
Symbiotic Combination as an Alternative to
Sexual Recombination in Genetic Algorithms

Richard A. Watson Jordan B. Pollack

Dynamical and Evolutionary Machine Organization
Volen Center for Complex Systems – Brandeis University – Waltham, MA – USA

richardw@cs.brandeis.edu

Abstract. Recombination in the Genetic Algorithm (GA) is supposed to enable the
component characteristics from two parents to be extracted and then reassembled in
different combinations – hopefully producing an offspring that has the good
characteristics of both parents. However, this can only work if it is possible to identify
which parts of each parent should be extracted. Crossover in the standard GA takes
subsets of genes that are adjacent on the genome. Other variations of the GA propose
more sophisticated methods for identifying good subsets of genes within an individual.
Our approach is different; rather than devising methods to enable successful extraction of
gene-subsets from parents, we utili ze variable-size individuals which represent subsets of
genes from the outset. Joining together two individuals, creating an ‘offspring’ that is
twice the size, straight-forwardly produces the sum of the parents’ characteristics. This
form of component assembly is more closely analogous to combination of symbiotic
organisms than it is to sexual recombination. Whereas sexual recombination, modeled by
crossover, occurs between similar individuals and exchanges subsets of genes, symbiotic
combination, as modeled in our operator, can occur between entirely unrelated species
and combines together whole organisms. This paper summarizes our research on this
approach to recombination in GAs and describes new methods that il lustrate its potential.

1 Introduction

The natural process of symbiogenesis [Merezhkovsky 1909] is the creation of new
species from the genetic integration of symbionts, organisms in symbiotic relationship.
Symbiogenesis has enabled some of the major transitions in evolution [Maynard-Smith
and Szathmary 1995], including the origin of eukaryotes which include all plants and
animals. This kind of genetic integration is quite different from the transfer of genetic
information in sexual reproduction. Sexual recombination occurs between similar
organisms (i.e. of the same species) and involves the exchange of parts of the genome in
a mutually exclusive manner. That is, every gene acquired from one parent is a gene that
cannot be acquired from the other parent. In contrast, symbiotic combination can occur
between genetically unrelated organisms (i.e. different species) and can involve the
integration of whole genomes. The resultant composite may have all the genes from one
organism and at the same time acquire any number of genes from the second organism.

Our research has been investigating whether this form of genetic combination has any
potential to inspire an alternate form of evolutionary algorithm. This has first required us
to address some old arguments about the utilit y of ordinary crossover in the standard GA

[Holland 1975]. To this end, we developed a hierarchical building-block problem that
exempli fies the utilit y of sexual recombination as demonstrated by crossover [Watson et
al 1998, Watson & Pollack 1999b, Watson 2000]. Moreover, our experiments also
ill ustrated a well -known limitation of crossover – that is, it relies on the heuristic of bit
adjacency to identify appropriate subsets of genes during recombination. Clearly, we
cannot in general rely on this heuristic, and when the adjacency of the genes is not
correlated with gene interdependency, the subset of genes extracted from a parent by
crossover is unlikely to contain a meaningful component of the parents’ abiliti es
[Altenberg 1995]. Figure 1 ill ustrates the problem of crossover in a poor-linkage problem
- i.e. where the bits of a block (a set of interdependent genes) are distributed.

A: 0 1010011

B: 10000110

C: 11010011

Figure 1: Sexual recombination (crossover). Parents, A and B, each contain a useful
subset of genes that are distributed on the genome (three genes per parent, shown in
bold). The desired offspring, C, should take the good genes from both parents as shown.
One-point or n-point crossover cannot do this. In principle, uniform crossover could
provide the crossover that we need but the probabilit y of this is equivalent to random
guessing at each locus where parents disagree on allele values [Watson & Pollack 1999a].

Thus we see that building-blocks in the standard GA are, at best, only represented
implicitly by virtue of the proximity of genes on the genome. In poor-linkage problems
we need some explicit mechanism to represent the unity of bits comprising a block. This
is where a mechanism based on symbiotic combination might be useful. Put simply, if
each organism represents just one building-block, then a combination operator can put
different organisms together straight-forwardly producing an organism twice the size
with both building-blocks intact. A simple representation for an individual in this scheme
utili zes ‘unspecified’ genes - then symbiotic combination can be described as a genetic
operator acting on partially-specified individuals (Figure 2).

