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ABSTRACT

A long-standing difficulty for connectionist modeling has been how to represent

variable-sized recursive data structures, such as trees and lists, in fixed-width patterns.

This paper presents a connectionist architecture which automatically develops compact

distributed representations for such compositional structures, as well as efficient access-

ing mechanisms for them. Patterns which stand for the internal nodes of fixed-valence

trees are devised through the recursive use of back-propagation on three-layer auto-

associative encoder networks. The resulting representations are novel, in that they com-

bine apparently immiscible aspects of features, pointers, and symbol structures. They

form a bridge between the data structures necessary for high-level cognitive tasks and the

associative, pattern recognition machinery provided by neural networks.
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1. Introduction

One of the major stumbling blocks in the application of Connectionism to higher-

level cognitive tasks, such as Natural Language Processing, has been the inadequacy of

its representations. Both local and distributed representations have, thus far, been unsuit-

able for capturing the dynamically-allocated variable-sized symbolic data-structures trad-

itionally used in AI. The limitation shows in the fact that pure connectionism has gen-

erated somewhat unsatisfying systems in this domain; for example, parsers for fixed

length sentences [1-4], without embedded structures [5].1

Indeed, some of the recent attacks on connectionism have been aimed precisely at

the question of representational adequacy. According to Minsky & Papert [10], for

example, work on neural network and other learning machines was stopped by the need

for AI to focus on knowledge representation in the 1970’s, because of the principle that

"no machine can learn to recognize X unless it possesses, at least potentially, some

scheme for representing X (p. xiii)." Fodor and Pylyshyn’s [11] arguments against con-

nectionism are based on their belief that connectionist machines do not even have the

potential for representing X, where X is combinatorial (syntactic) constituent structure,

and hence cannot exhibit (semantic) "systematicity" of thought processes.

Agreeing thoroughly that compositional symbolic structures are important, in this

paper I show a connectionist architecture which can discover compact distributed

representations for them. Recursive Auto-Associative Memory (RAAM) uses back-

propagation [12] on a non-stationary environment to devise patterns which stand for all

of the internal nodes of fixed-valence trees. Further, the representations discovered are

not merely connectionist implementations of classic concatenative data structures, but are

in fact new, interesting, and potentially very useful.

The rest of this paper is organized as follows. After a background on connectionist

representational schemes, the RAAM architecture is described, and several experiments

presented. Finally, there is a discussion of the generative capacity of the architecture,

and an analysis of the new representations and their potential applications.
hhhhhhhhhhhhhhh
1 Hybrid (connectionist-symbolic) models [6-9] have the potential for more powerful
representations, but do not insist on the neural plausibility constraints which create the limitations
in the first place.
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1.1. Background: Connectionist Representations

Normal computer programs have long used sequential data structures, such as arrays

and lists as primitives. Because of the built-in notion of "address", moreover, the con-

tents of sequences can be the addresses of other sequences; hence it is also quite simple

for computer programs to represent and manipulate tree and graph structures as well.

Representing lists and trees is not a trivial problem for connectionist networks, however,

which do not use adjacent or randomly addressed memory cells, or permit the real-time

dynamic creation of new units.

Some of the earliest work in modern connectionism made an inappropriate analogy

between semantic networks and neural networks. The links in the former represented

logical relations between concepts. The links in the latter represented weighted paths

along which "activation energy" flowed. Needless to say, these first connectionist net-

works, in which each concept was mapped onto a single neuron-like unit, did not have

the representational capacity of their logically powerful cousins.

Furthermore, local representational schemes do not efficiently represent sequential

information. The standard approach involves converting time into space by duplicating

sub-networks into a fixed set of buffers for sequential input. Both early connectionist

work, such as McClelland & Rumelhart’s word recognition model [13], as well as more

modern efforts [4, 14] use this approach, which is not able to represent or process

sequences longer than a predetermined bound. One way to overcome this length limita-

tion is by "sliding" the input across the buffer [15, 16]. While such systems are capable

of processing sequences longer than the predetermined bound, they are not really

representing them.

Distributed Representations have been the focus of much research (including the

work reported herein) since the circulation of Hinton’s 1984 report [17] discussing the

properties of representations in which "each entity is represented by a pattern of activity

distributed over many computing elements, and each computed element is involved in

representing many different entities."

The most obvious and natural distributed representation is a feature (or micro-

feature) system, traditionally used in linguistics. A good example of a connectionist

model using such a representation is Kawamoto’s work on lexical access [18]. However,

since the entire feature system is needed to represent a single concept, attempts at
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representing structures involving those concepts cannot be managed in the same system.

For example, if all the features are needed to represent a NURSE, and all the features are

needed to represent an ELEPHANT, then the attempt to represent a NURSE RIDING

ELEPHANT may come out either as a WHITE ELEPHANT or a rather LARGE

NURSE WITH FOUR LEGS.

To solve the problem of feature superposition, one might use full-size constituent

buffers, such as Agent, Action, and Object [5]. In each buffer would reside a feature pat-

tern filling these roles such as NURSE, RIDING, and ELEPHANT. Unfortunately,

because of the dichotomy between the representation of a structure (by concatenation)

and the representation of an element of the structure (by features), this type of system

cannot represent embedded structures such as "John saw the nurse riding an elephant." A

solution to the feature-buffer dichotomy problem was anticipated and sketched out by

Hinton [19], and involved having a "reduced description" for NURSE RIDING

ELEPHANT which would fit into the constituent buffers along with patterns for JOHN

and SAW.

However, it was not immediately obvious how to develop such reduced descrip-

tions. Instead, avant-garde connectionist representations were based on coarse-coding

[17], which allows multiple semi-independent representational elements to be simultane-

ously present, by superposition, in a feature vector. Once multiple elements can be

present, conventional groupings of the elements can be interpreted as larger structures.

For example, Touretzky has developed a coarse-coded memory system and used it

in a production system [20], a primitive lisp data-structuring system called BoltzCONS

[21], and a combination of the two for simple tree manipulations [22]. In his representa-

tion, the 15,625 triples of 25 symbols (A-Y) are elements to be represented, and using

patterns over 2000 bits, small sets of such triples could be reliably represented. Interpret-

ing the set of triples as pseudo-CONS cells, a limited representation of sequences and

trees could be achieved.

Similarly, in their past-tense model, Rumelhart and McClelland [23] developed an

implicitly sequential representation, where a set of well-formed overlapping triples could

be interpreted as a sequence. It is instructive to view the basic idea of their representa-

tional scheme as the encoding of a sequence of tokens, (i 1, . . . ,in) by an unordered set

of overlapping subsequences (each of breadth k) of tokens:



Recursive Distributed Representations 5

{(i 1, . . . ,ik),(i 2, . . . ,ik+1), . . . ,(in−k+1, . . . ,in)}

Thus, if a coarse-coded memory can simultaneously represent a set of such subse-

quences, then it can also represent a longer sequence.

