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Abstract

Evolutionary Fabrication:
The Co-Evolution of Form and Formation

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by John Rie el

Evolutionary Design has been used to automatically generat wide variety of novel
and creative objects such as circuits, robots, and sate#litantennae. And yet, despite
the availability of sophisticated rapid prototyping machnes capable of printing objects
out of plastic, metal, and even circuitry, relatively few ofthese evolved designs have
been physically manufactured in the real world.

We argue that the cause of this paucity of physical artifactBes in the \design rst,
build later" philosophy of contemporary Evolutionary Desgn. By only specifying the
form of an object, this approach leaves unanswered the vital quies of formation.
As evolved forms become more complex, their formation becesincreasingly di cult
for both humans and computers to discover. As a consequentiere is a growing
Fabrication Gap between the complexity of objects which we can evolve and th®
which we can manufacture.

The alternative proposed here is to use Arti cial Ontogenig, a computational
method inspired by the biological processes of growth, inder to directly evolve the
formation of objects. We introduceEvolutionary Fabrication, the direct evolution of
assembly instructionswithin a simulated manufacturing system, and show that this
approach is capable of injecting the novelty and creativityssociated with evolution-
ary approaches into the realm of fabrication, generating mqust novel objects, but

novel means of assembling those objects as well.

Vii



viii

Ultimately, the evolution of form and formation become ful intertwined when
the language of assembly itself becomes subject to evoluticapable of discovering
increasingly large sub-assemblies and adding them to itsoabulary. Through this
co-evolution of form and formation, Evolutionary Fabricaton discovers bothhow to
build objects andwhat to build them out of In this manner, Evolutionary Fabrication
is capable of designing and assembling scalably complex exdt$ in a hierarchical
manner, even in the presence of error during assembly.

Via this co-evolution of form and formation, Evolutionary Fabrication circum-
vents the Fabrication Gap, leading the way to systems whichaa move from broad
speci cation to complete artifact without the need for further human intervention.
This budding eld of Fully Automated Design and Manufacturewill have an impact

on realms ranging from product design to planetary explorain.



Preface

When | rst arrived at the DEMO Lab in the Fall 2001 | was given the task of
assembling a variety of the \GenoBots" created by my colleag Greg Hornby [38].
A few of the simpler robots were relatively easy to assembland produced some
spectacular results - the most notable being the \QuadraBbthat walked in straight
lines on four legs, each actuated by a single oscillating germotor.

Unfortunately, as the designs became more complex, the rdban turn became
more dicult to build. The brittle plastic parts broke easil y, and the actuators
struggled to move ever larger masses. More frustrating, hever, was the process
of looking at one of Greg's simulations and guring outhow exactly to build the
shape on the screen. This was my rst glimpse of the \Fabricain Gap": the notion
that there is a tremendous amount of missing knowledge beter the blueprint of an
object and the process required to physically manufacture i

And so, my motivation for this work stems from the same quesin that many
Ph.D. candidates ask themselves: \Can't | get a computer toalthis for me?" This,
in the broadest sense, is the subject of this dissertationoWw we can use Evolutionary

Algorithms not just to designcomplex objects, but toassemblehem as well.
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Chapter 1

Introduction

Imagine a table-top machine, akin to the fabled \Star Trek" eplicator, able to create
any object it is asked for. Now imagine that same machine ended with creativity,
capable of inventing entirely new products as well: an \autmated invention ma-
chine" [51]. Next, consider a eet of these machines landiman the surface of Mars,
where each proceeds to take measure of its surroundings,tgatlocally available raw
materials, and then produce a series of robotic rovers, eaghiquely suited to the ter-
rain in which it landed. Long the domain of science ction, mahines capable of fully
automated design and assembly are coming closer to realignd have the potential
to revolutionize personal and industrial manufacturing.

At rst glance, fully automated design and assembly seems meclose indeed. On
the side of automated design we have the progress of Evolutary Algorithms in the
realm of design, which over the past twenty years, have proded a wide variety of
objects ranging from tables [38, 29] and trusses [66] to astrobots [75]. Evolutionary
Design has demonstrated the capacity for automated creaify unfettered by human
bias. Indeed, the literature is ripe with unexpectedly noue elegant, and \human

competitive" solutions to design problems [40, 2, 51, 76, b4
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And on the side of automated manufacturing we have the receatlvances in rapid
prototyping and industrial robotics. State of the art benchtop systems, often dubbed
\Santa Claus Machines", are now capable of manufacturing lagively sophisticated
objects out of a wide range of materials such as plastic, mé&nd ceramic. Cutting
edge research units are even able to print batteries, wiringnd entire circuits [63, 16].
On a larger scale, massive industrial robots can now assemigntire cars.

This dissertation introducesEvolutionary Fabrication: a means by which we can
merge the elds of Evolutionary Design and Automated Manufeture, and in that

manner realize the full automation of design and assembly.

1.1 The Fabrication Gap

Unfortunately it soon becomes clear that the full automatio of design and assembly
is not as simple as feeding the product of Evolutionary Desigdirectly into a Rapid
Prototyping machine. Several evolved designs have been rmtacttured in the real
world [30, 29, 75, 38, 28], perhaps the most notable being Lokt al.'s evolved an-
tenna [59], due to be launched into space aboard a Low Earth [t satellite this year.
And yet, despite being automatically designed, they were lananually assembled.
This need for further human intervention arises because theeis a knowledge gap
between the process of design and the process of manufactuHow, exactly, does
the rapid prototyping machine knowhowto print an object? How does the industrial
robot know how to build the car? Conventionally, the end redu of Evolutionary
Design is a descriptive model of the evolved object: a bluépr Rapid prototyping
machines and industrial robots, on the other hand, require speci c set of instructions
in order to perform their task: anassembly planConsider a blueprint as a photograph

of a cheese sou e in a cookbook. While the photo may describe great detail, and



CHAPTER 1. INTRODUCTION 3

in full color, what the nished sou e should look like, it contains no information on

how to cook it. In order to actually prepare the dish, a cook needthe recipe on
the facing page. Similarly, before they can be assembled,obeed blueprints must

be translated into a set of explicit instructions for the assmbly mechanism. This
crucial missing knowledge between the description of an @g} and the assembly of
that object is the Fabrication Gap.

There are, of course, a few ways of automatically transforng a blueprint into
an assembly process. Rapid prototyping machines, for insige, accept 3-D CAD
les as input, and can reduce these models into a series of diraorizontal slices,
which they then print, layer by layer. Hornby was able to assable his evolved tables
and parts of his evolved robots in this manner [38]. On a broad scale, the eld of
engineering devoted to determining how to build a given obgeby inferring a sequence
of assembly instructions is known ag&ssembly SequencingOften, in order to reduce
the complexity of the task, conventional approaches to agsbly sequencing make a
number of strong assumptions about the process of assembity; instance that it is
monotone (once two parts are assembled they stay together) artavo-handed(that
each stage of assembly joins exactly two sub-assemblies), [33]. Operating under
these assumptions (and provided the objeatan be assembled in the rst place) the
method works, although the task of nding an optimal, or evemear-optimal assembly
plan has been proven to be NP-complete [45].

This raises a more fundamental question: how do we know thatesigns we have
evolved arebuildableat all? One approach is to constrain the representation usday
evolutionary design in such a manner that it only produces bldable objects. Funes,
for instance, was able to evolve large LEGO by using a represation which used
the bricks themselves as primitives, pruning the evolved pgram tree in cases where

mutation and crossover created an impossible structure [3B9]. Funes' de nition of
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buildableis narrow, however, requiring only that the nished physicaobject behave
identically to the simulated evolved object. As we'll see irChapter 2, even these

simple structures were not easy to assemble manually, muas$ automatically.

1.2 Bridging the Reality Gap

If there is another clear lesson to be learned from those ewedl objects which have
been successfully manufactured in the real world, it is thanportance of realistic
simulation in ensuring that the behavior of an evolved objécorresponds to that of
its physical counterpart [14, 42]. Funes used a type of nitelement analysis to model
the forces between LEGO bricks [29]. Lipson's GOLEM robot¥$] and Hornby's
tables and GenoBots [38] were all evolved with quasi-statithnematics simulators.
Realistically simulating the behavior of an evolved objechelps to ensure that
the real object will behave as expectednce built 1t does not, however, provide any
guarantees as to how the object will behavas it is assembledn the real world. If
we translate this notion of the importance of realistic simlation from the realm of
behavior into the realm of assembly, then it stands to reasotinat the best way to
ensure that an object can be assembled in the real world is tealistically simulate

the entire process of its assembly.

1.3 Evolutionary Fabrication

This begs the question: if, in order to automate assembly, elved blueprints must be
translated into assembly procedures, and if a good represation and good simulation
are both contingent upon detailed knowledge of the assembtyocess, why not skip

the middle man and evolve those assembly plans directly?
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A parallel exists here between the \design rst, build latet approach to evolu-
tionary design, and the classical \build rst, program late" approach to robotics.
In that scheme, engineers invent complex robotic systemsndaonly later try to
nd a controller capable of operating it. This has been desityred as a \chicken
and egg problem"” [31]: the evolution of robotic control assues a xed morphol-
ogy, and the evolution of robotic morphology assumes a xednd functional con-
troller. Of course, biology doesn't rst \discover" an animal's body, and only later its
brain, rather both evolve in tandem. Inspired by those biolgical processes, modern
robotics has met with considerable success by co-evolvingpmphology and control
[73, 91, 53, 61, 17, 26].

Similarly, nature does not draw increasingly complex \blugrints" of the systems
it wants to build and then subsequently try to assemble themRather, the form of
a species and thdormation of that species are intertwined. If we have learned the
lesson of body-brain co-evolution, that morphology and ctmoel must arise together,
why then are we recapitulating these mistakes in the desigrothain by rst evolving
complex objects and subsequently attempting to build them?

If Evolutionary Algorithms are indeed an \automated invenion machine" [51],
why not allow them to to invent how to build rather than what to build? Would
this, in principle, allow evolution to invent not just novel objects, but novel means of
assembling those objects as well? This is the central questithat this dissertation
seeks to answer.

Approaching Fully Automated Design and Manufacture from tiis perspective
requires a new formulation of Evolutionary Design, one thateplacesdescriptive
blueprints with prescriptive assembly plans. In this approach, the formation of an
object can no longer be taken for granted; we must realistilba simulate not only the

behavior of a nished object, but its entire assembly as well
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In this dissertation we introduceEvolutionary Fabrication: a model of fully auto-
mated design and assembly which operates under this novelpapach. In this model,
we simulate an entire assembly mechanism and directly evelthe instructions for it.
Through this evolution of formation, each result is, by its very nature, both automat-
ically designed and automatically assembled. Ultimatelythe evolution of form and
formation become fully intertwined when the language of asmbly itself becomes sub-
ject to evolution, capable of discovering increasingly lge sub-assemblies and adding
them to its vocabulary. In this co-evolutionary approach, Eolutionary Fabrication
is able to simultaneously discover how to build large, comgt objects andwhat to

build them out of

1.4 Assembly as Ontogeny

Approaching evolutionary design through assembly requsetools and perspectives
di erent from those used in traditional Evolutionary Design. It is worth observing
that as objects are assembled, piece by piece, thgsow over time, developing slowly
from initial components into a nished product. In fact, this process of growth is an
ontogenyof sorts.

This analogy to the biological processes of growth and despment can be ex-
tremely useful. Arti cial systems inspired by these orgam processes fall under the
rubric of Arti cial Ontogeny [52, 94]. Arti cial Ontogenies are gaining popularity
as a means of Evolutionary Design, and have been demonstati® have a number
of signi cant advantages including compactness and scaliéity [38], implicit modu-
larity [13, 39], and high adaptivity and evolvability [96]. The relevant question in
the context of Evolutionary Fabrication is whether these qgalities can transfer into a

system which explicitly models the physical assembly of arbect.
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1.5 Development and Noise

Developmental approaches to design are not without their dwbacks. For starters,
there is the overhead associated with realistically simuiag an object's complete
development. Furthermore, as an object or an organism dewek, each step of its
growth can be considered a di erent phenotype - who is to sapat the \ nal" result
is the best [97]?

More problematic for the purposes of Evolutionary Fabricabn are the deleterious
e ects of noise and error, which can can induce a one-to-manglationship between
genotype and phenotype: a single genotype may develop into antire distribution
of phenotypes, each with a corresponding tness [81]. In bawy, the interaction
between ontogeny and environment is a cornerstone of the celof Developmental
System Theory [69, 54]. The matter of developmental noise siately begun to attract
attention in developmentally-inspired arti cial systems[110, 99, 98, 81, 83, 82].

Any system such as ours, which hopes to realistically modehysical assembly,
must therefore address the issue of how teliably produce results despite environ-
mental noise. In this work we show how even simplaallistic assembly process, that
is, one without the means to measure intermediate progressn nonetheless learn to

reliably assemble a goal structure.

1.6 The Growth of Complexity

It is one thing to say that we can use Evolutionary Fabricatia to evolve how to build
certain things. It is quite another to say that the process Wl scale to increasingly
large objects, particularly under the presence of noise. \Woon Arti cial Ontogenies

has shown how developmental approaches can produce scaldblge and complex

representations[38, 13, 94] , but if the assembly system which interprets tise repre-
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sentations is limited to a single sized building block, suchs a LEGO brick, then the
assembly of larger objects becomes increasingly di cult,grticularly as small errors
during assembly begin to accumulate.

In his seminal essay \The Architecture of Complexity", Herlert Simon [90] argues
that the evolution of complex forms from primitive elementsis highly contingent
upon hierarchical, modular assembly. Using his famous pdnla of two watch-makers,
Simon demonstrates how modularity insulates systems frorhe e ects of error during
assembly, and greatly increases the rate at which large colep forms can emerge.

This reasoning translates readily into the realm of assembland ontogeny: in
order to build larger, more complex objects, development mtdiscover increasingly
larger components with which to build them. In the context ofEvolutionary Fabri-
cation, this means that our system must be capable of discoirgy increasingly large,
increasingly complex, and reliably attainablesub-assembliesind incorporate them
into the language of representation as new building blocks .

Several models of of modular acquisition in Evolutionary Aorithms exist [50, 4,
86, 21, 101]. Most, however, assume that the same genotypégjgence will have the
same phenotypic consequence across di erent contexts. Yiwan therefore be stymied
by developmental representations such as ours, in which tiphenotypic consequence
of a genetic sequence is highly contingent upon its contexto better illustrate this
notion of context sensitivity, let us once again return to ou earlier example of a
sou e recipe. The set of instructions (a genotypic module) whichrpduces whipped
egg whites (a phenotypic module) in a sou e recipe would pragce a mess (if anything
at all) if they occurred later in the recipe or, for that matter, in an omelet recipe.

The challenge of modular acquisition in sucltontext dependentrti cial onto-
genies therefore lies in guring out a process by which thmeaning of a favorable

genetic sequence, rather than theyntax can be preserved. The means by which
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we overcome achieve this isymbiogenesis the process by which one organism, the
symbiont is completely absorbed by its host. In the endosymbiotic nael of modular
encapsulation, complete organisms, not just speci ¢ podns of their phenotype, are

used to form modules.

1.7 Summary

Broadly, the aim of this work is to foster an entirely new appoach to the \automated
invention machine”, one which replaces the evolution dbrm with the evolution of
formation. Doing so, we argue, avoids the informational \FabricatiorGap" between
the descriptive blueprints produced by conventional approaches and tharescriptive
instructions needed to build them.

More concretely, our central contribution lies in introduing Evolutionary Fab-
rication, the direct genetic programming of an assembly mechanisms a suitable
alternative and a promising approach to the full automatiorof design and assembly.
We claim that by evolving how to build not only can it producebuildableobjects, but
it is capable injecting the novelty and creativity seen in caventional evolutionary
design into the realm of fabrication, discovering not only ovel designs, but novel
means of assembling those designs as well. Further, we shaw lEvolutionary Fabri-
cation has mechanisms, both implicit and explicit, which dbw it build scalably large
complex structures, in the presence of noise and error dugirassembly.

