
Infinite RAAM: A Principled Connectionist Basis for Grammatical Competence

Simon Levy, Ofer Melnik and Jordan Pollack
levy, melnik, pollack@cs.brandeis.edu

Dynamical and Evolutionary Machine Organization
Volen Center for Complex Systems,

Brandeis University, Waltham, MA 02454, USA
February 6, 2000

Abstract

This paper presents Infinite RAAM (IRAAM), a new fusion of
recurrent neural networks with fractal geometry, allowing us to
understand the behavior of these networks as dynamical sys-
tems. Our recent work with IRAAMs has shown that they are
capable of generating the context-free (non-regular) language
a
n
b
n for arbitrary values ofn. This paper expands upon that

work, showing that IRAAMs are capable of generating syntac-
tically ambiguous languages but seem less capable of gener-
ating certain context-free constructions that are absent or dis-
favored in natural languages. Together, these demonstrations
support our belief that IRAAMs can provide an explanatorily
adequate connectionist model of grammatical competence in
natural language.

Natural Language Issues
In an early and extremely influential paper, Noam Chomsky
(1956) showed that natural languages (NL’s) cannot be mod-
eled by a finite-state automaton, because of the existence of
center-embedded constructions. A second and equally im-
portant observation from this work was that a minimally ade-
quate NL grammar must be ambiguous, assigning more than
one structure (interpretation) to some sentences, for example,
They are flying planes.

The first observation led to the development of Chomsky’s
formal hierarchy of languages, based on the computational
resources of the machines needed to recognize them. In this
hierarchy, Chomsky’s observation about center-embedding is
expressed by saying that NL’s are non-regular; i.e., they can-
not be generated by a grammar having only rules of the form
A ! bC, whereA andC are non-terminal symbols andb is
a terminal symbol.

Whether NL’s are merely non-regular, belonging in the
next, context-free (CF) level of the Chomsky hierarchy, or are
more powerful, belonging further up in the hierarchy, became
the subject of heated debate (Higginbotham 1984; Postal and
Langendoen 1984; Shieber 1985). Non-CF phenomena such
as reduplication/copying (Culy 1985) and crossed serial de-
pendencies (Bresnan, Kaplan, Peters, and Zaenen 1982) sug-
gested that a more powerful approach, using syntactic trans-
formations (Chomsky 1957) was called for, but some re-
searchers criticized transformations as having arbitrary power
and thus failing to constrain the types of languages that could
be expressed (Gazdar 1982). Further criticism of the entire
formal approach came from observing that even CF gram-
mars (CFGs) had the power to generate structures, such as
a sequence followed by its mirror image, that did not seem
to occur in NL (Manaster-Ramer 1986), or which placed an

extraordinary burden on the human parsing mechanism when
they did occur (Bach, Brown, and Marslen-Wilson 1986).

Connectionism and Natural Language
While debates about the complexity of NL were raging,
connectionism was beginning to awaken from a fifteen-year
sleep. In connectionist models many researchers found a
way of embodying flexibility, graceful degradation, and other
non-rigid properties that seem to characterize real cognitive
systems like NL. This research culminated the publication
of a highly controversial paper by Rumelhart and McClel-
land (1986) which provided a connectionist account of part
of the grammar of English using a feed-forward neural net-
work. The paper was soon criticized by more traditional cog-
nitive scientists (Fodor and Pylyshyn 1988; Pinker and Prince
1988), who cited the non-generative nature of such connec-
tionist models as a fundamental shortcoming of the entire
field.

Partly in response to these criticisms, many connection-
ists have spent the past decade investigating network models
which support generativity through recurrent (feedback) con-
nections (Lawrence, Giles, and Fong 1998; Rodriguez, Wiles,
and Elman 1999; Williams and Zipser 1989). The research
we present here is an attempt to contribute to this effort while
focusing as strongly as possible on the natural language is-
sues described above. Such an attempt faces a number of
challenges.

First, despite analysis of how a network’s dynamics con-
tribute to its generativity, it is often uncertain whether the
dynamics can support generation of well-formed strings be-
yond a certain length. That is, it is unknown whether the net-
work has a true “competence” for the language of which it has
learned a few exemplars, or is merely capable of generating
a finite, and hence regular, subset of the language.1 Second,
it is often easier to model weak, rather than strong genera-
tive capacity, by building networks that generate or recognize
strings having certain properties, without assigning any syn-
tactic structure to the strings. Third, this lack of syntactic
structure inhibits the formulation of an account of syntactic
ambiguity in such networks, making them less plausible as
models of NL.