The limits of this type of representation are that the cost of the representation goes

up exponentially with its breadth, and, for any particular breadth, there may be sequences

with too much internal duplication. Sets do not count multiple occurrences of their ele-

ments. So a system, for example, which represented the spellings of words as sets of

letter-pairs would not be able to represent the word yoyo, and even if the breadth were

increased to three, the system would still not be able to represent words with duplicate

triples such as banana.2

Although both Touretzky’s and Rumelhart & McClelland’s coarse-coded represen-

tations were fairly successful for their circumscribed tasks, there remain some problems:

(1) A large amount of human effort was involved in the design, compression and tuning

of these representations, and it is often not clear how to translate that effort across

domains.

(2) Coarse-coding requires expensive and complex access mechanisms, such as pullout

networks [25] or clause-spaces [20].

(3) Coarse-coded symbol memories can only simultaneously instantiate a small number

of representational elements (like triples of 25 tokens) before spurious elements are

introduced3. Furthermore, they assume that all possible tokens need to be combined.

(4) They utilize binary codes over a large set of units (hundreds or thousands).

(5) Their mode of aggregating larger structures out of basic elements is superpositional,

the cause of problems (2) and (3).

In contrast, the distributed representations devised by the RAAM architecture

demonstrate better properties:

(1) Encodings are developed mechanically by an adaptive network.

hhhhhhhhhhhhhhh
2 To point out this "Banana Problem" with Rumelhart & McClelland’s actual representation,
which was phonological rather than orthographic, Pinker and Prince [24] discovered words with
enough internal duplication in the Oykangand language.
3 Rosenfeld and Touretzky [26] provide a nice analysis of coarse-coded symbol memories.
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(2) The access mechanisms are simple and deterministic.

(3) A potentially very large number of primitive elements can selectively combine into

constituent structures. Not all triples of symbols can, or need, be represented.

(4) The representations utilize real-values over few units (tens).

(5) The aggregation mode is compositional.

2. Recursive Auto-Associative Memory

The problem under attack, then, is the representation of variable-sized symbolic

sequences or trees in a numeric fixed-width form, suitable for use with association,

categorization, pattern-recognition, and other neural-style processing mechanisms.

DCBA

Figure 1. Example of a binary tree.

Consider two hypothetical mechanisms which could translate, in both directions,

between symbolic trees and numeric vectors. The Compressor should encode small sets

of fixed-width patterns into single patterns of the same size. It could be recursively

applied, from the bottom up, to a fixed-valence tree with labeled terminals (leaves),

resulting in a fixed-width pattern representing the entire structure. For the binary tree

((A B)(C D)), shown in figure 1, where each of the terminals is a fixed-width pattern, this

would take three steps. First A and B would be compressed into a pattern, R 1. Then C

and D would be compressed into a pattern, R 2. Finally, R 1 and R 2 would be compressed

into R 3.

The Reconstructor should decode these fixed-width patterns into facsimiles of their

parts, and determine when the parts should be further decoded. It could be recursively

applied, from the top down, resulting in a reconstruction of the original tree. Thus, for

this example, R 3 would be decoded into R1′ and R2′ . R1′ would be decoded into A ′ and

B ′ , and R2′ into C ′ and D ′ .

These mechanisms are hypothetical, because it is not clear either how to physically

build or computationally simulate such devices, or what the Ri patterns look like. In

answer to the first question, I just assume that the mechanisms could be built out of the
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2K OUTPUT UNITS

K INPUT UNITS

K OUTPUT UNITS

2K INPUT UNITS

LEFT RIGHT

WHOLE

WHOLE

RIGHTLEFT

Figure 2. Proposed feedforward networks for the Compressor and
Reconstructor working with binary trees.

standard modern connectionist substrate of layered fully-connected feed-forward net-

works of semi-linear units.4 For binary trees with k-bit patterns as the leaves, the

compressor could be a single-layer network with 2k inputs and k outputs. The reconstruc-

tor could be a single-layer network with k inputs and 2k outputs. Schematics for these are

shown in Figure 2.

K HIDDEN UNITS

2K OUTPUT UNITS

2K INPUT UNITS

LEFT RIGHT

WHOLE

RIGHTLEFT

Figure 3. Single network composed of both compressor and reconstructor.

In answer to the second, regarding what the patterns look like, we develop the stra-

tegy of letting a connectionist network devise its own representations. Consider
hhhhhhhhhhhhhhh
4 I also assume that the reader is, by now, familiar with this standard, as well as with the back-
propagation technique for adjusting weights [12], and will not attempt a re-presentation of the
mathematics. The work herein does not crucially depend on the default assumptions of semi-
linearity and full-connectedness. By relying on these standard defaults, however, I hope to keep
the focus on issue of representation.
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simultaneously training these two mechanisms as a single 2k −k −2k network, as shown in

Figure 3.

This looks suspiciously like a network for the Encoder Problem [27]. Back-

propagation has been quite successful at this problem,5 when used in a self-supervised

auto-associative mode on a three layer network. The network is trained to reproduce a

set of input patterns; i.e., the input patterns are also used as desired (or target) patterns. In

learning to do so, the network develops a compressed code on the hidden units for each

of the input patterns. For example, training an 8-3-8 network to reproduce the eight 1-

bit-in-8 patterns usually results in a 3-bit binary code on the hidden units.

In order to find codes for trees, however, this auto-associative architecture must be

used recursively (hence its name). Extending the simple example from above, if A, B, C,

and D were k-bit patterns, the network could be trained to reproduce (A B), (C D), and

((A B)(C D)) as follows:

input pattern hidden pattern output pattern

(A B) → R 1(t) → (A ′(t) B ′(t))
(C D) → R 2(t) → (C ′(t) D ′(t))
(R 1(t) R 2(t)) → R 3(t) → (R 1(t)′ R 2(t)′)

where t represents the time, or epoch, of training. Assuming that back-propagation con-

verges in the limit, the sum of the squares of the differences between the desired and

actual outputs would go to 0, and:

A ′ = A
B ′ = B
C ′ = C
D ′ = D
R1′ = R 1

R2′ = R 2

Therefore, R 3, would, in fact, be a representation for the tree ((A B)(C D)), by vir-

tue of the fact that the compressor would be a deterministic algorithm which transforms

the tree to its representation, and the reconstructor a deterministic algorithm which

transforms the representation back to the tree. Along the way, representations will also

be devised for all subtrees, in this case, (A B) and (C D). Note that, as will be
hhhhhhhhhhhhhhh
5 Rumelhart et al. [12] demonstrated only a 8-3-8 network, but other successful uses include a
64-16-64 network [28] and a 270-45-270 network [4]. The three numbers correspond to the
number of units in the input, hidden, and output layers of a network.
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demonstrated later, this strategy works on a collection of trees just as it does on a single

tree.

