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Abstract

Unification-basedapproacheshave cometo play animportant
role in boththeoreticalandappliedmodelingof cognitive pro-
cesses,most notably natural language. Attempts to model
such processesusing neural networks have met with some
success,but have facedserioushurdlescausedby the limita-
tions of standardconnectionistcodingschemes.As a contri-
bution to this effort, this paperpresentsrecentwork in Infi-
niteRAAM (IRAAM), anew connectionistunificationmodel.
Basedon a fusion of recurrentneuralnetworks with fractal
geometry, IRAAM allows us to understandthe behavior of
thesenetworks as dynamicalsystems. Using a logical pro-
gramminglanguageas our modelingdomain,we show how
thisdynamical-systemsapproachsolvesmany of theproblems
facedby earlier connectionistmodels,supportingunification
over arbitrarily large setsof recursive expressions.We con-
cludethatIRAAM canprovideaprincipledconnectionistsub-
stratefor unification in a variety of cognitive modelingdo-
mains.

Languageand Connectionism: Three
Approaches

Language,to acognitivescientist,canbeheldto includenat-
ural languageandthe“languageof thought”(Fodor1975),as
well assymbolicprogramminglanguagesdevelopedto sim-
ulatethese,like LISP andProlog.Attemptsto build connec-
tionist modelsof suchsystemshave generallyfollowed one
of threeapproaches.

Thefirst of these,exemplifiedby (RumelhartandMcClel-
land1986),dispensesentirelywith traditionalrepresentations
(datastructures)andrules(algorithmsonthosestructures),in
favor of lettingthenetwork “learn” thepatternsin thedatabe-
ing modeled,via thewell-known back-propagationalgorithm
(Rumelhart,Hinton, andWilliams 1986) or a similar train-
ing method. This approachbecamethe subjectharshcrit-
icism from membersof the traditional “symbols-and-rules”
schoolof cognitive science,basedon the disparitybetween
thestrengthof theclaimsmadeandtheactualresultsreported
(Pinker andPrince1988),aswell astheapparentinability of
suchsystemsto handlethesystematic,compositionalaspects
of linguistic meaning(FodorandPylyshyn1988).

The secondsort of connectionistapproachgoesbeyond
the rules-and-representationsview and directly to the heart
of what computingactually means,by showing how a re-
currentneuralnetwork can perform all the operationsof a
Turing machine,or more(Siegelmann1995). Thoughsuch
proofs may hold a good deal of theoreticalinterest, they
do not addressthe degree to which a particular computa-

tionalparadigm(connectionism)is suitedto aparticularreal-
world task(language).They are thereforenot of muchuse
in arguing for or againstthe merits of connectionismas a
model of any particulardomainof interest(Melnik 2000),
any more thanknowing aboutTuring equivalencewill help
you in choosingbetweena Macintoshanda Pentium-based
PC.

The third approach,which someof its proponentshave
describedas “Representationswithout Rules” (Horganand
Tienson1989),is theonethatwe wish to take here.This ap-
proachacknowledgestheneedfor systematic,compositional
structure,but rejectstraditional,exceptionlesslinguistic rules
in favor of theflexible computationaffordedby connectionist
representations.Proponentsof sucha view areof coursere-
sponsiblefor showing how theserepresentationscansupport
the kinds of processestraditionally viewed as rules. In the
remainderof this paperwe show how the behavior of neu-
ral network calledanInfinite RAAM correspondsdirectly to
onesuchprocess,unification, therebysupportinga system-
atic,compositionalmodelof linguistic structure.

Unification
Unification, an algorithm popularizedby Robinson(1965)
asa basisfor automatedtheorem-proving, hascometo play
a central role in both computerscienceand cognitive sci-
ence.In computerscience,unificationis at thecoreof logical
programminglanguageslike Prolog (Clocksin and Mellish
1994); in cognitive science,it is the foundationof a num-
ber of category-basedapproachesto the analysisof natural
language(Shieber1986).Thebasicunificationalgorithmcan
be found in many introductoryAI textbooks(e.g.,Rich and
Knight 1991p. 152),andcanbe summarizedrecursively as
follows: (1) A variablecanbeunifiedwith a literal. (2) Two
literalscanbeunifiedif their initial predicatesymbolsarethe
sameandtheir argumentscanbeunified.