1To be fair, not all connectionists, or cognitive scientists, take
seriously the notion that human language has infinite generative ca-
pacity. Though we obviously do not have the resources to argue
the issue here, we are certain that a model with a provably infinite
competence would be more persuasive to the cognitive science com-
munity as a whole than would a model without one.

In sum, we are concerned with formulating a recurrent net-
work model that rigorously addresses the set of criteria that
emerged from the long debate over the complexity of NL.
As an candidate,the remainder of this paper presents a new
formulation of RAAM (Pollack 1990), a recurrent network
model that addresses the NL issues in a principled way.

Traditional RAAM
Recursive Auto-Associative Memory or RAAM (Pollack
1990) is a method for storing tree structures in fixed-width
vectors by repeated compression. Its architecture consists of
two separate networks – an encoder network, which can con-
struct a fixed-dimensional code by compressively combining
the nodes of a symbolic tree from the bottom up, and a de-
coder network, which decompresses a fixed-width code into
its two or more components. The decoder is applied recur-
sively until it terminates in symbols, reconstructing the tree.
These two networks are simultaneously trained as an autoas-
sociator with time-varying inputs. If the training is success-
ful, the result of bottom up encoding will coincide with top
down decoding.

Following the publication of (Pollack 1990), RAAM
gained widespread popularity as a model of NL syntax. Some
researchers (Blank, Meeden, and Marshall 1991) found it an
attractive way of “closing the gap” between the symbolic
and sub-symbolic paradigms in cognitive science. Others
(Van Gelder 1990) saw in RAAM a direct and simple refu-
tation of the traditional cognitive scientists’ backlash against
connectionism, and went as far as to show how traditional
syntactic operations like transformations could be performed
directly on RAAM representations (Chalmers 1990). As the
power of the RAAM model became apparent, variants be-
gan to emerge. These included the Sequential RAAMs of
(Kwasny and Kalman 1995), which showed how a RAAM
could behave like a linked list, and the Labeling RAAMs
of (Sperduti 1993), which encoded labeled graphs containing
cycles.

In short, RAAM seemed to hold a great deal of promise
as a general connectionist solution to encoding not just NL
syntax, but all sorts of structured representations.

Still, RAAM was plagued by an apparently diverse set of
problems, most notably a failure to scale up to realistically
large structures. We believe that these problems can be traced
to the original formulation of the RAAM decoder, which
works in conjunction with a logical “terminal test”, answer-
ing whether or not a given representation requires further de-
coding. The default terminal test merely asks if all elements
in a given code are boolean, e.g. above 0.8 or below 0.2.
This analog-to-binary conversion was a standard interface in
back-propagation research of the late 1980’s to calculate bi-
nary functions from real-valued neurons. However, although
it enabled the initial discovery of RAAM training, it led to
several basic logical problems which prevented the scaling
up of RAAM: 1) The “Infinite Loop” problem is that there
are representations which “break” the decoder by never ter-
minating. In other words, some trees appear “infinitely large”
simply because their components never pass the terminal test.
This behavior breaks computer program implementations or
requires depth checking. 2) The “Precision vs. Capacity”
problem is that tighter tolerances lead to more decoding er-

rors instead of a greater set of reliable representations. 3) The
“Terminating Non-Terminal” problem arises when there is a
“fusion” between a non-terminal and a terminal, such that the
decoding of an encoded tree terminates abruptly.

In the following section of this paper we present a new for-
mulation of RAAM networks based on an analysis of the it-
erated dynamics of decoding, that resolves all these problems
completely. This formulation leads to a new “natural terminal
test”, a natural labeling of terminals, and an inherently higher
storage capacity.

New RAAM Formulation

XL

X Y Bias

YL XR YR

XL =
1

1 + e�(wLXXx+wLXY y+wLX)

YL =
1

1 + e�(wLYXx+wLY Y y+wLY)

XR =
1

1 + e�(wRXXx+wRXY y+wRX)

YR =
1

1 + e�(wRYXx+wRY Y y+wRY)

Figure 1: An example RAAM decoder that is a 4 neuron net-
work, parameterized by 12 weights. Each application of the
decoder converts an(X;Y) coordinate into two new coordi-
nates.