There are a few details which form a bridge between theory and practice.

(1) The (initially random) values of the hidden units, Ri(t), are used as part of the train-

ing environment. Therefore, as the weights in the network evolve, so do some of

the patterns that comprise the training environment. This form of non-stationary, or

‘‘Moving Target,’’ learning has also been explored by others [29, 30]. The stability

and convergence of the network are sensitive to the learning parameters. Following

the explication of Rumelhart et al. [12, p. 330], there are two such parameters: the

learning rate η, which controls the the gradient descent step size, and the momen-

tum α, which integrates the effects of previous steps. These parameters must be set

low enough that the change in the hidden representations does not invalidate the

decreasing error granted by the change in weights, and high enough that some

change actually takes place. In the experiments described later in this paper, η was

usually set to 0.1 (less for the larger experiments), and α to 0.3. As the learning

curve flattens out, α is slowly increased up to 0.9, following [31].

(2) The induction relied upon is outside the mechanical framework of learning. This

induction, of global success arising from only local improvements, is similar to the

Bucket Brigade principle used in classifier systems [32]. Since the training strategy

never reconstructs the terminals from R1′ or R2′ , only the fact that they are equal, in

the limit, to R 1 and R 2 allows this strategy to work.

But back-propagation cannot really run forever, and therefore, at least with use of

the standard sigmoidal activation function, it is impossible to achieve the perfect

encoding described above. So some practical way to decide when to stop training

becomes necessary. When back-propagation is used to produce binary outputs,

there is a tolerance, τ, conventionally set to 0.2, such that training can stop when

every output value for every training pattern is within τ of the desired bit. For non-

terminal patterns which may not be binary, however, 20% is far too permissive a

tolerance. In order to successfully reconstruct A and B (to a tolerance of τ) from

R1′ , for example, R1′ must be very similar to R 1. Thus, a second tolerance, ν, is

used for the real-valued non-terminals, which, for the experiments below, has been
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set at 0.05.

(3) The name for this architecture, Recursive Auto-Associative Memory (RAAM),

accurately reflects that the codes developed by an auto-associative memory are

being further compressed. It does not reflect that there are actually two separate

mechanisms which happen to be simultaneously trained. These mechanisms also

require some support in the form of control and memory, but nothing beyond the

ability of simple neural networks using thresholds.

In order to encode a tree from the bottom up, the compressor needs a stack on which

to store temporary results (such as R 1). In order to decode a tree from the top

down, the reconstructor also needs an external stack on which to store intermediate

patterns. Furthermore, it needs some mechanism to perform terminal testing. In the

experiments presented below, it is assumed that this terminal test is merely a thresh-

hold test for "binary-ness", which checks that all the values of a pattern are above

1−τ or below τ. Alternatively, one could train a simple classifier, or use conven-

tional computer programs which test for membership in a set, or perform error

detection and correction.

2.1. Sequential RAAM

Since sequences, such as (X Y Z), can be represented as left-branching binary trees,

i.e., ((NIL X) Y) Z), an alternative version of the RAAM architecture works for develop-

ing representations and Last-In-First-Out access mechanisms for sequences.

M + L UNITS
M UNITS

M UNITSM + L UNITS

STACK

STACK TOP
STACK

STACK TOP

Figure 4. Inverse sequencing mechanisms in single-layered networks. The
compressor combines an m-dimensional representation for a sequence
(STACK) with a new element (TOP), returning a new m-dimensional vector;
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the reconstructor decodes it back into its components.

This architecture is in fact simpler than the mechanism for trees. Compressed

representations only have to be recirculated to one side, so they do have to be stored

externally. There is less constraint on the size of the representations as well, and a higher

dimension, M, can be assumed for the compressed patterns, than for the terminal sym-

bols, L.

Figure 4 shows the single-layer compressor and reconstructor networks for a

sequential RAAM, which, when viewed as a single network has M +L input and output

units, and M hidden units. An M-vector of numbers, ε, is assumed to stand for NIL, the

empty sequence. In the experiments below, vectors of all 0.5’s are chosen, which are

very unlikely ever to be generated as an intermediate state. Following the earlier logic,

when this network is trained with the patterns:

input pattern hidden pattern output pattern

(ε X) → Rx(t) → (ε′(t) X ′(t))
(Rx(t) Y) → Rxy(t) → (Rx′ (t) Y ′(t))
(Rxy(t) Z) → Rxyz(t) → (Rxy(t)′ Z ′(t))

it is expected that, after back-propagation converges, Rxyz will be a representation for the

sequence (X Y Z). Along the way, representations will also be developed for all prefixes

to the sequence, in this case, (X) and (X Y).

3. Experiments with Recursive Auto-Associative Memories

3.1. Proof of Concept

To demonstrate that RAAM actually works under practical assumptions, and that it

can discover compositional representations and simple access mechanisms, a small

sequential RAAM is presented first.

The training set consisted of the eight possible sequences of three bits. Using a

4-3-4 network and an empty pattern of (.5 .5 .5), the representations shown in Figure 5

were developed. (The representations for all the prefixes are shown as well). The net-

work has clearly developed into a tri-state shift-register, where the first feature

corresponds to the inverse of the last bit in, the second to the inverse of the next-to-last

bit, and the third to the first bit encoded.
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empty
0
1
00
01
10
11
000
001
010
011
100
101
110
111

Figure 5. Representations developed by a 4-3-4 RAAM for the complete set of
bit patterns up to length 3. Each square represents a number between 0 and 1.

A shift-register, which simply concatenates bits, is a classical means for serially

constructing and accessing an obviously compositional representation. But like any finite

piece of hardware built to hold a certain number of bits, it degrades rather rapidly when

over-filled. The more interesting area to explore involves pattern spaces which have

underlying regularities, but do not depend on representing all possible combinations of

sub-patterns. It is under these conditions that an adaptive connectionist mechanism would

be expected to display more desirable properties, such as content-sensitivity and graceful

degradation.

3.2. Letter Sequences

Our second experiment involves learning to represent sequences of letters. Rather

than trying to represent all possible sequences of letters, which would certainly give rise

to another shift register, a limited subset of English words was chosen. Using an elec-

tronic spelling dictionary, those words containing only the 5 letters "B", "R", "A", "I",

and "N" were selected, and then all prefixes (like "an" and "bar") were removed, resulting

in the list below. Note that, in training, a representation is developed for every prefix:
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AIR ANA ANI BABAR BANANA

BARBARIAN BARN BIBB BIN BRAIN

BRAN BRIAR INN NAB NIB

RABBI RAIN RAN RIB

RIB
RAN

RAIN
RABBI

NIB
NAB
INN

BRIAR
BRAN

BRAIN
BIN

BIBB
BARN

BARBARIAN
BANANA

BABAR
ANI

ANA
AIR

Figure 6. Representations developed by a 30-25-30 RAAM on letter
sequences.

