
Evolutionary Fabrication:

The Co-Evolution of Form and

Formation

A Dissertation

Presented to

The Faculty of the Graduate School of Arts and Sciences

Brandeis University

Michtom School of Computer Science

Jordan Pollack, Advisor

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

John Rieffel

May, 2006

This dissertation, directed and approved by John Rieffel’s committee, has been

accepted and approved by the Graduate Faculty of Brandeis University in partial

fulfillment of the requirements for the degree of:

DOCTOR OF PHILOSOPHY

Adam B. Jaffe, Dean of Arts and Sciences

Dissertation Committee:

Jordan Pollack, Chair

Harry Mairson

Timothy J. Hickey

Neil Gershenfeld

c©Copyright by

John Rieffel

2006

in memoriam

John Arden Bretz (1917-2006)

Mary Ethel Robbins (1917-2006)

Acknowledgments

No dissertation emerges in a vacuum, and this particular one wouldn’t have even

left the ground were it not for the enormous web of support, both intellectual and

personal, that surrounds me.

To begin with, I would like to express my enormous gratitude to all of the members

of the DEMO Lab with whom I have had the pleasure of collaborating over the

past five years. The lab is a terrific incubator of knowledge; most of the ideas in

this dissertation grew out of discussions, sometimes heated but always friendly, held

within those walls. Particular thanks to my close colleague Shivakumar Viswanathan,

il miglior fabbro, who, with his encyclopedic knowledge of the relevant literature, has

been both my strongest champion and most stern critic. Of course, the credit for

assembling all of these incredible minds under one roof is due to Jordan Pollack,

who has a keen eye for interesting people and important ideas. Jordan’s ability to

instantly zero in on the most important result of every experiment, coupled with his

ability to grasp the broader implications of my work, served to focus and ground my

efforts over the years.

I would also like to thank each of the members of my committee. Harry Mairson

has been an terrific mentor and teacher over the years. Leading recitation for his

introductory Scheme class has been one of the highlights of my time at Brandeis.

Tim Hickey gladly joined the committee on relatively short notice and yet provided

v

vi

significant insight and advice. Neil Gershenfeld rearranged a very busy schedule

to attend my defense, and provided a much-needed engineering perspective to this

dissertation. Combined, my committee provided vital feedback and posed numerous

challenging questions, serving to keep me on my toes throughout the entire process.

I am also blessed by a large and extremely supportive extended family, all of whom

have been both patient and generous with me. My greatest gratitude is reserved for

Emily, my wife and my closest friend, who makes everything possible.

Abstract

Evolutionary Fabrication:

The Co-Evolution of Form and Formation

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by John Rieffel

Evolutionary Design has been used to automatically generate a wide variety of novel

and creative objects such as circuits, robots, and satellite antennae. And yet, despite

the availability of sophisticated rapid prototyping machines capable of printing objects

out of plastic, metal, and even circuitry, relatively few of these evolved designs have

been physically manufactured in the real world.

We argue that the cause of this paucity of physical artifacts lies in the “design first,

build later” philosophy of contemporary Evolutionary Design. By only specifying the

form of an object, this approach leaves unanswered the vital question of formation.

As evolved forms become more complex, their formation becomes increasingly difficult

for both humans and computers to discover. As a consequence, there is a growing

Fabrication Gap between the complexity of objects which we can evolve and those

which we can manufacture.

The alternative proposed here is to use Artificial Ontogenies, a computational

method inspired by the biological processes of growth, in order to directly evolve the

formation of objects. We introduce Evolutionary Fabrication, the direct evolution of

assembly instructions within a simulated manufacturing system, and show that this

approach is capable of injecting the novelty and creativity associated with evolution-

ary approaches into the realm of fabrication, generating not just novel objects, but

novel means of assembling those objects as well.

vii

viii

Ultimately, the evolution of form and formation become fully intertwined when

the language of assembly itself becomes subject to evolution, capable of discovering

increasingly large sub-assemblies and adding them to its vocabulary. Through this

co-evolution of form and formation, Evolutionary Fabrication discovers both how to

build objects and what to build them out of. In this manner, Evolutionary Fabrication

is capable of designing and assembling scalably complex objects in a hierarchical

manner, even in the presence of error during assembly.

Via this co-evolution of form and formation, Evolutionary Fabrication circum-

vents the Fabrication Gap, leading the way to systems which can move from broad

specification to complete artifact without the need for further human intervention.

This budding field of Fully Automated Design and Manufacture will have an impact

on realms ranging from product design to planetary exploration.

Preface

When I first arrived at the DEMO Lab in the Fall 2001 I was given the task of

assembling a variety of the “GenoBots” created by my colleague Greg Hornby [38].

A few of the simpler robots were relatively easy to assemble, and produced some

spectacular results - the most notable being the “QuadraBot” that walked in straight

lines on four legs, each actuated by a single oscillating servo motor.

Unfortunately, as the designs became more complex, the robots in turn became

more difficult to build. The brittle plastic parts broke easily, and the actuators

struggled to move ever larger masses. More frustrating, however, was the process

of looking at one of Greg’s simulations and figuring out how exactly to build the

shape on the screen. This was my first glimpse of the “Fabrication Gap”: the notion

that there is a tremendous amount of missing knowledge between the blueprint of an

object and the process required to physically manufacture it.

And so, my motivation for this work stems from the same question that many

Ph.D. candidates ask themselves: “Can’t I get a computer to do this for me?” This,

in the broadest sense, is the subject of this dissertation: how we can use Evolutionary

Algorithms not just to design complex objects, but to assemble them as well.

ix

Contents

Abstract vii

Preface ix

1 Introduction 1

1.1 The Fabrication Gap . 2
1.2 Bridging the Reality Gap . 4
1.3 Evolutionary Fabrication . 4
1.4 Assembly as Ontogeny . 6
1.5 Development and Noise . 7
1.6 The Growth of Complexity . 7
1.7 Summary . 9
1.8 Preview . 10

2 Foundations 12

2.1 The Evolution of Form . 13
2.2 Manufacturing Evolved Designs . 17
2.3 The Fabrication Gap . 18
2.4 The Evolution of Formation . 25
2.5 Evolutionary Fabrication . 34
2.6 Engineering without Engineers . 36
2.7 Summary . 38

3 Framework 40

3.1 System Description . 41
3.2 A Brief Example . 45
3.3 Summary . 48

4 Evolutionary Fabrication for Design 50

4.1 Filled Volume Fitness . 51
4.2 Shaded Volume Fitness . 53
4.3 The Emergence of Novel Assembly Methods 55
4.4 Summary . 64

x

CONTENTS xi

5 Evolutionary Fabrication in Uncertain Environments 65

5.1 Evolving Reliability without Tests . 66
5.2 Evolving for Scalable Complexity . 71
5.3 Modular Evolutionary Fabrication . 78
5.4 Modular Assembly in Noisy Environments 81
5.5 Scalable Modular Assembly . 86
5.6 Summary . 89

6 Discussion and Conclusion 92

6.1 Novelty and Invention . 92
6.2 Assembly vs. Disassembly . 94
6.3 Hierarchy and Noise . 95
6.4 Measures of Complexity and Scale . 101
6.5 Embodied Evolutionary Fabrication 102
6.6 Conclusion . 105

A Example Hierarchies 108

List of Tables

3.1 Parameterized Assembly Instructions 43
3.2 An Example Assembly Plan . 43

4.1 Structures generated with the “filled” fitness function. 52
4.2 Structures Evolved for “shadow” fitness. 54
4.3 Comparison of two environments . 57
4.4 Evolved structures. 63

5.1 Visualization of improving yields. 73
5.2 Example modules and their associated assembly plans 78
5.3 Hierarchical assembly of modules from Table 5.2 79

A.1 Example Hierarchical Assemblies of Modules at 0.1% noise 109

xii

List of Figures

1.1 An example of novel dynamic assembly from Section 4.3 10
1.2 A robust hierarchical modular assembly from Section 5.3 11

2.1 Pablo Funes’ evolved tree . 19
2.2 One of Greg Hornby’s evolved GenoBots 19
2.3 Intertwined Rings: an unbuildable design. 23
2.4 Consequences of noisy development 31

3.1 An illustration of the assembly process 45
3.2 The Goal Arch . 46
3.3 Evolved assembly plan building the goal arch. 48

4.1 Illustration of the “filled” fitness function. 51
4.2 Assembly of an arch . 54
4.3 A novel evolved assembly method . 55
4.4 Another novel evolved assembly process. 55
4.5 Illustration of two assembly environments. 57
4.6 Another dynamic assembly sequence. 58
4.7 Another dynamic assembly sequence 58
4.8 An extreme example of dynamic assembly. 58
4.9 Fitnesses and Dynamic Assembly Contribution 60
4.10 Fitness Comparison Between Environments 60
4.11 Fitness Contribution from Dynamic Assembly 61
4.12 Average Fitness per Brick . 62
4.13 Average fitness per instruction. 62

5.1 Illustrating the effects of noise on development. 66
5.2 The goal arch. 68
5.3 A sample of phenotypes from the same genotype. 69
5.4 Robust Assembly . 72
5.5 Robust Assembly . 72
5.6 Robust Assembly . 72
5.7 The process of module rejection and discovery. 80
5.8 Illustration of endosymbiotic module acquisition. 82

xiii

LIST OF FIGURES xiv

5.9 Properties of a good module . 82
5.10 Illustration of Shaded Fitness Function. 83
5.11 A demonstration of the effects of noisy development. 85
5.12 Performance comparison of modular and non-modular evolution. . . . 85
5.13 An Example Hierarchical Assembly of Modules at 0.1% noise. Further

examples are provided in Appendix A 87
5.14 An Example Hierarchical Assembly of Modules at 1.0% noise. Further

examples are provided in Appendix A 87
5.15 Illustration of Larger Environment and “Leafy” Fitness. 88
5.16 Evolutionary Fitness of the “Leafy” Fitness Function 90
5.17 Assembly of a Larger Structure . 90

6.1 A non-reversible toppling motion . 93
6.2 An extreme example of dynamic assembly 94
6.3 Recapitulating Simon’s Parable. 96
6.4 A robust hierarchical modular assembly from Section 5.3 97
6.5 As Noise Increases Reuse Increases 98
6.6 Comparing Modular Hierarchies . 99
6.7 Distinctions between Modular Hierarchies 100
6.8 Mass per Instruction . 103
6.9 Mass per Instruction . 103

A.1 An Example Hierarchical Assembly of Modules at 0.1% noise 108
A.2 An Example Hierarchical Assembly of Modules at 0.1% noise 110
A.3 An Example Hierarchical Assembly of Modules at 0.1% noise 111
A.4 An Example Hierarchical Assembly of Modules at 0.1% noise 112
A.5 An Example Hierarchical Assembly of Modules at 0.1% noise 112
A.6 An Example Hierarchical Assembly of Modules at 1.0% noise 113
A.7 An Example Hierarchical Assembly of Modules at 1.0% noise 114
A.8 An Example Hierarchical Assembly of Modules at 1.0% noise 114
A.9 An Example Hierarchical Assembly of Modules at 1.0% noise 115
A.10 An Example Hierarchical Assembly of Modules at 1.0% noise 116
A.11 An Example Hierarchical Assembly of Modules at 5.0% noise 117
A.12 An Example Hierarchical Assembly of Modules at 5.0% noise 118
A.13 An Example Hierarchical Assembly of Modules at 5.0% noise 119
A.14 An Example Hierarchical Assembly of Modules at 5.0% noise 120
A.15 An Example Hierarchical Assembly of Modules at 5.0% noise 121

Chapter 1

Introduction

Imagine a table-top machine, akin to the fabled “Star Trek” replicator, able to create

any object it is asked for. Now imagine that same machine endowed with creativity,

capable of inventing entirely new products as well: an “automated invention ma-

chine” [51]. Next, consider a fleet of these machines landing on the surface of Mars,

where each proceeds to take measure of its surroundings, gather locally available raw

materials, and then produce a series of robotic rovers, each uniquely suited to the ter-

rain in which it landed. Long the domain of science fiction, machines capable of fully

automated design and assembly are coming closer to reality, and have the potential

to revolutionize personal and industrial manufacturing.

At first glance, fully automated design and assembly seems very close indeed. On

the side of automated design we have the progress of Evolutionary Algorithms in the

realm of design, which over the past twenty years, have produced a wide variety of

objects ranging from tables [38, 29] and trusses [66] to entire robots [75]. Evolutionary

Design has demonstrated the capacity for automated creativity unfettered by human

bias. Indeed, the literature is ripe with unexpectedly novel, elegant, and “human

competitive” solutions to design problems [40, 2, 51, 76, 64].

1

CHAPTER 1. INTRODUCTION 2

And on the side of automated manufacturing we have the recent advances in rapid

prototyping and industrial robotics. State of the art bench-top systems, often dubbed

“Santa Claus Machines”, are now capable of manufacturing relatively sophisticated

objects out of a wide range of materials such as plastic, metal and ceramic. Cutting

edge research units are even able to print batteries, wiring, and entire circuits [63, 16].

On a larger scale, massive industrial robots can now assemble entire cars.

This dissertation introduces Evolutionary Fabrication: a means by which we can

merge the fields of Evolutionary Design and Automated Manufacture, and in that

manner realize the full automation of design and assembly.

1.1 The Fabrication Gap

Unfortunately it soon becomes clear that the full automation of design and assembly

is not as simple as feeding the product of Evolutionary Design directly into a Rapid

Prototyping machine. Several evolved designs have been manufactured in the real

world [30, 29, 75, 38, 28], perhaps the most notable being Lohn et al.’s evolved an-

tenna [59], due to be launched into space aboard a Low Earth Orbit satellite this year.

And yet, despite being automatically designed, they were all manually assembled.

This need for further human intervention arises because there is a knowledge gap

between the process of design and the process of manufacture. How, exactly, does

the rapid prototyping machine know how to print an object? How does the industrial

robot know how to build the car? Conventionally, the end result of Evolutionary

Design is a descriptive model of the evolved object: a blueprint. Rapid prototyping

machines and industrial robots, on the other hand, require a specific set of instructions

in order to perform their task: an assembly plan. Consider a blueprint as a photograph

of a cheese souffle in a cookbook. While the photo may describe in great detail, and

CHAPTER 1. INTRODUCTION 3

in full color, what the finished souffle should look like, it contains no information on

how to cook it. In order to actually prepare the dish, a cook needs the recipe on

the facing page. Similarly, before they can be assembled, evolved blueprints must

be translated into a set of explicit instructions for the assembly mechanism. This

crucial missing knowledge between the description of an object and the assembly of

that object is the Fabrication Gap.