If, for example, we have a Prolog databasecontaining
the assertionmale(albert),1 meaning“Albert is male”,
and we perform the query male(Who), asking “Who is
male?” the unificationalgorithm will first attemptto unify
male(albert) with male(Who), and will succeedin
matchingon thepredicatesymbolmale, by rule (2). Theal-
gorithmwill thenrecur, attemptingto unify thevariableWho
with theatomicliteral albert, andwill succeedby rule (1)
andterminate,with theresultthatWho will beboundto al-
bert, answeringthequery.

1Prolog examplesare taken from the tutorial introduction in
(ClocksinandMellish 1994).



Of course, real programming-language and natural-
languageapplicationsrequire unification algorithms more
complicatedthanthe oneillustratedin this simpleexample,
but theexamplesufficesfor ourgoalshere.

RAAM
Beforedescribinghow theInfinite RAAM modelis suitedto
performingunification, somehistorical backgroundon this
modelis necessary.

Recursive Auto-Associative Memory or RAAM (Pollack
1990) is a methodfor storing treestructuresin fixed-width
vectorsby repeatedcompression.Its architectureconsistsof
two separatenetworks: anencodernetwork, which cancon-
structa fixed-dimensionalcodeby compressively combining
the nodesof a symbolic treefrom the bottomup, anda de-
codernetwork which decompressesthis codeinto its two or
morecomponents.Thedecoderis appliedrecursively until it
terminatesin symbols,reconstructingthetree.Thesetwo net-
worksaresimultaneouslytrainedasanautoassociator(Ack-
ley, Hinton, andSejnowski 1985)with time-varying inputs.
If thetrainingis successful,theresultof bottomup encoding
will coincidewith top-down decoding.Figure1 showsanex-
ampleof a RAAM for storingbinary treesusingtwo bits of
representationfor eachinput andoutput.2
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Figure 1: RAAM encodingand decodingthe tree(a b),
usingtwo bits per symbol: a = 01, b = 10. Solid lines
depictencoderweights,dashedlinesdecoderweights. Note
the real-valuedrepresentationof the tree(a b) on thehid-
den layer, which would be fed back into the encoderto
build a representationof the trees(a(a b)), (b(a b)),
((a b)a), etc.

Following the publication of (Pollack 1990), RAAM
gainedwidespreadpopularityasa modelof linguistic struc-
ture. Someresearchers(Blank, Meeden,andMarshall1991)
found it an attractive way of “closing the gap” betweenthe
symbolicandsub-symbolicparadigmsin cognitive science.
Others(Van Gelder1990)saw in RAAM a direct andsim-
ple refutationof thetraditionalcognitivescientists’backlash

2Restricting the network to only two bits per symbol allows
straightforwardvisualizationof its hidden-layerdynamicsasanX/Y
plot. RAAMs for real-world taskswould usemany morebits per
symbol.

againstconnectionism,or went asfar asto show how tradi-
tional syntacticoperationslike transformationscouldbeper-
formeddirectlyon RAAM representations(Chalmers1990).

RAAM asan Iterated Function System

Considerthe RAAM decodershown in Figure2. It consists
of four neuronsthateachreceivethesame

���������
input. The

outputportionof thenetwork is dividedinto a right anda left
pair of neurons. In the operationof the decoderthe output
from eachpair of neuronsis recursively reappliedto thenet-
work. Using the RAAM interpretation,eachsuchrecursion
implies a branchingof a nodeof the binary treerepresented
by thedecoderandinitial startingpoint. However, this same
network recurrencecanalsobeevaluatedin thecontext of dy-
namicalsystems.This network is a form of iteratedfunction
system(IFS) consistingof two transforms, which are itera-
tively appliedto pointsin a two-dimensionalspace.
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Figure2: Detail of the decoderfrom the RAAM of Figure
1. Bar at top of figure is a “gate” that feedsthe left or right
outputof thedecoderbackontothehiddenlayer.