Each terminal was coded as a 1-in-5 bit pattern, the empty vector, again, was all

0.5’s, and a 30-25-30 RAAM was used to encode these words. Note that both BANANA

and BARBARIAN would be troublesome for an implicit sequential representation of

breadth three. Figure 6 shows the representations for these letter sequences, and the clus-

ter diagram in Figure 7 shows that, unlike a decaying sum representation in which infor-

mation about older elements gets lost [33], this sequential representation is devoting the

most resources to keeping older elements alive. And even though there are enough

resources to build a 5-letter shift register, the network cannot take this easy solution path

because of its need to represent the 6- and 9-letter words.
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/------> INN
-| ______/-----> AIR
| / \_____/----> ANA
\------| \----> ANI

| ______/-----> NAB
| / \-----> NIB
\------| _____/-----> RAIN

| / \_____/-----> RAN
\------| \_____/-----> RIB

| \-----> RABBI
| _____/-----> BIN
\-----/ \-----> BIBB

| /-----> BRIAR
\-----| _____/----> BRAN

\-----/ \----> BRAIN
\_____/-----> BABAR

\_____/-----> BANANA
\_____/----> BARN

\----> BARBARIAN

Figure 7. Hierarchal clustering of the letter sequence representations.

3.2.1. Learning Well-formed Syntactic Trees

The tree ((D (A N))(V (P (D N)))) might be a syntactic parse-tree for the sentence

"The little boy ran up the street", given that the terminals D, A, N, V, and P stand respec-

tively for determiner, adjective, noun, verb, and preposition. Consider a simple context-

free grammar, where every rule expansion has exactly two constituents:

S -> NP VP | NP V
NP -> D AP | D N | NP PP

PP -> P NP
VP -> V NP | V PP
AP -> A AP | A N

Given a set of strings in the language defined by this grammar, it is easy to derive the

bracketed binary trees which will make up a training set. With one such set of strings, a

chart parser yielded the following set of trees:

(D (A (A (A N))))
((D N)(P (D N)))

(V (D N))
(P (D (A N)))

((D N) V)
((D N) (V (D (A N)))))

((D (A N)) (V (P (D N))))
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S

AP

PP

VP

NP

((D (A N)) (V (P (D N))))
((D N) (V (D (A N))))

((D N) V)
(A (A (A N)))

(A (A N))
(A N)

(P (D (A N)))
(P (D N))
(V (D N))

(V (D (A N)))
(V (P (D N)))

((D N) (P (D N)))
(D (A N))

(D (A (A (A N))))
(D N)

Figure 8. Representations of all the binary trees in the training set, devised by
a 20-10-20 RAAM, manually clustered by phrase-type.

Each terminal (D A N V & P) was then represented as a 1-bit-in-5 code padded with 5

zeros. A 20-10-20 RAAM devised the representations shown in Figure 8.

_________/--------> (AN)
/ \--------> (DN)
| ________/-------> (P(DN))
| / \-------> (P(D(AN)))
-| /--------| ________/--------> (V(DN))
| | | / \________/-------> (V(D(AN)))
| | \--------| \-------> (V(P(DN)))
| | | ________/-------> (A(AN))
\---------| \--------/ \-------> (A(A(AN)))

| \________/------> (D(AN))
| \------> (D(A(A(AN))))
| _______/-------> ((DN)V)
\--------/ \-------> ((DN)(P(DN)))

\_______/-------> ((DN)(V(D(AN))))
\-------> ((D(AN))(V(P(DN))))

Figure 9. Hierarchal clustering of the syntactic patterns.

Each tree and its representation have been labeled by the phrase type in the gram-

mar, and then sorted by type. The RAAM has clearly developed a representation with



16 J. B. Pollack

similarity between members of the same type. For example, the third feature seems to be

clearly distinguishing sentences from non-sentences, the fifth feature almost separates

adjective phrases from others, while the tenth feature appears to distinguish prepositional

and noun phrases from the rest.6 Finally, a hierarchal cluster of these patterns in Figure 9

reveals that the similarity between patterns generally follows the phrase type breakup,

and also reflects the depth of trees.

3.2.2. Learning to Represent Propositions.

Tree representations are common data structures, used for semantic as well as syn-

tactic structures. This final experiment sets up some propositional representations which

will be exploited later in the paper, and merely demonstrates that the architecture is capa-

ble of working on more than just binary trees.7

Table 1. Collection of sentences for propositional experiment.

1 Pat loved Mary
2 John loved Pat
3 John saw a man on the hill with a telescope
4 Mary ate spaghetti with chopsticks
5 Mary ate spaghetti with meat
6 Pat ate meat
7 Pat knew John loved Mary
8 Pat thought John knew Mary loved John
9 Pat hoped John thought Mary ate spaghetti

10 John hit the man with a long telescope
11 Pat hoped the man with a telescope saw her
12 Pat hit the man who thought Mary loved John
13 The short man who thought he saw John saw Pat

Starting with a somewhat random collection of sentences, a RAAM was used to

devise compact representations for corresponding propositional forms. The sentences

used for training are shown in Table 1. The terminals for this RAAM are bit patterns for

the symbols which appear in these sentences minus the determiners and pronouns, plus

two new symbols: IS is used as a subject-raiser in the representations for sentences 11

and 12, while MOD is used to specify adjectives in triples.

hhhhhhhhhhhhhhh
6 By these metrics, of course, ((D N)(P (D N))) is being classified as an S rather than an NP. This
is not surprising since, like an S, it is not being further combined.
7 Of course, binary trees of symbols (along with a distinguished NIL element) are sufficient for
arbitrary tree representations.



Recursive Distributed Representations 17

Table 2. 16-bit patterns for the terminal symbols

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
WORD THING HUMAN PREP ADJ VERB

4 BITS 3 BITS 3 BITS 2 BITS 4 BITSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
HILL 1 0 0 0

STREET 1 0 0 1
TELESCOPE 1 0 1 0

CHOPSTICKS 1 0 1 1
MEAT 1 1 0 0

SPAGHETTI 1 1 0 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MAN 1 0 0

JOHN 1 0 1
MARY 1 1 0

PAT 1 1 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MOD 1 0 0
WITH 1 0 1

ON 1 1 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LONG 1 0

SHORT 1 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
IS 1 0 0 0

KNEW 1 0 0 1
HOPED 1 0 1 0

THOUGHT 1 0 1 1
LOVED 1 1 0 0

HIT 1 1 0 1
ATE 1 1 1 0

SAW 1 1 1 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 3. Ternary trees for propositional experiment.

