4: Left) A given partidly-spedfied individual, A, is evaluated by building a template from
several other partially-spedfied individuals, 1 though 4. Spedfied genes are provided by A where
available, and unspedfied pasitions are filled-in with genes from 1, and so on through 4, using
additional individuals until all genes are spedfied. The resultant string A’, is the string evaluated
for A. Right) The same individuals 1 through 4 are used to evaluate asecond individual B. The
differencein fitnesshetween A’ and B’ indicates which is better in this context.

Note that any gven context may favor A more than B, for example, depending on
whether A happens to be better adapted to that particular context or not. So we will still
neeal to perform evaluations in many diff erent contexts to determine the superiority of A
and B. However, thiswill not reguire prohibitively many evaluations.

Par eto coevolution

The group evaluation used in templating makes SEAM a @evolutionary system — the
task of being a succesdul organism is dependent on the composition d the popuation.
The normal coevolutionary procedure is to average performance over many trials, in this
case, many dfferent contexts. However, preliminary investigations using averaged scores
caused convergence and failure of the dgorithm. This problem has prevented us from
progresing ou model of symbiotic combination with group templating for some time.
Here we introduce a new method of coevolution that we can use in SEAM to owvercome
this problem. This new method, which we cdl ‘Pareto coevolution’, incorporates ideas
from Pareto optimization methods that are well-establi shed for optimization in problems
with multiple objedives [e.g. Horn 1997]. Pareto optimizaion recgnizes that
performance over diff erent objedives, say ‘financia cost’ and ‘ construction time’, cannat
be combined to gve ax owral performance unless we know how to convert one



‘dimension’ to ancther — in this case, we neal to know what our time is worth. Pareto
optimizaion techniques may be used when the relative weighting of different dimensions
is not known. Spedficdly, Pareto opimization is built on the principle of Pareto
domination. A solution is sid to Pareto daminate another solution if it is superior or
equal in al dimensions (and superior in at least one dimension).

The idea behind Pareto coevolution is to use different coevolving opponents as the
dimensions for determining dominance Spedficdly, an individual dominates some other
individual if it performs no worse than that individual against ead and every opponent.
In this manner, the performance of an individual will be assssd onthe basis of which
particular opporents it does well against and not just an average score. This allows
individuals to adapt to different sets of opponents and promotes diversity.

Pareto coevolution is smply the gplicaion d this form of dominance in any Pareto
optimization technique. We suggest that Pareto coevolution may be valuable in a variety
of existing coevolutionary games and with a variety of Pareto optimization methods. But
in the next subsedion we show how to apply the technique to our spedfic domain of
function ogimizaion via group evaluation, and hawv to implement a very simple form of
Pareto ogtimizer that is sufficient for our neals.

Integrating the featur es of SEAM

In SEAM the wevolution is aibtle — the result of an evaluation depends on the other
members of the population seleded for the template — but there is no overt opporent in
this stup. Nonetheless we can use mntextual groups as dimensions to determine
domination and apply Pareto coevolution. SEAM uses this principle diredly in
determining the outcome of the pair-wise competitionill ustrated in Figure 4. Spedficaly,
A dominates B, if it is superior or equal to B in al groups tested. Figure 5 shows how to
utili zethis rule in avery simple Pareto optimizer.

» Initialize popuation to random single-bit individuals.
e Repea until stopping conditi on:
*  Pick two parents at random from the population.
*  Produce a off spring wsing symbiotic combination.
» If the off spring dominates both parents (see below) then replacethe parents
with the off spring.
To determine whether A dominates B: Reped for t trials:
* Build a ammplete template from randomly seleded individuals.
« If B superimposed on this template receves a higher score than A
superimposed onthis template then A does not dominate B.

Figure 5: Pseudo-code for a simple implementation of SEAM.

Segregating competition by the use of contextual niches in SEAM maintains
appropriate diversity without the need to use the genotypic similarity metric usually used
in the pairing-rule of deterministic cowding. More importantly, these methods predude
the need to use asize-penalty function. The size-penalty was used in the ICGA to prevent
organisms from prematurely filli ng-up with incompatible blocks. In SEAM, if just one of
the mntexts tested for the parent includes a compatible block, then an doff spring formed
by joining with an incompatible block in that position will be rejeded. By insisting that a
composite must perform as well as the parents in all contexts, we prevent incompatible
blocks from being joined, and individuals being fill ed with sub-optimal schemata.



The dgorithm in Figure 5 dffers considerably from established Pareto optimization
methods: spedficdly, like deterministic cowding, an dffspring only survives through
competition with its parents. This restriction is applied for efficiency — the offspring is
intended to combine the daraderistics of the parents ®, if this combination is
succesgul, the off spring shoud be @ least as good as either parent in any context. This
method proves aufficient for our problem classbut preliminary investigations suggest that
a more @nventional Pareto optimizaion approach may broaden the applicability of
SEAM. Additionally, our implementation o this algorithm also reduces computational
expense by removing dupi caes from the popuation. So, when we replacethe parents we
insert only one @py of the offspring, reducing the size of the population by one with
eah ofspring that is siccesdul. At present, duplicates in the initial population are
identified by genetic comparison bu, in principle, we can test for identity in their
contextual performance.