Consider the RAAM decoder shown in figure 1. It consists
of four neurons that each receive the same(X;Y) input. The
output portion of the network is divided into a right and a left
pair of neurons. In the operation of the decoder the output
from each pair of neurons is recursively reapplied to the net-
work. Using the RAAM interpretation, each such recursion
implies a branching of a node of the binary tree represented
by the decoder and initial starting point. However, this same
network recurrence can also be evaluated in the context of dy-
namical systems. This network is a form ofiterated function
systemor IFS (Barnsley 1993), consisting of two pseudo-
contractive transforms which are iteratively applied to points
in a two-dimensional space.

In the past we have examined the applicability of the IFS
analogy to other interpretations of neural dynamics (Blair and
Pollack 1997; Kolen 1994; Melnik and Pollack 1998; Stucki
and Pollack 1992). But in the context of RAAMs the main
interesting property of contractive IFSes lies in the trajecto-
ries of points in the space. For contractive IFSes the space
is divided into two sets of points. The first set consists of
points located on the underlying attractor (fractal attractor) of
the IFS. The second set is the complement of the first, points

that are not on the attractor. The trajectories of points in this
second set are characterized by a gravitation towards the at-
tractor. Finite, multiple iterations of the transforms have the
effect of bringing the points in this second set arbitrarily close
to the attractor.

As noted before, the Infinite Loop and Terminating Nonter-
minal problems arise from an insufficient terminal test. Since
some trajectories never leave the attractor and all others even-
tually hit the attractor. The only terminal test that guarantees
the termination of all trajectories of the RAAM (IFS) is a test
that includes all the points of the attractor itself.

By taking the terminal test of the decoder network to be
“on the attractor”, not only are problems of infinite loops
and early termination corrected, but it is now possible to
have extremely large sets of trees represented in small fixed-
dimensional neural codes. The attractor, being a fractal, can
be generated at arbitrary resolution. In this interpretation,
each possible tree, instead of being described by a single
point, is now anequivalence classof initial points sharing
the same tree-shaped trajectories to the fractal attractor. For
this formulation, the set of trees generated and represented
by a specific RAAM is a function of the weights, but is also
governed by how the initial condition space is sampled, and
by the resolution of the attractor construction. Note that
the lower-resolution attractors contain all the points of their
higher-dimensional counterparts (they cover them); therefore,
as a coarser terminal set, they terminate trajectories earlier
and so act to “prefix” the trees of the higher-dimensional at-
tractors.

Two last pieces complete the new formulation. First, the
encoder network, rather than being trained, is constructed di-
rectly as the mathematical inverse of the decoder. The termi-
nal set of each leaf of a tree is run through the inverse left
or right transforms, and then the resultant sets are intersected
and any terminals subtracted. This process is continued from
the bottom up until there is an empty set, or we find the set of
initial conditions which encode the desired tree.

Second, using the attractor as a terminal test also allows a
natural formulation of assigning labels to terminals. Barns-
ley (1993) noted that each point on the attractor is associated
with an address which is simply the sequence of indices of the
transforms used to arrive on that point from other points on
the attractor. The address is essentially an infinite sequence
of digits. Therefore to achieve a labeling for a specific alpha-
bet we need only consider a sufficient number of significant
digits from this address.

Example of New RAAM Formulation
In this section, we describe how we obtain the attractor and
the trees for a RAAM decoder of the sort shown in figure 1.
The decoder weights in the present example were obtained by
a hill-climbing search for an aesthetically appealing attractor,
but the demonstration is valid for any set of decoder weights.

Recall that we are treating the decoder as an IFS that maps
each input point(X;Y) in the range [0,1] to two other points
(XL; YL) and(XR; YR) in the same range. To generate the
attractor of the IFS, we first apply the two mappings (trans-
forms) to the entire unit square at some fixed resolution. We
then re-apply the transforms to the resulting set of points. We
repeat this operation until the transforms do not change the

set of points any further at that resolution. Hence, we can
visualize the behavior of the decoder in the unit square by
examining the set of points obtained through iterated applica-
tions of the two transforms.