1 (LOVED PAT MARY)
2 (LOVED JOHN PAT)
3 ((WITH SAW TELESCOPE) JOHN (ON MAN HILL))
4 ((WITH ATE CHOPSTICKS) MARY SPAGHETTI)
5 (ATE MARY (WITH SPAGHETTI MEAT))
6 (ATE PAT MEAT)
7 (KNEW PAT (LOVED JOHN MARY))
8 (THOUGHT PAT (KNEW JOHN (LOVED MARY JOHN)))
9 (HOPED PAT (THOUGHT JOHN (ATE MARY SPAGHETTI)))

10a ((WITH HIT (MOD TELESCOPE LONG)) JOHN MAN)
10b (HIT JOHN (WITH MAN (MOD TELESCOPE LONG)))
11 (HOPED PAT (SAW (WITH MAN TELESCOPE) PAT))
12 (HIT PAT (IS MAN (THOUGHT MAN (LOVED MARY JOHN))))
13 (SAW (IS (MOD MAN SHORT) (THOUGHT MAN (SAW MAN JOHN))) PAT)

A similarity-based 16-bit binary representation was devised for the terminals, by

first dividing them into 5 classes, THING, HUMAN, PREP, ADJ, and VERB, and then

using one bit for each class along with a counter as shown in Table 2. Empty spots are all

zeros. Each sentence was manually translated into a ternary tree (except sentence 10
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(SAW (MAN...) PAT)

(MOD MAN SHORT)

(IS MAN (THOUGHT MAN (SAW...]

(THOUGHT MARY (SAW ...]

(SAW MAN JOHN)

(HIT PAT (MAN...]

(IS MAN (THOUGHT MAN (LOVED...]

(THOUGHT MAN (LOVED...]

(ATE PAT MEAT)

(ATE MARY (SPAG...]

((ATE...) MARY SPAG)

(LOVED JOHN PAT)

(LOVED PAT MARY)

(HOPED PAT (SAW..]

(SAW (MAN...) PAT)

(WITH MAN SCOPE)

(HIT JOHN (MAN...))

(WITH MAN (SCOPE...]

((HIT...) JOHN MAN)

(HOPED PAT (THOUGHT...]

(THOUGHT JOHN (ATE...]

(ATE MARY SPAG)

(THOUGHT PAT (KNEW...]

(KNEW JOHN (LOVED ..]

(LOVED MARY JOHN)

(KNEW PAT (LOVED...]

(LOVED JOHN MARY)

((SAW...) JOHN (MAN...))

(ON MAN HILL]

Figure 10. Representations of the ternary semantic trees in the training set,
devised by a 48-16-48 RAAM, manually clustered. The symbolic trees have
been abbreviated to fit.

which had two readings) as shown in Table 3. This representation is meant to capture the

flavor of a recursive (ACTION AGENT OBJECT) case system. A 48-16-48 RAAM

learned to construct representations and to recursively encode and decode these trees into

their respective parts. These are again shown both pictorially (Figure 10) and clustered

(Figure 11).
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/-----> (WITH HIT (MOD TELESCOPE LONG))

-| /-----> (IS (MOD MAN SHORT) (THOUGHT MAN (SAW MAN JOHN)))

\-----| /-----> ((WITH SAW TELESCOPE) JOHN (ON MAN HILL))

| | /-----> (ATE MARY (WITH SPAGHETTI MEAT))

\-----| | ____/---> (HOPED PAT (THOUGHT JOHN (ATE MARY SPAGHETTI)))

| | / \---> (HOPED PAT (SAW (WITH MAN TELESCOPE) PAT))

| | /----| /----> (HIT JOHN (WITH MAN (MOD TELESCOPE LONG)))

\-----| | | /----| ___/---> (KNEW PAT (LOVED JOHN MARY))

| | | | | /---/ \---> (THOUGHT PAT (KNEW JOHN (LOVED MARY JOHN)))

| | \----| \----| \---> (KNEW JOHN (LOVED MARY JOHN))

| | | \---> (HIT PAT (IS MAN (THOUGHT MAN (LOVED MARY JOHN))))

| | \____/---> (IS MAN (THOUGHT MAN (LOVED MARY JOHN)))

\-----| \___/---> (THOUGHT JOHN (ATE MARY SPAGHETTI))

| \___/---> (THOUGHT MAN (LOVED MARY JOHN))

| \---> (THOUGHT MAN (SAW MAN JOHN))

| ____/----> ((WITH ATE CHOPSTICKS) MARY SPAGHETTI)

| / \____/----> (ATE MARY SPAGHETTI)

| | \----> (ATE PAT MEAT)

| | _____/---> (WITH SAW TELESCOPE)

\----| /-----/ \---> (WITH ATE CHOPSTICKS)

| | | /-----> (WITH SPAGHETTI MEAT)

| | \-----| /----> (WITH MAN (MOD TELESCOPE LONG))

| | \-----| ____/----> (ON MAN HILL)

\----| \----/ \----> (WITH MAN TELESCOPE)

| \____/----> (MOD TELESCOPE LONG)

| \----> (MOD MAN SHORT)

| /-----> ((WITH HIT (MOD TELESCOPE LONG)) JOHN MAN)

| | ___/--> (LOVED JOHN MARY)

\-----| /----/ \--> (LOVED PAT MARY)

| /----| \---> (LOVED JOHN PAT)

\-----| \----> (LOVED MARY JOHN)

| _____/---> (SAW (WITH MAN TELESCOPE) PAT)

\----/ \---> (SAW (IS (MOD MAN SHORT) (THOUGHT MAN (SAW MAN JOHN))) PAT)

\-----> (SAW MAN JOHN)

Figure 11. Hierarchal clustering of the semantic patterns

4. Discussion

4.1. Studies of Generalization

Perhaps the most important question about Recursive Auto-Associative Memories is

whether or not they are capable of any productive forms of generalization. If it turned

out that, as in the shift-register example, they were just memorizing the training set,

finding a convenient mapping from given structures to unassigned vertices in a high-

dimensional hypercube, then this work would ultimately be uninteresting. Luckily, this

turns out not to be the case.

It is a straightforward matter to enumerate the set of sequences or trees that a

RAAM is capable of representing, beyond the training set. Taken together, the encoder

and decoder networks form a recursive well-formedness test as follows: Take two pat-

terns for trees, encode them into a pattern for the new, higher-level, tree, and decode that
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back into the patterns for the two sub-trees. If the reconstructed subtrees are within toler-

ance, then that tree can be considered well-formed.8

Using this procedure for tree RAAMs, a program can start with the set of terminals

as the pool of well-formed patterns, and then exhaustively (or randomly) combine all

pairs, adding new well-formed patterns to the pool. For sequential RAAMs, the pool is

begun with just the pattern for the empty sequence, and a program merely attempts to

compose each terminal with each pattern in the pool, adding new prefixes to the pool as

they are found..