In a typical IFS (Barnsley 1993),thetransformsarelinear
equationsof the form �� ���������  �����  , where

�
and

�
are

vectorsand
�

is a matrix. The Iteratedpartof the termIFS
comesfrom thefactthat,startingwith someinitial

�
, eachof

the transformsis appliediteratively to its own output,or the
outputof oneof the other transforms.The choiceof which
transformto applyis madeeitherdeterministicallyor by non-
deterministicprobabilitiesassociatedwith eachtransform.If
the transforms�� arecontractive, meaningthat they always
decreasethedistancebetweenany two inputvectors

�
and � ,

then the limit of this processas the numberof iterationsN
approachesinfinity yieldsanattractor (stablefixed-pointset)
for theIFS.MostIFSresearchhasfocussedonsystemswhose
attractoris a fractal, meaningthatit exhibitsself-similarityat
all scales.3

The transformsof the RAAM decoderhave the form
�� �������������  ��� �  � , where

�
is thefamiliar logistic-sigmoid

“squashing”function
�������!�#"
$%�&"'�)(+*-,.�

. Typical of con-
nectionistmodels,thematrix

�
rangesover theentiresetof

3A famousexampleof afractalattractoris thebeautifulMandel-
brotset,in whichtiny copiesof theentiresetseemto appearasif by
magicwhenyou zoomin oncertainregions.



real numbers,so it is not necessarilycontractive. Neverthe-
less,thesquashingfunctionprovidesa “pseudo-contractive”
propertythat yields an attractorfor the decoder. In the con-
text of RAAMs, however, the main interestingpropertyof
(pseudo-)contractive IFSeslies in the trajectoriesof points
in the space. For suchIFSesthe spaceis divided into two
setsof points. The first setconsistsof pointslocatedon the
underlyingfractal attractorof the IFS. Thesecondsetis the
complementof the first, points that arenot on the attractor.
Thetrajectoriesof pointsin this secondsetarecharacterized
by a gravitation towardstheattractor, asfollows: Eachitera-
tion producesa setof left andright copiesof thepointsfrom
thepreviousiteration.Finite,multiple iterationsof thetrans-
formshave theeffect of bringingthesetof copiesarbitrarily
closeto theattractor.

Taking the terminaltestof the decodernetwork to be “on
the attractor” solves a numberof technicalproblemsthat
limited the scalabilityof the RAAM model,andallows the
modelto representextremelylargesetsof treesin smallfixed-
dimensionalneuralcodes.Theattractor, beinga fractal,can
be generatedat arbitrarypixel resolution. In this interpreta-
tion,eachpossibletree,insteadof beingdescribedby asingle
point, is now anequivalenceclassof initial pointssharingthe
sametree-shapedtrajectoriesto thefractalattractor.

Using theattractorasa terminaltestalsoallows a natural
formulationof assigninglabelsto terminals.Barnsley (1993)
notedthat eachpoint on the attractoris associatedwith an
addresswhich is simply thesequenceof indicesof thetrans-
forms usedto arrive on that point from otherpointson the
attractor. The addressis essentiallyan infinite sequenceof
digits. Thereforeto achieve a labeling for a specificalpha-
bet we needonly considera sufficient numberof significant
digits from this address.

Theseideasareencapsulatedin Figure3, which shows a
“Galaxy” attractorobtainedby iterative Blind Watchmaker
selection(Dawkins 1986) to a visually appealingshape,4

along with sample derivations of the trees (a b) and
(a (a b)).

Infinite RAAM
Using the “on-the-attractor”terminal test, we were able to
usehill-climbing to train a RAAM decoderto generateall
andonly thestringsin theset /10 � 0�23/10 � 05476 �&8:9�; . As the
simplestexampleof a non-regular, context-free formal lan-
guage, / 0 � 0 hasbeenusedas a target set by a numberof
recurrent-network researchprojects(Rodriguez,Wiles, and
Elman 1999; Williams and Zipser 1989), so it serves as a
benchmarkfor theformalpowerof amodelsuchasRAAM.