Combined, these contributions lay the crucial theoreticahnd empirical founda-
tions for our ultimate goal of creating a real-world, emboéd Evolutionary Fabrica-

tion system.
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1.8 Preview

Chapter 2 lays the foundation for our work. It will describe the eld ofEvolutionary

Design in more detail, discussing related work and paying gecular attention to case

studies of the few examples of physically embodied result§his will lay out the

motivation behind the creation of Evolutionary Fabrication as a new paradigm for
fully automated design and assembly.

Chapter 3 describes our experimental framework for exploring the capilities
and limits of Evolutionary Fabrication (EvoFab), and provides a brief example of the
process by evolving the assembly plan of a speci ed goal stture.

Chapter 4 demonstrates the ability of our Evolutionary Fabrication famework
to perform open-ended design tasks, learning to build strwges given only a broad
speci cation. Section 4.3 demonstrates the emergence ofvabmeans of assembly in
Evolutionary Fabrication (see Figure 1.1), and explores # causes of those phenom-

ena.

™

=l
=l

Figure 1.1: An example of novel dynamic assembly from Sectid.3

Chapter 5 explores the e ects of noise and error during Evolutionary &brication.
Section 5.1 demonstrates the ability of EvoFab to discoverow to reliably build a goal
structure in the presence of noise, even without the means toeasure intermediate
results. Section 5.2 demonstrates how Evolutionary Fabation can reliably build
large, complex structures in noisy environments through thdiscovery of hierarchical

modular assembly (see Figure 1.2) .
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Figure 1.2: A robust hierarchical modular assembly from Seeon 5.3

Chapter 6 discusses in more detail the themes and implications of Eutibnary
Fabrication, and sketches out the future of fully automateddesign and assembly,
sharing some ideas on how such a system can be implemented hie teal world.

Finally, Section 6.6 summarizes and concludes this dissertation.



Chapter 2

Foundations

This chapter will lay out the central themes of this dissertion. We begin by in-
troducing the Evolution of Form, the branch of Evolutionary Design which seeks to
automatically create complex and novel objects. We then ekgpe in greater detail
more recent e orts to physically manufacture these evolvedesigns. As we'll see, this
transition from evolved design to physical object is far fnm seamless. These complex
objects, designed automatically and without human e ort, absequently require sig-
ni cant human intervention to physically manufacture. As evolved designs become
increasingly complex, aFabrication Gap opens up between those objects which we
can evolve and those which we can actually manufacture.

A central claim of this chapter is that the root cause of this dculty lies in
the use ofblueprints to describe evolved objects. By only specifyingshat to build,
blueprints leave unanswered the equally important questioof howto build it. Absent
this information, the complexity of those blueprints we carevolve quickly out-paces
the complexity of those blueprints we can determine how to nmaifacture, thus, the
Fabrication Gap.

We argue that the solution to this gap begins with the evolubn of formation

12
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rather than form. Arti cial Ontogenies, a type of Evolutionary Computation inspired
by biological growth, are a natural method of modeling fornt#&on, and allow us to
evolve howto build rather than simply whatto build.

Of course, while their prescriptive nature may help avoid th Fabrication Gap,
developmental representations are not without their own kudens. Error and noise
during development can signi cantly complicate the task ofvolution. When sub-
jected to noise, a developmental genotype is capable of gmogvinto an entire range
of phenotypes, each with a corresponding tness. As the seabf development in-
creases, so do the deleterious e ects of noise.

The best way to combat noise while evolving the assembly ofcireasingly complex
objects is through hierarchical, modular assembly. In ess= the key lies in nding
something, anything that you can reliably build in the presence of noise, and then
adding that robust object as a new primitive in your assemblyprocess. It is through
such endosymbiotic encapsulatiorthat the evolution of form and the evolution of
formation become fully intertwined.

We end the chapter by introducing Evolutionary Fabricationas the Arti cial
Ontogeny-based marriage of Rapid Prototyping and Evolutioary Design, which will

lead to the full automation of designand assembly.

2.1 The Evolution of Form

Generally speaking, Evolutionary Algorithms (EAs) are a fon of population-based
informed random search inspired by biological evolution. ie most popular types of
EA are Genetic Algorithms (GAs) [67], developed circa 197Evolution Strategies
(ESs) [8] circa 1973, and Genetic Programming (GP) [50],ca 1992.

Loosely speaking, the appeal of Evolutionary Algorithmsdsis in trying to harness
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some of the creative energy demonstrated by the only procdasown to have suc-
cessfully generated complex intelligence: biological éwtion of life on earth. The
reasoning goes that what is good for the biological goose isogl for the computa-
tional gander. More speci cally, Evolutionary Algorithms have the ability to exploit
the underlying structure of large search spaces in order tarave an unique solu-
tions. While certainly no panacea(see, in particular, Wolpert and Macready's No
Free Lunch [107]), they are often capable of arriving at noleolutions to di cult
problems.

Evolutionary Algorithms can be used to evolve any number ohings: from a sim-
ple string of bits, to the con guration of a Field Programmalle Gate Array (FPGA),
to the complete brain and body of a robot. And yet, while the ppducts of evolution
may be di erent, the fundamentals remain the same. The basignit of manipulation
is the genotype which can be changed via genetic operators such as mutatiand
crossover. The genotype serves as an encoding of ginenotype(although in simpler
EAs the two are the same), representing a candidate soluti@a the problem at hand,
which can then beevaluatedfor tness. Populations of solutions are bred from gen-
eration to generation using the Darwinian principle of setgion of the ttest, until a
desired result is achieved. A more thorough treatment of EAsan be found in [67].

Since the term \design" is used loosely in the eld, it is impdant to be clear
about what we mean by \design" in the context of this dissertaon. In his book
\Evolutionary Design by Computers”, Peter Bentley [7], males an e ort to distin-
guish Creative Evolutionary Design from what he calls Evolutionary DesigrOpti-
mization. In this view, the former seeks to create new desigrout of whole cloth,
whereas the latter seeks to optimize various aspects of a feisting design. This no-
tion of creativity is important. The hope is that Evolutionary Algorithms can arive

at designs which possess unanticipated novelty, equaling @en surpassing human
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designs. Such \human-competitive" results include sortm networks [40], photonic
crystals [76], optical lens systems [2] and quantum Fouri¢gransforms [64]. Indeed
John Koza, one of the creators of Genetic Programming has dudd GP \an auto-
mated invention machine" [51], explaining that its capacit for novelty arises because
it is not bound by human reasoning and logic.

Here, we are speci cally interested in what we call th&volution of Form, for in-
stance of satellite antennae [59], robot morphology [10,]75r of entire buildings [88].
What separates the Evolution of Form from other types of evationary design is that
the end result has some tangible shape, rather than simply ibg an arrangement of
bits. This distinction becomes clear when the time comes taitn the evolved objects
into physical artifacts. For many real-world evolutionarydesigns, such as the FPGAs
used in Evolvable Hardware, the transfer from simulation toeality is relatively easy,
because the designs take the form of pure information, whidan be e ortlessly and
automatically transferred to their physical counterparts By contrast, an evolved
robot must be crafted, servo motors attached, and batteriesharged before it can
walk. Likewise, an evolved satellite antenna cannot be laahed into space until it
has been physically formed and attached to its host.

The evolution of form carries with it the promise of entirelynew designs of physical
objects. If, however, we want to bring these novel objectstmreality we must face

the prospect ofmanufacturing, and with it the corresponding Fabrication Gap.

2.1.1 Case Study: Sims Creatures

One the earliest and most frequently cited examples of the @i®f Evolutionary Algo-
rithms to design an object (as opposed to a bit string or progm tree) is Karl Sims'
seminal work on virtual creatures [91, 92]. Although more #n ten years old, Sims'

work has had far-ranging consequences and provided sevdw} insights which have



CHAPTER 2. FOUNDATIONS 16

had a signi cant e ect upon the entire eld of Evolutionary D esign, which has, in a
sense, been playing catch-up ever since.

First among his contributions is the evolution of robot morpology as well as
control. EAs had already been used to to evolve controllersrfa variety of robots with
xed morphologies. Sims' crucial contribution in this regard wain using an encoding
which allowed him to evolve the entire physical structure ohis robots alongside
their neural controllers. By co-evolving morphologies wit their controllers, rather
than using somea priori shape, the evolutionary system was able to generate virtual
creatures whose bodies were tightly coupled to their choséness function. Creatures
evolved for swimming both looked and behaved di erently tha those evolved for
walking or jumping.

This leads to his second signi cant choice - the use of a despinental represen-
tation. Rather than the canonical bit-string, his genetic acodings were variable-size
directed graphs which, when interpreted, \grew" into the spci ed creature. Recur-
sive connections allowed for a measure of modularity and s&iin the representation.
As a result, compact graphs could be used to generate relatiy large and complex
bodies which exhibited symmetry and modular re-use.

Third, his creatures were evolved within a virtual physics mvironment. By situ-
ating his creatures in a world with gravity, friction, and cdlisions, they were able to
develop surprisingly \life-like" behaviors.

Finally, inspired by Hillis work on parasites [37] and Angéhe's work on compe-
tition [3], Sims used a competitive co-evolutionary tnesscheme, in which evolved
creatures were pitted against each other, rather than a stiat tness function.

Although none of his choices were patrticularly unique, it weathis combination
- the use of developmental representations to \grow" a robt body and brain, the

evaluation of that robot in a realistic environment, and cometitive co-evolution,
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which led to the emergence of novel and interesting behawrwhich have since
become benchmarks for evolutionary design. There has beem shortage of work
in Evolutionary Design since Sims, and yet almost everythghcarries echoes of that
seminal work.

The vast majority of evolved forms since Sims have been of ly virtual ob-
jects. Beginning in 1996, Peter Bentley began exploring thevolution of form -
rst with lenses [6] and later with tables [5]. Other example of evolved xed forms
include Eggenberger's cellular-based 3-D forms [25], Parls towers [71], and Ja-
cob's trees [41]. Several researchers have used GenetioAllgms to evolve architec-
tures [87, 18, 88]. Quite a few others have followed Sims' dteand evolved virtual
creatures, such as Bongard's agents [13, 11] and KomositsWramsticks" [48]. More
recently, Gondarenkoet al. evolved a simulated photonic structure capable of high

photonic con nement [76].

2.2 Manufacturing Evolved Designs

Our interest, however, is in automatically designing and maufacturing physical ob-
jects. As such, we have the most to learn from those examplekevolved designs
which have been subsequently manufactured in the real worléfunes [29] was among
the rst to bring evolved designs into the real world with hisEvoCAD work, which
evolved LEGO structures in a force-based simulator. By acrately modeling the
forces between elements, his system was able to create ueigiructures in simu-
lation which could subsequently be built in the real world. kure 2.1 contains an
example of one of his evolved blueprints, and the correspond physical object. Fol-
lowing Funes' work, Regliet al. used graph grammars to represent the assembly of

LEGO structures [72, 49], and were able to evolve walls, @ilis, and staircases.
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Shortly after Funes' work, Hod Lipson's GOLEM project [75] reated printable,
controllable robotic forms. Like Sims and Funes, he reliedpon a realistic physical
simulator, and like Sims, he co-evolved simple physical lding blocks with simple
neural controllers. The designs were printed on a rapid protyping machine, motors
and batteries were snapped into place, and the resulting péigal robots were able to
locomote on a at surface.

Frutiger et al. [28] evolved the morphology and controller for a monkey-gkswing-
ing robot inside of a physics-based simulation, and then ratively transferred that
result onto a physical prototype over the course of severakeeks.

Later, Hornby [38] used a grammar-based system to evolve tab and mobile
robots. The developed genotype consisted of instruction® ta LOGO-like turtle
which then \drew" the structures out of voxels in simulation Although early results
were transferred by hand into CAD before printing on a 3-D priter, Hornby's later
designs created CAD les automatically. Like Lipson's GOLE, once the bodies were
printed, nal assembly, including the addition motors and wring, was performed by
hand. Figure 2.2 contains an example of one of the evolved G&ots on the left,
and the corresponding physical robot on the right.

The most signi cant recent result of real-world evolved degn is probably Lohnet
al.'s work on Evolved Antennas [59] - one of which is due to be lacimed into space
aboard a Low Earth Orbit satellite. These designs were geraged by L-systems in
a manner similar to Hornby's work, and tested in an antenna siulator before being

assembled by hand.
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Figure 2.1: Pablo Funes' evolved tree from [29], reprintedith permission from the
author. The evolved blueprint is on the left, and the correspnding physical result
on the right.

Figure 2.2: One of Greg Hornby's evolved GenoBots[38], ramed with permission
from the author. The evolved blueprint is on the left, and thecorresponding physical
result on the right.
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2.3 The Fabrication Gap

While the above physical objects may have been automaticaldesigned their man-
ufacture was far from automatic. In each case, when it camenrte for the assembly
of those designs, they were all built by hand, in a manner whiaequired signi cant
human interaction. For Funes' LEGO trees, even with blueprts which explicitly
described the placement of each piece, hand assembly reredim di cult task ( this

is well illustrated by the Scientic American Frontiers epsode?! in which the host,
Alan Alda, attempts to build one of the designs) [29]. Frutigr's evolved monkey re-
quired signi cant tweaking before the physical counterpdrbehaved like the evolved
model [28]. And Lohnet al.'s satellite antenna had to be meticulously soldered and
bent by hand, with care to preserve the precise angles spemi by the evolved de-
sign [59].

In the examples above, human intervention, rather than begmremoved altogether,
has simply been shifted from the design phase to the manufadng phase. And yet, if
the success and novelty of Evolutionary Design is due to thadt that, as Koza put it,
\it does not travel along the well-trod paths of previous huran thinking" [51], why are
we subsequently injecting that human logic and bias back iatthe realm of assembly?
The need for subsequent human e ort to move from evolved dgsi to manufactured
object is due to what we call the \Fabrication Gap". Manufacuring processes, either
human or automated, require as input somgrescriptive set of instructions onhow
to build. Conventional Evolutionary Design, on the other had, produces purely
descriptive representation of objects. If we seek to remove human e ortdm the
process completely, to fully automate both design and assbkly) then we must nd a

way to automatically produce prescriptive representation of assembly.

Lhttp://www.pbs.org/saf/1103/segments/1103-3.htm
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2.3.1 Descriptive Representations

and the Assembly Inference Problem

To humans, descriptive blueprints seem like seem like a nall way to represent an
evolved object. After all, architects use blueprints to degn buildings, and engineers
use those same blueprints to build them.

This evolution of blueprints is enough, provided that the ed goal of an Evolu-
tionary Design system is a virtual representation of the olegct. If, however, one is
seeking tomanufacturethose evolved forms, then blueprints alone are insu cientdr
the task. A vast amount of expert knowledge lies between thdugprint of a building
and the building itself. Nothing in the plans of a house, fornstance, suggests that
the foundation must be built before the roof is. As a more conete example, consider
Funes' evolved blueprint of a tree on the left hand side of Fige 2.1. Nothing about
the design suggests which brick, or even which branch, shddde placed rst. Should
the trunk be built rst, and then the branches added, or perhgs vice versa? Nothing
about it, certainly, suggests that the easiest way to buildtj as it turned out, is by
building it horizontally on a at surface and tilting it into place.

One notable exception to the reliance on purely descriptivepresentation is Regli
et al.'s LEGO structures [72, 49]. Their work utilized conceptuagjraphs as \assem-
bly representations”, explicitly describing the physicakrelationship and connections
between each component in the evolved structure. Howevehig semantic represen-
tation was relatively high-level, and described only the ste of the complete object,
not its manufacturing process.

To explain the descriptive weakness of descriptive repregations, consider a
blueprint as a photograph of a cheese sou e in a cookbook. Whkithe photo may de-

scribe in great detail what the nal result should look like,it contains no information
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on howto cook it. In order to actually prepare the dish, the recipe o the facing page
is required. Before they can be manufactured, therefore,a@ved blueprints must be
translated into a set of assembly instructions, just like tB photograph of the sou e.
This task can either be performed by human minds with their st wealth of insight
and common sense knowledge, or computationally.

Although the process of determining an assembly sequenceyntme readily to
humans, it often much harder to solve computationally. Rajgi Prototyping Machines
approach this by accepting 3-D CAD les as input and reducinghese models into
a series of small horizontal slices, which they then printayer by layer. Hornby was
able to automate the assembly of his evolved tables in this maer [38].