Running this generator over the network formed from the syntactic tree experiment

yielded 31 well-formed trees, which are shown in Table 4. Of these, the first 12 are not

really grammatical, although 8 of these seem to be based on a rule which allows two

NP’s to combine. There are three new instances of NP’s, four new VP’s, and twelve new

S’s. Clearly some sort of generativity, beyond memorization, is going on here, though

not yet in an infinite manner. At the least, new instances of the syntactic classes are

being formed by recombination of parts.

The sequential RAAM for letter sequences is quite a bit more productive. It is able

to represent about 300 new sequences of letters, of which approximately one-third are

wordlike, including names not in the electronic spelling dictionary like BRIAN, RINA,

and BARBARA. Mostly, however, the novel sequences reflect low-order letter-transition

statistics, indicating, again, that some recollective process more powerful than rote (list)

memorization but less powerful than arbitrary random-access sequential storage is taking

place.

There is also a tendency, especially by the 48-16-48 RAAM, to decode novel trees

back to existing members of the training set. For example, the pattern encoded for

(THOUGHT JOHN (KNEW PAT (LOVED MARY JOHN))) is reconstructed to

(THOUGHT PAT (KNEW JOHN (LOVED MARY JOHN))), one of the original trees.

This lack of productivity is probably attributable to the problem that the input pat-

terns are too similar; i.e., the Hamming distance between JOHN and PAT is only one bit.

But, while this RAAM was not as productive as hoped for, it was still quite systematic,
hhhhhhhhhhhhhhh
8 Actually, this is a bit of a simplification, since the well-formedness test does not actually
guarantee that the pattern for new tree can be fully decoded. If the tolerance is kept low enough,
however, the full tree will be recoverable.
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Table 4. Additional trees that can be represented by the 20-10-20 RAAM

(D A)
(V A)
(V N)
(V V)

(((D N) (P (D N))) N)
(((D N) (P (D N))) (D (A N)))

((D N) (((D N) (P (D N))) (D (A N))))
(((D N) (P (D N))) ((D N) (P (D N))))

(((D N) (P (D N))) ((D (A N)) (P (D N))))
((D N) (((D N) (P (D N))) ((D (A N)) (P (D N)))))
(((D N) (P (D N))) (((D N) (P (D N))) (D (A N))))

(((D N) (P (D N))) (((D N) (P (D N))) ((D (A N)) (P (D N)))))

((D (A N)) (P (D N)))
((D N) (P (D (A N))))

((D (A N)) (P (D (A N))))

(V ((D N) (P (D N))))
(V ((D (A N)) (P (D N))))
(V ((D N) (P (D (A N)))))

(V ((D (A N)) (P (D (A N)))))

((D N) (V (D N)))
(((D N) (P (D N))) V)

((D N) (V ((D N) (P (D N)))))
(((D N) (P (D N))) (V (D N)))

((D N) (V ((D (A N)) (P (D N)))))
((D N) (V ((D N) (P (D (A N))))))
(((D N) (P (D N))) (V (D (A N))))

((D N) (V ((D (A N)) (P (D (A N))))))
(((D N) (P (D N))) (V ((D N) (P (D N)))))

(((D N) (P (D N))) (V ((D N) (P (D (A N))))))
(((D N) (P (D N))) (V ((D (A N)) (P (D N)))))

(((D N) (P (D N))) (V ((D (A N)) (P (D (A N))))))

according to Fodor & Pylyshyn’s [11, p. 39] own definition:

What does it mean to say that thought is systematic? Well, just as you don’t
find people who can understand the sentence ‘John loves the girl’ but not the
sentence ‘the girl loves John,’ so too you don’t find people who can think the
thought that John loves the girl but can’t think the think the thought that the
girl loves John.

All 16 cases of (LOVED X Y), with X and Y chosen from the set {JOHN, MARY, PAT,

MAN} were able to be reliably represented, even though only four of them were in the

training set.
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4.1.1. Improving Generalization Capacity

The productive capacity of these systems is not yet what it should be. There ought

to be some way to acquire, at least theoretically, the ability to represent infinite numbers

of similar structures in such recursive distributed representations.

Given that the simplest formulation (i.e., a 3-layer fully-connected semi-linear net-

work) using rather arbitrary training sets has shown some limited capacity in the form of

a small number of new useful representations composed out of existing constituents, it

seems likely that (1) better training environments and (2) different mathematical assump-

tions will be needed.

First, the similarity and difference relationships between terminal patterns affects

the productivity of a RAAM. In the case of the semantic triples, the fact that terminals in

the same class, like JOHN and MARY, were assigned very similar patterns, lead both to

their ability to be used systematically, and to the problem that single-bit errors in recon-

struction were damaging. On the other hand, one would expect fully random patterns to

not generalize very well either. This brings up the question of how to design compressi-

ble representations. It seems very likely that the same sort of representations devised by

a RAAM for the non-terminal patterns would lead to the best possible compression and

generalization properties if adopted for terminals.

Secondly, to achieve truly infinite representational capacity in fixed-width patterns,

it will be necessary, at least theoretically, to consider the underlying mathematical basis

for connectionist networks, freed from the default implementational assumptions of

back-propagation, i.e., floating-point calculations of linear combinations and sigmoids.

On the one hand, it must be considered whether or not to use real numbers at all since

they are seem biologically and computationally problematic. An unbounded number of

bits can be trivially compressed into a real number, leading to unbounded storage and

communication costs. A simulated connectionist system using real numbers might be

able to use these bits, (i.e. in very precise output values) without properly paying for

them. By using only a binary code, a system must be able to to exploit the redundancy

(i.e. sparseness or regularity) in the environment. On the other hand, it is certainly rea-

sonable, however unbiological, to assume rational numbers for a competence theory. The

question to answer is whether there is a similarity-preserving mapping from complex

structured representations to high-dimensional spatial representations.
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4.2. Analysis of the Representations

I do not yet have a prescription for engineering recursive distributed representa-

tions, but have a few insights into how they work. Top-down and bottom-up constraints

work together to forge the representations. The bottom-up constraint is that each pattern

is completely determined by its constituents and the knowledge eventually fixed in the

network weights: Trees with similar constituents must be similar. The top-down con-

straint is that redundant information must be compressed out of similar structures (such

as two NP’s which both can combine with the same VP): The possible siblings of a pat-

tern must be similar. Working against this drive towards similarity is the system-wide

goal of minimizing error, which serves to "constrain apart" the patterns for different trees

in the environment. The result of these pressures is that these representations consist of

at least two types of features: Categorical features, such as those identified earlier as

being able to separate classes, and distinctive features, which vary across, and discrim-

inate between, the members of each class.