Analysisof the decoderweightsof our / 0 � 0 RAAM re-
vealeda patternthatwe wereableto generalizeinto a formal
constructive proof for deriving a setof weightsto generate
this languagefor arbitrarily largevaluesof

8
, asa functionof

thepixel resolution< (Melnik, Levy, andPollack2000).
With this proof in hand,we felt justified in usingtheterm

Infinite RAAM (IRAAM) to refer to our decodernetworks.
Against a traditional approachin which grammarsare the
only sufficient competencemodelsandneuralnetworks are

4A gallery of several such attractorimagescan be viewed at
http://demo.cs.brandeis.edu/pr/mindeye/bwifs.html
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Figure 3: The Galaxy attractor, showing derivation of the
tree(a (a b)) and its daughtertree(a b). Attractor
pointswith addresss a, reachablefrom the attractoron the
left transform,arecoloreddarkgray;pointswith addressb,
reachableon theright transform,arelight gray. Theleft tran-
sientsto theattractorareshown asdashedlines,andtheright
transientsassolid lines.

merely implementations(Fodor andPylyshyn1988)or per-
formancemodels,the formally proven existenceof a setof
“pure” / 0 � 0 weightsprovidedevidencethataneuralnetwork
can serve as both a competencemodel and a performance
model,undera dynamical-systemsinterpretationof the net-
work’sbehavior.

Unification-basedIRAAM
Nevertheless,a fundamentalproblem exists in the general
casewheninvestigatingthe capacityof a given IRAAM de-
codervia discretesamplingof the spaceof treeequivalence
classes.Transientsto the attractorcanpotentiallymeander
aroundthe entireunit spacebeforecomingto reston theat-
tractor, sothepotentialdepthof thetreesencodedusingeven
a low-resolutionsamplingis quite large. Becausethe num-
ber of possibletreesgrows factorially with the depthof the
trees,the discretesamplingmethodis thereforedoomedto
find only an infinitesimal portion of the treesthat a given
IRAAM could be encoding. Solving this problemrequires
knowing preciselyhow many treesto searchfor, andwhere
to find them.

To limit the numberof trees,it is sufficient to limit the
numberof IFS iterations. Like sampling,limiting the itera-
tions producesonly an approximationto the actual,infinite
attractor. For zero iterations,the entirespaceis the attrac-
tor approximate,and the only tree encodedis a terminal,
which we may refer to genericallyasX. For one iteration,
eachpoint not on the attractorgoesto the attractoron one
iteration, and the only tree encodedis (X X). For two it-
erations,the treesencodedare(X (X X)), ((X X) X),
and((X X) (X X)), andsoon for moreiterations.This
solvesthefirst partof theproblem.

Solvingthesecondpartof theproblem– locatingthetrees
in space– requiresswitchingfrom a “top-down” approachto



a “bottom up” approach.We no longer start at a point off
the attractorand decodethe tree as this point’s path to the
attractor. Instead,we start at a point (or set of points) on
the attractor, and ask what other point(s) that point can be
unified with, usingthe encoder: hencethe term unification-
basedIRAAM. 5

To performthis unification,we first computetheattractor,
then take its imageunderthe left and right inversesof the
transforms.Unifications(trees)are locatedpreciselywithin
the intersectionsof theseinverses.Underthis interpretation,
askingwhethertwo constituentscanbeunifiedmeansasking
whethertheir inverseshavea non-emptyintersection.

For example,to determinethelocationsof thebinarytrees
of depthtwo or less,we iteratetheIFS twice,producingfour
attractorpieces,eachof which is animageof theunit square
underthecompositionof two transforms(left/left, left/right,
right/left, andright/right). Theunionof theseis theattractor
approximate

�>=
, which encodestheabstractterminaltreeX.

Thisprocessis shown in Figure4.
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Figure4: TheGalaxyattractorapproximatedat two IFS iter-
ations: individual overlappingimages(i) andunion of these
images(ii ). The union representsthe outerboundaryof the
sampledattractorshown in Figure3.

Takingtheleft andright inversetransformsof theattractor
in Figure 4 givesus the regions shown in Figure 5. Inter-
sectingtheseregionsgivesus the region encodingthe trees
X and(X X). As depictedin Figure6, “subtractingout” the
attractor(treeX) givesus the region encodingonly the tree
(X X).

At thispointwehaveeverythingweneedto encodethere-
mainingtreesof depthtwo. To encodethetree(X (X X)),
we take the left inverseof the attractorandintersectthis in-
versewith the right inverseof the region encodingthe tree
(X X). This right inverseis theentireunit square6, so this
intersectionis effectively a no-op,giving usthesameleft in-
versethatwe startedwith. Subtractingout the trees(X X)
andX, which arecontainedin this inverse,givesus the re-
gion encodingonly the tree (X (X X)). Swapping “left”
for “right”, the sameoperationscan be doneto obtain the
tree((X X) X); neitherof theseis shown, to save space.