In the eld of engineering, the task of inferring a sequencd assembly instructions
given a particular structure a priori is known asAssembly Sequencinf05, 109]. Of-
ten, in order to reduce the complexity of the task, conventimal approaches to assem-
bly sequencing make a number of strong assumptions about theocess of assembly,
for instance that it is monotone (once two parts are assembled they stay together)
and two-handed(that each stage of assembly joins exactly two sub-assends) [32,
33, 104]. When operating under these assumptions the methewrks (provided the
object can be assembled in the rst place), however the task of nding amptimal,
or even near-optimal assembly plan has been proven to be Néatlete [45].

Assembly Sequencing often involves the much easier invepseblem ofdisassembly
planning - that is, removing parts from an object one at a time until it as been
reduced to its basic components. Doing so, however, make ttritical assumption
that every stage of assembly is botheversible and symmetric. Of course, anyone
who has taken apart a home appliance and then put it back togeér, only to be
left with a remaining mysterious screw, knows that assemblgnd disassembly are

rarely symmetric, reversible processes in the real world.n llater chapters we will
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Figure 2.3: Intertwined Rings: an example of an unbuildabldesign. If the primitive

set contains rings, and the design speci es their positiomnd rotation, then it may

evolve interlocking rings. Any assembly process which bagiwith separate, solid
rings, however, will never be able to build this structure.

give examples of evolved assembly plans which employ clganbn-reversibleactions

during assembly.

2.3.2 Buildability

The evolution of descriptive blueprints also runs the risk fogenerating designs which
are completelyunbuildableby the assembly process. If, for instance, the primitives
of the design system includes solid rings an evolved bluegirmight specify a design
which involves two interlocking rings (Figure 2.3). Any rekworld assembly process
which begins with solid and separate rings, would be incapliagbof intertwining them
in this manner. Most approaches to the evolution of form the&fore place further con-
straints on the language of representation. Funes [30], Refy2], and Parker [71] for
instance, produce objects which can be built out of LEGO by usy the bricks them-
selves as the basic component of design. Funes' method wa®ftd to prune evolved
representational trees to prevent them from producing stetures with overlapping
bricks. Similarly, Bentley's early work on the evolution ofsolid objects allowed the
generation of \impossible" objects, which were then corréad during the mapping

from genotype to phenotype [5].
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2.3.3 Simulation and The Reality Gap

If there is another clear lesson to be learned from those ewedl objects which have
been successfully manufactured in the real world, it is thanportance of realistic
simulation in ensuring that the behavior of an evolved objeéaorresponds to that of
its physical counterpart [14, 42].

Each of the physically embodied evolutionary designs abokglied upon a realistic
physics environment to evaluate their designs. Funes usectastom variety of nite
element analysis to model the forces between LEGO bricks aadded a 20% safety
margin to ensure his structures could be transferred sucsédly. [29]. Lipson et
al. used a gquasi-static motion simulator to model the behaviorfaheir GOLEM
robots [75], as did Hornby with his evolved tables and robo{88]. Both Linden's [56,
57] and Lohn's [59] antennae were evolved inside of electagnetic simulators.

Realistically simulating the behavior of an evolved objechelps to ensure that
the real object will behave as expectednce built It does not, however, provide any
guarantees as to how the object will behavas it is assembledn the real world. If
we translate this notion of the importance of realistic simiation from the realm of
behavior into the realm of assembly, then it stands to reasotiat the best way to
ensure that an object can be assembled in the real world is tealistically simulate

the entire process of its assembly.

2.3.4 Summary

In summary, the Fabrication Gap between that which we cadesignautomatically and
that which we canbuild automatically is due in large part the way that contemporary
Evolutionary Design is performed. The blueprints evolvedybconventional approaches

are purely descriptiverepresentations of design, and leave unanswered the questof
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howto build the evolved object. Methods of automatically detenining the assembly
of a given blueprint become impossible as the complexity ogésigns increases. Finally,
evolvingwhatto build rather than howto build also runs the risk of discovering objects
which are impossible to build at all, such as intertwined rigs.

One workaround is to incorporate the constraints of your exgrted assembly mech-
anism into the design process through carefully crafted regsentations and accurate
physical models. This is the approach taken by conventiongdost hocmethods of
crossing the Fabrication Gap, such as slicing and Assemblg@uencing. And yet for
su ciently complex design spaces and assembly processésnay be impossible to ex-
haustively enumerate all limitations and constraints. Futhermore, to over-constrain
a design process is to run the risk of crippling the creatiwitthat is so essential to
evolutionary design.

Indeed, if one is going to put the e ort of injecting knowledg of a assembly
system into the design space, why not instead simply simukatthe entire assembly
mechanism, and evolve assembly plans instead of blueprint€Objects produced in
this manner are by their very nature buildable, and are prodted in tandem with the

information necessary to build them.

2.4 The Evolution of Formation

A central observation of this dissertation is that mechani& assembly is arontogeny
As objects are assembled, piece by piece, thggpw over time, developing slowly from
initial components into a nished product. It seems natural therefore, to cast our
gaze to biology for inspiration on evolvinghowto \grow" objects.

Of particular interest to us is Evolutionary DevelopmentalBiology, or Evo-Devo,

which studies the relationship between biological developent and evolution [80, 34].
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The link between the evolution of form and the processes ofifoation date back to the
German biologist Ernst Haeckel who illustrated striking snilarities between the em-
bryogenies of distinct vertebrates. In his \Fundamental Bigenetic Law", more com-
monly referred to as \recapitulation theory"”, the stages ofdevelopment (ontogeny)
of an organism recreate, in condensed form, the evolutioyahistory (phylogeny) of
an organism.

While strict recapitulation has been discredited (Haeckelfudged™" several of his
drawings to reinforce his point [34]), the echoes of the Biegetic Law abound in
modern evolutionary developmental biology. There are cleanstances ofhomologyin
comparative embryology, in which distinct species which glne an evolutionary past
often share developmental traits [34, 93].

One of the strongest examples of homology, and one of the masiportant dis-
coveries in comparative developmental biology, is the sef bomeoboxgenes, which
play an important role in laying out the spatial structure of a developing embryo.
First discovered in drosophila homeobox genes have been discovered in a number
of vertebrates and insects. Mutations to homeobox genes chave wide-ranging ef-
fects on the morphology of an organism, a ecting everythindrom patterning to the
placement of limbs [80].

Slacket al. use the existence of homologies such as the homeobox genedaeafor
the existence of the \zootype": a developmental stage commao all animals, despite
high variation in developmental processes both before andtex it. They argue that
this \phylotypic stage" has been conserved during evolutio because this is the point
at which the basic body plan,bauplan common to all species is laid out and at which
development is most brittle [93, 36].

This conservation of the phylotypic stage during evolutiorand speciation results

in what is referred to as the \phylotypic hourglass": di erent species vary greatly
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in their respective developments both prior and subsequet the phylotypic stage,
but vary signi cantly less during the phylotypic stage [36,94]. The largest source of
variation during the phylotypic stage isheterochrony changes in the developmental
timing or sequence of events [79, 78]

Developmental features such as the homeobox genes and Haeiplanalso point
to a level of modularity in developmental systems, which weigtuss at more length
in Sections 2.4.5 and 5.2.

From the perspective of Evolutionary Design, the most valude aspect of bio-
logical development is its ability to generate enormouslyomplex systems from a
(relatively) compact genetic representation. As Stanleyral Miikkulainen point out,
there are 30 thousand active genes in the human genome, whiohnage to produce
100 trillion neural connections in the human brain. Moreowe biology manages to
reliably accomplish this generative feat through the esseally stochastic processes
of biochemistry [94]. Our interest is in harnessing this e eency and robustness for

the purposes of automating arti cial manufacturing proceses.

2.4.1 Arti cial Ontogenies in Design

Arti cial developmental systems which use biological groth and development as
metaphors for physical assembly fall under a variety of narae Arti cial Embryo-
geny [94], Arti cial Embryology [20], Computational Embryology [52] and Atrti cial
Ontogeny [10, 13] . Since the ternontogenyis the broadest of the terms, encompass-
ing the entire course of biological development from condem to nal form, we will
useAtrti cial Ontogeny to collectively describe these developmental representats.

In their Taxonomy [94], Stanley and Miikkulainen divide Evolutionary Desiga

based on Arti cial Ontogenies into two groups: cellular-baed and grammar-based.
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Cellular Approaches

Cellular approaches to Arti cial Ontogeny take their inspration from the biochemical
processes of cellular life. Dellaert and Beer use a develantal model in which an
\egg" slowly grows into a multicellular robot [23, 24]. Bongrd and Pfeifer [10, 13]
use a model of Gene Regulatory Networks (GRNSs) to evolve thedly and brain of
robotic agents. Similarly, Eggenberger used Di erential €ne Expression to evolve
3-D shapes and objects [25] and De Garis [20] evolves both 24l 3-D shapes using
an \Arti cial Embryo". Bentley and Kumar use a variety of di erent \embryogenies"
to evolve target 2-D shapes. On a broader scale, Bonabeatual. use a multi-agent
\stigmergic" system, much like swarming ants, to evolve 3-[rchitectures [9].

While cellular approaches have produced several interewi results, their treat-
ment of ontogeny is too abstract to readily lend itself to thedescription of automated

manufacture at the scale we are interested in.

Grammatical Approaches

Grammatical approaches to Arti cial Ontogeny instead relyon the more abstract
rules of arti cial grammars to model biological growth. Geerally, grammatical ap-
proaches use a series of rewrite rules to transform a shorttial S-expression into a
larger string which represents the desired object. Coateses Genetic Programming
and Lindenmayer systems (L-systems) to evolve both 2-D and[3 shapes [15]. In
[96], Toussaint uses L-systems to evolve 3-D plants in OpebhGHornby's GenoBots,
which we discussed above, also used L-systems to evolvedtute\draw" 3-D voxels
representing robot morphology. Lohn's antennae were evelyin a similar fashion [59].
As we discuss at more length below, from our perspective oftamating assembly,

the major advantage of grammatical approaches is their alyl to produce linear
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strings of instructions which, if phrased correctly, can besed to explicitly describe

the processof an object's assembly.

2.4.2 Bene ts of Arti cial Ontogenies

Unlike traditional evolutionary computation, Arti cial O ntogeny treats the genotype
as anindirect, or procedural encoding of the phenotype. The genotype is decoded
and transformed into a phenotype by means of some developrtednprocess. This
abstraction layer between genotype and phenotype allows fquite a bit of exibility
during evolution. To begin with, Arti cial Ontogenies, much like biological ones,
allow for a compact representation of a solution. Small chges in a genotype can
have large consequences on the fully developed phenotyp@rmby, for instance, was
able to show how a single change in his L-system representatiof a table produced
co-ordinated changes on all four legs [38].

Furthermore, developmental systems are capable of a highgilee of both ex-
plicit and implicit modularity, allowing for highly struct ured hierarchical organiza-
tion [13, 39]. These results mirror the development of higlevel repeated structure
and symmetry in both plants and animals, such as those in whicHox genes play
a role. Moreover, developmental approaches allow for a léwd redundancy: mul-
tiple genotypes can map to the same phenotype. Toussaint hdemonstrated how
\neutral" mutations between genotypes which produce the sae phenotype can allow

developmental systems to adapt and improve their evolvaiiy [96].
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2.4.3 Development of Representation vs.

Representation of Development

While these development approaches model biological gréwat an abstract level,
they do not necessarily lend themselves readily to the task automated assembly.
To begin with, the nal result of each of the ontogenies reviged above is still, a
purely descriptive representation of the evolved object. Ifhough these models can
be very detailed, they nevertheless remain, essentialljaree-dimensional blueprints,
thereby negating their utility for automated manufacture.

The L-systems used by both Hornby [38] and Toussaint [96] pwiin a promising
direction, in the sense that they are used to generate stringof OpenGL instruc-
tions which are then interpreted to \draw" 3-D objects out ofvoxels. Such drawing,
however, ultimately bears little resemblance tg@hysicalassembly.

As we have discussed, the Fabrication Gap is due to traditiah Evolutionary
Design's reliance on descriptive blueprints. While Arti ¢gal Ontogenies o er an al-
ternative by allowing us to evolvehow to build, they are of little use if, in the end,
they are only used to produce blueprints. If our goal is to aomate both design
and assembly, then the end result of our process should irstebe anexplicit set
of instructions which lend themselves to automatic interpeted by a manufacturing
system.

Furthermore, most Arti cial Ontogenies used for design tak the actual assembly
process for granted, either by allowing virtual structure$o appearex nihilo - that is,
out of thin air - or elsein utero - in a very simpli ed environment, signi cantly less
complex than the real world environment in which their physial counterparts are to
be assembled. Hornby's tables, for instance, were not suttj¢o gravity as they were

assembled, only when they were completed [38].
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One exception to this lack of \embodied" development is Boragd's Gene-Regulatory
Networks [10], which slowly \grew" a robotic morphology piee-by-piece in a realistic
physics environment. Bongard's cellular approach, howayéhas the same descriptive
weakness as other cellular approaches in that it does not #yagend itself to interpre-
tation by an external assembly mechanism.

Applying the lessons about the importance of realistic sintation (which we re-
viewed in Section 2.3.3) to the realm of manufacture leads ts assert that the best
way to ensure that evolved objects can be built is to simulattheir entire assembly
in situ, that is in an environment that closely resembles the physat environment in

which they will be ultimately assembled.

2.4.4 Noise and Development

Developmental representations are not without their drawdcks. In particular, stochas-
tic e ects which lead to error and noise during developmentam signi cantly compli-

cate the task of evolution. When subjected to noise during gdelopment, a genotype
is capable of developing into an entire range of phenotypesach with a corresponding
tness (Figure 2.4) Determining which, if any, is the phenogpe most representative of

the originating genotype is a di cult, and in some cases, eitely misleading task [97].

-
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Figure 2.4: Under the presence of developmental noise, eaggnotype develops into
an entire range of phenotypes, each with an associated tness.
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In biology, the interaction between ontogeny and environnm¢ is a cornerstone
of the eld of Developmental System Theory [69, 54]. Lewontipoints out that the
same phenotypic trait, for example eye size idrosophilg can be a ected by both
mutation and environment [54]. He goes on to note that \smalkvents at the level of
thermal noise acting during cell division and di erentiation have large e ects on the
nal developmental outcome” [55].

The matter of noise and error during development has only laly begun to attract
attention in developmentally-inspired arti cial systems Yilmaz and Wu recently
explored the relation between genetic redundancy and despmental noise [110].
Viswanathan [98] has studied the impact of stochastic dewgment on assembly ,
and has demonstrated the ability of adaptive processes whimeasure the state and
progress of the system to achieve higher reliability than paly ballistic processes.

Any approach such as ours, which hopes to successfully assientomplex objects
in the physical world, must therefore be sure to address itddity to overcome noise

and error during during the manufacturing process.

2.4.5 Adaptive Representation

One outstanding challenge in the open-ended evolution ofrfivation lies in scalable
complexity - that is, how to build increasingly large, increasingly copiex objects in
a managed fashion. As Herbert Simon argues in his seminalags$sThe Architecture

of Complexity”, hierarchical, modular assembly is cruciafor the evolution of large
complex forms [90]. A popular example of modularity in biolgical systems is the
eyelesgyene in drosophila which, when mis-expressed, causes catgkyes to sprout
on the wings, legs, and antennae of the ies [35]. Wagner andténberg [100] per-
suasively argue that the evolvability of a system is highlyantingent upon its ability

to adapt its representation by discovering and incorporatig evolutionary modules.
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The value of modularity lies in coupling functionally relaed portions of the genotype
while simultaneously decoupling unrelated portions. Chayes to a representational
module have few side e ects in the remaining genome, and chigs outside a module
have few e ects upon the module.

From the perspective of the Evolution of Formation, this meas that the language
of assembly must itself be mutable and adaptive, capable ofsdovering and using
new modules over the course of evolution. Several models &mfaptive representa-
tion exist, the most common of which fall under the rubric of kerarchical Genetic
Programming (HGP) where encapsulated modules become nevinpitives in the lan-
guage [77, 50, 4, 86, 21]. While they vary in their details, €la of these models of
modular encapsulation involve incorporatinggenotypicsequences, thereby protecting
them from the deleterious e ects of mutation and crossoveand then adding them to
the language of representation. As such, encapsulated mdéekiare simply shorthand
for the genetic sequence they represent - one can be subsétufor the other without
consequence.