There are, of course, a few ways of automatically transforming a blueprint into

an assembly process. Rapid prototyping machines, for instance, accept 3-D CAD

files as input, and can reduce these models into a series of small horizontal slices,

which they then print, layer by layer. Hornby was able to assemble his evolved tables

and parts of his evolved robots in this manner [38]. On a broader scale, the field of

engineering devoted to determining how to build a given object by inferring a sequence

of assembly instructions is known as Assembly Sequencing. Often, in order to reduce

the complexity of the task, conventional approaches to assembly sequencing make a

number of strong assumptions about the process of assembly, for instance that it is

monotone (once two parts are assembled they stay together) and two-handed (that

each stage of assembly joins exactly two sub-assemblies) [32, 33]. Operating under

these assumptions (and provided the object can be assembled in the first place) the

method works, although the task of finding an optimal, or even near-optimal assembly

plan has been proven to be NP-complete [45].

This raises a more fundamental question: how do we know that designs we have

evolved are buildable at all? One approach is to constrain the representation used by

evolutionary design in such a manner that it only produces buildable objects. Funes,

for instance, was able to evolve large LEGO by using a representation which used

the bricks themselves as primitives, pruning the evolved program tree in cases where

mutation and crossover created an impossible structure [30, 29]. Funes’ definition of

CHAPTER 1. INTRODUCTION 4

buildable is narrow, however, requiring only that the finished physical object behave

identically to the simulated evolved object. As we’ll see in Chapter 2, even these

simple structures were not easy to assemble manually, much less automatically.

1.2 Bridging the Reality Gap

If there is another clear lesson to be learned from those evolved objects which have

been successfully manufactured in the real world, it is the importance of realistic

simulation in ensuring that the behavior of an evolved object corresponds to that of

its physical counterpart [14, 42]. Funes used a type of finite element analysis to model

the forces between LEGO bricks [29]. Lipson’s GOLEM robots [75] and Hornby’s

tables and GenoBots [38] were all evolved with quasi-static kinematics simulators.

Realistically simulating the behavior of an evolved object helps to ensure that

the real object will behave as expected once built. It does not, however, provide any

guarantees as to how the object will behave as it is assembled in the real world. If

we translate this notion of the importance of realistic simulation from the realm of

behavior into the realm of assembly, then it stands to reason that the best way to

ensure that an object can be assembled in the real world is to realistically simulate

the entire process of its assembly.

1.3 Evolutionary Fabrication

This begs the question: if, in order to automate assembly, evolved blueprints must be

translated into assembly procedures, and if a good representation and good simulation

are both contingent upon detailed knowledge of the assembly process, why not skip

the middle man and evolve those assembly plans directly?

CHAPTER 1. INTRODUCTION 5

A parallel exists here between the “design first, build later” approach to evolu-

tionary design, and the classical “build first, program later” approach to robotics.

In that scheme, engineers invent complex robotic systems, and only later try to

find a controller capable of operating it. This has been described as a “chicken

and egg problem” [31]: the evolution of robotic control assumes a fixed morphol-

ogy, and the evolution of robotic morphology assumes a fixed and functional con-

troller. Of course, biology doesn’t first “discover” an animal’s body, and only later its

brain, rather both evolve in tandem. Inspired by those biological processes, modern

robotics has met with considerable success by co-evolving morphology and control

[73, 91, 53, 61, 17, 26].

Similarly, nature does not draw increasingly complex “blueprints” of the systems

it wants to build and then subsequently try to assemble them. Rather, the form of

a species and the formation of that species are intertwined. If we have learned the

lesson of body-brain co-evolution, that morphology and control must arise together,

why then are we recapitulating these mistakes in the design domain by first evolving

complex objects and subsequently attempting to build them?

If Evolutionary Algorithms are indeed an “automated invention machine” [51],

why not allow them to to invent how to build rather than what to build? Would

this, in principle, allow evolution to invent not just novel objects, but novel means of

assembling those objects as well? This is the central question that this dissertation

seeks to answer.

Approaching Fully Automated Design and Manufacture from this perspective

requires a new formulation of Evolutionary Design, one that replaces descriptive

blueprints with prescriptive assembly plans. In this approach, the formation of an

object can no longer be taken for granted; we must realistically simulate not only the

behavior of a finished object, but its entire assembly as well.

CHAPTER 1. INTRODUCTION 6

In this dissertation we introduce Evolutionary Fabrication: a model of fully auto-

mated design and assembly which operates under this novel approach. In this model,

we simulate an entire assembly mechanism and directly evolve the instructions for it.

Through this evolution of formation, each result is, by its very nature, both automat-

ically designed and automatically assembled. Ultimately, the evolution of form and

formation become fully intertwined when the language of assembly itself becomes sub-

ject to evolution, capable of discovering increasingly large sub-assemblies and adding

them to its vocabulary. In this co-evolutionary approach, Evolutionary Fabrication

is able to simultaneously discover how to build large, complex objects and what to

build them out of.

1.4 Assembly as Ontogeny

Approaching evolutionary design through assembly requires tools and perspectives

different from those used in traditional Evolutionary Design. It is worth observing

that as objects are assembled, piece by piece, they grow over time, developing slowly

from initial components into a finished product. In fact, this process of growth is an

ontogeny of sorts.

This analogy to the biological processes of growth and development can be ex-

tremely useful. Artificial systems inspired by these organic processes fall under the

rubric of Artificial Ontogeny [52, 94]. Artificial Ontogenies are gaining popularity

as a means of Evolutionary Design, and have been demonstrated to have a number

of significant advantages including compactness and scalability [38], implicit modu-

larity [13, 39], and high adaptivity and evolvability [96]. The relevant question in

the context of Evolutionary Fabrication is whether these qualities can transfer into a

system which explicitly models the physical assembly of an object.

CHAPTER 1. INTRODUCTION 7

1.5 Development and Noise

Developmental approaches to design are not without their drawbacks. For starters,

there is the overhead associated with realistically simulating an object’s complete

development. Furthermore, as an object or an organism develops, each step of its

growth can be considered a different phenotype - who is to say that the “final” result

is the best [97]?

More problematic for the purposes of Evolutionary Fabrication are the deleterious

effects of noise and error, which can can induce a one-to-many relationship between

genotype and phenotype: a single genotype may develop into an entire distribution

of phenotypes, each with a corresponding fitness [81]. In biology, the interaction

between ontogeny and environment is a cornerstone of the field of Developmental

System Theory [69, 54]. The matter of developmental noise has lately begun to attract

attention in developmentally-inspired artificial systems [110, 99, 98, 81, 83, 82].

Any system such as ours, which hopes to realistically model physical assembly,

must therefore address the issue of how to reliably produce results despite environ-

mental noise. In this work we show how even simple ballistic assembly process, that

is, one without the means to measure intermediate progress, can nonetheless learn to

reliably assemble a goal structure.

1.6 The Growth of Complexity

It is one thing to say that we can use Evolutionary Fabrication to evolve how to build

certain things. It is quite another to say that the process will scale to increasingly

large objects, particularly under the presence of noise. Work on Artificial Ontogenies

has shown how developmental approaches can produce scalably large and complex

representations [38, 13, 94] , but if the assembly system which interprets those repre-

CHAPTER 1. INTRODUCTION 8

sentations is limited to a single sized building block, such as a LEGO brick, then the

assembly of larger objects becomes increasingly difficult, particularly as small errors

during assembly begin to accumulate.

In his seminal essay “The Architecture of Complexity”, Herbert Simon [90] argues

that the evolution of complex forms from primitive elements is highly contingent

upon hierarchical, modular assembly. Using his famous parable of two watch-makers,

Simon demonstrates how modularity insulates systems from the effects of error during

assembly, and greatly increases the rate at which large complex forms can emerge.

This reasoning translates readily into the realm of assembly and ontogeny: in

order to build larger, more complex objects, development must discover increasingly

larger components with which to build them. In the context of Evolutionary Fabri-

cation, this means that our system must be capable of discovering increasingly large,

increasingly complex, and reliably attainable sub-assemblies and incorporate them

into the language of representation as new building blocks .

Several models of of modular acquisition in Evolutionary Algorithms exist [50, 4,

86, 21, 101]. Most, however, assume that the same genotypic sequence will have the

same phenotypic consequence across different contexts. They can therefore be stymied

by developmental representations such as ours, in which the phenotypic consequence

of a genetic sequence is highly contingent upon its context. To better illustrate this

notion of context sensitivity, let us once again return to our earlier example of a

souffle recipe. The set of instructions (a genotypic module) which produces whipped

egg whites (a phenotypic module) in a souffle recipe would produce a mess (if anything

at all) if they occurred later in the recipe or, for that matter, in an omelet recipe.

The challenge of modular acquisition in such context dependent artificial onto-

genies therefore lies in figuring out a process by which the meaning of a favorable

genetic sequence, rather than the syntax, can be preserved. The means by which

CHAPTER 1. INTRODUCTION 9

we overcome achieve this is symbiogenesis - the process by which one organism, the

symbiont, is completely absorbed by its host. In the endosymbiotic model of modular

encapsulation, complete organisms, not just specific portions of their phenotype, are

used to form modules.

1.7 Summary

Broadly, the aim of this work is to foster an entirely new approach to the “automated

invention machine”, one which replaces the evolution of form with the evolution of

formation. Doing so, we argue, avoids the informational “Fabrication Gap” between

the descriptive blueprints produced by conventional approaches and the prescriptive

instructions needed to build them.

More concretely, our central contribution lies in introducing Evolutionary Fab-

rication, the direct genetic programming of an assembly mechanism, as a suitable

alternative and a promising approach to the full automation of design and assembly.

We claim that by evolving how to build, not only can it produce buildable objects, but

it is capable injecting the novelty and creativity seen in conventional evolutionary

design into the realm of fabrication, discovering not only novel designs, but novel

means of assembling those designs as well. Further, we show how Evolutionary Fabri-

cation has mechanisms, both implicit and explicit, which allow it build scalably large

complex structures, in the presence of noise and error during assembly.

Combined, these contributions lay the crucial theoretical and empirical founda-

tions for our ultimate goal of creating a real-world, embodied Evolutionary Fabrica-

tion system.

CHAPTER 1. INTRODUCTION 10

1.8 Preview

Chapter 2 lays the foundation for our work. It will describe the field of Evolutionary

Design in more detail, discussing related work and paying particular attention to case

studies of the few examples of physically embodied results. This will lay out the

motivation behind the creation of Evolutionary Fabrication as a new paradigm for

fully automated design and assembly.

Chapter 3 describes our experimental framework for exploring the capabilities

and limits of Evolutionary Fabrication (EvoFab), and provides a brief example of the

process by evolving the assembly plan of a specified goal structure.

Chapter 4 demonstrates the ability of our Evolutionary Fabrication framework

to perform open-ended design tasks, learning to build structures given only a broad

specification. Section 4.3 demonstrates the emergence of novel means of assembly in

Evolutionary Fabrication (see Figure 1.1), and explores the causes of those phenom-

ena.

Figure 1.1: An example of novel dynamic assembly from Section 4.3

Chapter 5 explores the effects of noise and error during Evolutionary Fabrication.

Section 5.1 demonstrates the ability of EvoFab to discover how to reliably build a goal

structure in the presence of noise, even without the means to measure intermediate

results. Section 5.2 demonstrates how Evolutionary Fabrication can reliably build

large, complex structures in noisy environments through the discovery of hierarchical

modular assembly (see Figure 1.2) .

CHAPTER 1. INTRODUCTION 11

Figure 1.2: A robust hierarchical modular assembly from Section 5.3

Chapter 6 discusses in more detail the themes and implications of Evolutionary

Fabrication, and sketches out the future of fully automated design and assembly,

sharing some ideas on how such a system can be implemented in the real world.

Finally, Section 6.6 summarizes and concludes this dissertation.

Chapter 2

Foundations

This chapter will lay out the central themes of this dissertation. We begin by in-

troducing the Evolution of Form, the branch of Evolutionary Design which seeks to

automatically create complex and novel objects. We then explore in greater detail

more recent efforts to physically manufacture these evolved designs. As we’ll see, this

transition from evolved design to physical object is far from seamless. These complex

objects, designed automatically and without human effort, subsequently require sig-

nificant human intervention to physically manufacture. As evolved designs become

increasingly complex, a Fabrication Gap opens up between those objects which we

can evolve and those which we can actually manufacture.

A central claim of this chapter is that the root cause of this difficulty lies in

the use of blueprints to describe evolved objects. By only specifying what to build,

blueprints leave unanswered the equally important question of how to build it. Absent

this information, the complexity of those blueprints we can evolve quickly out-paces

the complexity of those blueprints we can determine how to manufacture, thus, the

Fabrication Gap.

We argue that the solution to this gap begins with the evolution of formation

12

CHAPTER 2. FOUNDATIONS 13

rather than form. Artificial Ontogenies, a type of Evolutionary Computation inspired

by biological growth, are a natural method of modeling formation, and allow us to

evolve how to build rather than simply what to build.

Of course, while their prescriptive nature may help avoid the Fabrication Gap,

developmental representations are not without their own burdens. Error and noise

during development can significantly complicate the task of evolution. When sub-

jected to noise, a developmental genotype is capable of growing into an entire range

of phenotypes, each with a corresponding fitness. As the scale of development in-

creases, so do the deleterious effects of noise.

The best way to combat noise while evolving the assembly of increasingly complex

objects is through hierarchical, modular assembly. In essence the key lies in finding

something, anything that you can reliably build in the presence of noise, and then

adding that robust object as a new primitive in your assembly process. It is through

such endosymbiotic encapsulation that the evolution of form and the evolution of

formation become fully intertwined.

We end the chapter by introducing Evolutionary Fabrication as the Artificial

Ontogeny-based marriage of Rapid Prototyping and Evolutionary Design, which will

lead to the full automation of design and assembly.