A: -1---0-1 A: -1--00-1

B: 1-0-0--- B: 100-0--0

C: 110-00-1 C: 110-00-1

Figure 2: ‘Symbiotic combination’ . Left) Combination of partially-specified individuals
produces an offspring that is twice the size of the parents with the sum of their
characteristics. Here we represent unspecified genes, or don’ t cares, by “ -” . Each parent
represents a single building-block explicitl y and the offspring is created by taking
specified genes from either parent where available. Right) Where conflicts in specified
genes occur we resolve all conflicts in favour of one parent, e.g. the first parent.

Previous work [Watson & Pollack 1999a, 2000a], implemented the ‘I ncremental
Commitment GA’ , ICGA, using this operator. The ICGA can be described as a simpli fied
and generalized version of the Messy GA [Goldberg et al 1989], which also uses
combination of partially specified individuals. But our implementation of the ICGA had
important limitations, as we shall discuss. In this paper we introduce a much richer model
of symbiotic combination: The Symbiogenic Evolutionary Adaptation Model, SEAM. In
addition to symbiotic combination, as used in the ICGA, the key features of SEAM are
group evaluation of individuals which removes the need for partial evaluation, and a

‘Pareto coevolution’ method that segregates competition to maintain diversity and
prevent large sub-optimal individuals from replacing small optimal individuals. These
new features overcome the limitations of the earlier ICGA and facilit ate the application
of symbiotic combination more effectively.

The remainder of this paper is organized as follows: Section 2 summarizes relevant
background work. Section 3 details our Symbiogenic Evolutionary Adaptation Model.
Section 4 gives results for the standard GA, ICGA and SEAM on the hierarchical
building-block problem with random linkage. Section 5 concludes.

2 Background: Approaches to Building-Block Combination

Our previous work describes a formal building-block problem that exempli fies the class
of problems for which recombinative algorithms like the GA are well -suited. This
problem, which we call Hierarchical If-and-Only-If (HIFF), was first introduced in
[Watson et al 1998] (Equation 1). This function interprets a string as a binary tree and
recursively decomposes the string into left and right halves. Each block at each level in
the hierarchy has two solutions – all ones and all zeros – and the function has two
corresponding global optima. Although each building-block is identifiable via its fitness
contribution, a successful algorithm must maintain competing solutions for each block
and search combinations of blocks to find complete solutions. This discovery and
combination process continues through a hierarchical structure which is consistent in the
nature of the problem at each level [Watson and Pollack 1999b]. On this class of
problem, mutation based algorithms cannot be guaranteed to succeed in less than time
exponential in N (the size of the problem in bits), whereas an idealized recombinative
algorithm has an upper bound in time to solution of order Nlg2N [Watson 2000].
However, Equation 1 states the fitness of a string assuming tight linkage i.e. two bits that
form a block at the lowest level are adjacent on the genome, and two size-2 blocks that
form a block at the next level are also adjacent, and so on. The success of the regular GA
is dependent on tight genetic linkage – and the focus of our ongoing research is on
solving the problem with randomized linkage.

F(B)=
î



 1,

|B| + F(BL) + F(BR),

F(BL) + F(BR),

if |B|=1, and (b1=0 or b1=1)

if (|B|>1) and (∀ i{ bi=0} or ∀ i{ bi=1})

otherwise. Eq.1

where B is a block of bits, { b1,b2,...bk} , |B| is the size of the block=k, bi is the ith
element of B, BL and BR are the left and right halves of B (i.e. BL={ b1,...bk/2} ,
BR={ bk/2+1,...bk}). The length of the string evaluated must equal 2p where p is an
integer (the number of hierarchical levels). Notice that this function gives no reward
to nulls and therefore naturally evaluates partially specified strings.