Since we are using developmental representations to modbktactual physical
assembly of an object, such purely genotypic encapsulatios insu cient for our
purposes. Because of their prescriptive nature, developnt@l representations display
a measure of context dependency: the same sequence of opamnatcan have vastly
di erent results depending on where in the process it occurs

The challenge of modular acquisition in developmental repsentations, then, lies
in preserving not the syntax, but rather themeaningof a desired phenotypic result.
Chapter 5 discusses these issues in more detail, and intrads an alternative model
of encapsulation in which complete structures, not speci portions of their genotype,

are used to form modules.
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2.5 Evolutionary Fabrication

The lesson drawn from recent e orts at bringing evolved degns in the real world
is clear. The Fabrication Gap is caused in large part by the elution of purely de-
scriptive blueprints which leave unanswered the question diowto build the evolved
object. Furthermore, these approaches are capable of desig objects whose as-
sembly is extremely di cult to discover, and, indeed, objets which are not in fact
buildable at all. Post-hocattempts at discovering an object's assembly through sliog
or Assembly Sequencing make generalizations about the asbly process. Although
these constraints make the task of inference easier, theg@alock the assembly process
itself into these modes. There is no purely mechanical reaswhy rapid prototyp-
ing machines must print objects with successive accretivaykers, nor any reason that
compound objects must be assembled by a monotone, two-haddarocess. As we
will see in later chapters, directly evolvinghowto build removes these assumptions,
and unleashes more novel ways of assembling objects.

The solution then, is to directly evolve the process of an obgt's assembly. Arti -
cial Ontogenies, inspired by biological growth, provide th best framework to accom-
plish this. But Arti cial Ontogenies are insu cient for des cribing assembly unless
they explicitly model an object's manufacturing process, ral can be explicitly be
interpreted by a speci ¢ assembly mechanism.

Evolutionary Fabrication, the marriage of Evolutionary Design, Automated Man-
ufacture, and Arti cial Ontogeny, o ers to replace the evolution of form with the
evolution of formation By directly evolving assembly plans, and by simulating the
entire process of assemblyithin a manufacturing system, it can simultaneously evolve

whatto build and howto build it, thus avoiding the Fabrication Gap.
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2.5.1 Formal Model

Formally, we can consider Evolutionary Fabrication to corist of several coupled as-
pects. First is the Assembly MechanisnM which accepts instructions from a set.
Every nite assembly procedure 2 L when executed byM , produces a structure
s 2 S, whereS is the set of all structures buildable byM with measurable properties
which we are seeking to optimize. Evolutionary Fabricatioran then treatL as the
genotypic search space an8 as the phenotypic space. Implicit in the description
of M are the aspects of the larger environment which may a ect assbly, such as
friction and stochastic noise. In this model, the only consaints placed on assembly
are those that due speci cally to the particular nature of the assembly mechanisrivl .
This di ers from top-down approaches like Assembly Sequeimg, which by contrast
limit the size of L by imposing constraints which are not intrinsic toM , such as
monotonicity and reversibility. Having fewer constraintson assembly methods cor-
responds to a larger space of assembly procedures to seahult, also corresponds
to more possibilities of assembly. The extent to which Evolutionary Fabrication $
able to arrive at novel, or qualitatively di erent solutions to assembly, is therefore
based upon the extent to which the constraints imposed by tegown approaches are
disjoint from the actual constraints of the assembly mechasm. By coupling search
to a speci c language of assembly for apeci c assembly mechanism, we also lose the
generality which arrives from the assumptions of top-down ethods. On the other
hand, it is this very speci city which allows for the immedide automation of any
assembly plan we nd, without any subsequent need for ne tuing.

Chapter 3 will introduce a framework composed of an assembigechanism, a
language of assembly, and an evolutionary algorithm whichilwenable us to explore

this process of Evolutionary Fabrication.
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2.5.2 Alternatives to Evolutionary Fabrication

There are of course some alternatives to Evolutionary Falwation. A considerable
amount of research is being poured into nano- and meso-scakdf-assembly, with
promising results [103]. This level of assembly however isiited by size and energy:
proteins can self-assemble, but automobiles cannot. Modul recon guring, and self-
reproducing robotics systems such as Rus's Crystalline Ratis [89], Yim's snake-like
robots [111] , Chirikjian's Metamorphic Robots [70] and Lipon's self-reproducing
structures [113] o er the possibility of recon gurable mophologies, but are con ned
to relatively complex modular units which have been meticolusly designed and as-
sembled by hand.

In many senses, Evolutionary Fabrication rests in betweerhése two scales, ca-
pable of creating objects on one hand much larger than thoseeated by nano and
micro-scale assembly, and on the other hand producing largemplex objects without

the need for hand-designed modular units.

2.6 Engineering without Engineers

While this dissertation is most rmly rooted in the realms of Arti cial Life and
Evolutionary Design, care must be taken to properly situat&volutionary Fabrication
in the context of modern engineering methods. We must emphas, for instance,
that we are not trying to address any particular weakness inop-down methods of
automatically manufacturing a speci c, single, solid 3-Disape. There are several well
tested and heavily used algorithms for generating tool paghfrom CAD models for
both additive and subtractive manufacturing processes. R&l prototyping machines,
for instance, use arO(nlogn) algorithm to determine the looping path of the print

head as it follows the contours of a horizontal slice througthe object[47, 65]. Like
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Assembly Sequencing, however, these methods are predidaipon having the design
of a buildableproduct in the rst place.

Where does the buildable design come from? As Wilson [105]igie out, there
are two human minds involved in the traditional task of prodt creation: a designer
who speci es the shape and properties of th@ished product, and a manufacturing
engineer, who tries to nd a way to manufacture the design. Wén a product is
deemed too di cult to manufacture, the manufacturing engireer sends the product
back to the designer for a re-design. This decoupling of dgsiand manufacture
allows each engineer to specialize in his particular eld,ub, particularly as products
and their associated manufacture become increasingly coexy the process requires
multiple passes through the design-manufacture loop, whi@dds to the ultimate cost
of a nished product.

Stemming from the broader engineering discipline of Desidgar-Assembly (DFA),
modern approaches seek to reduce this human e ort by integimag product design
with assembly planning [105, 46, 43, 44, 112]. Kim, for instae, uses a model which
automatically generates possible assembly sequences f&DOmodels as they are it-
eratively designed and modi ed by a user [46]. Each of theseethods still has a
human in the loop, responsible for the actuallesignof the object. Nor are they guar-
anteed to always producdeasibleassembly procedures, and so often further heuristics
and expert-level knowledge-based systems are required mler to determine unre-
alistic and impossible assembly operations [1]. All of thedools, in fact, are meant
to ease communication between the design engineer and thenufacturing engineer,
not supplant either of them.

In this dissertation we are not seeking to use Evolutionarydbrication to replicate,
recapitulate, or compete with these proven human-based eéngering methods and re-

sults, but rather seeking to explore how \mindless" systemabsenthuman knowledge,
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can arrive and complex buildable objects. After all, theresi no \Intelligent Factory
Foreman" supervising biological development [74]. How doatural systems, given
access to the extremely complex assembly mechanism of bgadal growth, but with
no \knowledge" per seof its limits and capabilities, learn to build complex objets?
How, furthermore, can they modify the very nature of their asembly process, in order
to build increasingly large and increasingly complex obje? Broadly speaking, Evo-
lutionary Fabrication hopes to reproduce, to some degreehis \engineering without
engineers" performed by biological life. We make no claimbat results produced via
Evolutionary Fabrication are in any sensebetter than knowledge-based engineering
results, only that they are qualitatively di erent , and this di erence arises from the

relative absence of human knowledge in the system.

2.7 Summary

Evolutionary Algorithms are capable of generating novel ahexciting designs for
objects. These designs are of little utility, however, untithey can be manufactured
in the real world. Present approaches to Evolutionary Desig which rely on the
evolution of descriptive blueprints, are stymied by the Fahcation Gap.

Arti cial Ontogenies can be used to represent thdormation of an object rather
than just its form, and have already been proven to be quite useful for desigrska.
In order to be useful for our purposes of fully automated maracture, however, they
must clearly and explicitly describe and simulate the ente process of assembly.

Evolutionary Fabrication addresses this by placing the evationary algorithm
within a rapid prototyping machine, and by directly evolving the istructions for that
machine. In the following chapter we lay out the Framework foa system capable of

doing exactly this.
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As will be demonstrated by subsequent chapters, not only de¢his co-evolution of
form and formation avoid the Fabrication Gap by producing spci ¢ assembly plans
for evolved objects, but it is capable of the samereativity that has been demonstrated
by other Evolutionary Design systems { discovering not jushovel objects, but novel

means of assembling those objects as well.



Chapter 3

Framework

In the previous chapter we introduced the Fabrication Gap assed by the evolution
of purely descriptiveblueprints which leave unanswered the question diowto build
the evolved object. Evolutionary Design systems based upbilueprints are therefore
capable of designing objects whose assembly is extremeleult to discover, and,
in the extreme, unbuildable objects. The solution to the Fabrication Gap lies in
Evolutionary Fabrication: co-evolving form with formation by simultaneously evolvig
objects and the processes which create those objects.

We present in this chapter an elementary framework for impteenting Evolution-
ary Fabrication. By modeling an assembly mechanism, and éictly evolving instruc-
tions within that mechanism, we can evolvéow to build rather than what to build.
We will then use this framework to show that Evolutionary Fabication is capable of

generating not just novel objects butnovel ways of assembling those objects

40
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3.1 System Description

The purpose of the framework described here is to create a fyimg experimental
structure with which to explore the capabilities and possilities of Evolutionary Fab-
rication. As we discussed in Section 2.5.1, Evolutionary Bacation is contingent
on a speci ¢ assembly mechanism and apeci ¢ language of assembly. This speci-
city is what distinguishes Evolutionary Fabrication from more abstract top-down
approaches, and what allows for the immediatautomation of the results we produce.

To that end, the framework described here is a model of an asgg@dy mechanism
grounded in a realistic physical context, and evolution uwlds within it. Instead of
the blueprints used by traditional Evolutionary Design, the genotypes of our system
are assembly planslinear sets of instructions to the assembly mechanism. A&é
assembly plan is interpreted, the structure grows and, as@hy this process of assembly
is an Arti cial Ontogeny .

One important aspect of the system described below is i&llistic nature. That
is, the machine described is incapable of measuring the imeediate results of its
actions, it can only measure the nal result. This simpli esthe model signi cantly
(and as we discuss below, measurement is a double-edged dyadVhile we make no
claim that this lack of measurement is in any sensgecessary, we will show that such
ballistic Evolutionary Fabrication is capable of robust an reliable behavior beyond
what might be expected, even in the presence of noise and erdoiring assembly.

We are also using a very simple approach by performing evaln directly on these
linear assembly plans. Certainly, more complex and indiremeans of generating these
assembly plans exist, such as the grammatical approachesdiy Hornby [38] and
Toussaint [96]. Doing so, however, might obscure the natuge origin of any results.

While we make no claims that this direct evolution is the optnhal way to evolve
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assembly plans, it is certainly the best to illustrate our ppcess. As we mentioned in
Chapter 2 we are interested in theepresentation of developmentot the development
of representation.

While small changes are made to the framework for di erent geriments in later

chapters, we describe here the basic components.

3.1.1 Design

Although many contemporary rapid prototyping machines wdk via material deposi-
tion, extruded plastic behaves like a coiling rope, which cabe di cult to simulate.
Instead we rely upon a simpler pick-and-place model which als with discrete brick
elements. None of the techniques used, nor the results whiahise, however, are in
any sense unique to this model. We will argue that similar, tugh of course not
identical, phenomena should be seen in a real system.
The physics of our framework is based upon the Open Dynamicsidgine (ODE)

! the widely used open-source physics engine, which providegh-performance sim-
ulations of 3D rigid body dynamics. Doing so provides us witlsuitably complex

dynamics, and the ability to model gravity, collisions andriction.

3.1.2 Assembly Plans as Genotypes

The print-head of the system behaves like a LOGO turtle, cajide of movement in the
X-Z plane, and of depositing 2x1x1 bricks in the environmentTurtle-based systems
have been used in a variety of Evolutionary Design tasks [386, 41].

When strung into a sequence, commands to the turtle (see TabB.1) form an

assembly planas shown in Table 3.2. Commands which would cause the turtte

lwww.ode.org
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move outside the target area, or place a brick where a brickrahdy exists, are ignored.

Table 3.1: Parameterized Assembly Instructions

Instruction Parameters

(M)ove +2, +1, -1, -2

(Rotate +90, -90, +180

(P)ut Brick (a)head, to (r)ight, to (left), (b)ehind
Put (S)ca olding | (a)head, to (r)ight, to (left), (b)ehind
(T)ake Brick (none)

Table 3.2: An Example Assembly Plan
\ P(@P(a@)R( 90M (+2) M (+2) R(+90) S(a)S(a)R(180)M (+2) M (+2) R( 90)P (a)P (a) \

You will note the absence of any means of measuring the inteeghiate results of
assembly. As we discussed above, we are interested in pughtme limits of ballistic
assembly before exploring more \informed" methods. Therer& compelling reasons
for this simplicity. To begin with, adding to the set of primitives increases the search
space of the algorithm considerably. Moreover, measurenbas, by nature, costly
in terms of time and resources. Additionally, most rapid prtwtyping machines are
only capable of detecting the most urgent of errors, such askdock in the print
head - none of the current models, for instance, carry digitaameras which measure
progress, allowing them to abort a job if something unexpead happens. Indeed, how
would they know whether or not some phenomenon is normal ort¥oln later chapters
(speci cally section 4.3) we will demonstrate means of asably which de nitely fall
outside of the norm of behavior for rapid prototyping machies, and yet are highly

desirable.

3.1.3 Material

The turtle is capable of placing two kinds of bricks: permamg ones (shown as blue

in color frames, or black in grey scale frames), and tempogaones(shown in gray),
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which are removed once the assembly is completed. This agpedased on a feature
of modern rapid prototyping machines, such as a current modmade by Stratasys,

which can lay thin water-soluble support structures. In Chpter 5 we will show
how Evolutionary Fabrication can discover sca olding wherit is not provided as a

component of the system, by placing and removing intermed@structural elements.

3.1.4 Assembly as Ontogeny

As the print head reads instructions from the evolved asserybplan and deposits
material, a structure grows. This process of assembly is, the truest sense, an
arti cial ontogeny.

The interpretation of evolved assembly plans falls into thee ontogenic stages, as
shown in Figure 3.1. In the rst, the turtle interprets the assembly plan, moving
and placing bricks as directed. In this stage, each brick is separate component in
the environment, subject to gravity and interactions (suchas collisions) with other
objects. Once assembly is complete and the structure is stapthe sca olding is
removed and adjacent bricks are glued together (but not to # oor). Finally, once
the sca olding is gone, the nal structure is allowed to comeo a rest before being

evaluated.

3.1.5 Algorithmic Details

Our framework uses a pareto-based multi-objective optimation algorithm [27, 19].
This provides some exibility in tness functions, by allowing us to use dierent
criteria (such as length and mass) as di erent objectives. 4ihg length as a separate

objective is particularly useful in variable-length repreentations such as ours, by

2www.stratasys.com
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Figure 3.1: The execution of the assembly plan shown in Tab®&2. Frames are
ordered left to right, top to bottom. Assembly has three stags. In the rst (Frames
1-8), both permanent bricks (shown in blue) and temporary licks (grey) are placed.
In the second, adjacent permanent bricks are glued togethand sca olding is removed
(Frame 9). Finally, the remaining structure settles (Frams 10-12).
helping to reduce bloat [22]. After each generation is evalted, the N non-dominated
individuals (i.e. pareto front) are selected as parents, @i\ new individuals generated
using two-point crossover (60%) and mutation (2% per locus)In order to limit
population sizes, duplicate genotypes were rejected, andplicate objective values
were limited using crowding [62], with a limit of 3 individuds per bin. Variations
from this are noted in each experiment. In most experimentshe initial population
was created with 30 random genotypes, each with a random lehdetween 8 and 40
instructions.