2.1 The Evolution of Form

Generally speaking, Evolutionary Algorithms (EAs) are a form of population-based

informed random search inspired by biological evolution. The most popular types of

EA are Genetic Algorithms (GAs) [67], developed circa 1973, Evolution Strategies

(ESs) [8] circa 1973, and Genetic Programming (GP) [50],circa 1992.

Loosely speaking, the appeal of Evolutionary Algorithms lies in trying to harness

CHAPTER 2. FOUNDATIONS 14

some of the creative energy demonstrated by the only process known to have suc-

cessfully generated complex intelligence: biological evolution of life on earth. The

reasoning goes that what is good for the biological goose is good for the computa-

tional gander. More specifically, Evolutionary Algorithms have the ability to exploit

the underlying structure of large search spaces in order to arrive an unique solu-

tions. While certainly no panacea (see, in particular, Wolpert and Macready’s No

Free Lunch [107]), they are often capable of arriving at novel solutions to difficult

problems.

Evolutionary Algorithms can be used to evolve any number of things: from a sim-

ple string of bits, to the configuration of a Field Programmable Gate Array (FPGA),

to the complete brain and body of a robot. And yet, while the products of evolution

may be different, the fundamentals remain the same. The basic unit of manipulation

is the genotype, which can be changed via genetic operators such as mutation and

crossover. The genotype serves as an encoding of the phenotype (although in simpler

EAs the two are the same), representing a candidate solution to the problem at hand,

which can then be evaluated for fitness. Populations of solutions are bred from gen-

eration to generation using the Darwinian principle of selection of the fittest, until a

desired result is achieved. A more thorough treatment of EAs can be found in [67].

Since the term “design” is used loosely in the field, it is important to be clear

about what we mean by “design” in the context of this dissertation. In his book

“Evolutionary Design by Computers”, Peter Bentley [7], makes an effort to distin-

guish Creative Evolutionary Design from what he calls Evolutionary Design Opti-

mization. In this view, the former seeks to create new designs out of whole cloth,

whereas the latter seeks to optimize various aspects of a pre-existing design. This no-

tion of creativity is important. The hope is that Evolutionary Algorithms can arrive

at designs which possess unanticipated novelty, equaling or even surpassing human

CHAPTER 2. FOUNDATIONS 15

designs. Such “human-competitive” results include sorting networks [40], photonic

crystals [76], optical lens systems [2] and quantum Fourier transforms [64]. Indeed

John Koza, one of the creators of Genetic Programming has dubbed GP “an auto-

mated invention machine” [51], explaining that its capacity for novelty arises because

it is not bound by human reasoning and logic.

Here, we are specifically interested in what we call the Evolution of Form, for in-

stance of satellite antennae [59], robot morphology [10, 75], or of entire buildings [88].

What separates the Evolution of Form from other types of evolutionary design is that

the end result has some tangible shape, rather than simply being an arrangement of

bits. This distinction becomes clear when the time comes to turn the evolved objects

into physical artifacts. For many real-world evolutionary designs, such as the FPGAs

used in Evolvable Hardware, the transfer from simulation to reality is relatively easy,

because the designs take the form of pure information, which can be effortlessly and

automatically transferred to their physical counterparts. By contrast, an evolved

robot must be crafted, servo motors attached, and batteries charged before it can

walk. Likewise, an evolved satellite antenna cannot be launched into space until it

has been physically formed and attached to its host.

The evolution of form carries with it the promise of entirely new designs of physical

objects. If, however, we want to bring these novel objects into reality we must face

the prospect of manufacturing, and with it the corresponding Fabrication Gap.

2.1.1 Case Study: Sims Creatures

One the earliest and most frequently cited examples of the use of Evolutionary Algo-

rithms to design an object (as opposed to a bit string or program tree) is Karl Sims’

seminal work on virtual creatures [91, 92]. Although more than ten years old, Sims’

work has had far-ranging consequences and provided several key insights which have

CHAPTER 2. FOUNDATIONS 16

had a significant effect upon the entire field of Evolutionary Design, which has, in a

sense, been playing catch-up ever since.

First among his contributions is the evolution of robot morphology as well as

control. EAs had already been used to to evolve controllers for a variety of robots with

fixed morphologies. Sims’ crucial contribution in this regard was in using an encoding

which allowed him to evolve the entire physical structure of his robots alongside

their neural controllers. By co-evolving morphologies with their controllers, rather

than using some a priori shape, the evolutionary system was able to generate virtual

creatures whose bodies were tightly coupled to their chosen fitness function. Creatures

evolved for swimming both looked and behaved differently than those evolved for

walking or jumping.

This leads to his second significant choice - the use of a developmental represen-

tation. Rather than the canonical bit-string, his genetic encodings were variable-size

directed graphs which, when interpreted, “grew” into the specified creature. Recur-

sive connections allowed for a measure of modularity and reuse in the representation.

As a result, compact graphs could be used to generate relatively large and complex

bodies which exhibited symmetry and modular re-use.

Third, his creatures were evolved within a virtual physics environment. By situ-

ating his creatures in a world with gravity, friction, and collisions, they were able to

develop surprisingly “life-like” behaviors.

Finally, inspired by Hillis work on parasites [37] and Angeline’s work on compe-

tition [3], Sims used a competitive co-evolutionary fitness scheme, in which evolved

creatures were pitted against each other, rather than a static fitness function.

Although none of his choices were particularly unique, it was this combination

- the use of developmental representations to “grow” a robot’s body and brain, the

evaluation of that robot in a realistic environment, and competitive co-evolution,

CHAPTER 2. FOUNDATIONS 17

which led to the emergence of novel and interesting behaviors, which have since

become benchmarks for evolutionary design. There has been no shortage of work

in Evolutionary Design since Sims, and yet almost everything carries echoes of that

seminal work.

The vast majority of evolved forms since Sims have been of purely virtual ob-

jects. Beginning in 1996, Peter Bentley began exploring the evolution of form -

first with lenses [6] and later with tables [5]. Other examples of evolved fixed forms

include Eggenberger’s cellular-based 3-D forms [25], Parker’s towers [71], and Ja-

cob’s trees [41]. Several researchers have used Genetic Algorithms to evolve architec-

tures [87, 18, 88]. Quite a few others have followed Sims’ lead and evolved virtual

creatures, such as Bongard’s agents [13, 11] and Komosinski’s “Framsticks” [48]. More

recently, Gondarenko et al. evolved a simulated photonic structure capable of high

photonic confinement [76].

2.2 Manufacturing Evolved Designs

Our interest, however, is in automatically designing and manufacturing physical ob-

jects. As such, we have the most to learn from those examples of evolved designs

which have been subsequently manufactured in the real world. Funes [29] was among

the first to bring evolved designs into the real world with his EvoCAD work, which

evolved LEGO structures in a force-based simulator. By accurately modeling the

forces between elements, his system was able to create unique structures in simu-

lation which could subsequently be built in the real world. Figure 2.1 contains an

example of one of his evolved blueprints, and the corresponding physical object. Fol-

lowing Funes’ work, Regli et al. used graph grammars to represent the assembly of

LEGO structures [72, 49], and were able to evolve walls, pillars, and staircases.

CHAPTER 2. FOUNDATIONS 18

Shortly after Funes’ work, Hod Lipson’s GOLEM project [75] created printable,

controllable robotic forms. Like Sims and Funes, he relied upon a realistic physical

simulator, and like Sims, he co-evolved simple physical building blocks with simple

neural controllers. The designs were printed on a rapid prototyping machine, motors

and batteries were snapped into place, and the resulting physical robots were able to

locomote on a flat surface.

Frutiger et al. [28] evolved the morphology and controller for a monkey-like swing-

ing robot inside of a physics-based simulation, and then iteratively transferred that

result onto a physical prototype over the course of several weeks.

Later, Hornby [38] used a grammar-based system to evolve tables and mobile

robots. The developed genotype consisted of instructions to a LOGO-like turtle

which then “drew” the structures out of voxels in simulation. Although early results

were transferred by hand into CAD before printing on a 3-D printer, Hornby’s later

designs created CAD files automatically. Like Lipson’s GOLEM, once the bodies were

printed, final assembly, including the addition motors and wiring, was performed by

hand. Figure 2.2 contains an example of one of the evolved GenoBots on the left,

and the corresponding physical robot on the right.

The most significant recent result of real-world evolved design is probably Lohn et

al.’s work on Evolved Antennas [59] - one of which is due to be launched into space

aboard a Low Earth Orbit satellite. These designs were generated by L-systems in

a manner similar to Hornby’s work, and tested in an antenna simulator before being

assembled by hand.

CHAPTER 2. FOUNDATIONS 19

Figure 2.1: Pablo Funes’ evolved tree from [29], reprinted with permission from the
author. The evolved blueprint is on the left, and the corresponding physical result
on the right.

.

Figure 2.2: One of Greg Hornby’s evolved GenoBots[38], reprinted with permission
from the author. The evolved blueprint is on the left, and the corresponding physical
result on the right.

.

CHAPTER 2. FOUNDATIONS 20

2.3 The Fabrication Gap

While the above physical objects may have been automatically designed, their man-

ufacture was far from automatic. In each case, when it came time for the assembly

of those designs, they were all built by hand, in a manner which required significant

human interaction. For Funes’ LEGO trees, even with blueprints which explicitly

described the placement of each piece, hand assembly remained a difficult task (this

is well illustrated by the Scientific American Frontiers episode 1 in which the host,

Alan Alda, attempts to build one of the designs) [29]. Frutiger’s evolved monkey re-

quired significant tweaking before the physical counterpart behaved like the evolved

model [28]. And Lohn et al.’s satellite antenna had to be meticulously soldered and

bent by hand, with care to preserve the precise angles specified by the evolved de-

sign [59].

In the examples above, human intervention, rather than being removed altogether,

has simply been shifted from the design phase to the manufacturing phase. And yet, if

the success and novelty of Evolutionary Design is due to the fact that, as Koza put it,

“it does not travel along the well-trod paths of previous human thinking” [51], why are

we subsequently injecting that human logic and bias back into the realm of assembly?

The need for subsequent human effort to move from evolved design to manufactured

object is due to what we call the “Fabrication Gap”. Manufacturing processes, either

human or automated, require as input some prescriptive set of instructions on how

to build. Conventional Evolutionary Design, on the other hand, produces purely

descriptive representation of objects. If we seek to remove human effort from the

process completely, to fully automate both design and assembly, then we must find a

way to automatically produce prescriptive representations of assembly.

1http://www.pbs.org/saf/1103/segments/1103-3.htm

CHAPTER 2. FOUNDATIONS 21

2.3.1 Descriptive Representations

and the Assembly Inference Problem

To humans, descriptive blueprints seem like seem like a natural way to represent an

evolved object. After all, architects use blueprints to design buildings, and engineers

use those same blueprints to build them.

This evolution of blueprints is enough, provided that the end goal of an Evolu-

tionary Design system is a virtual representation of the object. If, however, one is

seeking to manufacture those evolved forms, then blueprints alone are insufficient for

the task. A vast amount of expert knowledge lies between the blueprint of a building

and the building itself. Nothing in the plans of a house, for instance, suggests that

the foundation must be built before the roof is. As a more concrete example, consider

Funes’ evolved blueprint of a tree on the left hand side of Figure 2.1. Nothing about

the design suggests which brick, or even which branch, should be placed first. Should

the trunk be built first, and then the branches added, or perhaps vice versa? Nothing

about it, certainly, suggests that the easiest way to build it, as it turned out, is by

building it horizontally on a flat surface and tilting it into place.

One notable exception to the reliance on purely descriptive representation is Regli

et al.’s LEGO structures [72, 49]. Their work utilized conceptual graphs as “assem-

bly representations”, explicitly describing the physical relationship and connections

between each component in the evolved structure. However, this semantic represen-

tation was relatively high-level, and described only the state of the complete object,

not its manufacturing process.

To explain the descriptive weakness of descriptive representations, consider a

blueprint as a photograph of a cheese souffle in a cookbook. While the photo may de-

scribe in great detail what the final result should look like, it contains no information

CHAPTER 2. FOUNDATIONS 22

on how to cook it. In order to actually prepare the dish, the recipe on the facing page

is required. Before they can be manufactured, therefore, evolved blueprints must be

translated into a set of assembly instructions, just like the photograph of the souffle.

This task can either be performed by human minds with their vast wealth of insight

and common sense knowledge, or computationally.

Although the process of determining an assembly sequence may come readily to

humans, it often much harder to solve computationally. Rapid Prototyping Machines

approach this by accepting 3-D CAD files as input and reducing these models into

a series of small horizontal slices, which they then print, layer by layer. Hornby was

able to automate the assembly of his evolved tables in this manner [38].

In the field of engineering, the task of inferring a sequence of assembly instructions

given a particular structure a priori is known as Assembly Sequencing [105, 109]. Of-

ten, in order to reduce the complexity of the task, conventional approaches to assem-

bly sequencing make a number of strong assumptions about the process of assembly,

for instance that it is monotone (once two parts are assembled they stay together)

and two-handed (that each stage of assembly joins exactly two sub-assemblies) [32,

33, 104]. When operating under these assumptions the method works (provided the

object can be assembled in the first place), however the task of finding an optimal,

or even near-optimal assembly plan has been proven to be NP-complete [45].

Assembly Sequencing often involves the much easier inverse problem of disassembly

planning - that is, removing parts from an object one at a time until it has been

reduced to its basic components. Doing so, however, makes the critical assumption

that every stage of assembly is both reversible and symmetric. Of course, anyone

who has taken apart a home appliance and then put it back together, only to be

left with a remaining mysterious screw, knows that assembly and disassembly are

rarely symmetric, reversible processes in the real world. In later chapters we will

CHAPTER 2. FOUNDATIONS 23

Figure 2.3: Intertwined Rings: an example of an unbuildable design. If the primitive
set contains rings, and the design specifies their position and rotation, then it may
evolve interlocking rings. Any assembly process which begins with separate, solid
rings, however, will never be able to build this structure.

give examples of evolved assembly plans which employ clearly non-reversible actions

during assembly.