4  Experiments

This edion gves experimental results of the GA, ICGA, and SEAM applied to a 64-bit
Shuffled HIFF. The GA is implemented using the deterministic crowding algorithm of
Figure 3, and is tested using uriform crosover (GA-uniform) and ore-point crossover
(GA-onepaint). A popuation size of 1000 is used; crosover is applied with probability
0.7; and mutation is applied with 0.03 probability of assgning a new random allele (0 or
1, with equal probability). The ICGA differs from the GA in threerespeds:. 1) it uses
partially spedfied individuals, initialized to ore random bit, and mutation assgns 0, 1, or
null, with equal probability; 2) it uses the cmmbination operator described in Figure 2,
and; 3) it uses a size-penalty augmentation to the fitnessfunction. In HIFF, the maximum
fitness MF, of astring d sizeN, isthe product of N and the number of hierarchicd levels
in the string. i.e. MF(N)=N(log,N+1). Accordingly, individuals in the ICGA recéve
fitnessF (B)=F(B)-MF(|B|). SEAM uses the dgorithm outlined in Figure 5. A popuation
sizeof 1000 is used in initializing SEAM but the removal of duplicaes quickly reduces
this to (approximately) the 128 unique individuals (for a 64-bit problem). Symbiotic
combination (Figure 2) is applied always, no mutationis required. The number of trials, t,
used in testing the dominance of two individuals is at most 50, but most tests fail in less
than 10 trials. Performance in Figure 6 is measured by the fitness of the best string
evaluated (in the preceding 20 evaluations) averaged over 30 runs for ead agorithm.
The problem size of 64 hts gives a maximum fitnessof 448.

We seethat the regular GA, using either crosover operator, tends to converge on sub-
optimal solutions. The disruption caused by uniform crossover [Watson & Polladck
2000b] makes it worse than one-point crossover at first, but ultimately all ows exploration
that outperforms one-point. Actually, uniform crossover succeals in 16 o the 30 runs,
which is better than expeded [Watson & Polladk 2000a], but those that do succeel take
abou 1,200,000 evaluations to do so. The ICGA is very slow to start because, unlike the
GA, it must discover building-blocks explicitly —one per individual. But, eventually the
ICGA shows that this method d partial-spedficaion and symbiotic combination dces
alow succesful combination of building-blocks in poor-linkage problems (about
1,700,000 evaluations permits 100% succesy. However, as noted, the ICGA uses a
problem-spedfic size-penalty and partial-evaluation to achieve this. In contrast, SEAM
performs very rapidly and successully without using a size-penalty or partial evaluation.
Group templating and Pareto coevolution introduced in SEAM prove to be very effedive



at enabling effedive symbiotic combination. Control experiments, not shown, confirm
that the use of either random templates instead of group evaluation, or replacament based
on superior average performance insteal of Pareto dominance, both cause the dgorithm
to fail. In either case, strings quickly fill with sub-optimal blocks and the combination
operator is prevented from operating.
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Figure 6: Performance of regular GA (using one-point and uniform crossover),

ICGA, and SEAM, on Shuffled HIFF.

All algorithms except the GA-onepoint, perform the same on HIFF as on SHIFF, since
they have no locus-dependent feaures. For reference, the GA-one point succeels on
regular HIFF, in al 30 runs, in lessthan 100,000 evaluations [Watson & Pollack 2000a].
Note that SEAM succeels in solving SHIFF, a significantly harder problem, in a little
over 200,000evaluations.

5 Conclusions

To summarize, SEAM combines three new fedures with resped to a standard GA:
1) Partialy-spedfied individuals and symbiotic combination (Figure 2) instead of sexual
recombination. 2) Group evauation (Figure 4) to provide ntexts/templates that
predude the need to evaluate partialy spedfied strings. 3) Pareto coevolution wsing
different contexts to automaticaly define multiple dimensions for the problem space
thereby segregating competition to maintain dversity in the popuation, and prevent large
sub-optimal individuals from repladng small optimal individuals. But athough SEAM
introduces several new concepts, it is algorithmicdly quite simple (Figure 5).

SEAM is the first known agorithm to solve Shuffled HIFF reliably. However,
athough SEAM is superior when applied to SHIFF, we have yet to compare SEAM’s
performance with that of other algorithms on dfferent problem domains. In the
meantime, our experiments ill ustrate some important principles in (re)combination
methods. SEAM demonstrates that symbiotic combination of partially-spedfied
individuals cen provide a succesdul aternative to sexual recombination for building-
block assembly in problems of poor genetic linkage.
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