The categorical features developed by the syntactic tree experiment become clear in

examination of the of a small classifier. The patterns for each tree in the training set

were used as input to a 10-input 5-output network which was trained to discriminate the

classes NP, VP, PP, AP, and S.
Table 5. Weights of single-layer classifier network rounded to integers.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
NP VP PP AP S Strengthiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Bias -2 -8 -3 -4 6
1 8 0 -2 -5 -4 19
2 2 -8 -3 -1 5 19
3 0 7 -2 3 -9 21
4 -1 2 -5 5 -1 14
5 -5 -6 -1 3 -1 16
6 -3 3 4 0 -4 14
7 -2 -1 0 -5 3 11
8 -10 10 -4 -5 2 31
9 3 0 2 2 -4 11
10 4 -9 7 -6 -3 29iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 5 shows all the weights in this network, rounded to integers. The columns

correspond to the categories, and the rows correspond to the features. The bias inputs to

the category units are also shown as the first row, as are the sums of the absolute values

of the weights in each row. Looking at the column labeled NP, for example, it is clear

that the first, ninth, and tenth features strongly code for NP, while the eighth and fifth
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features code against NP. Looking at the column labeled VP, the third and eight features

code for it, and the second and tenth against.

The "strength" of each row indicates how categorical or distinctive a feature is. The

tenth feature, for example, strongly codes for NP and PP and against VP, AP, and S. The

features which do not connect strongly everywhere, like the seventh and ninth, are used

for discriminations within the categories. With regard to the binary-versus-real question

raised earlier, it seems that RAAM may build a hybrid code. Strong binary distinctions

are used for categorical judgements, while weaker analog distinctions are used for

discriminating (and labeling) members within the categories.

4.2.1. Geometric Interpretation

An alternative means of understanding these representations may come from

geometry. The terminal patterns are vertices of a k-dimensional hypercube which con-

tains all of the non-terminal patterns.

For binary trees, a RAAM is finding a consistent invertible mapping which works

the same way on composable pairs of vertices, as it does on the internal points that are

also composed. To view an image of this, a 6-3-6 RAAM was trained on the two trees

((A B)(C D)) and ((A C)(B D)), with A = (0 0 0), B = (1 0 0), C = (0 1 0), and D = (1 1

0); i.e. with A, B, C, and D the four points on the "floor" of a 3-D cube.

((A C)(B D))

(B D)

(A C)

((A B)(C D))
(C D)

(A B)

D

C

B

A

Figure 12. Perspective diagram for the 3-dimensional codes developed for the
trees ((A B)(C D)) and ((A C)(B D)).
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Figure 12 shows a perspective plot of the 3-dimensional hypercube for the codes

developed for these two trees. If one stares long enough, taking each pair of composable

points in one’s mental left and right hands, one can see triangles falling forward as they

reduce in scale.

Saund [34] has investigated (non-recursive) auto-association as a method of dimen-

sionality reduction, and asserted that, in order to work, the map must be constrained to

form a small dimensional parametric surface in the larger dimensional space. Consider

just a 2-1-2 auto-associator. It is really an invertible mapping from certain points on the

unit square to points on the unit line. In order to work, the network might develop a

parametric 1-dimensional curve in 2-space, perhaps a set of connected splines. As more

and more points need to be encoded, this parametric curve must get ‘‘curvier’’ to cover

them. In the limit, especially if there are any dense "patches" of 2-space which need to be

covered, it can no longer be a 1-dimensional curve, but must become a space-filling

curve with a fractal dimension [35]. The notions of associative and reconstructive

memories with fractal dimensions are further discussed elsewhere [36].

4.3. Applications

4.3.1. Associative Inference

Since RAAM can devise representations of trees as numeric vectors which then can

be attacked with the fixed-width techniques of neural networks, this work might lead to

very fast inference and structural transformation engines. The question, of course, is

whether the patterns for trees can be operated on, in a systematic fashion, without being

decoded first. Below is a very simple demonstration of this possibility.

Since the RAAM for the propositional triples was able to represent all 16 cases of

(LOVED X Y), it should be possible to build an associative network which could per-

form the simple implication: "If (LOVED X Y) then (LOVED Y X)". This would be a

trivial shifting task if performed on an explicit concatenative representation. However,

since the (48 bit) triples are compressed into 16-dimensional pattern vectors, it is not

quite as simple a job.

The task is to find an associator which can transform the compressed representation

for each antecedent (e.g. (LOVED MARY JOHN)) into the compressed representation



26 J. B. Pollack

for its consequent (e.g. (LOVED JOHN MARY)). Using back-propagation, a 16-8-16

feed-forward network was trained on 12 of the 16 pairs of patterns (to within 5% toler-

ance) and was then able to successfully transform the remaining 4 pairs.

What about a system which would need to follow long chains of such implications?

There has recently been some work showing that under certain conditions, feed-forward

networks with hidden layers can compute arbitrary non-linear mappings [37-39]. There-

fore, I anticipate that the sequential application of associative inference will be able to be

compiled, at least by slow training, into fast networks of few layers.

Consider homogenous coordinate transformations (in computer graphics), where the

linear nature of the primitive operations (scaling, rotation, and translation) allows any

sequence of them to be "compiled" into a single matrix multiplication. The field of AI

has not, to date, produced any compiling methods which can rival this speedup, because

most interesting AI problems are nonlinear and most interesting AI representations are

not numeric. The point is that given suitable representations, efficient non-linear map-

ping engines could generate significant speed improvements for inferential processing.

4.3.2. Massively Parallel Parsing, Revisited

I introduced this paper by noting that natural language processing posed some prob-

lems for connectionism, precisely because of the representational adequacy problem. One

cannot build either a parser or a generator without first having good "internal" representa-

tions. RAAMs can devise these compositional representations, as shown by the experi-

ment on semantic triples, which can then be used as the target patterns for recurrent net-

works which accept sequences of words as input.