2.3.2 Buildability

The evolution of descriptive blueprints also runs the risk of generating designs which

are completely unbuildable by the assembly process. If, for instance, the primitives

of the design system includes solid rings an evolved blueprint might specify a design

which involves two interlocking rings (Figure 2.3). Any real-world assembly process

which begins with solid and separate rings, would be incapable of intertwining them

in this manner. Most approaches to the evolution of form therefore place further con-

straints on the language of representation. Funes [30], Regli [72], and Parker [71] for

instance, produce objects which can be built out of LEGO by using the bricks them-

selves as the basic component of design. Funes’ method was careful to prune evolved

representational trees to prevent them from producing structures with overlapping

bricks. Similarly, Bentley’s early work on the evolution of solid objects allowed the

generation of “impossible” objects, which were then corrected during the mapping

from genotype to phenotype [5].

CHAPTER 2. FOUNDATIONS 24

2.3.3 Simulation and The Reality Gap

If there is another clear lesson to be learned from those evolved objects which have

been successfully manufactured in the real world, it is the importance of realistic

simulation in ensuring that the behavior of an evolved object corresponds to that of

its physical counterpart [14, 42].

Each of the physically embodied evolutionary designs above relied upon a realistic

physics environment to evaluate their designs. Funes used a custom variety of finite

element analysis to model the forces between LEGO bricks and added a 20% safety

margin to ensure his structures could be transferred successfully. [29]. Lipson et

al. used a quasi-static motion simulator to model the behavior of their GOLEM

robots [75], as did Hornby with his evolved tables and robots [38]. Both Linden’s [56,

57] and Lohn’s [59] antennae were evolved inside of electromagnetic simulators.

Realistically simulating the behavior of an evolved object helps to ensure that

the real object will behave as expected once built. It does not, however, provide any

guarantees as to how the object will behave as it is assembled in the real world. If

we translate this notion of the importance of realistic simulation from the realm of

behavior into the realm of assembly, then it stands to reason that the best way to

ensure that an object can be assembled in the real world is to realistically simulate

the entire process of its assembly.

2.3.4 Summary

In summary, the Fabrication Gap between that which we can design automatically and

that which we can build automatically is due in large part the way that contemporary

Evolutionary Design is performed. The blueprints evolved by conventional approaches

are purely descriptive representations of design, and leave unanswered the question of

CHAPTER 2. FOUNDATIONS 25

how to build the evolved object. Methods of automatically determining the assembly

of a given blueprint become impossible as the complexity of designs increases. Finally,

evolving what to build rather than how to build also runs the risk of discovering objects

which are impossible to build at all, such as intertwined rings.

One workaround is to incorporate the constraints of your expected assembly mech-

anism into the design process through carefully crafted representations and accurate

physical models. This is the approach taken by conventional post hoc methods of

crossing the Fabrication Gap, such as slicing and Assembly Sequencing. And yet for

sufficiently complex design spaces and assembly processes, it may be impossible to ex-

haustively enumerate all limitations and constraints. Furthermore, to over-constrain

a design process is to run the risk of crippling the creativity that is so essential to

evolutionary design.

Indeed, if one is going to put the effort of injecting knowledge of a assembly

system into the design space, why not instead simply simulate the entire assembly

mechanism, and evolve assembly plans instead of blueprints? Objects produced in

this manner are by their very nature buildable, and are produced in tandem with the

information necessary to build them.

2.4 The Evolution of Formation

A central observation of this dissertation is that mechanical assembly is an ontogeny.

As objects are assembled, piece by piece, they grow over time, developing slowly from

initial components into a finished product. It seems natural, therefore, to cast our

gaze to biology for inspiration on evolving how to “grow” objects.

Of particular interest to us is Evolutionary Developmental Biology, or Evo-Devo,

which studies the relationship between biological development and evolution [80, 34].

CHAPTER 2. FOUNDATIONS 26

The link between the evolution of form and the processes of formation date back to the

German biologist Ernst Haeckel who illustrated striking similarities between the em-

bryogenies of distinct vertebrates. In his “Fundamental Biogenetic Law”, more com-

monly referred to as “recapitulation theory”, the stages of development (ontogeny)

of an organism recreate, in condensed form, the evolutionary history (phylogeny) of

an organism.

While strict recapitulation has been discredited (Haeckel “fudged” several of his

drawings to reinforce his point [34]), the echoes of the Biogenetic Law abound in

modern evolutionary developmental biology. There are clear instances of homology in

comparative embryology, in which distinct species which share an evolutionary past

often share developmental traits [34, 93].

One of the strongest examples of homology, and one of the most important dis-

coveries in comparative developmental biology, is the set of homeobox genes, which

play an important role in laying out the spatial structure of a developing embryo.

First discovered in drosophila, homeobox genes have been discovered in a number

of vertebrates and insects. Mutations to homeobox genes can have wide-ranging ef-

fects on the morphology of an organism, affecting everything from patterning to the

placement of limbs [80].

Slack et al. use the existence of homologies such as the homeobox gene to argue for

the existence of the “zootype”: a developmental stage common to all animals, despite

high variation in developmental processes both before and after it. They argue that

this “phylotypic stage” has been conserved during evolution because this is the point

at which the basic body plan, bauplan, common to all species is laid out and at which

development is most brittle [93, 36].

This conservation of the phylotypic stage during evolution and speciation results

in what is referred to as the “phylotypic hourglass”: different species vary greatly

CHAPTER 2. FOUNDATIONS 27

in their respective developments both prior and subsequent to the phylotypic stage,

but vary significantly less during the phylotypic stage [36, 94]. The largest source of

variation during the phylotypic stage is heterochrony: changes in the developmental

timing or sequence of events [79, 78]

Developmental features such as the homeobox genes and the bauplan also point

to a level of modularity in developmental systems, which we discuss at more length

in Sections 2.4.5 and 5.2.

From the perspective of Evolutionary Design, the most valuable aspect of bio-

logical development is its ability to generate enormously complex systems from a

(relatively) compact genetic representation. As Stanley and Miikkulainen point out,

there are 30 thousand active genes in the human genome, which manage to produce

100 trillion neural connections in the human brain. Moreover, biology manages to

reliably accomplish this generative feat through the essentially stochastic processes

of biochemistry [94]. Our interest is in harnessing this efficiency and robustness for

the purposes of automating artificial manufacturing processes.

2.4.1 Artificial Ontogenies in Design

Artificial developmental systems which use biological growth and development as

metaphors for physical assembly fall under a variety of names - Artificial Embryo-

geny [94], Artificial Embryology [20], Computational Embryology [52] and Artificial

Ontogeny [10, 13] . Since the term ontogeny is the broadest of the terms, encompass-

ing the entire course of biological development from conception to final form, we will

use Artificial Ontogeny to collectively describe these developmental representations.

In their Taxonomy [94], Stanley and Miikkulainen divide Evolutionary Designs

based on Artificial Ontogenies into two groups: cellular-based and grammar-based.

CHAPTER 2. FOUNDATIONS 28

Cellular Approaches

Cellular approaches to Artificial Ontogeny take their inspiration from the biochemical

processes of cellular life. Dellaert and Beer use a developmental model in which an

“egg” slowly grows into a multicellular robot [23, 24]. Bongard and Pfeifer [10, 13]

use a model of Gene Regulatory Networks (GRNs) to evolve the body and brain of

robotic agents. Similarly, Eggenberger used Differential Gene Expression to evolve

3-D shapes and objects [25] and De Garis [20] evolves both 2-D and 3-D shapes using

an “Artificial Embryo”. Bentley and Kumar use a variety of different “embryogenies”

to evolve target 2-D shapes. On a broader scale, Bonabeau et al. use a multi-agent

“stigmergic” system, much like swarming ants, to evolve 3-D architectures [9].

While cellular approaches have produced several interesting results, their treat-

ment of ontogeny is too abstract to readily lend itself to the description of automated

manufacture at the scale we are interested in.

Grammatical Approaches

Grammatical approaches to Artificial Ontogeny instead rely on the more abstract

rules of artificial grammars to model biological growth. Generally, grammatical ap-

proaches use a series of rewrite rules to transform a short initial S-expression into a

larger string which represents the desired object. Coates uses Genetic Programming

and Lindenmayer systems (L-systems) to evolve both 2-D and 3-D shapes [15]. In

[96], Toussaint uses L-systems to evolve 3-D plants in OpenGL. Hornby’s GenoBots,

which we discussed above, also used L-systems to evolve ruled to “draw” 3-D voxels

representing robot morphology. Lohn’s antennae were evolved in a similar fashion [59].

As we discuss at more length below, from our perspective of automating assembly,

the major advantage of grammatical approaches is their ability to produce linear

CHAPTER 2. FOUNDATIONS 29

strings of instructions which, if phrased correctly, can be used to explicitly describe

the process of an object’s assembly.

2.4.2 Benefits of Artificial Ontogenies

Unlike traditional evolutionary computation, Artificial Ontogeny treats the genotype

as an indirect, or procedural encoding of the phenotype. The genotype is decoded

and transformed into a phenotype by means of some developmental process. This

abstraction layer between genotype and phenotype allows for quite a bit of flexibility

during evolution. To begin with, Artificial Ontogenies, much like biological ones,

allow for a compact representation of a solution. Small changes in a genotype can

have large consequences on the fully developed phenotype. Hornby, for instance, was

able to show how a single change in his L-system representation of a table produced

co-ordinated changes on all four legs [38].

Furthermore, developmental systems are capable of a high degree of both ex-

plicit and implicit modularity, allowing for highly structured hierarchical organiza-

tion [13, 39]. These results mirror the development of high-level repeated structure

and symmetry in both plants and animals, such as those in which Hox genes play

a role. Moreover, developmental approaches allow for a level of redundancy: mul-

tiple genotypes can map to the same phenotype. Toussaint has demonstrated how

“neutral” mutations between genotypes which produce the same phenotype can allow

developmental systems to adapt and improve their evolvability [96].

CHAPTER 2. FOUNDATIONS 30

2.4.3 Development of Representation vs.

Representation of Development

While these development approaches model biological growth at an abstract level,

they do not necessarily lend themselves readily to the task of automated assembly.

To begin with, the final result of each of the ontogenies reviewed above is still, a

purely descriptive representation of the evolved object. Although these models can

be very detailed, they nevertheless remain, essentially, three-dimensional blueprints,

thereby negating their utility for automated manufacture.

The L-systems used by both Hornby [38] and Toussaint [96] point in a promising

direction, in the sense that they are used to generate strings of OpenGL instruc-

tions which are then interpreted to “draw” 3-D objects out of voxels. Such drawing,

however, ultimately bears little resemblance to physical assembly.

As we have discussed, the Fabrication Gap is due to traditional Evolutionary

Design’s reliance on descriptive blueprints. While Artificial Ontogenies offer an al-

ternative by allowing us to evolve how to build, they are of little use if, in the end,

they are only used to produce blueprints. If our goal is to automate both design

and assembly, then the end result of our process should instead be an explicit set

of instructions which lend themselves to automatic interpreted by a manufacturing

system.

Furthermore, most Artificial Ontogenies used for design take the actual assembly

process for granted, either by allowing virtual structures to appear ex nihilo - that is,

out of thin air - or else in utero - in a very simplified environment, significantly less

complex than the real world environment in which their physical counterparts are to

be assembled. Hornby’s tables, for instance, were not subject to gravity as they were

assembled, only when they were completed [38].

CHAPTER 2. FOUNDATIONS 31

One exception to this lack of “embodied” development is Bongard’s Gene-Regulatory

Networks [10], which slowly “grew” a robotic morphology piece-by-piece in a realistic

physics environment. Bongard’s cellular approach, however, has the same descriptive

weakness as other cellular approaches in that it does not easily lend itself to interpre-

tation by an external assembly mechanism.

Applying the lessons about the importance of realistic simulation (which we re-

viewed in Section 2.3.3) to the realm of manufacture leads us to assert that the best

way to ensure that evolved objects can be built is to simulate their entire assembly

in situ, that is in an environment that closely resembles the physical environment in

which they will be ultimately assembled.

2.4.4 Noise and Development

Developmental representations are not without their drawbacks. In particular, stochas-

tic effects which lead to error and noise during development can significantly compli-

cate the task of evolution. When subjected to noise during development, a genotype

is capable of developing into an entire range of phenotypes, each with a corresponding

fitness (Figure 2.4) Determining which, if any, is the phenotype most representative of

the originating genotype is a difficult, and in some cases, entirely misleading task [97].

m
o

d
al valu

eF
R

E
Q

U
E

N
C

Y

FITNESS

Figure 2.4: Under the presence of developmental noise, each genotype develops into
an entire range of phenotypes, each with an associated fitness.

CHAPTER 2. FOUNDATIONS 32

In biology, the interaction between ontogeny and environment is a cornerstone

of the field of Developmental System Theory [69, 54]. Lewontin points out that the

same phenotypic trait, for example eye size in drosophila, can be affected by both

mutation and environment [54]. He goes on to note that “small events at the level of

thermal noise acting during cell division and differentiation have large effects on the

final developmental outcome” [55].

The matter of noise and error during development has only lately begun to attract

attention in developmentally-inspired artificial systems. Yilmaz and Wu recently

explored the relation between genetic redundancy and developmental noise [110].

Viswanathan [98] has studied the impact of stochastic development on assembly ,

and has demonstrated the ability of adaptive processes which measure the state and

progress of the system to achieve higher reliability than purely ballistic processes.

Any approach such as ours, which hopes to successfully assemble complex objects

in the physical world, must therefore be sure to address its ability to overcome noise

and error during during the manufacturing process.

2.4.5 Adaptive Representation

One outstanding challenge in the open-ended evolution of formation lies in scalable

complexity - that is, how to build increasingly large, increasingly complex objects in

a managed fashion. As Herbert Simon argues in his seminal essay “The Architecture

of Complexity”, hierarchical, modular assembly is crucial for the evolution of large

complex forms [90]. A popular example of modularity in biological systems is the

eyeless gene in drosophila which, when mis-expressed, causes complete eyes to sprout

on the wings, legs, and antennae of the flies [35]. Wagner and Altenberg [100] per-

suasively argue that the evolvability of a system is highly contingent upon its ability

to adapt its representation by discovering and incorporating evolutionary modules.

CHAPTER 2. FOUNDATIONS 33

The value of modularity lies in coupling functionally related portions of the genotype

while simultaneously decoupling unrelated portions. Changes to a representational

module have few side effects in the remaining genome, and changes outside a module

have few effects upon the module.