In [Watson & Pollack 1999a] we started investigation into solving Shuffled HIFF,
(SHIFF) where the position of bits in the problem is randomly re-ordered. One approach
to address problems of poor linkage is seen in the Messy GA [Goldberg et al 1989] and
the Linkage Learning GA [Harik & Goldberg 1996] which use a moving locus
representation of genes – each gene is represented by a locus/allele pair. This enables
genes to be re-ordered on the genome and potentially allows interdependent genes to
collect together. However, there is one feature of the Messy GA that is quite simple, and

potentially effective, yet is generally under-emphasized. This is the feature of
underspecification – individuals that specify only a subset of genes.

Fully-specified individuals, as used in the standard GA, may contain good building-
blocks but selection acting on these individuals will also promote garbage genes riding on
the same string (see “parasites” [Goldberg et al 1989], and “hitch-hikers” [Forrest &
Mitchell 1993], [Vekaria & Clack 1999]). Consequently, a crossover operator using fully-
specified individuals must, one way or another, express which subsets of genes represent
good schemata to exclude garbage genes from recombination events. The interesting
property of approaches using partially-specified individuals is that individuals represent
schemata explicitly; and it is the normal operation of selection in the GA, operating on
these sub-strings, that permits the successful identification of good building-blocks.

In the problem class we address, large building-blocks at higher levels of the hierarchy
produce significant high-order interdependencies. For a multi -level building-block
problem like this we must use a method of gradually increasing specification that allows
blocks to be accumulated through many incremental stages (unlike the two-phase method
of underspecification seen in the Messy GA). To enable this, previous work employed a
size-penalty augmentation to the fitness function. This enables the size of strings to grow
gradually, only committing to gene alleles when these genes return significant fitness
contributions, hence, Incremental Commitment GA [Watson & Pollack 1999a]. Using the
ICGA we showed that the feature of underspecification is suff icient to enable success on
a poor-linkage problem and that the other features of the Messy GA, in particular the
moving-locus features which are often the focus of related work, are not required.

However, our ICGA was not without its own complications. The first, is that the
approach requires a diversity maintenance technique to keep the population from
converging. As in earlier work with the standard GA, we used a resource-based fitness
sharing method that utili zed considerable knowledge of the problem structure.
Specifically, it maintained a ‘ resource level’ for each building-block in the problem.
Since then we have found an off-the-shelf diversity maintenance technique, deterministic
crowding [Mahfoud 1995], that works very well for our problem [Watson & Pollack
2000a]. Deterministic crowding, DC, is naturally implemented in a steady state GA as
described in Figure 3.

• Initialize population.
• Repeat until stopping condition:

• Pick two parents at random from the population, p1 & p2.
• Produce a pair of offspring using recombination, c1 & c2.
• Pair-up each offspring with one parent according to the pairing rule below.
• For each parent/offspring pair, if the offspring is fitter than the parent then

replace the parent with the offspring.
Pairing rule: if H(p1,c1)+H(p2,c2) <H(p1,c2)+H(p2,c1) then pair p1 with c1, and
p2 with c2, else pair p1 with c2, and p2 with c1, where H gives the genotypic
Hamming distance between two individuals.

Figure 3: Pseudo-code for a simple form of a GA using deterministic crowding.

The most important feature of DC is that offspring only compete with their own
parents. Additionally, offspring and potential replacees are paired to maximize their
similarity. This segregated competition introduces tolerance for lower-fitness individuals
in different niches and reduces the pressure for convergence. Note that DC does not

segregate mating like other diversity maintenance techniques, e.g. ‘ thresholding’
[Goldberg et al 1989]. In DC, an individual may mate with any other regardless of their
similarity or dissimilarity, but it only competes with similar individuals.

The advantage of DC with respect to our previous method of diversity maintenance is
that it does not require any knowledge of the problem’s building-block structure. It also
alleviates complications in the size-penalty that arose from the distorted fitness values
given by the fitness sharing mechanism. However, the ICGA still needs a size-penalty
that requires knowledge of how fitness is expected to grow with string length. Moreover,
the ICGA also depends on being able to evaluate partially specified strings. These are
handled quite naturally in our test problem but, in general, an objective function may not
be able to evaluate a string that is not fully-specified.