It is worth emphasizing, however, that none of the claims otis work are at all

contingent upon the details of any speci c type of algorithm The only important

aspect is that by using assembly plans as genotypes, we arelewmg how to build

3.2 Brief Example: Evolving a Goal Structure

While the full power of Evolutionary Design lies in open endk creation of form,

there is often the need to determine whether a pre-determidestructure is at all
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Figure 3.2: The Goal Arch. Each leg consists of two verticalricks, whereas the
center section consists of three horizontal bricks. Notehérefore, that the center
bricks are not resting on top of the legs, but are instead cafevered o their side - as
a consequence, until the glue phase they cannot remain in péawithout sca olding.
buildable In this context, the goal is to nd a suitably e cient assembly plan which,
when interpreted by the automated assembly process, resallin the goal structure.
This is, in a sense, automating the previously human task offierring a descriptive
representation’sprescriptive counterpart, or reverse-engineering an object's assembly
We can begin, therefore, by evolving assembly plans capaldé building a pre-
determined goal structure, in this case an arch (Figure 3.2)argely because of the

anticipated level of di culty, and also for historical reasons - namely its presence as an

example of a hard problem in Winston's seminal textbook on Mine Learning [106].

In order to compare each resulting structure to the goal steiure, a bitmap was
generated by sampling the central region in the X-Z plane, a sub-brick resolution.
This bitmap was then compared to a corresponding bitmap of thgoal structure.

The speci c objectives used were as follows. In each case Beravalues are con-
sidered more t. Similar objectives are used in most of the @eriments in this

dissertation, and so we will elaborate on them here.
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Length: (Total length of the assembly plan) All things being equal, he shorter
an assembly plan is, the better. Since real-world rapid protyping machines

can be slow, the more e cient we are in this regard, the better

Mass: (Number of bricks in the entire world, not just the sample repn.)
The material deposited by rapid prototyping machines can bether expensive.

Parsimony in conserving the total amount of material shoulde rewarded.

Missing Material:  the total number of bricks missing from goal structure. A

value of zero corresponds to having all of the necessary ksdn place.

Error: the total number of \wrong" bricks. A value of zero correspods to
precisely replicating the goal structure without either mgsing or extraneous

material.

3.2.1 Results

Figure 3.3 shows animation frames from a representative éwed solution. Discovered
after roughly 2000 generations and with a length of 22 instations, it is able to
perfectly generate the goal structure.

This e ciency is due largely to the novel placement of the vdical sca olding
used to hold up the center section of the arch. Each verticaka olding brick is
placed directly under the center of mass of the brick it suppts. This placement
location exists between two of the discrete print-head pdiins, and so could not
have been placed directly. Rather, it is dropped horizontBl onto the leg sections
and subsequently topples vertically into its nal location In fact, if it had been
placed directly into one of the adjacent positions, it woulchot have been under the

supported brick's center of mass, and the supported brick gt have tilted sideways.
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Figure 3.3: Building the Goal Arch. Note how the horizontal sa olding placed in
frame 3 tumbles into a vertical position to support the top ofthe arch. This is
repeated with the piece of sca olding placed in frame 5.

This novelty in assembly is driven largely by the length objive used in our
algorithm above. Since, all other things being equal, a sher assembly plan is
more t than a longer assembly plan, there is an evolutionaryncentive for a certain
succinctness. The mass criterion also plays a role, encagirgg parsimony in resources

used.

3.3 Summary

We have laid out here the framework for an Evolutionary Fabdation system. This
system is essentially a evolutionary algorithm the genotygs of which are assembly
procedures for an assembly mechanism. Hence the marriageaafomated design
and automated assembly. Armed with this framework, we can moillustrate how
Evolutionary Fabrication is capable of evolving not just ngel objects, but novel
means of assembling those objects as well.

We have shown intimations of this in the simple example in Sgon 3.2, in which

we evolved an assembly plan to build a pre-determined goalwstture. The evolved
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assembly plan exploits the dynamics of the assembly mechsmi in order to produce
the goal structure in an e cient manner. This penchant for e ciency in both time
and material could be well employed in modern rapid prototyipg machines, which
tend to produce a surplus of expensive supporting material iorder to print objects.

This novelty and e ciency, which we will see much more of in tle following sec-

tions, is where the true bene t of Evolutionary Fabricationlies.



Chapter 4

Evolutionary Fabrication for

Design

In the previous chapter we presented our model of Evolutiona Fabrication, and
demonstrated its ability to discover the assembly plan for goal structure. While
evolving assembly plans for pre-determined structures isiportant, the true promise
of Evolutionary Fabrication lies in creating interesting tjects given only a broad
speci cation. The antennae evolved by Lohret al. [59] for instance, were evolved to
achieve high gain at speci ¢ bandwidth while tting into a relatively small bounding
box, and Sims' creatures were rated on the horizontal distaa they traveled [92, 91].
Although the tness functions we use below are simple, theyesve the purpose of
demonstrating that Evolutionary Fabrication is capable ofgenerating novel, unique

and human-competitive results as it evolves thprocessof assembly.

50
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4.1 Filled Volume Fitness

Consider rst a simple \lled" tness function, which measures the amount of lled
volume within the bounding box - that is, space occupied eidr by bricks or cov-
ered from above by bricks. The union of the grey and black arean Figure 4.1

demonstrates this concept.

Figure 4.1: lllustration of the \lled" and \shade" tness f unction. The structure
itself is black. The lled tness measures union of both backand grey regions, the
shade tness measures only the grey area.

Just as in Section 3.2, in order to measure the tness of a comeped structure, a
bitmap was generated by sampling the central region in the X-plane, at a sub-brick
resolution. The maximum height of each column of the bitmapan then be summed
to measure the coverage.

The length and mass objectives are retained from the expemmt is Section 3.2,

and the tness function above replaces the two goal-based jebtives from 3.2.

Fitness: (maximizing) the amount of shaded area including structure
Length: (minimizing) the shorter the assembly plan the better.

Mass: (minimizing) the less material required, the better.

Here, since we have no goal structure in mind, the roles of thength and mass
criteria become much more signi cant. As the saying goes,ntie is money, and the
faster an object can be assembled the faster it can be used itsrdesired function.

Moreover, the materials used by rapid prototyping machineare notoriously expen-
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sive, and anything which can reduce the amount of material @d during assembly is

welcome.

4.1.1 Results

Table 4.1 shows representative structures and tness valsgenerated by the \ lled"”
tness function, both before and after sca olding has beenemoved. Evolved struc-
tures Il the target area well, but tend to have a large numberof extraneous structural
appendages (consider the \foot" on the right hand side of thbottom-most gure).
Since the structures are rewarded for the amount of the targarea that they I,
regardless of whether the space is occupied or not, thereitd incentive to remove
extraneous bricks or to use temporary sca olding bricks.

Table 4.1: Structures generated with the \ lled" tness function. The images in the

top row show the structures before the sca olding (grey brks) has been removed, and
the images below right show the nal stable structure with tle sca olding removed.

moom I
MBI

Fill 89% 93% 95

Sca olding
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4.2 Shaded Volume Fitness

Consider next a \shaded area" tness function, which meases the total amount of
open volume beneath a structure, as illustrated by Figure 4.

The motivation in using this more space-conscious tnessifigtion lies in exploring
the system's ability to generate objects which conserve bding material. This tness
function also bears some similarity to those used for Fune€EGO trees [29] and
Toussaint's plants [96]. The specic objectives used wergantical to the section
above, save for this tness function which measures \shadédolume as opposed to

\ lled" volume.

42.1 Results

Table 4.2 contains representative structures built by asswly plans which resulted
from several runs of the system. It shows the structures be&and after the glue/melt
phase, and lists their Il percentage as well as the length dhe assembly plan that
produced them. As is evident, all of the evolved structuresave near-optimal tness.
For comparison, our best hand-built structure, shown on théar right hand side, while
it has maximal tness, required 34 bricks, more than the maxnum 25 allowed for
evolved assembly plans, and was 65 instructions long.

Figure 4.2 shows the assembly of the arch in the fourth colunof Table 4.2. The
assembly of the arch relies on a single central column of soéding, as opposed to
the multiple columns required in the other arches shown. Thisingle central column
is largely e ective because it widens to two brick widths allog the top, and is there-
fore able to support two bricks above it. The lower leftwarddspur" on the central
sca olding column plays two important roles: rst, by being horizontal it allows the

column to be nine bricks high, leaving room for a tenth row of grmanent bricks
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at the maximum allowable height (the two upper inwards spur®on the legs of the
structure serve a similar function.) Secondly, it countereights the upper horizontal
sca olding bricks, which allow the column to support two pemanent bricks.

This process of assembly above is another example of Evalutary Fabrication's

ability to arrive at short and e cient assembly plans.

SN U TN N ) B

Mmoo Mmoo T

Figure 4.2: Assembly of the arch in the fourth column of Tabld.2

Table 4.2: Structures Evolved for \shadow" tness. The toprow images show the
structure before sca olding (grey) is removed, and the bottm images show the nal,
stable structure. The structure on the far right was hand-bilt.

Sca olding
o

;]L
Final

Fitness 84% 80% 95% 90% (hand-built)
Length 30 54 58 43 65

i

m N
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[ . .

Figure 4.3: A novel assembly method. Once the assembly is quate (Frame 1),
sca olding is removed and remaining bricks glued togetherFame 2), the larger
section topples onto the smaller section, balancing there form a T. This resulting
shape has signi cantly higher tness (49%) than the originkstructure (10%)(Frame
1)

M || a4 A

Figure 4.4: Another novel assembly process. The originalrgtture has a tness
of only 22%. Once sca olding is removed and remaining brickgued, the leftmost
portion tumbles rightward, and the smaller segments belowra knocked sideways,
ultimately serving to prop up the larger shape. This nal stucture has a tness of
52%)

4.3 The Emergence of Novel Assembly Methods

In the setup above, evolved structures will occasionally bhénstable once sca olding
is removed, causing the structure to tumble into a nal, strcturally distinct shape,
often with higher tness. Figures 4.3 and 4.4 provide an exapte of this phenomenon.
This phenomenon of \dynamic assembly”, is an interesting @loitation of the
system as we designed it, and is a preliminary example of thevel types of assembly
processes that can arise from evolving assembly plans dilgdn a realistic environ-

ment. Of course, this raises the question of whether thereasy particular advantage
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to such novel assembly, or whether it is a mere curiosity. Weag seek to address
this question by exploring the following issues: What are #hevolutionary incentives
of dynamic assembly? Are solutions which use dynamic assdynany more t than
those without? Are they any more e cient, either in terms of time or in terms of

material?

4.3.1 Measuring Novel Assembly

This novel dynamic assembly of structure can be measured kgiculating a structure's
tness immediately after sca olding is removed, and compang this value to the
structure's nal tness once stabilized. This di erence caresponds to the amount of

tness contributed by dynamic assembly.

fdynamic = fiina finitial (4.1)

Similarly, as a measurement of e ciency in terms of time and raterial, we can
calculate the tness-per-instruction and tness-per-brck of each solution by dividing
each solution's tness by its assembly plan length and mass.

Armed with this means of measuring dynamic assembly and e ehcy, we can
compare two slightly di erent environments. The rst environment, which we call
Setup A, is the original environment from our earlier expements. In the second, we
made a small change: Rather than limiting the turtle to the sme box that tness
was evaluated over, it was allowed to range over a larger, 200200 box (labeled B
Figure 4.5). Otherwise, all of the objectives, and the 25 hak limit, remain unchanged.
This slight adjustment allows the turtle to place bricks ouside of the tness box
- which then fall into it during the nal settle phase of devebpment. Table 4.3

summarizes the di erences between environments.
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Table 4.3: Comparison of Setup A and Setup B
Setup A | Setup B
# runs 22 19

Turtle Range | 100 100| 200 200
Fitness Range| 100 100| 100 100

Figure 4.5: lllustration of the two Assembly Environments.In each case the tness
function is measured over the smaller box (A) and within thatbox the gray regions
under the black structure is considered \shaded". Note thathe uppermost overhang
does not contribute any shade, because it exists outside bkt tness bounds. In the
rst environment, the turtle is limited to the same box (A) as the tness measure,
whereas in the second (Section 4.3.1), the turtle may range the larger box (B).

4.3.2 Results

Looking back at Table 4.2, which contains representative salts from our earlier
experiments, it can be seen that the evolved structures tertdwards stable arch-like
structures with two legs.

By comparison, Table 4.4 shows representative structurevadved in Setup B
(black spheres have been placed in the upper corners of thexlmyer which tness is
measured). Unlike Setup A, which produced relatively stablarch-like structures, this
small change results in a majority of \T"-like structures, dl of which are assembled
dynamically. Figures 4.6 and 4.8 show detailed frames of th@ocess of dynamic
assembly for each structure in Table 4.4

Figure 4.9 provides a direct comparison of the contributiofrom dynamic assem-
bly across the two regimes. Data were generated by averagitig values of the best

individual in each generation across runs. Figure 4.10 prides more detail of the
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T T | <

Figure 4.6: Another dynamic assembly sequence from SetupBhis is 22 instructions
long, with a nal mass of 10. Initial tness is 31%, nal tness is 47%.

o d e

Figure 4.7: Another dynamic assembly sequence from Setup B) instructions, 14
mass. Initial tness: 27%, Final Fitness: 62%. The black smres mark the upper
corners of the tness bounds.

| Y Y —

Figure 4.8: The most extreme example of dynamic assemblyrindSetup B. With only
17 instructions, and a mass of 13. Initial tness is only 0.4%Final tness is 80%.
The black spheres mark the upper corners of the tness bound$he near-zero initial
tness is due to the fact that the overhanging brick is outsieé of the tness bounds,
and therefore contributing no shade.
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progress of evolution across both environments. It is wortbbserving that both envi-

ronments produce equally t results, even though the largeenvironment corresponds
to a larger search space. Figure 4.11 shows the tness cobtriion due to dynamic

assembly between the two environments, as measured by Egoat4.1. It is interest-

ing to note that in the larger environment sometimes dynamiassembly accounts for
almost the entirety of an structure's tness (such as, for igtance, the last structure in

Figure 4.8) whereas in the smaller environment, a structuie tness will occasionally

decreaseafter settling.

Figures 4.12 and 4.13 respectively compare the average walf the tness per
brick and tness per assembly plan instruction for the bestridividual of each gen-
eration. Although the di erence is slight, the tness per irstruction is higher in the
larger environment than it is in the smaller environment. InFigure 4.12, the slightly
lower tness per brick of of the larger suggests that some matial bloat occurs in
the slightly larger environment. This slight bloat in mateinial could be due to the
fact that extraneous bricks outside of the tness range (BoA in Figure 4.1) do not
have a deleterious e ect upon tness the way that extra brick within the box do.
Still, these bricks may serve a useful function, for instaecas a counterbalance during
dynamic assembly.

These di erences in mass and length are more signi cant whethe size of the
larger environment is taken into account. Larger margins dside the tness box
give the turtle a wider area to roam in, and more room in whichd place bricks.
This corresponds to a signi cantly larger search space ofsesnbly plans. Yet while
equally t assembly plans involve a few more bricks in this efironment, the are in fact
shorter than those evolved in the smaller environment. This leads use believe that
Evolutionary Fabrication exploits dynamical assembly in ader to produce assembly

plans that are more e cient in time, at the expense of e ciency inmaterial.



CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN

1800

Mean Fitness and Contribution from Dynamic Assembly

1600

1400

1200

1000

800

Fitness

600 [

400

200

-200
0

T T T
'\\\', — mean fitness (larger environ)
"l\ = = = mean fitness (smaller environ)
j' N Ty dynamic contribution (larger environ)
l" 1 dynamic contribution (smaller environ)

L
500 1000 1500 2000 2500 3000
Generation

60

Figure 4.9: Comparison of tnesses and tness contributiodrom dynamic assembly
between the larger and smaller environment. Data is averagj@cross 22 runs for the
smaller, and 19 runs for the larger. Although maximal tnesss equivalent across
both regimes, Setup B contains signi cantly more examplesf dynamic assembly
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Figure 4.10: A comparison of the progress of evolution beter the two environ-
ments, with error bars. Despite having a larger search spaqarogress in the larger

environment is essentially identical to that in the smallerenvironment.



CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 61
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Figure 4.11: A comparison of the tness contribution due to gnamic assembly, with
error bars. There is a much higher incidence of dynamic asddgnin the larger
environment. In the smaller environment solutions are sortimes actually worse
after they settle.
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Figure 4.12: Average Fitness Per Brick between environment The dierence is
slight, but equally t structures tend to contain fewer bricks in the smaller environ-
ment.
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Figure 4.13: Average Fitness Per Assembly Plan Instructionetween environments.
Equally t structures tend to be slightly shorter in the larger environment, despite
the wider range available to the turtle.
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Table 4.4: Structures Evolved in Setup B before (left) and &r (right) the grey
sca olding is removed. Black spheres have been placed in thpper corners of the
box over which tness is evaluated. The larger sphere is thedation of the turtle

| Initial | Final |

5% 84%

2% 81%
I

27% 62%

31% 47%

i
-
™
_
L

0.4% 80%
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4.4 Summary

In this chapter we have demonstrated the ability of Evolutioary Fabrication to per-
form open-ended design tasks. In Section 4.1 the goal was tba bounding region,
and in Section 4.2 the goal was to maximize the covered volunoé the bounding
region. In each case, Evolutionary Fabrication is able to dve at near-optimal, and
human-competitive solutions. While these tness functioa were both rather simple,
they serve the purpose of demonstrating that Evolutionary &brication can discover
how to build structures given only relatively loose speci ations.

Moreover, as shown in Section 4.3, an added benet of this dution of assembly
plans arises from Evolutionary Fabrication's ability to deign not just novel structures,
but novel means of assembling those structures as well. Theost obvious of these
novel assembly methods is what we have termed \dynamic asdagi. Dynamic
Assembly describes an evolved assembly process which muitalltiple unstable sub-
assemblies which, once sca olding is removed, topple into @al shape.

The novelty of dynamic assembly extends beyond just the irversibility of the
process. Our framework above is limited to placing bricks enat a time, and so
lacks any formal ability for modular assembly of larger congnents. Nonetheless, the
assembly plans evolved above have discovered how to constitwo separate modules,
and then join them in the nal phase of assembly. We've shownhat that in each
case the process used in creating the nal structure is morecent than a purely
sequential process.

In the following section we will explicitly add modularity to our framework, and
demonstrate the ability of Evolutionary Fabrication to evdve increasingly large ob-

jects, even in the presence of noise and error during asseynbl



Chapter 5

Evolutionary Fabrication

In Uncertain Environments

\The organism is determined neither by its genes nor by its eronment
nor even by the interaction between them, but bears a signiant mark of

random processes..." LewontinThe Triple Helix, (p.38)

\Unlike the adult organism or larva, the embryo seems to be ther priv-
ileged...Its primary function is to develop reliably and ths reliability is
the main feature on which selection will act." Wolpert,The evolutionary

origin of development: cycles, patterning, privilege, ancbntinuity [108].

In the previous chapter we established that Evolutionary Harication is able to
generate solutions to open-ended design tasks and that byobing assembly plans
directly it is able to discover novel means of assembly. Theexrt important questions
to ask are whether Evolutionary Fabrication can cope with nge and error during
assembly, and whether the process can scale to increasinglger and more complex

domains.

65
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As we discussed in Section 2.4.4, developmental represéiotas are not without
their drawbacks. In particular, stochastic e ects which lad to error and noise during
development can signi cantly complicate the task of evolubn. When subjected to
noise during development, a genotype is capable of develgpinto an entire range of

phenotypes, each with a corresponding tness (Figure 5.1).

-

FREQUENCY

anjen [epow

o
FITNESS

Figure 5.1: Under the presence of developmental noise, eaggnotype develops into
an entire range of phenotypes, each with an associated tness.

This has particular relevance to Evolutionary Fabricationn the real world. Unlike
simulation, real world assembly environments are subjecb tthe e ects of friction and
random perturbation, which can have a dramatic e ect on redts. Considering these
e ects, how can Evolutionary Fabrication learn to reliably build speci ed objects
in the presence of noise and error during assembly? How carcragasingly large,
increasingly complex objects be built in these environmes®? This chapter seeks to

address those questions.

5.1 Evolving Reliability without Tests

It is important to note that the Framework described in Chaper 3 has no means of
measuring the intermediate results of assembly: any erroudng assembly cannot be
noticed until assembly is complete and the nal product can & observed. While we

make no claims that suchballistic behavior is better than more observant models, it
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is worth pushing the limits of these simpler models. Measureent and testing are
time consuming and expensive, and any increase in the set asambly primitives
has a dramatic e ect upon the size of the evolutionary searchpace. As we'll see,
even absent measurement, Evolutionary Fabrication is remably capable of reliably
generating large complex objects in the presence of noiselarror during assembly.
The rst question we seek to answer is whether, absent any meato test inter-
mediate solution, evolutionary fabrication can discover ¢w to reliably build a goal
structure. Since the presence of noise complications matesigni cantly, it is worth

exploring the issue rst in a somewhat simpler context.

5.1.1 A Simpler Framework

Consider a simpli ed version of the Evolutionary Fabricaton Framework in which the
print-head turtle ranges over a discrete 100x100 grid and ¢hbricks are now 10 20
rectangles subject to a simple \tetris-like" physics muchimpler than ODE.

The assembly plan genotype remains largely the same - comiaig instructions
such as forward, rotate, put brick and take brick. There are m\sca olding" bricks
in this model. Consequently, the assembly process is alsopglied somewhat -
each assembly instruction is interpreted in turn and, whenssembly is complete, the
resulting structure is evaluated.

Rather than an open ended tness function, we are now tryinga develop the

assembly process for a pre-determined structure - the archosvn in Figure 5.2.

Noise Model

A noisy development environment can be induced by allowinggxtical bricks to topple

to either side 50% of the time, and for cantilevered bricks ttopple 50% of the time.
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Figure 5.2: The goal arch for the simpli ed noisy developmémodel. Vertical bricks
are black and horizontal bricks are grey. The turtle is the d& grey square next to
the left leg.

5.1.2 Evolving without Noise

In the absence of noise evolution quickly discovers the mastient means of building
the goal arch. Of course, if we then take that \naive" assemplplan and execute in
in the noisy environment, it performs dismally. Figure 5.3 pvides a sample of the

distribution of phenotypes that arise in this situation.

5.1.3 Measuring Reliability

If, as Figure 5.3 demonstrates, noise during assembly ingiscsuch a wide distribution
of phenotypes, then the challenge lies in nding ways teeliably build the goal struc-
ture. One way of measuring the reliability of an assembly ptein a noisy environment
is to execute it multiple times and see how often, if at all, ittan produce the goal
structure, This provides the notion of \yield". In the experiments below, we build
each genotype 50 times, gathering statistical properties the results to use as tness
objectives.

The speci c objectives, shown below,are similar to those &g for evolving the goal
arch in the earlier section, with the addition of the distritution-measuring aspects

such as the \yield" metric.
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Figure 5.3. A sample of the wide distribution of phenotypeshiat arise when a single
assembly plan is assembled in a noisy environment.

Length: shorter is better.
Mass: attempting to minimize the number of bricks in the structure
Missing Material:  Number of bits missing from goal structure
{ best result, average result, and yield (perfect structure)
Error:  Number of \wrong" bits - i.e. either extraneous or missing Ibs.

{ best result, average result, and yield (perfect structure)

5.1.4 Emergence of Ontogenic Sca olding

The system described above is typically able to generate astly plans with yields
above 70%. Figures 5.4, 5.5, and 5.6 contain animation fram&om a typical result.
This particular result described below is 82 instructionsang, and achieves 70% vyield.

The evolved assembly plan is able to achieve this reliabjliby means ofontogenic
sca olding - structural elements that are functionally necessary foraliable assembly,
but that do not exist in the nished product. Once all of the eements of the nal
structure have been placed, this sca olding is removed.

Consider the frames in Figures 5.4, 5.5, and 5.6 below. Theoéxed assembly plan
rst places horizontal bricks to the left and the right of wha will become the rst
leg of the structure. Their presence guarantees that the lagill stay in place. The

plan then places the rst and second vertical bricks - both pas of the goal structure.
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Note the redundant instruction in the sixth frame of Figure %4 - although it appears
extraneous in this particular sequence, it proves useful isituations where the rst
attempt at laying the second brick fails: in which case the flen brick ends up acting
as sca olding for the subsequent attempt.

In the following frames of Figure 5.4, the evolved plan proeés to lay sca olding
for what will be the leftmost leg and the leftmost cantileverof the arch.

The assembly continues in Figure 5.5 as the plan continues fy bricks that are
simultaneously sca olding for the leftmost cantilever andor the left leg of the arch.
Once sca olding has been lain on both sides, both vertical ioks of the left leg are
placed. By the nal frames of Figure 5.5, all of the bricks oflie nal structure are
in place.

All that remains is for the print head to remove the sca oldirg, as it does in
Figure 5.6.

A meaningful way to visualize results which contain a distdution of phenotypes
corresponding to a single genotype is to build a composite age by averaging the
results of multiple runs of that genotype. The center colummf Table 5.1 compares
composites of a naive solution (which was evolved in the alpee of noisy assembly
and then assembled under noise) with evolved solutions whiachieved 11%, 27% and
59% and 75% yield. As can be seen, as evolution progresses, cthmposite image
increasingly looks like the nal goal structure.

In the context of noisy development in which genotypes arewarded for their yield
percentage of a nal structure, such as ours, one can congidbe role of evolution
as learning to shift phenotypic tness distributions, rather than individual tnesses,
towards the optimal. This is borne out by the distribution cdumn in Table 5.1. Each
gure is a histogram which shows the distribution of phenotge tness over the same

100 builds used to generate the composite images. As shows tlae yield increases,
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the distribution tightens and shifts towards the optimal.

5.2 Evolving for Scalable Complexity

One outstanding challenge in the open-ended evolution ofrfieation lies in scalable
complexity - that is, how to build increasingly large, increasingly copiex objects in
a managed fashion. Crucial to this is the process of hieraichl, modular assembly.
Hierarchy and modularity play an important role in biology - not just in the
organization of organisms, but also in their development. Aopular example of
representational modularity in nature is the\eyeless" gene in Drosophila which,
when mis-expressed, causes physiologically complete egesprout in unexpected
places [35]. The importance of representational modulayities in its ability to couple
functionally related portions of the genotype while simulineously decoupling them
from functionally unrelated portions [100]. Changes to a pgesentational module
have few side e ects in the remaining genome, and changes side a module have
few e ects upon the module. The question arises, how can suciodularity evolve
In his landmark essay \The Architecture of Complexity”, Hebert Simon [90]
begins to answer this question, making the case for the evbbnary necessity of
hierarchical modularity through his parable of the two watbmakers, Tempus and
Hora. Tempus builds his watches incrementally, piece by e, and when interrupted,
he puts down the watch he is working on, which then falls apaihto its constituent
pieces. Hora, on the other hand, rst combines pieces intoarate small modules, and
then combines those modules together into a nal watch. Corguently, he only loses
the particular module that he is working on, and so is signi antly more likely to build
a complete watch than Tempus is. Simon uses this story to chaithat increasingly

complex forms are nearly impossible to evolve without suchenarchical compaosition
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Figure 5.4: Robust Assembly Plan Steps 1-18: In the rst stegp the builder lays
sca olding (frames are read left to right, top to bottom)

Figure 5.5: Robust Assembly Plan Frames 19-49: more sca @id is lain and the
arch is completed

Figure 5.6: Robust Assembly Plan Frames 50-80: sca olding removed
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Table 5.1: Visualization of the improving yield of evolved ssembly plans. The middle
column contains composite results created by averaging 1BQilds - darker squares
represent locations more likely to contain a brick. The righhand column shows
the histogram distribution of phenotype tness across thas same 100 builds - the
horizontal axis represents increasing tness, with maximatness, meaning perfect
assembly, on the extreme right. Scales between histogranre &entical

% Yield | Composite| Distribution

Naive /\F«/\‘
11% _IA/\AV
27% A*f/\/\/\/
ml |
75% /\/
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of stablemodules. In his own words, \The time required for the evolutin of a complex
form from simple elements depends critically on the numberand distribution of
potential intermediate stable forms."

Many researchers have used this parable as inspiration foqpéoring adaptive rep-
resentations and the relationship between modularity andvelvability. In this context
the stability of a form is interpreted as evolutionary stablity - that is, insulation from
potentially deleterious e ects of mutation and crossoverAs such, the evolvability of
adaptive representations comes from their ability to dynamoally generate modules in
the process of search [100].

Our interest here, however, is in a di erent perspective onhie story - that of the
relationship between modularity and noise in developmentaepresentations,which
take their cue from the biological processes of ontogeny agtbwth. Since they seek
to model \biological assembly"” (albeit of systems quite digct from watches), these
systems lend themselves to a rather straightforward interptation of Simon's parable.
Like watchmakers, developmental systems seek to assemtdenplex forms from prim-
itive constituent parts, and perform their tasks under the isk of interruption. While
for the watchmakers interruption during assembly took thedrm of a telephone call,
in developmental systems the role is performed by error andise during ontogeny.
Like watchmakers, in order to generate complex objects, golave developmental rep-
resentations require modularity and, much like Hora's sulmenponents, in order to be
useful, these developmental modules must be stable and ably producible in the
presence of noisy assembly.

If stochastic development imposes one-to-many relation ¢ime genotype-phenotype
map, such that each genotype can grow into an entire distrilton of phenotypes, then
another criterion for modular acquisition arises: that of dvelopmentalstability.

An important aspect of the utility of modules is their reusaldity. If, therefore, a
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module is to be generated and reused multiple times, then itasids to reason that
multiple copies of the module should exhibit low developméal variance. Consider
Figure 5.9. A genotype which, under noise, develops into ade or multi-modal
distribution of phenotypes, such as the one of the left handide of the gure, is
not ontogenically stable, and so would not make a very reliéd module. A more
ontogenically stable genotype, on the other hand, typicall develops into a tight,
unimodal distribution with low variance, such as the one onhe right hand side of
the gure, meaning that it will generate near-identical cofes, and so makes for a

more suitable module.

5.2.1 Modularity and Hierarchy in Representation

The importance of representational modularity lies in its hility to couple functionally
related portions of the genotype while simultaneously deapling them from function-
ally unrelated portions. Changes to a representational mote have few side e ects
in the remaining genome, and changes outside a module haves fe ects upon the
module. Wagner and Altenberg [100] persuasively argue th#te evolvability of a
system is highly contingent upon its representation's ahiy to adapt by discovering
and incorporating evolutionary modules.

Several models of representational modularity in evoluti@ary computation exist.
Many systems, such as Hornby's L-systems [39] and Bongard@ene Regulatory
Networks [11] feature representations which are implicitimodular.

Of those which provide for theexplicit encapsulation of modular components, the
most common fall under the rubric of Hierarchical Genetic Rigramming (HGP),
where encapsulated modules become new primitives in the ¢arage. Koza [50] de-
veloped Automatically De ned Functions (ADFs), in which sub-functions are allowed

to evolve their own function and terminal sets. Angeline exgnded upon ADFs with
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module acquisition(MA), which co-evolve a representational genetic \library of en-
capsulated primitives which are universally available towwlving programs[4]. Sub-
sequently, Rosca and Ballard introduced Adaptive Represetion through Learning
(ARL), which replaced the randomness inherent in modular agiisition in ADFs and
MA with a \usefulness" heuristic based upon tness contribtion and activation fre-
guency of subtrees [86].

More recently, de Jong co-evolved a representation and itercesponding popula-
tion of genotypes [21]. Candidate modules were chosen by ind the most frequent
pair of alleles in the current population and, drawing from Vdtson's work on sym-
biotic composition [101], were added to the language as pitives only if they their
tness contribution was at least as good as the tness contoution of all other possible
pairs in a randomly chosen context.

While they vary in their details, each of these models of motar encapsulation in-
volve incorporatinggenotypicsequences, thereby protecting them from the deleterious
e ects of mutation and crossover, and then adding them to thé&anguage of represen-
tation. As such, encapsulated modules are simply shortharidr the genetic sequence
they represent - one can be substituted for the other withoutonsequence. Below,
we will motivate a system of encapsulation which, by contrésinvolves incorporating

phenotypicresults into the language or representation.