From the perspective of the Evolution of Formation, this means that the language

of assembly must itself be mutable and adaptive, capable of discovering and using

new modules over the course of evolution. Several models for adaptive representa-

tion exist, the most common of which fall under the rubric of Hierarchical Genetic

Programming (HGP) where encapsulated modules become new primitives in the lan-

guage [77, 50, 4, 86, 21]. While they vary in their details, each of these models of

modular encapsulation involve incorporating genotypic sequences, thereby protecting

them from the deleterious effects of mutation and crossover, and then adding them to

the language of representation. As such, encapsulated modules are simply shorthand

for the genetic sequence they represent - one can be substituted for the other without

consequence.

Since we are using developmental representations to model the actual physical

assembly of an object, such purely genotypic encapsulation is insufficient for our

purposes. Because of their prescriptive nature, developmental representations display

a measure of context dependency: the same sequence of operations can have vastly

different results depending on where in the process it occurs.

The challenge of modular acquisition in developmental representations, then, lies

in preserving not the syntax, but rather the meaning of a desired phenotypic result.

Chapter 5 discusses these issues in more detail, and introduces an alternative model

of encapsulation in which complete structures, not specific portions of their genotype,

are used to form modules.

CHAPTER 2. FOUNDATIONS 34

2.5 Evolutionary Fabrication

The lesson drawn from recent efforts at bringing evolved designs in the real world

is clear. The Fabrication Gap is caused in large part by the evolution of purely de-

scriptive blueprints which leave unanswered the question of how to build the evolved

object. Furthermore, these approaches are capable of designing objects whose as-

sembly is extremely difficult to discover, and, indeed, objects which are not in fact

buildable at all. Post-hoc attempts at discovering an object’s assembly through slicing

or Assembly Sequencing make generalizations about the assembly process. Although

these constraints make the task of inference easier, they also lock the assembly process

itself into these modes. There is no purely mechanical reason why rapid prototyp-

ing machines must print objects with successive accretive layers, nor any reason that

compound objects must be assembled by a monotone, two-handed process. As we

will see in later chapters, directly evolving how to build removes these assumptions,

and unleashes more novel ways of assembling objects.

The solution then, is to directly evolve the process of an object’s assembly. Artifi-

cial Ontogenies, inspired by biological growth, provide the best framework to accom-

plish this. But Artificial Ontogenies are insufficient for describing assembly unless

they explicitly model an object’s manufacturing process, and can be explicitly be

interpreted by a specific assembly mechanism.

Evolutionary Fabrication, the marriage of Evolutionary Design, Automated Man-

ufacture, and Artificial Ontogeny, offers to replace the evolution of form with the

evolution of formation. By directly evolving assembly plans, and by simulating the

entire process of assembly within a manufacturing system, it can simultaneously evolve

what to build and how to build it, thus avoiding the Fabrication Gap.

CHAPTER 2. FOUNDATIONS 35

2.5.1 Formal Model

Formally, we can consider Evolutionary Fabrication to consist of several coupled as-

pects. First is the Assembly Mechanism M which accepts instructions from a set L.

Every finite assembly procedure α ∈ L∗ when executed by M, produces a structure

s ∈ S, where S is the set of all structures buildable by M with measurable properties

which we are seeking to optimize. Evolutionary Fabrication can then treat L∗ as the

genotypic search space and S as the phenotypic space. Implicit in the description

of M are the aspects of the larger environment which may affect assembly, such as

friction and stochastic noise. In this model, the only constraints placed on assembly

are those that due specifically to the particular nature of the assembly mechanism M.

This differs from top-down approaches like Assembly Sequencing, which by contrast

limit the size of L∗ by imposing constraints which are not intrinsic to M, such as

monotonicity and reversibility. Having fewer constraints on assembly methods cor-

responds to a larger space of assembly procedures to search, but also corresponds

to more possibilities of assembly. The extent to which Evolutionary Fabrication is

able to arrive at novel, or qualitatively different solutions to assembly, is therefore

based upon the extent to which the constraints imposed by top-down approaches are

disjoint from the actual constraints of the assembly mechanism. By coupling search

to a specific language of assembly for a specific assembly mechanism, we also lose the

generality which arrives from the assumptions of top-down methods. On the other

hand, it is this very specificity which allows for the immediate automation of any

assembly plan we find, without any subsequent need for fine tuning.

Chapter 3 will introduce a framework composed of an assembly mechanism, a

language of assembly, and an evolutionary algorithm which will enable us to explore

this process of Evolutionary Fabrication.

CHAPTER 2. FOUNDATIONS 36

2.5.2 Alternatives to Evolutionary Fabrication

There are of course some alternatives to Evolutionary Fabrication. A considerable

amount of research is being poured into nano- and meso-scale self-assembly, with

promising results [103]. This level of assembly however is limited by size and energy:

proteins can self-assemble, but automobiles cannot. Modular, reconfiguring, and self-

reproducing robotics systems such as Rus’s Crystalline Robots [89], Yim’s snake-like

robots [111] , Chirikjian’s Metamorphic Robots [70] and Lipson’s self-reproducing

structures [113] offer the possibility of reconfigurable morphologies, but are confined

to relatively complex modular units which have been meticulously designed and as-

sembled by hand.

In many senses, Evolutionary Fabrication rests in between these two scales, ca-

pable of creating objects on one hand much larger than those created by nano and

micro-scale assembly, and on the other hand producing large complex objects without

the need for hand-designed modular units.

2.6 Engineering without Engineers

While this dissertation is most firmly rooted in the realms of Artificial Life and

Evolutionary Design, care must be taken to properly situate Evolutionary Fabrication

in the context of modern engineering methods. We must emphasize, for instance,

that we are not trying to address any particular weakness in top-down methods of

automatically manufacturing a specific, single, solid 3-D shape. There are several well

tested and heavily used algorithms for generating tool paths from CAD models for

both additive and subtractive manufacturing processes. Rapid prototyping machines,

for instance, use an O(nlogn) algorithm to determine the looping path of the print

head as it follows the contours of a horizontal slice through the object[47, 65]. Like

CHAPTER 2. FOUNDATIONS 37

Assembly Sequencing, however, these methods are predicated upon having the design

of a buildable product in the first place.

Where does the buildable design come from? As Wilson [105] points out, there

are two human minds involved in the traditional task of product creation: a designer

who specifies the shape and properties of the finished product, and a manufacturing

engineer, who tries to find a way to manufacture the design. When a product is

deemed too difficult to manufacture, the manufacturing engineer sends the product

back to the designer for a re-design. This decoupling of design and manufacture

allows each engineer to specialize in his particular field, but, particularly as products

and their associated manufacture become increasingly complex, the process requires

multiple passes through the design-manufacture loop, which adds to the ultimate cost

of a finished product.

Stemming from the broader engineering discipline of Design-for-Assembly (DFA),

modern approaches seek to reduce this human effort by integrating product design

with assembly planning [105, 46, 43, 44, 112]. Kim, for instance, uses a model which

automatically generates possible assembly sequences for CAD models as they are it-

eratively designed and modified by a user [46]. Each of these methods still has a

human in the loop, responsible for the actual design of the object. Nor are they guar-

anteed to always produce feasible assembly procedures, and so often further heuristics

and expert-level knowledge-based systems are required in order to determine unre-

alistic and impossible assembly operations [1]. All of these tools, in fact, are meant

to ease communication between the design engineer and the manufacturing engineer,

not supplant either of them.

In this dissertation we are not seeking to use Evolutionary Fabrication to replicate,

recapitulate, or compete with these proven human-based engineering methods and re-

sults, but rather seeking to explore how “mindless” systems, absent human knowledge,

CHAPTER 2. FOUNDATIONS 38

can arrive and complex buildable objects. After all, there is no “Intelligent Factory

Foreman” supervising biological development [74]. How do natural systems, given

access to the extremely complex assembly mechanism of biological growth, but with

no “knowledge” per se of its limits and capabilities, learn to build complex objects?

How, furthermore, can they modify the very nature of their assembly process, in order

to build increasingly large and increasingly complex objects? Broadly speaking, Evo-

lutionary Fabrication hopes to reproduce, to some degree, this “engineering without

engineers” performed by biological life. We make no claims that results produced via

Evolutionary Fabrication are in any sense better than knowledge-based engineering

results, only that they are qualitatively different, and this difference arises from the

relative absence of human knowledge in the system.

2.7 Summary

Evolutionary Algorithms are capable of generating novel and exciting designs for

objects. These designs are of little utility, however, until they can be manufactured

in the real world. Present approaches to Evolutionary Design, which rely on the

evolution of descriptive blueprints, are stymied by the Fabrication Gap.

Artificial Ontogenies can be used to represent the formation of an object rather

than just its form, and have already been proven to be quite useful for design tasks.

In order to be useful for our purposes of fully automated manufacture, however, they

must clearly and explicitly describe and simulate the entire process of assembly.

Evolutionary Fabrication addresses this by placing the evolutionary algorithm

within a rapid prototyping machine, and by directly evolving the instructions for that

machine. In the following chapter we lay out the Framework for a system capable of

doing exactly this.

CHAPTER 2. FOUNDATIONS 39

As will be demonstrated by subsequent chapters, not only does this co-evolution of

form and formation avoid the Fabrication Gap by producing specific assembly plans

for evolved objects, but it is capable of the same creativity that has been demonstrated

by other Evolutionary Design systems – discovering not just novel objects, but novel

means of assembling those objects as well.

Chapter 3

Framework

In the previous chapter we introduced the Fabrication Gap caused by the evolution

of purely descriptive blueprints, which leave unanswered the question of how to build

the evolved object. Evolutionary Design systems based upon blueprints are therefore

capable of designing objects whose assembly is extremely difficult to discover, and,

in the extreme, unbuildable objects. The solution to the Fabrication Gap lies in

Evolutionary Fabrication: co-evolving form with formation by simultaneously evolving

objects and the processes which create those objects.

We present in this chapter an elementary framework for implementing Evolution-

ary Fabrication. By modeling an assembly mechanism, and directly evolving instruc-

tions within that mechanism, we can evolve how to build rather than what to build.

We will then use this framework to show that Evolutionary Fabrication is capable of

generating not just novel objects but novel ways of assembling those objects.

40

CHAPTER 3. FRAMEWORK 41

3.1 System Description

The purpose of the framework described here is to create a unifying experimental

structure with which to explore the capabilities and possibilities of Evolutionary Fab-

rication. As we discussed in Section 2.5.1, Evolutionary Fabrication is contingent

on a specific assembly mechanism and a specific language of assembly. This speci-

ficity is what distinguishes Evolutionary Fabrication from more abstract top-down

approaches, and what allows for the immediate automation of the results we produce.

To that end, the framework described here is a model of an assembly mechanism

grounded in a realistic physical context, and evolution unfolds within it. Instead of

the blueprints used by traditional Evolutionary Design, the genotypes of our system

are assembly plans: linear sets of instructions to the assembly mechanism. As the

assembly plan is interpreted, the structure grows and, as such, this process of assembly

is an Artificial Ontogeny.

One important aspect of the system described below is its ballistic nature. That

is, the machine described is incapable of measuring the intermediate results of its

actions, it can only measure the final result. This simplifies the model significantly

(and as we discuss below, measurement is a double-edged sword.) While we make no

claim that this lack of measurement is in any sense necessary , we will show that such

ballistic Evolutionary Fabrication is capable of robust and reliable behavior beyond

what might be expected, even in the presence of noise and error during assembly.

We are also using a very simple approach by performing evolution directly on these

linear assembly plans. Certainly, more complex and indirect means of generating these

assembly plans exist, such as the grammatical approaches used by Hornby [38] and

Toussaint [96]. Doing so, however, might obscure the nature or origin of any results.

While we make no claims that this direct evolution is the optimal way to evolve

CHAPTER 3. FRAMEWORK 42

assembly plans, it is certainly the best to illustrate our process. As we mentioned in

Chapter 2 we are interested in the representation of development, not the development

of representation.

While small changes are made to the framework for different experiments in later

chapters, we describe here the basic components.

3.1.1 Design

Although many contemporary rapid prototyping machines work via material deposi-

tion, extruded plastic behaves like a coiling rope, which can be difficult to simulate.

Instead we rely upon a simpler pick-and-place model which deals with discrete brick

elements. None of the techniques used, nor the results which arise, however, are in

any sense unique to this model. We will argue that similar, though of course not

identical, phenomena should be seen in a real system.

The physics of our framework is based upon the Open Dynamics Engine (ODE)

1 the widely used open-source physics engine, which provides high-performance sim-

ulations of 3D rigid body dynamics. Doing so provides us with suitably complex

dynamics, and the ability to model gravity, collisions and friction.

3.1.2 Assembly Plans as Genotypes

The print-head of the system behaves like a LOGO turtle, capable of movement in the

X-Z plane, and of depositing 2x1x1 bricks in the environment. Turtle-based systems

have been used in a variety of Evolutionary Design tasks [38, 96, 41].

When strung into a sequence, commands to the turtle (see Table 3.1) form an

assembly plan, as shown in Table 3.2. Commands which would cause the turtle to

1www.ode.org

CHAPTER 3. FRAMEWORK 43

move outside the target area, or place a brick where a brick already exists, are ignored.

Table 3.1: Parameterized Assembly Instructions
Instruction Parameters
(M)ove +2, +1, -1, -2
(Rotate +90, -90, +180
(P)ut Brick (a)head, to (r)ight, to (left), (b)ehind
Put (S)caffolding (a)head, to (r)ight, to (left), (b)ehind
(T)ake Brick (none)

Table 3.2: An Example Assembly Plan
P (a)P (a)R(−90)M(+2)M(+2)R(+90)S(a)S(a)R(180)M(+2)M(+2)R(−90)P (a)P (a)

You will note the absence of any means of measuring the intermediate results of

assembly. As we discussed above, we are interested in pushing the limits of ballistic

assembly before exploring more “informed” methods. There are compelling reasons

for this simplicity. To begin with, adding to the set of primitives increases the search

space of the algorithm considerably. Moreover, measurement is, by nature, costly

in terms of time and resources. Additionally, most rapid prototyping machines are

only capable of detecting the most urgent of errors, such as a block in the print

head - none of the current models, for instance, carry digital cameras which measure

progress, allowing them to abort a job if something unexpected happens. Indeed, how

would they know whether or not some phenomenon is normal or not? In later chapters

(specifically section 4.3) we will demonstrate means of assembly which definitely fall

outside of the norm of behavior for rapid prototyping machines, and yet are highly

desirable.