In figure 2, we have applied the transforms once to all
points in the unit square, obtaining two large, overlapping re-
gions, corresponding to the left and right transforms of all the
original points. Note that some points are part of both the left
and right regions.

Y

X

1

10

Figure 2: The unit square after one application of the trans-
forms. The attractor is shown in gray: dark gray = points
reachable from attractor on left transform, light gray = points
reachable on right. The small white wedge where the gray ar-
eas overlap contains “ambiguous” attractor points reachable
on both transforms.

Figure 3: The unit square after two and five applications of
the transforms.

Figure 3 shows the unit square after another iteration of
the transforms, and after five such iterations. Figure 4 shows
the final “Galaxy” attractor obtained when further iterations
fail to produce any more contraction. Like any fractal, this
attractor exhibits self-similarity, with the two longest arms of
the galaxy ending in shapes like that of the whole attractor.

Figure 4 also shows how we derive the tree (1 (1 2)) from
a point not on the attractor. Starting at a point not on the
attractor (the small circle at the top of the figure), the left
transform (dashed line) takes us immediately to the attractor;
specifically, to an attractor region labeled 1, indicating that
this region is reachable from the other attractor points on the
left (first) transform only. Hence our tree so far is (1. . .). The
right transform of the point at the top takes us to another point

not on the attractor, indicated by the circle in the lower left
part of the figure. Like the first point, this point goes to the
attractor region labeled 1 on its left transform; however, it also
goes to the attractor on its right transform; specifically, to the
region labeled 2, which indicates that this region is reachable
from the other attractor points on the right (second) transform
only. So this second point decodes the tree (1 2), and its par-
ent tree is (1 (1 2)), completing the derivation.

2

1

(1 (1 2))

(1 2)

Figure 4: The final attractor, showing derivation of the tree
(1 (1 2)) and its daughter tree (1 2). The left transform is
shown as a dashed line, and the right transform as a straight
line.

By repeating this process for every point not on the attrac-
tor, we can map out the set of all trees decoded by the RAAM
at a given resolution. As described earlier, each tree in this
set corresponds to an equivalence class of points that all de-
code to that tree. Points in the same class tend to cluster to-
gether, giving us an interesting way of laying out the RAAM’s
language spatially. Figure 5 shows this phenomenon for a
RAAM that we hill-climbed to decode the languageanbn

(described in the next section), with grayscale denoting tree
equivalence classes rather than attractor points. The dramatic
striping pattern of the equivalence classes in this figure is not
inherent in the fractal RAAM model, but derives from the
comparatively elegant solution that hill-climbing produced
for this language.

Linguistic Advantages of New RAAM
As we described earlier, the new RAAM formulation thor-
oughly addresses the three shortcomings of the traditional
RAAM model. Infinite loops and terminating non-terminals
are both eliminated by making the terminal test be a test of
whether or not a point is on the fractal attractor of the RAAM
decoder.

Furthermore, the new formulation provides a principled ac-
count of generativity (grammatical competence). By treating
the RAAM as a fractal that can be generated at any arbi-
trary resolution, we can increase the generative capacity of
the RAAM without bound, giving us a model that scales per-
fectly: hence the name Infinite RAAM (IRAAM). As we have
recently shown (?), it is a straightforward matter to hill-climb
the weights for an IRAAM that generates all and only the
strings in the languageanbn [anbn+1; n � 5.

(1 ((1 2) 2))

((1 ((1 2) 2)) 2)

(1 ((1 ((1 2) 2)) 2))

(1 ((1 ((1 ((1 ((1 ((1 2) 2)) 2)) 2)) 2)) 2))

((1 2) 2)

Figure 5: Tree equivalence classes for theanbn system. At-
tractor points cluster at extreme left (colored black, labeled 1
or a) and right (colored white, labeled 2 orb).

Briefly, the dynamics of the network are such that for any
point in the unit square, one of the two transforms of the
point is guaranteed to be on the attractor. This behavior cor-
responds to the terminal component of a recursive grammar
in Chomsky Normal Form for the language. In addition, the
left transform of any point ends up on the left side of the unit
square (x = 0) and the right transform ends up on the right
side (x = 1). Hence, successive application of left/right/left...
transforms leads to a zigzag dynamics that balancesa’s on the
left with b’s on the right, until a zig or zag lands on the attrac-
tor and terminates the oscillation. This behavior corresponds
to the recursive component of the grammar. In (?), we pro-
vide a constructive proof for obtaining these behaviors at any
resolution.