5.2.2 Why Endosymbiosis?

Because of their prescriptive nature, developmental reentations display a measure
of context sensitivity: the same sequence of operations chave vastly di erent re-
sults depending on where in the process it occurs. Luke andeSgpor [60], for instance,
discuss how the procedural nature of cellular encodings negkthem particularly sen-

sitive to crossover. This same \execution order dependericexists in the assembly
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plans used by Evolutionary Fabrication. Consider a developental representation as
a recipe. The set of instructions which produce egg whites in a sou eacipe (sepa-
rate yolks and whites, place whites in a bowl, whip into soft gaks) would produce a
mess (if anything at all) if they occurred later in the recipeor, for that matter, in an
omelette recipe.

To make matters worse, in developmental systems a contiguoyortion of the
phenotype which we might want to modularize may have been piaced by disjoint
portions of the genotype. Similarly, a contiguous portionfdhe genotype may produce
disjoint phenotypic results.

These factors can therefore stymie adaptive models such a&P| which generate
modules by extracting and compressing favorable geneticgsences. A genetic se-
guence which produces a favorable trait in one context willat necessarily preserve
that result when transferred to another context. Furthermoe, favorable phenotypic
traits may not be attributable to modularizable portions ofthe genotype, and mod-
ularizable portions of the genotype may not produce usefuhpnotypic modules.

The challenge of modular acquisition in developmental repsentations, then, lies
in preserving not the syntax, but rather themeaningof a desired phenotypic result.
Endosymbiosis the encapsulation of an entire organism by its host, is the odel
which we propose for this.

In our model of endosymbiotic encapsulation (See Sectior8h. complete organ-
isms, not just specic portions of their phenotype, are usedo form modules. As
such, endosymbionts becomprecompiledphenotypes, and join the set of primitives
available to the representation. To continue the metaphorfahe recipe, endosymbio-
sis is analogous to the parallel creation of aous chefwho specializes in producing
that one particular higher-order ingredient, such as sti @ed egg whites.

When referenced during the course of development, it is thén@notypic result {
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the complete endosymbiont { rather than the genetic sequeacesponsible for creating
the endosymbiont, that is used by the developmental process$n this manner, the
meaning, rather than merely the syntax, of a module is presexd, and can be applied

consistently across contexts.

5.3 Modular Evolutionary Fabrication

As we described above, our hope is that this endosymbiotic el of modular en-
capsulation will allow Evolutionary Fabrication to evolve how to build increasingly
large, increasingly complex objects, even in the presencermise during assembly
which otherwise severely a ects results. Adding this modatity to our Evolutionary

Fabrication Framework is rather simple, as described below

New Operators

The \put" command is modi ed to take an argument - a unique ideti er correspond-
ing to an object in the library of encapsulated modules. Inially, the only objects
available to the \put" command are primitive 2x1x1 bricks. As new modules are
encapsulated, they are inserted into the library as new olges and can be referenced
by the \put" command (for instance put(brick) or put(module15).) As the modular
library grows, the mutation operator selects from any of thenodules currently avail-
able. Table 5.2 contains examples of what these new assemplgns look like, and
Table 5.3 shows what the execution of these plans would promiu

Table 5.2: Example modules and their associated assemblams
modl | P(a);P(a)
mod2 | M (+2);P(modl1); M (+2) ; R(+90); P(mod1)

mod3 | M (+2) ;M (+1) ;P(mod2);R( 90);M (+2) ;M (+2) ; R(+90) ; P(mod2); :::
M (+2) ;M (+2) ; P(modl1); R(+90) ;M (+2) ; M (+2) ; R( 90); P(mod1)
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Table 5.3: Hierarchical assembly of modules from Table 5.2

mod1l

mod2

mod3

Noise Model

Noise is injected into the system using a \shaky hand" modelWhen instructed to
place an object, the turtle puts anywhere within some rangé x around its current
position, with uniform probability. Noise settings were gren as percentages of a

brick's width.

Evaluation

To measure the e ect of developmental noise on evaluated geypes, each assembly
plan was interpreted 10 times, and average values over eadbjextive were used for

selection.

5.3.1 Module Discovery

The key feature of this new framework is the ability to disca new modulesduring
the process of evolutioand then add them to the set of primitives available to evolvig
assembly plans, as shown in the schematic of Figure 5.8.

Every 10 generations, unused modules are removed from thbrdry and new



CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 80

candidate modules are discovered and added to the librarys &hown in Figure 5.7.

We describe the details of the process below.

Figure 5.7: The process of module rejection and discovery.

Module Selection

Candidate endosymbiotic modules were selected from the plogypes of the evolving

population every 10 generations. The criteria for selectioare as follows:

Fitness: the selected module must be a member of the current pareto fito

That is to say it must have some intrinsic tness beyond thesether criteria.

Unity: the selected module must only consist of a single piece. Qtwsly if an
assembly plan results in a structure with two distinct piecg, then it cannot be

usefully encapsulated as a context-independent buildingdzk.
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Reliability:  the assembly plan which produces the candidate module must

have su ciently low variance in tness (see Figure 5.9.)

If a phenotype matches the criteria then it is added to the madle library as a

whole object, becoming available as an argument to the \putihstruction.

Module Rejection

The evolutionary viability of the modules is determined by their reference count in the
population of evolving assembly plans. Care must be taken order to prevent spuri-
ous modules, those which are referenced by assembly plans liave no consequence
(for instance those that are ignored because their placentemould intersect with an
existing object) from causing \bloat" in the set of primitives. Candidate modules
are therefore tested fomecessity Each member of the pareto front which contains a
reference to a module is built twice - once with and once withibthe referent module.
If the results are the same then the module reference is pemeatly removed from
the assembly plan. This is repeated for each module to which assembly plan refers.
Once those unnecessary module references have been remiveedthe population
of assembly plans, the reference count of each module in thierdry is measured.
Whenever a module's reference count in the evolving populah drops to zero it is

deemed irrelevant, and removed from the object library.

5.4 Modular Assembly in Noisy Environments

In these following experiments we determine the usefulneskthis model of modular
encapsulation, and more importantly, its ability to cope wih noise during assembly.
The design task is again to create a structure which maximigethe total open

volume beneath it, thereby rewarding structures which bothmaximize height and
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PRIMITIVE SET GENOTYPES PHENOTYPES

=1
11

ENDOSYMBIOTIC ENCAPSULATION

Figure 5.8: In the endosymbiotic model of module acquisitip only complete pheno-
types, rather than genetic samples, are added to the set ofiitives.

BAD MODULE GOOD MODULE

FREQUENCY
FREQUENCY

FITNESS FITNESS

Figure 5.9: Properties of a useful module. Under the presencf developmental noise,
each genotype develops into an entirange of phenotypes, each with an associated
tness. A bad module is one which exhibits high variance or nitimodality across
multiple builds; a good module will be unimodal with very lowariance.
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maximize the number of empty spaces beneath them, per FiguselO.

Figure 5.10: lllustration of Shaded Fitness Function. Thetsucture itself is black,
and they gray region is considered \shaded".

Length Of Assembly Plan (minimizing)
Mass of Objects in Environment (minimizing)

Shaded Area (maximizing)

To measure the e ect of developmental noise on evaluated ge#ypes, each assem-
bly plan was interpreted 10 times, and average values overcbaobjective were used

for selection.

5.4.1 Results

Three sets of experiments were run for 1000 generations eawith noise set to 0.1%,
1.0% and then 2.5% of a brick width. For comparison, parallsktups without modular
acquisition were run at noise levels of 0, 0.1 and 1.0%. Figub.11 demonstrates the
deleterious e ects of noise on non-modular development. lime absence of noise,
evolution proceeds fairly well. But even with relatively mdest noise, at a level of
0.1%, average tnesses are half of what they are in the noiest case. As noise is
increased to 1.0%, performance drops even further.

Figure 5.12 shows a comparison in performance for modularsambly across a
range of noise values. Not surprisingly, the modular setupsach near-optimal tness

rather quickly, and outperform the non-modular ones in Figie 5.11. Furthermore,
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there is very little di erence in performance for modular asembly across the range
of noises. Interestingly, the modular noisy evolution shawin Figure 5.12, across
the entire range of noise values even outperforms non-norsyn-modular evolution in
Figure 5.11. We discuss this further below.

Figures 5.13 and 5.4.1 contain representative assembly ésefor some of the
evolved objects. Appendix A contains several more example$hese trees provide
some insight into the processes by which evolved assemblgnd were able to hierar-
chically assemble the objects.

Interestingly, modular assembly outperforms non-modulaassembly, even in the
absence of noise. Consider that non-modular assembly mudage structures brick
by brick, and so is in general limited to incremental improvaents in tness over the
course of evolution. The strength of modular assembly, onéhother hand, lies in its
ability to add larger sub-assemblies to its vocabulary, anthen place them as a single
unit, thus enabling faster progress.

This discovery of increasingly large sub-assemblies a schot only the speedof
evolution, but also the type of structure that is evolved. As we rst noted in [84],
non-modular assembly plans in a non-stochastic environntdend to generate arches,
even though tree-shapes are a more optimal solution. Our geature at the time was
that this was due to the di culty in building balanced trees brick by brick: both
matching branches of the tree must be discovered in paralleind most mutations to
a balanced tree would unbalance it. Arches, on the other handre more evolutionarily
stable, because they are supported on two legs, and can becdigred by a process
which rst creates a lled arch and then slowly learns to empy out the middle portion.

A key observation, therefore, is that the majority of structires evolved in this
noisy environment with modular assembly plans are trees ta¢r than arches. This is

because the adaptive representation is able to generatedar, multi-brick modules,
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Effects of Noisy Development on Non-Modular Evolution
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Figure 5.11: A demonstration of the e ects of noisy developemt. Without noise,
non-modular evolution proceeds well. Even with relativelyow noise (0.1% of brick
width), however, runs do signi cantly worse. As noise inci&ses, performance de-
creases. Averaged across 22 runs (noiseless) and 10 runssymowith error bars.
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Figure 5.12: Across a range of noise levels, not only does mlad evolution outper-
form non-modular noisy evolution, but it also outperforms on-modular, non-noise
evolution. Averaged across 10 runs of each setup, with erroars.
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and then place them as a single, balanced unit atop a column.sAan be seen, in
every case it is a single module which forms both branches bkttree.

It could even be argued that several of the assembly trees shoin the tables
also exhibit a form of exaptation in the evolutionary process. The tree shown in
Figure 5.13 is an excellent example. Because symbiogeneticdules are selected for,
among other things, their presence on the pareto front, thegften have a measurable
tness when encapsulated as modules. When they are used irt@rchical assembly,
however, instead of being placed in a manner which takes adt@age of this inherent
tness (for instance, by placing them in parallel to form an &ch), they are rotated
and placed sideways atop a newly formed trunk. As such theyrge a new function -
for instance as a branch instead of a trunk, and in that role ty are able to contribute

more tness than they do alone.

5.5 Scalable Modular Assembly

The above experiments establish rst that error during assably has a deleterious
e ect on the progress of Evolutionary Fabrication. Secong] they show that our
modular extension to Evolutionary Fabrication is able to ogrcome that noise by a
form of \bootstrapping"”, by nding small reliable sub-assenblies and then incorpo-
rating them as new primitives in the assembly process.

To determine whether these methods scale to larger enviroents and more com-
plex tness functions, we next quadruple the size of the agsbly environment, as
shown in Figure 5.15. Merely making the environment biggeromld only result in
larger tree shapes, but not necessarily in more complex haechies of assembly. In
the following experiment, we therefore replace the \shadetness function with one

that measures the \lea ness" of a structure. We calculate tts by taking vertical slices
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Figure 5.13: An Example Hierarchical Assembly of Modules #&.1% noise. Further
examples are provided in Appendix A

Figure 5.14: An Example Hierarchical Assembly of Modules dt.0% noise. Further
examples are provided in Appendix A
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along the width of the structure and counting the number of sdaces we cross along

the way, as illustrated in Figure 5.15.

# Surfaces

Figure 5.15: lllustration of Larger Environment and \Leafy' Fitness. The larger
environment (Box B) is four times as large as the original (BoA). \Lea ness" is
measured as the number of surfaces encountered along a aidtsslice.

The tness objectives are listed below:

Length Of Assembly Plan (minimizing)
Mass of Objects in Environment (minimizing)

Lea ness (maximizing)

The optimal structure is no longer a \T", therefore, but a seies of tightly packed
horizontal branches. Because of the interplay with the reni@ing mass objective, and
the exaptative nature of our modular acquisition, the strutures we will see will be

less regular and more open than this.

5.5.1 Results

Three sets of experiments were run, at noise levels of 0.1% (Lns), 1% (8 runs)
and 5%(10 runs). Figure 5.16 shows the progression of evabdut across the three

noise levels, with error bars. As can be seen, even with no&e5% of a brick width,
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modular evolution is still able to progress to produce highl t individuals { in fact,

at its best it does better than the average 1.0% run, and bettehan the worst 0.1%
run. This leads us to believe that higher noise hasratarding e ect upon progress, in
the sense that it takes evolution longer to nd reliable modles, but less so dimiting

e ect: by allowing the 5% run to continue we see that it catches up tthe 1.0% run
within the next 100 generations. Figure 5.17 contains sanglassembly hierarchies

evolved at the 5% noise level. Further examples are shown ippendix A.

5.6 Summary

This section has demonstrated Evolutionary Fabrication'sbility to overcome noise
and error during assembly. Even without the ability to explicitly place meltable
sca olding, evolved assembly plans can nonetheless learn teliably build a goal
structure in the face of error by placingontogenic sca olding- temporary elements
that are essential for the reliable assembly of the goal stture, but which are removed
before nal evaluation.

Section 5.3 introduced a form of modular encapsulation bakeipon phenotypic
symbiogenesis which addresses the context dependency ofettigomental representa-
tions. Structures which exhibit high reliability in the face of noisy development were
chosen as candidate modules, and added as a whole, to the deprimitives. Not
only does this method of modular assembly overcome the degobus e ects of noisy
development in an arti cial ontogeny across a range of noidevels. Interestingly,
even at the highest level of noise it also outperforms non-molar methods evolved
without noise.

The strength of this method lies in a form ofdevelopmental bootstrapping small

subcomponents are composed into largstable modules available to the represen-



CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 90

Modular Assembly Leafy Fitness across a range of Noise Values
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Figure 5.16: Evolutionary Fitness of the \Leafy" Fitness Function across a wider
range of noise values. Higher noise has more ofredarding e ect than it does a
limiting e ect.

Figure 5.17: An example of hierarchical assembly of largetrisctures at 5% noise.
Note the increased size and complexity of the assemblies. rther examples are
provided in Appendix A
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tation, and in that manner multi-tier hierarchically composed assembly methods
emerge. As the size of the sub-assemblies increases, Evohary Fabrication is able

to make incrementally larger structures with relatively fever instructions.



Chapter 6

Discussion and Conclusion

At this point we have introduced Evolutionary Fabrication as an alternative to blueprint-
based Evolutionary Design. Further, we have shown how Evdlanary Fabrication,
while allowing for the full automation of designand assembly, remains endowed with
the same level of creativity and innovation found in more trditional, blueprint-based
approaches. By directly evolving assembly plans, EvoFab é¢apable not only of nd-
ing e cient means of manufacturing objects, but of discoveng entirely novel and
unexpected ways of doing so. We can now discuss some of theadey themes and

implications of these results.

6.1 Novelty and Invention

What do we mean, exactly, when we say that Evolutionary Fabcation allows for the
\emergence" of \novel" means of assembly? In their work, Raid et al. warn, \We

do not think...that emergence should be diagnosed whenevbe unexpected intrudes
into the visual eld of the experimenter” [85]. Inspired by te Turing Test, they

provide an observer-based test for emergence based on th&amoof \surprise™: that

92
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is the extent to which the connection between local rules afteraction and observed
global behavior isnon-obvious This meshes well with Koza's notion ofnventiveness
in [51], wherein he cites one of the US Patent O ce's criterigfor a new invention:
that it should be non-obvious \to a person having ordinary sk in the art to which
said subject matter pertains”. Like the test for emergencenventiveness is contingent
upon impressing an external observer with an unexpected andvel phenomenon that
seems to exceed the properties of the system.