3.1.3 Material

The turtle is capable of placing two kinds of bricks: permanent ones (shown as blue

in color frames, or black in grey scale frames), and temporary ones(shown in gray),

CHAPTER 3. FRAMEWORK 44

which are removed once the assembly is completed. This aspect is based on a feature

of modern rapid prototyping machines, such as a current model made by Stratasys2,

which can lay thin water-soluble support structures. In Chapter 5 we will show

how Evolutionary Fabrication can discover scaffolding when it is not provided as a

component of the system, by placing and removing intermediate structural elements.

3.1.4 Assembly as Ontogeny

As the print head reads instructions from the evolved assembly plan and deposits

material, a structure grows. This process of assembly is, in the truest sense, an

artificial ontogeny.

The interpretation of evolved assembly plans falls into three ontogenic stages, as

shown in Figure 3.1. In the first, the turtle interprets the assembly plan, moving

and placing bricks as directed. In this stage, each brick is a separate component in

the environment, subject to gravity and interactions (such as collisions) with other

objects. Once assembly is complete and the structure is stable, the scaffolding is

removed and adjacent bricks are glued together (but not to the floor). Finally, once

the scaffolding is gone, the final structure is allowed to come to a rest before being

evaluated.

3.1.5 Algorithmic Details

Our framework uses a pareto-based multi-objective optimization algorithm [27, 19].

This provides some flexibility in fitness functions, by allowing us to use different

criteria (such as length and mass) as different objectives. Using length as a separate

objective is particularly useful in variable-length representations such as ours, by

2www.stratasys.com

CHAPTER 3. FRAMEWORK 45

Figure 3.1: The execution of the assembly plan shown in Table 3.2. Frames are
ordered left to right, top to bottom. Assembly has three stages. In the first (Frames
1-8), both permanent bricks (shown in blue) and temporary bricks (grey) are placed.
In the second, adjacent permanent bricks are glued together and scaffolding is removed
(Frame 9). Finally, the remaining structure settles (Frames 10-12).

helping to reduce bloat [22]. After each generation is evaluated, the N non-dominated

individuals (i.e. pareto front) are selected as parents, and N new individuals generated

using two-point crossover (60%) and mutation (2% per locus). In order to limit

population sizes, duplicate genotypes were rejected, and duplicate objective values

were limited using crowding [62], with a limit of 3 individuals per bin. Variations

from this are noted in each experiment. In most experiments, the initial population

was created with 30 random genotypes, each with a random length between 8 and 40

instructions.

It is worth emphasizing, however, that none of the claims of this work are at all

contingent upon the details of any specific type of algorithm. The only important

aspect is that by using assembly plans as genotypes, we are evolving how to build.

3.2 Brief Example: Evolving a Goal Structure

While the full power of Evolutionary Design lies in open ended creation of form,

there is often the need to determine whether a pre-determined structure is at all

CHAPTER 3. FRAMEWORK 46

Figure 3.2: The Goal Arch. Each leg consists of two vertical bricks, whereas the
center section consists of three horizontal bricks. Note, therefore, that the center
bricks are not resting on top of the legs, but are instead cantilevered off their side - as
a consequence, until the glue phase they cannot remain in place without scaffolding.

buildable. In this context, the goal is to find a suitably efficient assembly plan which,

when interpreted by the automated assembly process, results in the goal structure.

This is, in a sense, automating the previously human task of inferring a descriptive

representation’s prescriptive counterpart, or reverse-engineering an object’s assembly.

We can begin, therefore, by evolving assembly plans capable of building a pre-

determined goal structure, in this case an arch (Figure 3.2), largely because of the

anticipated level of difficulty, and also for historical reasons - namely its presence as an

example of a hard problem in Winston’s seminal textbook on Machine Learning [106].

In order to compare each resulting structure to the goal structure, a bitmap was

generated by sampling the central region in the X-Z plane, at a sub-brick resolution.

This bitmap was then compared to a corresponding bitmap of the goal structure.

The specific objectives used were as follows. In each case smaller values are con-

sidered more fit. Similar objectives are used in most of the experiments in this

dissertation, and so we will elaborate on them here.

CHAPTER 3. FRAMEWORK 47

• Length: (Total length of the assembly plan) All things being equal, the shorter

an assembly plan is, the better. Since real-world rapid prototyping machines

can be slow, the more efficient we are in this regard, the better.

• Mass: (Number of bricks in the entire world, not just the sample region.)

The material deposited by rapid prototyping machines can be rather expensive.

Parsimony in conserving the total amount of material should be rewarded.

• Missing Material: the total number of bricks missing from goal structure. A

value of zero corresponds to having all of the necessary bricks in place.

• Error: the total number of “wrong” bricks. A value of zero corresponds to

precisely replicating the goal structure without either missing or extraneous

material.

3.2.1 Results

Figure 3.3 shows animation frames from a representative evolved solution. Discovered

after roughly 2000 generations and with a length of 22 instructions, it is able to

perfectly generate the goal structure.

This efficiency is due largely to the novel placement of the vertical scaffolding

used to hold up the center section of the arch. Each vertical scaffolding brick is

placed directly under the center of mass of the brick it supports. This placement

location exists between two of the discrete print-head positions, and so could not

have been placed directly. Rather, it is dropped horizontally onto the leg sections

and subsequently topples vertically into its final location. In fact, if it had been

placed directly into one of the adjacent positions, it would not have been under the

supported brick’s center of mass, and the supported brick might have tilted sideways.

CHAPTER 3. FRAMEWORK 48

Figure 3.3: Building the Goal Arch. Note how the horizontal scaffolding placed in
frame 3 tumbles into a vertical position to support the top of the arch. This is
repeated with the piece of scaffolding placed in frame 5.

This novelty in assembly is driven largely by the length objective used in our

algorithm above. Since, all other things being equal, a shorter assembly plan is

more fit than a longer assembly plan, there is an evolutionary incentive for a certain

succinctness. The mass criterion also plays a role, encouraging parsimony in resources

used.

3.3 Summary

We have laid out here the framework for an Evolutionary Fabrication system. This

system is essentially a evolutionary algorithm the genotypes of which are assembly

procedures for an assembly mechanism. Hence the marriage of automated design

and automated assembly. Armed with this framework, we can now illustrate how

Evolutionary Fabrication is capable of evolving not just novel objects, but novel

means of assembling those objects as well.

We have shown intimations of this in the simple example in Section 3.2, in which

we evolved an assembly plan to build a pre-determined goal structure. The evolved

CHAPTER 3. FRAMEWORK 49

assembly plan exploits the dynamics of the assembly mechanism in order to produce

the goal structure in an efficient manner. This penchant for efficiency in both time

and material could be well employed in modern rapid prototyping machines, which

tend to produce a surplus of expensive supporting material in order to print objects.

This novelty and efficiency, which we will see much more of in the following sec-

tions, is where the true benefit of Evolutionary Fabrication lies.

Chapter 4

Evolutionary Fabrication for

Design

In the previous chapter we presented our model of Evolutionary Fabrication, and

demonstrated its ability to discover the assembly plan for a goal structure. While

evolving assembly plans for pre-determined structures is important, the true promise

of Evolutionary Fabrication lies in creating interesting objects given only a broad

specification. The antennae evolved by Lohn et al. [59] for instance, were evolved to

achieve high gain at specific bandwidth while fitting into a relatively small bounding

box, and Sims’ creatures were rated on the horizontal distance they traveled [92, 91].

Although the fitness functions we use below are simple, they serve the purpose of

demonstrating that Evolutionary Fabrication is capable of generating novel, unique

and human-competitive results as it evolves the process of assembly.

50

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 51

4.1 Filled Volume Fitness

Consider first a simple “filled” fitness function, which measures the amount of filled

volume within the bounding box - that is, space occupied either by bricks or cov-

ered from above by bricks. The union of the grey and black areas in Figure 4.1

demonstrates this concept.

Figure 4.1: Illustration of the “filled” and “shade” fitness function. The structure
itself is black. The filled fitness measures union of both back and grey regions, the
shade fitness measures only the grey area.

Just as in Section 3.2, in order to measure the fitness of a completed structure, a

bitmap was generated by sampling the central region in the X-Z plane, at a sub-brick

resolution. The maximum height of each column of the bitmap can then be summed

to measure the coverage.

The length and mass objectives are retained from the experiment is Section 3.2,

and the fitness function above replaces the two goal-based objectives from 3.2.

• Fitness: (maximizing) the amount of shaded area including structure.

• Length: (minimizing) the shorter the assembly plan the better.

• Mass: (minimizing) the less material required, the better.

Here, since we have no goal structure in mind, the roles of the length and mass

criteria become much more significant. As the saying goes, time is money, and the

faster an object can be assembled the faster it can be used for its desired function.

Moreover, the materials used by rapid prototyping machines are notoriously expen-

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 52

sive, and anything which can reduce the amount of material used during assembly is

welcome.

4.1.1 Results

Table 4.1 shows representative structures and fitness values generated by the “filled”

fitness function, both before and after scaffolding has been removed. Evolved struc-

tures fill the target area well, but tend to have a large number of extraneous structural

appendages (consider the “foot” on the right hand side of the bottom-most figure).

Since the structures are rewarded for the amount of the target area that they fill,

regardless of whether the space is occupied or not, there is little incentive to remove

extraneous bricks or to use temporary scaffolding bricks.

Table 4.1: Structures generated with the “filled” fitness function. The images in the
top row show the structures before the scaffolding (grey bricks) has been removed, and
the images below right show the final stable structure with the scaffolding removed.

Scaffolding

Final
Fill 89% 93% 95

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 53

4.2 Shaded Volume Fitness

Consider next a “shaded area” fitness function, which measures the total amount of

open volume beneath a structure, as illustrated by Figure 4.1.

The motivation in using this more space-conscious fitness function lies in exploring

the system’s ability to generate objects which conserve building material. This fitness

function also bears some similarity to those used for Funes LEGO trees [29] and

Toussaint’s plants [96]. The specific objectives used were identical to the section

above, save for this fitness function which measures “shaded” volume as opposed to

“filled” volume.

4.2.1 Results

Table 4.2 contains representative structures built by assembly plans which resulted

from several runs of the system. It shows the structures before and after the glue/melt

phase, and lists their fill percentage as well as the length of the assembly plan that

produced them. As is evident, all of the evolved structures have near-optimal fitness.

For comparison, our best hand-built structure, shown on the far right hand side, while

it has maximal fitness, required 34 bricks, more than the maximum 25 allowed for

evolved assembly plans, and was 65 instructions long.

Figure 4.2 shows the assembly of the arch in the fourth column of Table 4.2. The

assembly of the arch relies on a single central column of scaffolding, as opposed to

the multiple columns required in the other arches shown. This single central column

is largely effective because it widens to two brick widths along the top, and is there-

fore able to support two bricks above it. The lower leftwards “spur” on the central

scaffolding column plays two important roles: first, by being horizontal it allows the

column to be nine bricks high, leaving room for a tenth row of permanent bricks

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 54

at the maximum allowable height (the two upper inwards spurs on the legs of the

structure serve a similar function.) Secondly, it counterweights the upper horizontal

scaffolding bricks, which allow the column to support two permanent bricks.

This process of assembly above is another example of Evolutionary Fabrication’s

ability to arrive at short and efficient assembly plans.

Figure 4.2: Assembly of the arch in the fourth column of Table 4.2

Table 4.2: Structures Evolved for “shadow” fitness. The top-row images show the
structure before scaffolding (grey) is removed, and the bottom images show the final,
stable structure. The structure on the far right was hand-built.

Scaffolding

Final
Fitness 84% 80% 95% 90% (hand-built)
Length 30 54 58 43 65

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 55

Figure 4.3: A novel assembly method. Once the assembly is complete (Frame 1),
scaffolding is removed and remaining bricks glued together (Frame 2), the larger
section topples onto the smaller section, balancing there to form a T. This resulting
shape has significantly higher fitness (49%) than the original structure (10%)(Frame
1)

Figure 4.4: Another novel assembly process. The original structure has a fitness
of only 22%. Once scaffolding is removed and remaining bricks glued, the leftmost
portion tumbles rightward, and the smaller segments below are knocked sideways,
ultimately serving to prop up the larger shape. This final structure has a fitness of
52%)

4.3 The Emergence of Novel Assembly Methods

In the setup above, evolved structures will occasionally be unstable once scaffolding

is removed, causing the structure to tumble into a final, structurally distinct shape,

often with higher fitness. Figures 4.3 and 4.4 provide an example of this phenomenon.

This phenomenon of “dynamic assembly”, is an interesting exploitation of the

system as we designed it, and is a preliminary example of the novel types of assembly

processes that can arise from evolving assembly plans directly in a realistic environ-

ment. Of course, this raises the question of whether there is any particular advantage

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 56

to such novel assembly, or whether it is a mere curiosity. We can seek to address

this question by exploring the following issues: What are the evolutionary incentives

of dynamic assembly? Are solutions which use dynamic assembly any more fit than

those without? Are they any more efficient, either in terms of time or in terms of

material?

4.3.1 Measuring Novel Assembly

This novel dynamic assembly of structure can be measured by calculating a structure’s

fitness immediately after scaffolding is removed, and comparing this value to the

structure’s final fitness once stabilized. This difference corresponds to the amount of

fitness contributed by dynamic assembly.

fdynamic = ffinal − finitial (4.1)

Similarly, as a measurement of efficiency in terms of time and material, we can

calculate the fitness-per-instruction and fitness-per-brick of each solution by dividing

each solution’s fitness by its assembly plan length and mass.

Armed with this means of measuring dynamic assembly and efficiency, we can

compare two slightly different environments. The first environment, which we call

Setup A, is the original environment from our earlier experiments. In the second, we

made a small change: Rather than limiting the turtle to the same box that fitness

was evaluated over, it was allowed to range over a larger, 200 × 200 box (labeled B

Figure 4.5). Otherwise, all of the objectives, and the 25 brick limit, remain unchanged.