The proof gives us an exact IRAAM “competence” model
for this non-regular CF language. Specifically, we show that
there exists a set of weights for which a RAAM with an at-
tractor generated at a predetermined resolution contains all
and only the trees in theanbn language. Performance limita-
tions on the sizes of the trees actually produced derive from
the resolution at which the non-attractor unit space is sam-
pled, and not from an arbitrary stipulation or a breakdown of
the model.

This infinite competence is not the only thing that IRAAM
brings to connectionist NL modeling, however. Because
IRAAM is a method of encoding and decodingtrees, not just
strings, its strong generative capacity is known. We can there-
fore use IRAAM as a direct model of hierarchical linguistic
structure. An immediate implication of this result is that an
IRAAM can be used as a parser and not just a recognizer. To
the extent that real NL processing involves the assignment of
meaning to strings based on structure, and not merely gram-
maticality judgments, this ability represents a significant ad-
vance in the application of connectionism to NL.

Finally, and perhaps most interesting, is the way in which
IRAAM handles syntactic ambiguity. Consider the fractal
addressing scheme that we described earlier. Each terminal
point (word) on the attractor is associated with an address
which is simply the sequence of indices of the transforms
taken to arrive on the attractor point from other points on the
attractor. GivenK transforms, we would therefore assume

each digit in the sequence would fall in the range1; 2; :::;K.
For example, a binary-branching IRAAM, with two trans-
forms, would have terminals with address digits1 and2. Us-
ing a one-digit address, this effectively puts each word into
one ofK “part of speech” equivalence classes.

This is not the whole story, though. Because there can be
more than one path to a given terminal from some other ter-
minal on the attractor, some terminals will have “ambiguous”
addresses, containing digits out of the range1::K, to express
the fact that more than one transform was taken to arrive at
that point in the sequence. Continuing the linguistic analogy,
this ambiguity corresponds to a given word’s belonging to
more than one part of speech, as in Chomsky’s “flying planes”
example, whereflyingcan be either a verb or an adjective. For
the binary-branching IRAAM example, if a given point had
both a left and right inverse on the attractor, a one-digit ad-
dress for that point would have to be a symbol other than1 or
2. In general, for aK-ary IRAAM, there are2K � 1 possible
one-digit addresses, consisting ofK unambiguous values and
2K �K � 1 ambiguous values.

This fact has great linguistic importance for IRAAM, for
the following reason: typically (but not exclusively), an
IRAAM decoder will favor putting thekth non-ambiguous
terminal class in thekth position in a string of terminals,
because the same set of weights is used to generate the at-
tractor and the transients to the attractor. The likeliest non-
terminal structure of a binary-branching IRAAM will there-
fore be (1 2), with structures (1 1), (2 1) and (2 2) being possi-
ble but less likely to occur. If, however, this IRAAM contains
ambiguous terminals, it will very likely decode the structures
(1 3), (3 2) and (3 3) as well.

Returning to the “flying planes” example, let us assign un-
ambiguous verbs likeare the category 1, unambiguous nouns
like planes2 the category 2, and the ambiguousflying the cat-
egory 3. With this assignment, the natural ability of a binary
IRAAM to decode the structures (1 (3 2)) and ((1 3) 2) gives
us both parses of the expressionare flying planes. Hence,
we have an existence proof of a RAAM that can deal with
syntactic ambiguity and non-deterministic grammars.

In short, we believe that IRAAM not only solves the prob-
lems of the earlier RAAM model, but also addresses the lin-
guistic inadequacies of recurrent neural net models that we
discussed earlier.

What IRAAM Can’t Do

In the first section of this paper we outlined two linguis-
tic criteria for a plausible NL model: the model should be
able to handle “slightly” non-CF phenomena like copying and
crossed serial dependencies and should also be incapable of
handling CF phenomena absent from or deprecated in NL’s,
like mirror-image constructions, or should incur a relatively
high cost in producing or parsing those structures.