A feasibility study of this concept has been performed as well, using a sequential

cascaded network [40], a higher-order network with a more restricted topology than

Sigma-Pi [41]. Basically, a cascaded network consists of two subnetworks: The function

network is an ordinary feed-forward network, but its weights are dynamically computed

by the purely linear context network, whose outputs determine each weight of the func-

tion net. In a sequential cascaded network, the outputs of the function network are

directly fed back to the inputs of the context network. This network is trained with

presentations of initial context, input sequences, and desired final state.
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Table 6. 10-bit input patterns for connectionist parser.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

WORD CLASS IDENTITYiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JOHN 1 0 0 0 0 1 1 0 0 0
MAN 1 0 0 0 0 0 1 0 0 0
PAT 1 0 0 0 0 1 1 1 0 0

MARY 1 0 0 0 0 1 0 1 0 0
HE/HER 1 0 0 0 0 0 1 0 1 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

TELESCOPE 0 1 0 0 0 0 0 1 0 1
SPAGHETTI 0 1 0 0 0 1 0 0 1 0

CHOPSTICKS 0 1 0 0 0 0 0 1 1 0
HILL 0 1 0 0 0 0 1 0 0 0

MEAT 0 1 0 0 0 1 0 0 0 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ON 0 0 1 0 0 1 0 0 0 0

WITH 0 0 1 0 0 0 1 0 0 0
WHO 0 0 1 0 0 0 0 1 0 0

BY 0 0 1 0 0 0 0 0 1 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ATE 0 0 0 1 0 0 0 1 0 0
HIT 0 0 0 1 0 0 0 0 1 0

SAW 0 0 0 1 0 0 0 0 0 1
LOVED 0 0 0 1 0 0 0 0 1 1
HOPED 0 0 0 1 0 0 1 1 0 0

THOUGHT 0 0 0 1 0 0 1 0 1 0
KNEW 0 0 0 1 0 0 1 0 0 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LONG 0 0 0 0 1 0 0 0 1 0

SHORT 0 0 0 0 1 0 0 0 0 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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A new 10-bit similarity-based encoding was created for the words appearing in the

sentences, making HE and HER identical. The first 5 bits define the class, and the second

5 bits distinguish the members. The patterns are displayed in Table 6. A sequential cas-

caded network consisting of a 10-10-16 function network and a 16-286 context network

was trained using sequences of these bit patterns corresponding to the sentences in Table

1. The initial context vectors were all zeroes, and the desired final states were the

compressed 16-dimensional representations devised by the 48-16-48 RAAM for the trees

in Table 3 (not including 10b).

This system is the closest thing yet to a barely adequate connectionist system for

processing language: Given a variable-length sequence of words, the network returns, in

linear time, a 16-dimensional vector, which can be decoded into a "meaning" by a

RAAM, and can perhaps be operated upon by associative inference engines.

On the one hand, this system has extreme deficiencies if it is evaluated as a cogni-

tive model. It can only produce a single tree for a sentence, and only handles a very small

corpus of sentences. The simplifying assumption, that internal representations can first

be devised and then used as target patterns, is questionable. On the other, the system has
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some very interesting aspects. Besides the fact that it runs in linear time and outputs a

compositional representation for the sentences, it automatically performs prepositional

phrase attachment (i.e., correctly parses the ‘‘MARY ATE SPAGHETTI WITH

MEAT/CHOPSTICKS’’ examples) and pronoun resolution (i.e., automatically replaces

HE or HER with the proper filler). Finally, it is the first connectionist parser which can

deal with embedded structures without resorting to external symbolic computational

power.

4.4. Further Work

There is a great deal of research still to be conducted in this area, besides the

conversion of the small feasibility studies into both falsifiable cognitive models and reli-

ably engineered artifacts. Immediate concerns include:

g Understanding the convergence and stability properties of the "moving target"

learning strategy; both empirical and analytical studies are called for. Similarly, the

relationship between the termination condition (using τ an ν) and the depth capacity

of RAAM needs to be better understood..

g Developing a complete understanding of the representations and mechanisms which

are developed. A good outcome would be a general representational scheme which

could be analytically derived for a particular representational task without relying

on slow, gradient-descent learning.

5. Conclusion

Here is a conundrum for theories of human and machine learning: Which came

first, the mental procedure or the mental representation? Minsky and Papert claimed that

the representational egg must come before the procedural chicken, while Fodor and

Pylyshyn claimed to intimately know the egg and, by extension, the exclusive class of

fertile chickens. The flip side, of course, is that this perfect egg may only be layable by

an impossible chicken: A formal representational theory, specified without consideration

of its own genesis, may not be learnable by any mechanism in principle.

This work points to biologically certified way out of the dilemma: Co-Evolution.

The representations and their associated procedures develop slowly, responding to each

other’s constraints through a changing environment. The constraint that the
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representations fit into fixed-width patterns interacts with the constraint that the patterns

must compose in certain well-formed ways, giving rise to fixed-width patterns which

capture structural similarity in spatial distance.

The RAAM architecture has been inspired by two powerful ideas. The first is due

to Hinton [42], who showed that, when properly constrained, a connectionist network can

develop semantically interpretable representations on its hidden units. The second is an

old idea, that given a sufficiently powerful form of learning, a machine can learn to

efficiently perform a task by example, rather than by design. Taken together, these ideas

suggest that, given a task, specified by example, which requires embedded representa-

tions, a network might be able to develop these representations itself.

It turns out that there is no single task which requires such representations. There

have to be at least two tasks; one to construct the representations, and another to access

them. On address-based machines, these tasks, such as string concatenation and array

indexing, are so computationally primitive and natural that they fall far below notice.

They are not natural to neural networks and thus need to be examined anew. Here, the

resulting task-specific mechanisms, the compressor and reconstructor, together form a

reconstructive memory system, in which only traces of the actual memory contents are

stored, and reliable facsimiles are created with the use of domain knowledge.

The systematic patterns developed by RAAM are a very new kind of representation,

a recursive, distributed representation, which seems to instantiate Hinton’s notion of

the "reduced description" mentioned earlier [19]. They combine apparently immiscible

aspects of well-understood representations: They act both like feature vectors with their

fixed width and simple measures of similarity, and like pointers, so that, with simple

efficient procedures their contents can be "fetched." Even further, they act like composi-

tional symbol structures: Simple associative procedures, such as the reconstructor, pat-

tern classifiers, and pattern transformers, are clearly sensitive to their internal structure.

However, unlike feature vectors, these representations recursively combine into

constituent structures, according to statistically inferred well-formedness constraints.

Unlike pointers (or symbols like G0007), they contain information suitable for similarity

measurements and, thus, nearest-neighbor judgements. And, unlike symbol structures,

they can be easily compared, and do not have to be taken apart in order to be worked on.

Recursive distributed representations may thus lead to a reintegration of the syntax and
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semantics at a very low level.

Currently, symbolic systems use information-free "atoms" which physically com-

bine (through bit or pointer concatenation) in a completely unrestricted fashion. Thus, for

any domain, a syntax is required to restrict those "molecules" after the fact, to the set of

semantically interpretable ones. With further work, recursive distributed representations

might undergo a metamorphism into symbols which contain their own meanings and

physically combine only in a systematic fashion. After all, real atoms and molecules do

so all the time.
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