Goldberg et al [1989] suggest that one way to overcome the need for partial evaluation
is to use competitive templates, bit-strings that are used to fill -in the unspecified bits of an
individual. The template provides a context in which the partial individual can be
evaluated. However, Goldberg et al also show that the use of random strings as templates
would produce too much ‘background noise’ to identify the relatively small fitness
contribution of a low-order schema represented by an individual. And they also argue that
the use of a single random template used for all evaluations (reducing the influence of
random noise) cannot evaluate a schema in an appropriately diverse range of contexts to
assess its proper value. They propose that one way forward is to use a ‘ locally optimized’
template provided by some other search method. However, this approach assumes that
the “highest order non-linearity expected in the problem” is bounded and, in fact, quite
low-order, as Goldberg et al assume. In this case, an appropriately optimized template is
quite easy to find. But, in problems with strong high-order interdependencies, like the
class we address, the task of providing an appropriately optimized template is only one
step easier than solving the whole problem. Nonetheless, a form of templating will be
useful in solving the problem of partial evaluation in our new algorithm, SEAM.

3 The Symbiogenic Evolutionary Adaptation Model, SEAM

This section introduces the ‘Symbiogenic Evolutionary Adaptation Model’ , SEAM,
which utili zes three main ideas. First, as in the ICGA, SEAM uses symbiotic combination
that combines whole small organisms, rather than sexual recombination that recombines
parts of fully-specified organisms. Second, we use groups of other individuals from the
population to provide the templates and preclude the need for partial evaluation. And the
third new component of SEAM is to use what we call ‘Pareto coevolution’ which
segregates competition to maintain diversity, and prevents large sub-optimal strings from
replacing small optimal strings (removing the need for a size-penalty).

Group templating

The use of other organisms to provide templates is inspired by the co-adaptation of
symbiotic organisms in an ecosystem. We think of the templates as different
environmental contexts, or niches, provided by different combinations of neighboring
organisms. Algorithmically, the templates test the performance of a given schema in the
context of many other different schemata provided by other optimized individuals. In this
way we do not need to use a different search technique to provide the templates as
Goldberg et al propose – rather, the organisms that are used as templates, and the

organisms that use the templates, are all created by the same unified process. As more fit
large individuals are discovered by the algorithm, they provide better templates for
discovering individuals for the next hierarchical level in the problem. This use of
individuals that are co-adapted to fill -in for one-another provides effective templates and
precludes the need for partial evaluation in the algorithm. Group evaluation is used in a
couple of existing algorithms, [Moriarty 1997, Potter 1997], and we have also
investigated related effects of group evaluation ourselves [Watson & Pollack 1999c]. But
the technique has not been connected to the use of templates in the Messy GA, nor has it
been integrated with genetic operators that combine organisms together permanently.

Naturally, this method of templating will return different fitness scores depending on
which individuals are chosen for the template. As Goldberg et al caution, an accurate
measure of f itness for the individual in question might require prohibitively many trials.
To alleviate the background noise of a template, individuals in SEAM are assessed in
pair-wise competitions. That is, two individuals, A and B, are evaluated using the same
additional individuals to provide the template/context for evaluation (Figure 4).

A: -11---00 B: --1010--

1: -0--1-0- 1: -0--1-0-

2: 10-0-11- 2: 10-0-11-

3: 1-1--1-- 3: 1-1--1--

4: --0-01-1 4: --0-01-1

A’ :11101100 B’:10101001

Figure 4: Left) A given partially-specified individual, A, is evaluated by building a template from
several other partially-specified individuals, 1 though 4. Specified genes are provided by A where
available, and unspecified positions are filled-in with genes from 1, and so on through 4, using
additional individuals until all genes are specified. The resultant string A’ , is the string evaluated
for A. Right) The same individuals 1 through 4 are used to evaluate a second individual B. The
difference in fitness between A’ and B’ indicates which is better in this context.

Note that any given context may favor A more than B, for example, depending on
whether A happens to be better adapted to that particular context or not. So we will still
need to perform evaluations in many different contexts to determine the superiority of A
and B. However, this will not require prohibitively many evaluations.