A clear example of novel assembly occurs in the assembly oétgoal arch from
Section 3.2, reproduced below in Figure 6.1. The sca oldingrick placed in frame 1
tumbles from its horizontal placement into a vertical posibn below. By falling into
position in this manner, the sca olding ends up directly unér the center of mass of
the brick it will support. This nal location is actually bet ween two of the discrete
print-head positions, and so the sca olding could not have den placed directly. If it
had instead been directly placed by the print head the into amdjacent position the

brick it supports might have tilted sideways.

Figure 6.1: A non-reversible toppling motion. Note how the drizontal sca olding
placed in frame 1 tumbles into a vertical position.

The \dynamic assembly" observed in Section 4.3 is yet anothstriking example
of a phenomenon which meets the criteria for novelty: watahg those assembly pro-
cesses, particularly the one shown in Figure 6.2 never faits elicit a certain frisson
of surprise. The non-obviousness of the phenomenon can béibuted to the fact
that even though Evolutionary Fabrication is limited to placing bricks one at a time,

it nonetheless discovers how to dynamically assemble two wmore multi-brick sub-
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assemblies by exploiting the settling phase of the constitimn process. This emergent,

modular, meta-assemblytranscendsthe brick-by-brick language of assembly.

Figure 6.2: An extreme example of dynamic assembly

Each of these phenomena of unusual assembly meet the crdeof emergence and
inventiveness, and serve as a strong example of the abilitiyEvolutionary Fabrication
to inject novelty into the realm of assembly. While we do notlaim that these exact
phenomena would arise in a the real world, we conjecture thaqually novel and
interesting methods of assembly would emerge in a physigadmbodied system, just

as they have in Evolutionary Robotics [68, 102] and EvolvablHardware [95].

6.2 Assembly vs. Disassembly

The emergence of phenomena such as dynamic assembly alsootestnates the com-
parative advantage of directly evolving assembly ovgrost hocmethods of determining
assembly from a blueprint, such as Assembly Sequencing. Riétow Assembly Se-
guencing approaches simplify their task by assuming that ssmbly is a monotone,
two handed process [33, 45]. Operating under these assurops, Assembly Sequenc-
ing can discover an object's disassembly, and then reverdeetsteps to arrive at its
assembly.

And yet, the the assembly shown in Figure 6.1 and the dynamicssemblies in

Section 4.3 are clearlynot reversible, even though the assembly mechanism is both
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monotone and two-handed. The structure shown in 6.2 may haleeen assembled
brick-by-brick, but it certainly cannot be un-built brick by brick.

When assembly sequencing makes these assumptions abouéembdy, in does so
in order to make the problem more tractable. Searching for aassembly sequence
from the bottom up, as we do in Evolutionary Fabrication, opas up a much larger
search space. As we've shown, the benet of this tradeo is thability to discover

unexpected, e cient, and novel means of assembly.

6.3 Hierarchy and Noise

Simon argues that \hierarchic systems will evolve far moreuickly than non-hierarchic
systems of comparable size" [90]. Using the parable of the@¥rprone watchmakers
Tempus and Hora, he provides a quantitative analysis of thei dulty of assembly
under noise: if each watch contains 1000 parts, and the prdibity of an error during
assembly isp, then Tempus, who assembles his watches in a linear, non-nutat
fashion, has a (1 p)'°® chance to create a complete watch. Hora, on the other hand,
builds 10-piece sub-assembles, each of which then has a (@*° of interruption, and
when interrupted only loses the assembly he is working on rar than the complete
watch. With p = 0:1 Hora will successfully complete his watch about 4000 times
more often than Tempus.

Our results comparing modular assembly to non-modular assebly in Section 5.3
recapitulate this analysis in the context of Evolutionary Rbrication. As shown by
Figures 5.11 and 5.12, the hierarchical system far outperfos the non-hierarchal
system, even with only minimal noise. Figure 6.3 comparesdirates of hierarchical

and non-hierarchical evolution at 0.1% noise.
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Figure 6.3: Our results comparing the progress of modular .véion-modular evolu-
tionary systems recapitulates Simon\hierarchic systems will evolve far more quickly
than non-hierarchic systems of comparable siz§90]

6.3.1 Measuring Modularity

We can also investigate how varying levels of noise a ect thgpe of hierarchies which
emerge. Given the assembly plans for a structure and its cesponding modules we
can generate a directed graph of the hierarchical assemblyopess by creating an
adjacency matrix. (In fact, all of the graphs of hierarchichassembly shown in this
work were produced automatically in this manner). We can the measure properties
of the graph, such as the depth of the hierarchy, the number ahodules (nodes),
and the amount of reuse (edges). Using these measurementscame compare relative
values between hierarchies evolved at di ering noise legel

Consider for instance the the matrix below, correspondingptthe graph shown in
Figure 6.4. The value at (;j ) corresponds to the number of timesnodulg is used in

modulg . In this hierarchy there are four nodes, four edges, and thespth is four.
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Figure 6.4: A robust hierarchical modular assembly from Seeon 5.3
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Using these metrics we can compare the properties of the kdeshies which emerged
in the \leafy" tness function at 0.1% noise with those that arose at 5.0% noise. In
each survey we measure the properties of all structures witiness between 1200
and 1800. Taking into account the retarding e ect that incrased noise level has on
the progress of evolution, in order to compare structures @quivalent tnesses the
0.1% noise hierarchies were sampled at generation 280, ahd 5.0% hierarchies were
sampled at generation 500. The survey consists of 109 indivals across 10 runs
at 0.1% noise and 212 individuals across 11 runs at 5.0% noise the bar graphs
below, measurements for each hierarchy were normalized Ihetoverall tness of the
hierarchy.

A two-sample T-test shows that the distributions of tnesse between the two
surveys are equivalent g = 0:778), as are the normalized depthsp(= 0:9724) and
total number of edges = 0:5743). The distributions of nodesbetween the two
samples, however is quite distinct= 3:771e 8) - with the samples from the noisier

environment having signi cantly fewer nodes. These data arpresented in the bar
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graphs in Figures 6.6 and 6.7.

This above analysis shows a key quantitative di erence beten the hierarchies
that emerge at the di erent noise levels. While the tness, dpths and edge counts in
both sets of hierarchies remain comparable, those hierarek which emerge in higher
noise have fewer nodes overall. The number of nodes in therhrehy correspond
to the number of distinct modules that are found by evolution. It makes sense that
the hierarchies that emerged in the higher noise regime halewer modules: as noise
levels increase, the number of reliably buildable sub-assielies decreases. And yet,
while the number of nodes is di erent, the total number of edgs between remains
the same. In other words, the relative number of edgg®r moduleincreases as noise
increases.

This leads us to conclude thaincreased levels of noise lead to increased levels of

modular reusein our evolved hierarchical assemblies (Figure 6.5).

NOISE INCREASES ﬂ \

P
/ /\ \ REUSE INCREASES *><r

Figure 6.5: As the noise in the developmental system incress the height of the
trees remains essentially the same, as does the total numladéredges. The number
of modules, however, decreases, meaning that there are medgesper module In
other words, increased levels of noise lead to increased levels of moduaise in our
evolved hierarchical assemblies.
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6.4 Measures of Complexity and Scale

Because the aim of Evolutionary Fabrication is tassemblehings rather than merely
design them, thecomplexityof a structure has less to do with the size of the structure
or the total number of bricks, and more to do with the the compxity of the process
required to build it. By this measure, the trees seen in our elution for \shade"
contain fewer bricks than equally t arches, and yet requireconsiderably more e ort
to assemble, because of the need for sca olding to producddreced branches.

Building on this notion of complexity of process, and borroimg from the information-
theoretic notion of Kolmogorov complexity we can provide a more formal, if prelim-
inary, notion of structural complexity. Returning briey t o the abstract model of
Evolutionary Fabrication provided in Section 2.5.1 we canay that the complexity
of a structure s vis a vis an Assembly MechanisnM and a language of assemblly
is the minimum length of the assembly plaa 2 L which, when interpreted by the
mechanismM produces the structures. This corresponds well with the measures of
complexity for assembly sequences provided by Goldwassarch as the total number
of steps, and the number of non-two-handed steps [33].

The question of how Evolutionary Fabrication scales to ineasingly large and
complex structures rests, therefore, on its ability to evek increasingly increasingly
large and complexprocessesof assembly. Non-modular assembly, for instance, is
limited in its scalability because an increase in the complay of an assembly process
can only be accomplished by a corresponding increase in tleagth of the assembly
plan. Modular assembly, on the other hand, allows for a larg#egree ofcompression
Every module has associated with it a corresponding assemligrocedure, and so
a single modular reference in an evolving assembly plan ireses the compressed

length of the assembly plan by one instruction, but correspals to a signi cantly
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larger uncompressed set of instructions.

The measure ofcompressionof a modular representation can be provided by cal-
culating the mass per compressed instruction (MPI) of a modar assembly. Non-
modular assembly is uncompressed, and so we would expect ¢ée s relatively con-
stant MPI over the course of evolution: the only way to place wre bricks is to add a
corresponding number of instructions. In modular assemblpy contrast, we should
expect to see a signi cantly higher MPI, in that a single instuction can result in the
placement of a multi-brick module.

Figure 6.8, which measures the MPI of both methods over the wse of the rst
300 generations con rms this. The MPI of non-modular asserhbremains at, while
the MPI of modular assembly increases signi cantly over theame time period. This
e ect is repeated in the larger environment used of the \legf tness in Section 5.5,
as shown by Figure 6.9.

It is important to observe in these charts not only that moduar representations
are relatively compressed, but that their measure of commsionincreasesover the
course of evolution. This means not only that the scalabilit of modular assembly is
higher than that of non-modular assembly, but that therate of scalability increases
over the course of evolution: as hierarchical assembliesddules evolve, each module

contains an increasing number of bricks.

6.5 Embodied Evolutionary Fabrication

We have shown how, in principle and if phrased correctly, Elationary Fabrication
allows for the full automation of both design and assembly. @have yet to demon-
strate a physical Evolutionary Fabrication system. The resons for the delay are

clear: rapid prototyping machines are expensive to own and bperate, and until this
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body of research we lacked any foundational theory or reasance that the scheme
would even work in simulation.

How might we go about accomplishing \embodied" Evolutionar Fabrication?
Two obvious approaches exist: the rst is to take a cue from Waon et al.'s work
on Embodied Evolution [102], wherein we may remove the notioof simulation
entirely by fully embedding both design and assembly in theeal world. Their results
indicate that real-world evolution can often exploit phystal phenomena to arrive at
solutions manifestly di erent, and more optimal, than tho® found in simulation. This
recapitulates in a robotic context Thompson's work on the \#icon Evolution" of an
FPGA, in which his physically evolved circuit exploited theanalog characteristics of
the device to arrive at a solution that could not be producedni simulation. Outside
of the realm of Evolvable Hardware, there are few other exangs of fully-embodied
evolution [58].

Realistically speaking, a fully embodied approach to Evolionary Fabrication
would not be practical. The costs of building and evaluatinghousands of generations
of assembly plans directly on a rapid prototyping machine wid be prohibitively
expensive and prohibitively slow.

Evolving in simulation, however, raises the spectre of Jakos \Reality Gap”. How
can we be certain that physical assembly will behave the saras simulated assembly?
Evolutionary Robotics accomplishes this by ensuring crital elements of reality are
accounted for in simulation [42]. While this approach work$or evolving controllers
for robots with xed sensor morphologies in xed environmets, it presents a challenge
as robots scale and environments become more variable. Fetmore, realistically
modeling requiresa priori knowledge of the operating environment, which may not
be available.

Scaling simulations to larger and unknown environments reges adaptive simu-
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lations. One approach, rst proposed by Brooks in 1992 [14is to co-evolve phys-
ical robots and their simulators, ne-tuning the simulation over the course of time.
Bongard and Lipson's recent work uses a genetic algorithm to-evolve a robotic
controller and the parameters of an ODE-based simulation toompensate for unan-
ticipated morphological changes in the robot, o ers promiag results [12].

An adaptive simulation of a manufacturing process, one whicevolves in tandem
with its physical counterpart, is therefore the best way toealize a physical Evolution-
ary Fabrication System. Assembly plans could be speedilya@ved within simulation,
and promising results could in turn be printed by the actual rachine. Such an Em-
bodied Evolutionary Fabrication machine would be the rst eal example of Fully
Automated Design and Assembly, capable of inventingnd building novel solutions

to design problems at the touch of a button.

6.6 Conclusion

The advent of state of the art rapid prototyping machines, gaable of producing
three-dimensional objects out of plastic, ceramic, and et replete with circuitry
and power sources, promises to revolutionize the realms aérponal and industrial
manufacturing. In parallel, Evolutionary Design has beenreating, without human
intervention, a wide range of novel and human-competitiveotutions to challenging
design problems.

Up until now, however, there has been no satisfactory means joining the two
elds to establish fully automated design and assembly. Asevhave shown, progress
has been shackled by its dependence on blueprints which eedorm, but leave unan-
swered the vital question oformation. As a consequence there is growirkgbrication

Gap between evolved designs and the processes required to btiilem.
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In this dissertation we have proposed a reformulation of thEvolutionary Design
task: the co-evolution of form and formation simultaneously evolvinghow to build
an object andwhatto build it out of. Arti cial Ontogenies, inspired by the bio logical
processes of growth and development, provide us with the fsdo accomplish this.

This approach is not without its drawbacks. Most signi canty it requires the
realistic simulation of an object's entire assembly, rathrethan only its behavior once
complete. The bene ts of this approach, arise when evolutiois allowed to range
through the entire space of assembly methods, discoveringtijust novel objects, but
novel means of assembling those objects.

The speci ¢ framework we have introduced to demonstrate thiapproach isEvo-
lutionary Fabrication (EvoFab). In our model, the genotypes are assembly plans:
linear, ballistic sets of instructions to an assembly mech&am rapid , and assembly
itself unfolds within a simulation of that mechanism. This §, in essence, the direct
genetic programming of a rapid prototyping machine.

We have provided several examples of the emergence of ngyahinovation, and
e ciency within EvoFab, most notably the dynamical assemby of sub-assemblies in
Section 4.3, a form of meta-assembly which transcends thejgential and monotone
nature of the manufacturing process.

We have also demonstrated two methods by means of which Evotuinary Fabri-
cation can cope with the noise and error that arise in real-wil assembly. The rstis
the emergent sca olding in section 5.1.3, which allows Evab to reliably build a goal
object in the presence of noise. The second is the open-endiégtarchical modular
assembly in Section 5.3, in which the entire language of dgisievolves by discovering
increasingly large, reliably buildable sub-assemblies @mncorporating them as new
building blocks. This bootstrapping approach allows for tb hierarchical assembly of

large objects across a wide range of noise levels.
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Each of these accomplishments can be considered a cornarstin the emerging
eld of Fully Automated Design and AssemblyThis marriage of Evolutionary Design
and Automated Manufacturing holds the promise of revolutinizing a broad array of
elds, ranging from product design to planetary exploratio. Armed with the progress
presented in this dissertation, the next logical step towas Fully Automated Design
and Assembly is to create a real-world embodied EvolutiomarFabrication system

with which to recreate these results in a more tangible form.
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Example Hierarchies

Figure A.1: An Example Hierarchical Assembly of Modules at.0% noise
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Table A.1: Example Hierarchical Assemblies of Modules atT% noise
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Figure A.2: An Example Hierarchical Assembly of Modules at.0% noise
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Figure A.3: An Example Hierarchical Assembly of Modules at.0% noise
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Figure A.4: An Example Hierarchical Assembly of Modules at.0% noise

Figure A.5: An Example Hierarchical Assembly of Modules at.0% noise
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Figure A.6: An Example Hierarchical Assembly of Modules at.Q% noise
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Figure A.7: An Example Hierarchical Assembly of Modules at.0% noise

Figure A.8: An Example Hierarchical Assembly of Modules at.0% noise
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Figure A.9: An Example Hierarchical Assembly of Modules at.0% noise
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Figure A.10: An Example Hierarchical Assembly of Modules &.0% noise
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Figure A.11: An Example Hierarchical Assembly of Modules &.0% noise
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Figure A.12: An Example Hierarchical Assembly of Modules &.0% noise
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Figure A.13: An Example Hierarchical Assembly of Modules &.0% noise
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Figure A.14: An Example Hierarchical Assembly of Modules &.0% noise
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Figure A.15: An Example Hierarchical Assembly of Modules &.0% noise
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