This slight adjustment allows the turtle to place bricks outside of the fitness box

- which then fall into it during the final settle phase of development. Table 4.3

summarizes the differences between environments.

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 57

Table 4.3: Comparison of Setup A and Setup B
Setup A Setup B

runs 22 19
Turtle Range 100 × 100 200 × 200
Fitness Range 100 × 100 100 × 100

B

A

Figure 4.5: Illustration of the two Assembly Environments. In each case the fitness
function is measured over the smaller box (A) and within that box the gray regions
under the black structure is considered “shaded”. Note that the uppermost overhang
does not contribute any shade, because it exists outside of the fitness bounds. In the
first environment, the turtle is limited to the same box (A) as the fitness measure,
whereas in the second (Section 4.3.1), the turtle may range in the larger box (B).

4.3.2 Results

Looking back at Table 4.2, which contains representative results from our earlier

experiments, it can be seen that the evolved structures tend towards stable arch-like

structures with two legs.

By comparison, Table 4.4 shows representative structures evolved in Setup B

(black spheres have been placed in the upper corners of the box over which fitness is

measured). Unlike Setup A, which produced relatively stable arch-like structures, this

small change results in a majority of “T”-like structures, all of which are assembled

dynamically. Figures 4.6 and 4.8 show detailed frames of the process of dynamic

assembly for each structure in Table 4.4

Figure 4.9 provides a direct comparison of the contribution from dynamic assem-

bly across the two regimes. Data were generated by averaging the values of the best

individual in each generation across runs. Figure 4.10 provides more detail of the

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 58

Figure 4.6: Another dynamic assembly sequence from Setup B. This is 22 instructions
long, with a final mass of 10. Initial fitness is 31%, final fitness is 47%.

Figure 4.7: Another dynamic assembly sequence from Setup B. 20 instructions, 14
mass. Initial fitness: 27%, Final Fitness: 62%. The black spheres mark the upper
corners of the fitness bounds.

Figure 4.8: The most extreme example of dynamic assembly from Setup B. With only
17 instructions, and a mass of 13. Initial fitness is only 0.4%. Final fitness is 80%.
The black spheres mark the upper corners of the fitness bounds. The near-zero initial
fitness is due to the fact that the overhanging brick is outside of the fitness bounds,
and therefore contributing no shade.

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 59

progress of evolution across both environments. It is worth observing that both envi-

ronments produce equally fit results, even though the larger environment corresponds

to a larger search space. Figure 4.11 shows the fitness contribution due to dynamic

assembly between the two environments, as measured by Equation 4.1. It is interest-

ing to note that in the larger environment sometimes dynamic assembly accounts for

almost the entirety of an structure’s fitness (such as, for instance, the last structure in

Figure 4.8) whereas in the smaller environment, a structure’s fitness will occasionally

decrease after settling.

Figures 4.12 and 4.13 respectively compare the average value of the fitness per

brick and fitness per assembly plan instruction for the best individual of each gen-

eration. Although the difference is slight, the fitness per instruction is higher in the

larger environment than it is in the smaller environment. In Figure 4.12, the slightly

lower fitness per brick of of the larger suggests that some material bloat occurs in

the slightly larger environment. This slight bloat in material could be due to the

fact that extraneous bricks outside of the fitness range (Box A in Figure 4.1) do not

have a deleterious effect upon fitness the way that extra bricks within the box do.

Still, these bricks may serve a useful function, for instance as a counterbalance during

dynamic assembly.

These differences in mass and length are more significant when the size of the

larger environment is taken into account. Larger margins outside the fitness box

give the turtle a wider area to roam in, and more room in which to place bricks.

This corresponds to a significantly larger search space of assembly plans. Yet while

equally fit assembly plans involve a few more bricks in this environment, the are in fact

shorter than those evolved in the smaller environment. This leads us to believe that

Evolutionary Fabrication exploits dynamical assembly in order to produce assembly

plans that are more efficient in time, at the expense of efficiency in material.

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 60

0 500 1000 1500 2000 2500 3000
−200

0

200

400

600

800

1000

1200

1400

1600

1800

Generation

F
itn

es
s

Mean Fitness and Contribution from Dynamic Assembly

mean fitness (larger environ)

mean fitness (smaller environ)

dynamic contribution (larger environ)

dynamic contribution (smaller environ)

Figure 4.9: Comparison of fitnesses and fitness contribution from dynamic assembly
between the larger and smaller environment. Data is averaged across 22 runs for the
smaller, and 19 runs for the larger. Although maximal fitness is equivalent across
both regimes, Setup B contains significantly more examples of dynamic assembly

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

1600

1800

Generation

F
itn

es
s

Fitness Comparison Between Environments

larger environment

smaller environment

Figure 4.10: A comparison of the progress of evolution between the two environ-
ments, with error bars. Despite having a larger search space, progress in the larger
environment is essentially identical to that in the smaller environment.

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 61

0 500 1000 1500 2000 2500 3000
−400

−200

0

200

400

600

800

1000

1200

1400

1600

1800

Generation

F
itn

es
s

C
on

tr
ib

ut
io

n

Fitness Contribution from Dynamic Assembly

larger environment

smaller environment

Figure 4.11: A comparison of the fitness contribution due to dynamic assembly, with
error bars. There is a much higher incidence of dynamic assembly in the larger
environment. In the smaller environment solutions are sometimes actually worse
after they settle.

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 62

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

Generation

F
itn

es
s

pe
r

B
ric

k

Fitness per Brick between Environments

larger environment

smaller environment

Figure 4.12: Average Fitness Per Brick between environments. The difference is
slight, but equally fit structures tend to contain fewer bricks in the smaller environ-
ment.

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70
Fitness per Instruction between Environments

Generation

F
itn

es
s

pe
r

In
st

ru
ct

io
n

larger environment

smaller environment

Figure 4.13: Average Fitness Per Assembly Plan Instruction between environments.
Equally fit structures tend to be slightly shorter in the larger environment, despite
the wider range available to the turtle.

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 63

Table 4.4: Structures Evolved in Setup B before (left) and after (right) the grey
scaffolding is removed. Black spheres have been placed in the upper corners of the
box over which fitness is evaluated. The larger sphere is the location of the turtle

Initial Final

5% 84%

2% 81%

27% 62%

31% 47%

0.4% 80%

CHAPTER 4. EVOLUTIONARY FABRICATION FOR DESIGN 64

4.4 Summary

In this chapter we have demonstrated the ability of Evolutionary Fabrication to per-

form open-ended design tasks. In Section 4.1 the goal was to fill a bounding region,

and in Section 4.2 the goal was to maximize the covered volume of the bounding

region. In each case, Evolutionary Fabrication is able to arrive at near-optimal, and

human-competitive solutions. While these fitness functions were both rather simple,

they serve the purpose of demonstrating that Evolutionary Fabrication can discover

how to build structures given only relatively loose specifications.

Moreover, as shown in Section 4.3, an added benefit of this evolution of assembly

plans arises from Evolutionary Fabrication’s ability to design not just novel structures,

but novel means of assembling those structures as well. The most obvious of these

novel assembly methods is what we have termed “dynamic assembly”. Dynamic

Assembly describes an evolved assembly process which builds multiple unstable sub-

assemblies which, once scaffolding is removed, topple into a final shape.

The novelty of dynamic assembly extends beyond just the irreversibility of the

process. Our framework above is limited to placing bricks one at a time, and so

lacks any formal ability for modular assembly of larger components. Nonetheless, the

assembly plans evolved above have discovered how to construct two separate modules,

and then join them in the final phase of assembly. We’ve shown that that in each

case the process used in creating the final structure is more efficient than a purely

sequential process.

In the following section we will explicitly add modularity to our framework, and

demonstrate the ability of Evolutionary Fabrication to evolve increasingly large ob-

jects, even in the presence of noise and error during assembly.

Chapter 5

Evolutionary Fabrication

in Uncertain Environments

“The organism is determined neither by its genes nor by its environment

nor even by the interaction between them, but bears a significant mark of

random processes...” Lewontin, The Triple Helix, (p.38)

“Unlike the adult organism or larva, the embryo seems to be rather priv-

ileged...Its primary function is to develop reliably and this reliability is

the main feature on which selection will act.” Wolpert, The evolutionary

origin of development: cycles, patterning, privilege, and continuity [108].

In the previous chapter we established that Evolutionary Fabrication is able to

generate solutions to open-ended design tasks and that by evolving assembly plans

directly it is able to discover novel means of assembly. The next important questions

to ask are whether Evolutionary Fabrication can cope with noise and error during

assembly, and whether the process can scale to increasingly larger and more complex

domains.

65

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 66

As we discussed in Section 2.4.4, developmental representations are not without

their drawbacks. In particular, stochastic effects which lead to error and noise during

development can significantly complicate the task of evolution. When subjected to

noise during development, a genotype is capable of developing into an entire range of

phenotypes, each with a corresponding fitness (Figure 5.1).

m
o

d
al valu

eF
R

E
Q

U
E

N
C

Y

FITNESS

Figure 5.1: Under the presence of developmental noise, each genotype develops into
an entire range of phenotypes, each with an associated fitness.

This has particular relevance to Evolutionary Fabrication in the real world. Unlike

simulation, real world assembly environments are subject to the effects of friction and

random perturbation, which can have a dramatic effect on results. Considering these

effects, how can Evolutionary Fabrication learn to reliably build specified objects

in the presence of noise and error during assembly? How can increasingly large,

increasingly complex objects be built in these environments? This chapter seeks to

address those questions.

5.1 Evolving Reliability without Tests

It is important to note that the Framework described in Chapter 3 has no means of

measuring the intermediate results of assembly: any error during assembly cannot be

noticed until assembly is complete and the final product can be observed. While we

make no claims that such ballistic behavior is better than more observant models, it

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 67

is worth pushing the limits of these simpler models. Measurement and testing are

time consuming and expensive, and any increase in the set of assembly primitives

has a dramatic effect upon the size of the evolutionary search space. As we’ll see,

even absent measurement, Evolutionary Fabrication is remarkably capable of reliably

generating large complex objects in the presence of noise and error during assembly.

The first question we seek to answer is whether, absent any means to test inter-

mediate solution, evolutionary fabrication can discover how to reliably build a goal

structure. Since the presence of noise complications matters significantly, it is worth

exploring the issue first in a somewhat simpler context.

5.1.1 A Simpler Framework

Consider a simplified version of the Evolutionary Fabrication Framework in which the

print-head turtle ranges over a discrete 100x100 grid and the bricks are now 10 × 20

rectangles subject to a simple “tetris-like” physics much simpler than ODE.

The assembly plan genotype remains largely the same - containing instructions

such as forward, rotate, put brick and take brick. There are no “scaffolding” bricks

in this model. Consequently, the assembly process is also simplified somewhat -

each assembly instruction is interpreted in turn and, when assembly is complete, the

resulting structure is evaluated.

Rather than an open ended fitness function, we are now trying to develop the

assembly process for a pre-determined structure - the arch shown in Figure 5.2.

Noise Model

A noisy development environment can be induced by allowing vertical bricks to topple

to either side 50% of the time, and for cantilevered bricks to topple 50% of the time.

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 68

Figure 5.2: The goal arch for the simplified noisy development model. Vertical bricks
are black and horizontal bricks are grey. The turtle is the dark grey square next to
the left leg.

5.1.2 Evolving without Noise

In the absence of noise evolution quickly discovers the most efficient means of building

the goal arch. Of course, if we then take that “naive” assembly plan and execute in

in the noisy environment, it performs dismally. Figure 5.3 provides a sample of the

distribution of phenotypes that arise in this situation.

5.1.3 Measuring Reliability

If, as Figure 5.3 demonstrates, noise during assembly induces such a wide distribution

of phenotypes, then the challenge lies in finding ways to reliably build the goal struc-

ture. One way of measuring the reliability of an assembly plan in a noisy environment

is to execute it multiple times and see how often, if at all, it can produce the goal

structure, This provides the notion of “yield”. In the experiments below, we build

each genotype 50 times, gathering statistical properties of the results to use as fitness

objectives.

The specific objectives, shown below,are similar to those used for evolving the goal

arch in the earlier section, with the addition of the distribution-measuring aspects

such as the “yield” metric.

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 69

Figure 5.3: A sample of the wide distribution of phenotypes that arise when a single
assembly plan is assembled in a noisy environment.

• Length: shorter is better.

• Mass: attempting to minimize the number of bricks in the structure.

• Missing Material: Number of bits missing from goal structure

– best result, average result, and yield (perfect structure).

• Error: Number of “wrong” bits - i.e. either extraneous or missing bits.

– best result, average result, and yield (perfect structure).

5.1.4 Emergence of Ontogenic Scaffolding

The system described above is typically able to generate assembly plans with yields

above 70%. Figures 5.4, 5.5, and 5.6 contain animation frames from a typical result.

This particular result described below is 82 instructions long, and achieves 70% yield.

The evolved assembly plan is able to achieve this reliability by means of ontogenic

scaffolding - structural elements that are functionally necessary for reliable assembly,

but that do not exist in the finished product. Once all of the elements of the final

structure have been placed, this scaffolding is removed.

Consider the frames in Figures 5.4, 5.5, and 5.6 below. The evolved assembly plan

first places horizontal bricks to the left and the right of what will become the first

leg of the structure. Their presence guarantees that the leg will stay in place. The

plan then places the first and second vertical bricks - both parts of the goal structure.

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 70

Note the redundant instruction in the sixth frame of Figure 5.4 - although it appears

extraneous in this particular sequence, it proves useful in situations where the first

attempt at laying the second brick fails: in which case the fallen brick ends up acting

as scaffolding for the subsequent attempt.

In the following frames of Figure 5.4, the evolved plan proceeds to lay scaffolding

for what will be the leftmost leg and the leftmost cantilever of the arch.

The assembly continues in Figure 5.5 as the plan continues to lay bricks that are

simultaneously scaffolding for the leftmost cantilever and for the left leg of the arch.

Once scaffolding has been lain on both sides, both vertical bricks of the left leg are

placed. By the final frames of Figure 5.5, all of the bricks of the final structure are

in place.

All that remains is for the print head to remove the scaffolding, as it does in

Figure 5.6.