Pareto coevolution

The group evaluation used in templating makes SEAM a coevolutionary system – the
task of being a successful organism is dependent on the composition of the population.
The normal coevolutionary procedure is to average performance over many trials, in this
case, many different contexts. However, preliminary investigations using averaged scores
caused convergence and failure of the algorithm. This problem has prevented us from
progressing our model of symbiotic combination with group templating for some time.
Here we introduce a new method of coevolution that we can use in SEAM to overcome
this problem. This new method, which we call ‘Pareto coevolution’ , incorporates ideas
from Pareto optimization methods that are well -established for optimization in problems
with multiple objectives [e.g. Horn 1997]. Pareto optimization recognizes that
performance over different objectives, say ‘f inancial cost’ and ‘construction time’ , cannot
be combined to give an overall performance unless we know how to convert one

‘dimension’ to another – in this case, we need to know what our time is worth. Pareto
optimization techniques may be used when the relative weighting of different dimensions
is not known. Specifically, Pareto optimization is built on the principle of Pareto
domination. A solution is said to Pareto dominate another solution if it is superior or
equal in all dimensions (and superior in at least one dimension).

The idea behind Pareto coevolution is to use different coevolving opponents as the
dimensions for determining dominance. Specifically, an individual dominates some other
individual i f it performs no worse than that individual against each and every opponent.
In this manner, the performance of an individual will be assessed on the basis of which
particular opponents it does well against and not just an average score. This allows
individuals to adapt to different sets of opponents and promotes diversity.

Pareto coevolution is simply the application of this form of dominance in any Pareto
optimization technique. We suggest that Pareto coevolution may be valuable in a variety
of existing coevolutionary games and with a variety of Pareto optimization methods. But
in the next subsection we show how to apply the technique to our specific domain of
function optimization via group evaluation, and how to implement a very simple form of
Pareto optimizer that is suff icient for our needs.

Integrating the features of SEAM

In SEAM the coevolution is subtle – the result of an evaluation depends on the other
members of the population selected for the template – but there is no overt opponent in
this setup. Nonetheless, we can use contextual groups as dimensions to determine
domination and apply Pareto coevolution. SEAM uses this principle directly in
determining the outcome of the pair-wise competition ill ustrated in Figure 4. Specifically,
A dominates B, if it is superior or equal to B in all groups tested. Figure 5 shows how to
utili ze this rule in a very simple Pareto optimizer.

• Initialize population to random single-bit individuals.
• Repeat until stopping condition:

• Pick two parents at random from the population.
• Produce an offspring using symbiotic combination.
• If the offspring dominates both parents (see below) then replace the parents

with the offspring.
To determine whether A dominates B: Repeat for t trials:

• Build a complete template from randomly selected individuals.
• If B superimposed on this template receives a higher score than A

superimposed on this template then A does not dominate B.

Figure 5: Pseudo-code for a simple implementation of SEAM.

Segregating competition by the use of contextual niches in SEAM maintains
appropriate diversity without the need to use the genotypic similarity metric usually used
in the pairing-rule of deterministic crowding. More importantly, these methods preclude
the need to use a size-penalty function. The size-penalty was used in the ICGA to prevent
organisms from prematurely filli ng-up with incompatible blocks. In SEAM, if just one of
the contexts tested for the parent includes a compatible block, then an offspring formed
by joining with an incompatible block in that position will be rejected. By insisting that a
composite must perform as well as the parents in all contexts, we prevent incompatible
blocks from being joined, and individuals being fill ed with sub-optimal schemata.

The algorithm in Figure 5 differs considerably from established Pareto optimization
methods: specifically, like deterministic crowding, an offspring only survives through
competition with its parents. This restriction is applied for eff iciency – the offspring is
intended to combine the characteristics of the parents so, if this combination is
successful, the offspring should be at least as good as either parent in any context. This
method proves sufficient for our problem class but preliminary investigations suggest that
a more conventional Pareto optimization approach may broaden the applicabilit y of
SEAM. Additionally, our implementation of this algorithm also reduces computational
expense by removing duplicates from the population. So, when we replace the parents we
insert only one copy of the offspring, reducing the size of the population by one with
each offspring that is successful. At present, duplicates in the initial population are
identified by genetic comparison but, in principle, we can test for identity in their
contextual performance.