To investigate the latter point, we tested the ability of the
IRAAM model shown in figure 1 to “learn” the context-free
languagesanbn andwwR, w 2 fa; bg. The training set con-
sisted of the first 14 exemplars of each language (enumerated

2Readers troubled by the possibility ofplanesbeing a singular
verb (The carpenter planes the wood) can substitutecars or some
other unambiguous noun here.

in increasing order of length)3, with the fractal address 1 rep-
resentinga and 2 representingb. Hill-climbing was used to
learn the weights. Both the initial weights and the noise added
to each weight came from a Gaussian distribution with zero
mean and a standard deviation of 5.0, with the added noise’s
standard deviation being scaled by the fraction of the training
set missed. The resulting weights were used to generate trees
on an IRAAM with a resolution of2�7. The attractor was
generated at that resolution and the initial starting point space
was also sampled at that resolution.

Hill-climbing did not produce good results on either of
these languages; the average success was six out of 14 strings
covered for both languages. It is, however, instructive to look
out how those successes were achieved. Comparing the best
hill-climbed networks from each language (10 strings cov-
ered), we found that most of the strings generated by theanbn

network fit the general pattern of the training set: 74% of
the strings fit the patternanbn. For the bestwwR network,
however, only 14% fit the patternwwR. In other words, the
anbn network was actually producing mostly “grammatical”
strings, whereas thewwR network was essentially guessing.

We attribute these results to IRAAM’s aforementioned ten-
dency to put symbols of one class(a) on the left side of a
branch and symbols of another class(b) on the right side.
In other words, trees of the form(a b), (a (a b)), ((a b) b),
(a (a (a b))), (((a b) b) b), are much more “natural” for an
IRAAM than are trees of the form(a a), (b b), (b a). But it
is precisely the latter types of trees that are used as building
blocks for the mirror-image languagewwR. This bias makes
the mirror-image language much harder for an IRAAM to
learn than the counting languageanbn, despite the fact that
both are expressible by a simple CFG.

Although this result is by no means a proof of any sort,
we consider it interesting for two reasons. First, it suggests
that the languages generable by an IRAAM share an im-
portant formal property with NL, namely, the avoidance of
mirror-image constructions. Second, the result illustrates how
IRAAM imposes a constraint between the terminal symbol
“semantics” and the nonterminal “syntax.” This constraint
is absent from the definition of CFG’s (or of any grammar
in the Chomsky hierarchy), where any terminal symbol can
appear anywhere. To the extent that individual natural lan-
guages favor putting a given part of speech in fixed locations
in a sentence or phrase (e.g., English generally has subject-
verb-object, Japanese subject-object-verb), IRAAM appears
to have an advantage over traditional grammars as a model of
NL.

Conclusion and Interpretations
We have demonstrated a new formulation of RAAM, which,
by using a fractal attractor as a terminal test, enables the
model to show competence and ambiguity, to represent a
variety of tree structures, and not to represent deprecated
mirror-image structures. We plan to relate this new formula-

3The number 14 was chosen because it allowed us to include
all the members ofwwR for jwj � 3. This language has more
strings of a given length than the languagea

n
b
n, which meant that

the exemplars of the latter had to be longer in order to enumerate the
first 14 of them. In effect, this makes theanbn taskharder than the
ww

R task .

tion to linguistic formalisms like Tree-Adjoining Grammars
(Joshi and Schabes 1997) and Categorial Grammars (Steed-
man 1999) having similar properties. We hypothesize that
this relation may be achieved through the use of multiplica-
tive connections to gate lexical varieties into naturally recur-
sive dynamics.

Our work is by no means complete; nor do we mean to im-
ply that NL grammar can be represented in four neurons with
12 weights! On the other hand, the principle of contractive
maps and the emergence of fractal attractors in the limit be-
havior of nonlinear systems are mathematical facts, and have
been used successfully in image-compression systems. Re-
cent work by Tabor (1998) provides further evidence for the
relevance of such principles to connectionist modeling of nat-
ural language. We now have reason to believe that these prin-
ciples, under the right interpretation and scale, can support a
neurally plausible universal grammar.

References
Bach, E., C. Brown, and W. Marslen-Wilson (1986).

Crossed and nested dependencies in german and dutch:
A psycholinguistic study.Language and Cognitive Pro-
cesses 1(4), 249–262.