5Wefind acompellingparallelin thehistoricalswitchfrom “top-
down” Chomskyanrules(Chomsky 1957)to the“bottom-up” com-
binatorialcategoriesof unification-basedgrammars(Shieber1986)

6because we have performed the operation?A@CBED�?A@�BFD�?GD�?GDIHKJLJLJLJ

Finally, thetree((X X) (X X)) is encodedby theregion
not encodingany of theothertrees.
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Figure 5: Left and right inversesof the attractorof Fig-
ure 4. Theseinversesencodethe trees(X (X X)) and
((X X) X); seetext.
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Figure6: Intersectionof inverseregionsfrom Figure5,which
encodesthetree(X X). Black region is theattractor, which
is “subtractedout” from theintersection.

Labeling the Terminals

The discussionof the hill-climbing / 0 � 0 decoderdescribed
a schemefor labelingthe pointsof the attractorterminalset
by meansof their fractal addresses.The methodinvolved
approximatingtheattractorat somepixel resolution,thenla-
belingeachattractorpoint by thetransform(s)on which that
point was reachablefrom any points on the attractor. This
schemecannotbe implementedin a model in which the at-
tractoris approximatedby iteration,becausetheonly points
reachablefrom the currentattractorapproximate

�AM
lie on

the approximates
�AM
4ON
��PRQS"

. Sincethesepoints them-
selvesarenot on thepartof

� M
reachablefrom outside

� M
, this schemecannotbe usedto label the terminalsof trees,
which by definitionaretransientstheto attractorfrom points
outsideit.

For thecurrentstageof theproject,weareworkingaround
thisproblemby simplyhand-labelingregionsin theattractor,
asillustratedin thesimpledatabaseexamplebelow.



Bringing it All Together
By this point we hope to have persuadedthe readerthat
IRAAM provides a plausible connectionistsubstratefor
unification-basedmodels.To make this point moreconcrete,
we canconsiderhow onewould implementa simplelogical
databaselanguage,likefirst-orderpredicatecalculus(FOPC),
or Prolog,usinganIRAAM.

Labeled attractor regions correspondto atoms: al-
bert, victoria, female. Factsaboutatoms,like fe-
male(victoria)) andparents(edward, victo-
ria, albert), arebuilt recursively asintersectionsof the
inversesof the labeledattractorregions,andintersectionsof
the inversesof thoseintersections.Whetheror not two con-
stituents(atom,propositions)canbe unified dependson the
sizeandshapeof their encodingregions,andon theconnec-
tion weightsof theIRAAM network.

Rules relating facts to each other and generaliz-
ing them using variables, correspondto intersectionsor
unions of the recursively constructedfacts. For exam-
ple, the rule woman(X) :- human(X), female(X),
adult(X) wouldbeimplementedby takingtheintersection
of the inversesof theattractorregionsfor theatomshuman,
female, andadult; this intersectionwouldbethe“defini-
tion” of thetermwoman in themodel.

We canillustratethis processusingour toy database,pre-
sentedbelow in its entirety:

male(albert).
male(edward).
female(alice).
female(victoria).
parents(edward, victoria, albert).
parents(alice, victoria, albert).

Encoding thesepropositionsin a format that a binary-
branchingIRAAM couldrepresentrequiressomeslightmod-
ifications: all propositionsare first put in prefix form;
e.g., male(albert) is re-codedas (male albert).
The three-placepredicateparents is thenre-coded(“cur-
ried”) into a one-placepredicateparent, with ((par-
ent C) P) meaningthat theparentof C is P; this alsore-
quiresthateachparentbespecifiedby a separaterule, result-
ing in four parent rulesinsteadof two.