4 Experiments

This section gives experimental results of the GA, ICGA, and SEAM applied to a 64-bit
Shuff led HIFF. The GA is implemented using the deterministic crowding algorithm of
Figure 3, and is tested using uniform crossover (GA-uniform) and one-point crossover
(GA-onepoint). A population size of 1000 is used; crossover is applied with probabilit y
0.7; and mutation is applied with 0.03 probabilit y of assigning a new random allele (0 or
1, with equal probabilit y). The ICGA differs from the GA in three respects: 1) it uses
partially specified individuals, initialized to one random bit, and mutation assigns 0, 1, or
null , with equal probabilit y; 2) it uses the combination operator described in Figure 2,
and; 3) it uses a size-penalty augmentation to the fitness function. In HIFF, the maximum
fitness, MF, of a string of size N, is the product of N and the number of hierarchical levels
in the string. i.e. MF(N)=N(log2N+1). Accordingly, individuals in the ICGA receive
fitness F′(B)=F(B)-MF(|B|). SEAM uses the algorithm outlined in Figure 5. A population
size of 1000 is used in initializing SEAM but the removal of duplicates quickly reduces
this to (approximately) the 128 unique individuals (for a 64-bit problem). Symbiotic
combination (Figure 2) is applied always, no mutation is required. The number of trials, t,
used in testing the dominance of two individuals is at most 50, but most tests fail i n less
than 10 trials. Performance in Figure 6 is measured by the fitness of the best string
evaluated (in the preceding 2000 evaluations) averaged over 30 runs for each algorithm.
The problem size of 64 bits gives a maximum fitness of 448.

We see that the regular GA, using either crossover operator, tends to converge on sub-
optimal solutions. The disruption caused by uniform crossover [Watson & Pollack
2000b] makes it worse than one-point crossover at first, but ultimately allows exploration
that outperforms one-point. Actually, uniform crossover succeeds in 16 of the 30 runs,
which is better than expected [Watson & Pollack 2000a], but those that do succeed take
about 1,200,000 evaluations to do so. The ICGA is very slow to start because, unlike the
GA, it must discover building-blocks explicitly – one per individual. But, eventually the
ICGA shows that this method of partial-specification and symbiotic combination does
allow successful combination of building-blocks in poor-linkage problems (about
1,700,000 evaluations permits 100% success). However, as noted, the ICGA uses a
problem-specific size-penalty and partial-evaluation to achieve this. In contrast, SEAM
performs very rapidly and successfully without using a size-penalty or partial evaluation.
Group templating and Pareto coevolution introduced in SEAM prove to be very effective

at enabling effective symbiotic combination. Control experiments, not shown, confirm
that the use of either random templates instead of group evaluation, or replacement based
on superior average performance instead of Pareto dominance, both cause the algorithm
to fail . In either case, strings quickly fill with sub-optimal blocks and the combination
operator is prevented from operating.

Figure 6: Performance of regular GA (using one-point and uniform crossover),
ICGA, and SEAM, on Shuff led HIFF.

All algorithms except the GA-onepoint, perform the same on HIFF as on SHIFF, since
they have no locus-dependent features. For reference, the GA-one point succeeds on
regular HIFF, in all 30 runs, in less than 100,000 evaluations [Watson & Pollack 2000a].
Note that SEAM succeeds in solving SHIFF, a significantly harder problem, in a littl e
over 200,000 evaluations.

5 Conclusions

To summarize, SEAM combines three new features with respect to a standard GA:
1) Partially-specified individuals and symbiotic combination (Figure 2) instead of sexual
recombination. 2) Group evaluation (Figure 4) to provide contexts/templates that
preclude the need to evaluate partially specified strings. 3) Pareto coevolution using
different contexts to automatically define multiple dimensions for the problem space,
thereby segregating competition to maintain diversity in the population, and prevent large
sub-optimal individuals from replacing small optimal individuals. But although SEAM
introduces several new concepts, it is algorithmically quite simple (Figure 5).