Barnsley, M. (1993).Fractals everywhere. New York: Aca-
demic Press.

Blair, A. and J. Pollack (1997). Analysis of dynamical recog-
nizers.Neural Computation 9(5), 1127–1142.

Blank, D., L. Meeden, and J. Marshall (1991). Exploring the
symbolic/subsymbolic continuum: A case study of raam.
Technical Report TR332, Computer Science Department,
University of Indiana.

Bresnan, J., R. Kaplan, S. Peters, and A. Zaenen (1982).
Cross-serial dependencies in dutch. Linguistic In-
quiry 13(4), 613–634.

Chalmers, D. (1990). Syntactic transformations on dis-
tributed represenations.Connection Science 2, 53–62.

Chomsky, N. (1956). Three models for the description of
language.IRE Transactions on information theory 2, 113–
124.

Chomsky, N. (1957).Syntactic Structures. Mouton.

Culy, C. (1985). The complexity of the vocabulary of bam-
bara.Linguistics and Philosophy 8, 345–351.

Fodor, J. and Z. Pylyshyn (1988). Connectionism and cogni-
tive architecture: A critical analysis.Cognition 28, 3–71.

Gazdar, G. (1982). Phrase structure grammar. In P. Jacobson
and G. Pullum (Eds.),The Nature of Syntactic Representa-
tion. Reidel.

Higginbotham, J. (1984). English is not a context-free lan-
guage.Linguistic Inquiry 15(2), 225–234.

Joshi, A. and Y. Schabes (1997). Tree-adjoining grammars.
In G. Rozenberg and A. Salomaa (Eds.),Handbook of For-
mal Languages and Automata, Chapter 3. Berlin: Springer
Verlag.

Kolen, J. (1994).Exploring the Computational Capabilities
of Recurrent Neural Networks. Ph. D. thesis, Ohio State.

Kwasny, S. and B. Kalman (1995). Tail-recursive distributed
representations and simple recurrent neural networks.Con-
nection Science 7(1), 61–80.

Lawrence, S., C. Giles, and S. Fong (1998). Natural lan-
guage grammatical inference with recurrent neural net-
works. IEEE Transactions on Knowledge and Data En-
gineering, to appear.

Manaster-Ramer, A. (1986). Copying in natural languages,
context-freeness, and queue grammars. InProceedings of
the 24th meeting of the Association for Computational Lin-
guistics, pp. 85–89.

Melnik, O. and J. Pollack (1998). A gradient descent method
for a neural fractal memory. InWCCI 98. International
Joint Conference on Neural Networks: IEEE.

Pinker, S. and A. Prince (1988). On language and connection-
ism: Analysis of a parallel distributed processing model of
language acquisition.Cognition 28, 73–193.

Pollack, J. (1990). Recursive distributed representations.Ar-
tifical Intelligence 36, 77–105.

Postal, P. and D. Langendoen (1984). English and the class of
context-free languages.Computational Linguistics 10(3–
4), 177–181.

Rodriguez, P., J. Wiles, and J. Elman (1999). A recurrent
neural network that learns to count.Connection Science 11,
5–40.

Rumelhart, D. and J. McClelland (1986). On learning the past
tenses of english verbs. In D. Rumelhart and J. McClel-
land (Eds.),Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Volume 2. MIT.

Shieber, S. (1985). Evidence against the context-freeness of
natural language.Linguistics and Philosophy 8, 333–343.

Sperduti, A. (1993). Labeling raam. Technical Report TR-
93-029, International Computer Science Institute.

Steedman, M. (1999). Categorial grammar. In R. Wilson
and F. Keil (Eds.),The MIT Encyclopedia of Cognitive Sci-
ences. MIT.

Stucki, D. and J. Pollack (1992). Fractal (reconstructive ana-
logue) memory. In14th Annual Cognitive Science Confer-
ence, pp. 118–123.

Tabor, W. (1998). Dynamical automata. Technical Report
TR98-1694, Computer Science Department, Cornell Uni-
versity.

Van Gelder, T. (1990). Compositionality: a connectionist
variation on a classical theme.Cognitive Science 14, 355–
384.

Williams, R. and D. Zipser (1989). A learning algorithm for
continually running fully recurrent neural networks.Neu-
ral Computation 1, 270–280.