Figure 7 illustratesthe derivation of a few propositional
treesfrom this set, using anotherattractorfrom our image
gallery. Thefigureshows a portionof theunit squarewhich
containsthe attractor(treeX), aswell asthe regionsencod-
ing the trees(X X) and ((X X) X). Sampleencodings
for thetrees(male edward) and((parent edward)
victoria) are alsoshown. The figure wasgeneratedas
follows: First,wecomputedthedepth-two attractorandtree-
regionsusingthe methodshown in Figures4 - 6. Thenwe
hand-traceda closedcurve in the region encodingthe tree
((X X) X). Usingaprogramwhich plotstheleft andright
copiesof the point at the currentcursorposition, this trace
produceda left copy of thisclosedcurvein theregionencod-
ing (X X), andaright copy in theattractorregion,encoding
a terminal. We labeledthis terminalattractorpiecevicto-
ria. Handtracingover theclosedcurvefor (X X) resulted
in a left and right copy of that curve on the attractor; we
labeledtheseterminalsparent andedward respectively.

Theselabelingsyieldeda setof attractorregionsthatunified
to thetree((parent edward) victoria).

To encodedthe tree(male edward), we hand-traced
a closecurve in the region encoding(X X), producinga
left andright copy on theattractor. We labeledthe left copy
maleandtheright copy edward’. By taking theencoding
of edward to bea region includingboththisedward’ and
the encodingof edward from the othertree,we obtaineda
setof labelsunifying to bothpropositions.Thoughthis is a
long way from a realsolutionto thetree-labelingproblem,it
is a first steptowardadding“meaning” to theabstractstruc-
tural configurationswehavebeenpresentingsofar.

((p e) v)

(
m
 
e
)

(
p
 
e
)

E

p

m v

e

Figure7: Encodinga few propositionsusingan IRAAM by
hand-labelingof attractorregions. Funnel-shapedregion at
left side of figure encodestreesof the form ((X X) X).
Thin diagonalbandencodestrees(X X). Lower-right area
is theattractor. Abbreviations:v = victoria, e = ed-
ward, p = parent, m = male. RegionE representsthe
setof factsaboutEdward: thatheis male,thatsomeoneis his
parent.

Conclusionsand Future Work
This paper presented recent work on Infinite RAAM
(IRAAM), a new connectionistarchitecturethat fusesrecur-
rentneuralnetworkswith fractalgeometry, allowing usto un-
derstandthe behavior of thesenetworks asiteratedfunction
systems(IFSes). We have shown how limiting the number
of IFS iterationsallows usto useIRAAM asa connectionist
substratefor unification,analgorithmthathascometo playa
centralrole in avarietyof cognitivesciencedisciplines.Frac-
tal representationof languageis arelatively new field,andwe
haveyet to testthemodelon empiricaldata.We arehowever
encouragedby thesuccessof relatedwork in fractalencoding
of grammars(Tabor2000),andseeour work ascontributing
to this effort. We hopethatsuchwork will serveasa founda-
tion for aprincipled“unification” of connectionistapproaches
with moretraditionalsymbolicmodels,perhapsasanalterna-
tive to hybridmethods.

We seeseveralpossibleresearchdirectionsfor our model.
First, we needto apply unification-basedIRAAM to some-
thinggranderthanasimplesix-sentencedatabaseliketheone



usedin theexample.Theobviousnext stepwould beto find
a non-trivial databaseof dozensor hundredsof propositions
to testthemodel.

Such an effort would require a learning algorithm for
IRAAM, which, given a set of propositionsor other hier-
archicalstructures,would usegradientdescentor a similar
methodto learna setof weightsencodingjust thosepropo-
sitions. Suchan algorithmwould have an error functionas-
signinga penaltyfor bothmissingencodingsandfor encod-
ingsinconsistentwith theexamplesfrom thetrainingset(e.g.,
thepropositionfemale(albert) in ourexampledataset).
An intriguing possibilitywould beto co-evolveboththenet-
work weights and a separatelabeling program, using the
paradigmdescribedin (Hillis 1992)and(Juillé andPollack
1996).

Finally, we suspectthatinherentlimitationsin usinga sin-
gle set of network weightsmay hinder our attemptsto use
IRAAM asa modelof unificationin naturallanguage,where
thecombinatorialpossibilitiesaremuchricher thanthoseof
artificial languageslike FOPCandProlog. Researchin im-
agecompression(Barnsley andJacquin1988)hasshown the
usefulnessof combiningseveral differentIFSesto encodea
single real-world image. We hopethat a similar approach
will allow IRAAM to scaleupto thelarger, morecomplicated
phrasesandsentencesof naturallanguage.
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