SEAM is the first known algorithm to solve Shuff led HIFF reliably. However,
although SEAM is superior when applied to SHIFF, we have yet to compare SEAM’s
performance with that of other algorithms on different problem domains. In the
meantime, our experiments ill ustrate some important principles in (re)combination
methods. SEAM demonstrates that symbiotic combination of partially-specified
individuals can provide a successful alternative to sexual recombination for building-
block assembly in problems of poor genetic linkage.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

50

100

150

200

250

300

350

400

450

evaluations

fit
ne

ss GA one−point
GA uniform
ICGA
SEAM

Acknowledgments

The first author is indebted to Martin Oates for tireless investigations of diversity maintenance
techniques, Sevan Ficici for stimulating discussion on coevolution and its connection to Pareto
optimization, and other members of DEMO at Brandeis.

References

Altenberg, L, 1995 “The Schema Theorem and Price’s Theorem”, FOGA3, editors Whitley &
Vose, pp 23-49, Morgan Kaufmann, San Francisco.

Forrest, S & Mitchell, M, 1993, “What makes a problem hard for a Genetic Algorithm? Some
anomalous results and their explanation” Machine Learning 13, pp.285-319.

Goldberg, DE, Deb, K, & Korb, B, 1989 “Messy Genetic Algorithms: Motivation, Analysis and
first results” , Complex Systems, 3, 493-530.

Harik, GR, & Goldberg, DE, 1996, “Learning Linkage” in FOGA 4, Morgan Kaufmann, San
Mateo, CA.

Holland, JH, 1975 “Adaptation in Natural and Artifi cial Systems” , Ann Arbor, MI: The University
of Michigan Press.

Horn, J, 1997, “Multicriteria Decision Making and Evolutionary Computation” , in Handbook of
Evolutionary Computation, T. Bäck, D.B. Fogel, and Z. Michalewicz (eds.), IOP Press, NY.

Mahfoud, S, 1995, “Niching Methods for Genetic Algorithms” , PhD diss., Dept. General
Engineering, University of I llinois. Also, Illi GAL Report No. 95001.

Maynard-Smith, J, and Szathmary, E, 1995 The Major Transition in Evolution, WH Freeman & Co.
Merezhkovsky KS, 1909 “The Theory of Two Plasms as the Basis of Symbiogenesis, a New Study

or the Origins of Organisms,” Proceedings of the Studies of the Imperial Kazan University,
Publishing Off ice of the Imperial University. (In Russian).

Moriarty, DE, 1997, Symbiotic Evolution of Neural Networks in Sequential Decision Tasks, PhD
thesis, University of Texas at Austin, USA.

Potter, M, 1997, The Design and Analysis of a Computational Model of Cooperative Coevolution,
PhD thesis, George Mason University, Fairfax, Virginia.

Vekaria, K, & Clack, C, 1999, “Hitchhikers Get Around”, Artifi cial Evolution (EA) 1999,
November 3-5, LIL, Universite du Littoral, Dunkerque, France.

Watson, RA, Hornby, GS & Pollack, JB, 1998, “Modeling Building-Block Interdependency” ,
PPSN V, proceedings of Fifth International Conference, Springer 1998, pp.97-106 .

Watson, RA, & Pollack, JB, 1999a, “ Incremental Commitment in Genetic Algorithms”,
Proceedings of GECCO 1999. Banzhaf, et al. eds., Morgan Kaufmann, 710-717.

Watson, RA, & Pollack, JB, 1999b, “Hierarchically-Consistent Test Problems for Genetic
Algorithms”, Proceedings of 1999 CEC. Angeline, et al. eds. IEEE Press, pp.1406-1413.

Watson, RA, & Pollack, JB, 1999c, “How Symbiosis Can Guide Evolution” . Procs. of Fifth
European Conference on Artificial Life, Floreano, D, Nicoud, JD, Mondada, F, eds., Springer.

Watson, RA, 2000, “Analysis of Recombinative Algorithms on a Hierarchical Building-Block
Problem”, FOGA 6, Fogarty, Martin, Spears, eds. Springer, to appear (2001).

Watson, RA, & Pollack, JB, 2000a, “Combination and Recombination in Genetic Algorithms”,
technical report CS-00-209, Dept. Computer Science, Brandeis University.

Watson, R.A. & Pollack, J.B. 2000b, “Recombination Without Respect: Schema Combination and
Disruption in Genetic Algorithm Crossover” , Procs. of GECCO 2000, Whitley, D, et al (eds.),
Morgan Kaufmann, 2000.