A meaningful way to visualize results which contain a distribution of phenotypes

corresponding to a single genotype is to build a composite image by averaging the

results of multiple runs of that genotype. The center column of Table 5.1 compares

composites of a naive solution (which was evolved in the absence of noisy assembly

and then assembled under noise) with evolved solutions which achieved 11%, 27% and

59% and 75% yield. As can be seen, as evolution progresses, the composite image

increasingly looks like the final goal structure.

In the context of noisy development in which genotypes are rewarded for their yield

percentage of a final structure, such as ours, one can consider the role of evolution

as learning to shift phenotypic fitness distributions, rather than individual fitnesses,

towards the optimal. This is borne out by the distribution column in Table 5.1. Each

figure is a histogram which shows the distribution of phenotype fitness over the same

100 builds used to generate the composite images. As shown, as the yield increases,

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 71

the distribution tightens and shifts towards the optimal.

5.2 Evolving for Scalable Complexity

One outstanding challenge in the open-ended evolution of formation lies in scalable

complexity - that is, how to build increasingly large, increasingly complex objects in

a managed fashion. Crucial to this is the process of hierarchical, modular assembly.

Hierarchy and modularity play an important role in biology - not just in the

organization of organisms, but also in their development. A popular example of

representational modularity in nature is the “eyeless” gene in Drosophila which,

when mis-expressed, causes physiologically complete eyes to sprout in unexpected

places [35]. The importance of representational modularity lies in its ability to couple

functionally related portions of the genotype while simultaneously decoupling them

from functionally unrelated portions [100]. Changes to a representational module

have few side effects in the remaining genome, and changes outside a module have

few effects upon the module. The question arises, how can such modularity evolve?

In his landmark essay “The Architecture of Complexity”, Herbert Simon [90]

begins to answer this question, making the case for the evolutionary necessity of

hierarchical modularity through his parable of the two watchmakers, Tempus and

Hora. Tempus builds his watches incrementally, piece by piece, and when interrupted,

he puts down the watch he is working on, which then falls apart into its constituent

pieces. Hora, on the other hand, first combines pieces into separate small modules, and

then combines those modules together into a final watch. Consequently, he only loses

the particular module that he is working on, and so is significantly more likely to build

a complete watch than Tempus is. Simon uses this story to claim that increasingly

complex forms are nearly impossible to evolve without such hierarchical composition

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 72

Figure 5.4: Robust Assembly Plan Steps 1-18: In the first steps, the builder lays
scaffolding (frames are read left to right, top to bottom)

Figure 5.5: Robust Assembly Plan Frames 19-49: more scaffolding is lain and the
arch is completed

Figure 5.6: Robust Assembly Plan Frames 50-80: scaffolding is removed

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 73

Table 5.1: Visualization of the improving yield of evolved assembly plans. The middle
column contains composite results created by averaging 100 builds - darker squares
represent locations more likely to contain a brick. The right hand column shows
the histogram distribution of phenotype fitness across those same 100 builds - the
horizontal axis represents increasing fitness, with maximal fitness, meaning perfect
assembly, on the extreme right. Scales between histograms are identical

% Yield Composite Distribution

Naive

11%

27%

39%

75%

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 74

of stable modules. In his own words, “The time required for the evolution of a complex

form from simple elements depends critically on the numbers and distribution of

potential intermediate stable forms.”

Many researchers have used this parable as inspiration for exploring adaptive rep-

resentations and the relationship between modularity and evolvability. In this context

the stability of a form is interpreted as evolutionary stability - that is, insulation from

potentially deleterious effects of mutation and crossover. As such, the evolvability of

adaptive representations comes from their ability to dynamically generate modules in

the process of search [100].

Our interest here, however, is in a different perspective on the story - that of the

relationship between modularity and noise in developmental representations,which

take their cue from the biological processes of ontogeny and growth. Since they seek

to model “biological assembly” (albeit of systems quite distinct from watches), these

systems lend themselves to a rather straightforward interpretation of Simon’s parable.

Like watchmakers, developmental systems seek to assemble complex forms from prim-

itive constituent parts, and perform their tasks under the risk of interruption. While

for the watchmakers interruption during assembly took the form of a telephone call,

in developmental systems the role is performed by error and noise during ontogeny.

Like watchmakers, in order to generate complex objects, adaptive developmental rep-

resentations require modularity and, much like Hora’s subcomponents, in order to be

useful, these developmental modules must be stable and reliably producible in the

presence of noisy assembly.

If stochastic development imposes one-to-many relation on the genotype-phenotype

map, such that each genotype can grow into an entire distribution of phenotypes, then

another criterion for modular acquisition arises: that of developmental stability.

An important aspect of the utility of modules is their reusability. If, therefore, a

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 75

module is to be generated and reused multiple times, then it stands to reason that

multiple copies of the module should exhibit low developmental variance. Consider

Figure 5.9. A genotype which, under noise, develops into a wide or multi-modal

distribution of phenotypes, such as the one of the left hand side of the figure, is

not ontogenically stable, and so would not make a very reliable module. A more

ontogenically stable genotype, on the other hand, typically develops into a tight,

unimodal distribution with low variance, such as the one on the right hand side of

the figure, meaning that it will generate near-identical copies, and so makes for a

more suitable module.

5.2.1 Modularity and Hierarchy in Representation

The importance of representational modularity lies in its ability to couple functionally

related portions of the genotype while simultaneously decoupling them from function-

ally unrelated portions. Changes to a representational module have few side effects

in the remaining genome, and changes outside a module have few effects upon the

module. Wagner and Altenberg [100] persuasively argue that the evolvability of a

system is highly contingent upon its representation’s ability to adapt by discovering

and incorporating evolutionary modules.

Several models of representational modularity in evolutionary computation exist.

Many systems, such as Hornby’s L-systems [39] and Bongard’s Gene Regulatory

Networks [11] feature representations which are implicitly modular.

Of those which provide for the explicit encapsulation of modular components, the

most common fall under the rubric of Hierarchical Genetic Programming (HGP),

where encapsulated modules become new primitives in the language. Koza [50] de-

veloped Automatically Defined Functions (ADFs), in which sub-functions are allowed

to evolve their own function and terminal sets. Angeline expanded upon ADFs with

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 76

module acquisition (MA), which co-evolve a representational genetic “library” of en-

capsulated primitives which are universally available to evolving programs[4]. Sub-

sequently, Rosca and Ballard introduced Adaptive Representation through Learning

(ARL), which replaced the randomness inherent in modular acquisition in ADFs and

MA with a “usefulness” heuristic based upon fitness contribution and activation fre-

quency of subtrees [86].

More recently, de Jong co-evolved a representation and its corresponding popula-

tion of genotypes [21]. Candidate modules were chosen by finding the most frequent

pair of alleles in the current population and, drawing from Watson’s work on sym-

biotic composition [101], were added to the language as primitives only if they their

fitness contribution was at least as good as the fitness contribution of all other possible

pairs in a randomly chosen context.

While they vary in their details, each of these models of modular encapsulation in-

volve incorporating genotypic sequences, thereby protecting them from the deleterious

effects of mutation and crossover, and then adding them to the language of represen-

tation. As such, encapsulated modules are simply shorthand for the genetic sequence

they represent - one can be substituted for the other without consequence. Below,

we will motivate a system of encapsulation which, by contrast, involves incorporating

phenotypic results into the language or representation.

5.2.2 Why Endosymbiosis?

Because of their prescriptive nature, developmental representations display a measure

of context sensitivity: the same sequence of operations can have vastly different re-

sults depending on where in the process it occurs. Luke and Spector [60], for instance,

discuss how the procedural nature of cellular encodings makes them particularly sen-

sitive to crossover. This same “execution order dependence” exists in the assembly

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 77

plans used by Evolutionary Fabrication. Consider a developmental representation as

a recipe. The set of instructions which produce egg whites in a souffle recipe (sepa-

rate yolks and whites, place whites in a bowl, whip into soft peaks) would produce a

mess (if anything at all) if they occurred later in the recipe or, for that matter, in an

omelette recipe.

To make matters worse, in developmental systems a contiguous portion of the

phenotype which we might want to modularize may have been produced by disjoint

portions of the genotype. Similarly, a contiguous portion of the genotype may produce

disjoint phenotypic results.

These factors can therefore stymie adaptive models such as HGP, which generate

modules by extracting and compressing favorable genetic sequences. A genetic se-

quence which produces a favorable trait in one context will not necessarily preserve

that result when transferred to another context. Furthermore, favorable phenotypic

traits may not be attributable to modularizable portions of the genotype, and mod-

ularizable portions of the genotype may not produce useful phenotypic modules.

The challenge of modular acquisition in developmental representations, then, lies

in preserving not the syntax, but rather the meaning of a desired phenotypic result.

Endosymbiosis, the encapsulation of an entire organism by its host, is the model

which we propose for this.

In our model of endosymbiotic encapsulation (See Section 5.3), complete organ-

isms, not just specific portions of their phenotype, are used to form modules. As

such, endosymbionts become precompiled phenotypes, and join the set of primitives

available to the representation. To continue the metaphor of the recipe, endosymbio-

sis is analogous to the parallel creation of a sous chef, who specializes in producing

that one particular higher-order ingredient, such as stiffened egg whites.

When referenced during the course of development, it is the phenotypic result –

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 78

the complete endosymbiont – rather than the genetic sequence responsible for creating

the endosymbiont, that is used by the developmental process. In this manner, the

meaning, rather than merely the syntax, of a module is preserved, and can be applied

consistently across contexts.

5.3 Modular Evolutionary Fabrication

As we described above, our hope is that this endosymbiotic model of modular en-

capsulation will allow Evolutionary Fabrication to evolve how to build increasingly

large, increasingly complex objects, even in the presence of noise during assembly

which otherwise severely affects results. Adding this modularity to our Evolutionary

Fabrication Framework is rather simple, as described below.

New Operators

The “put” command is modified to take an argument - a unique identifier correspond-

ing to an object in the library of encapsulated modules. Initially, the only objects

available to the “put” command are primitive 2x1x1 bricks. As new modules are

encapsulated, they are inserted into the library as new objects and can be referenced

by the “put” command (for instance put(brick) or put(module15).) As the modular

library grows, the mutation operator selects from any of the modules currently avail-

able. Table 5.2 contains examples of what these new assembly plans look like, and

Table 5.3 shows what the execution of these plans would produce.

Table 5.2: Example modules and their associated assembly plans
mod1 P (a), P (a)
mod2 M(+2), P (mod1), M(+2), R(+90), P (mod1)
mod3 M(+2), M(+1), P (mod2), R(−90), M(+2), M(+2), R(+90), P (mod2), ...

...M(+2), M(+2), P (mod1), R(+90), M(+2), M(+2), R(−90), P (mod1)

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 79

Table 5.3: Hierarchical assembly of modules from Table 5.2

mod1

mod2

mod3

Noise Model

Noise is injected into the system using a “shaky hand” model. When instructed to

place an object, the turtle puts anywhere within some range 4x around its current

position, with uniform probability. Noise settings were given as percentages of a

brick’s width.

Evaluation

To measure the effect of developmental noise on evaluated genotypes, each assembly

plan was interpreted 10 times, and average values over each objective were used for

selection.

5.3.1 Module Discovery

The key feature of this new framework is the ability to discover new modules during

the process of evolution and then add them to the set of primitives available to evolving

assembly plans, as shown in the schematic of Figure 5.8.

Every 10 generations, unused modules are removed from the library and new

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 80

candidate modules are discovered and added to the library, as shown in Figure 5.7.

We describe the details of the process below.

Figure 5.7: The process of module rejection and discovery.

Module Selection

Candidate endosymbiotic modules were selected from the phenotypes of the evolving

population every 10 generations. The criteria for selection are as follows:

• Fitness: the selected module must be a member of the current pareto front.

That is to say it must have some intrinsic fitness beyond these other criteria.

• Unity: the selected module must only consist of a single piece. Obviously if an

assembly plan results in a structure with two distinct pieces, then it cannot be

usefully encapsulated as a context-independent building block.

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 81

• Reliability: the assembly plan which produces the candidate module must

have sufficiently low variance in fitness (see Figure 5.9.)

If a phenotype matches the criteria then it is added to the module library as a

whole object, becoming available as an argument to the “put” instruction.

Module Rejection

The evolutionary viability of the modules is determined by their reference count in the

population of evolving assembly plans. Care must be taken in order to prevent spuri-

ous modules, those which are referenced by assembly plans but have no consequence

(for instance those that are ignored because their placement would intersect with an

existing object) from causing “bloat” in the set of primitives. Candidate modules

are therefore tested for necessity. Each member of the pareto front which contains a

reference to a module is built twice - once with and once without the referent module.

If the results are the same then the module reference is permanently removed from

the assembly plan. This is repeated for each module to which an assembly plan refers.

Once those unnecessary module references have been removed from the population

of assembly plans, the reference count of each module in the library is measured.

Whenever a module’s reference count in the evolving population drops to zero it is

deemed irrelevant, and removed from the object library.

5.4 Modular Assembly in Noisy Environments

In these following experiments we determine the usefulness of this model of modular

encapsulation, and more importantly, its ability to cope with noise during assembly.

The design task is again to create a structure which maximizes the total open

volume beneath it, thereby rewarding structures which both maximize height and

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 82

PHENOTYPESPRIMITIVE SET

ENDOSYMBIOTIC ENCAPSULATION

GENOTYPES

Figure 5.8: In the endosymbiotic model of module acquisition, only complete pheno-
types, rather than genetic samples, are added to the set of primitives.

BAD MODULE

F
R

E
Q

U
E

N
C

Y

FITNESS

F
R

E
Q

U
E

N
C

Y

FITNESS

GOOD MODULE

Figure 5.9: Properties of a useful module. Under the presence of developmental noise,
each genotype develops into an entire range of phenotypes, each with an associated
fitness. A bad module is one which exhibits high variance or multimodality across
multiple builds; a good module will be unimodal with very low variance.

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 83

maximize the number of empty spaces beneath them, per Figure 5.10.

Figure 5.10: Illustration of Shaded Fitness Function. The structure itself is black,
and they gray region is considered “shaded”.

• Length Of Assembly Plan (minimizing)

• Mass of Objects in Environment (minimizing)

• Shaded Area (maximizing)

To measure the effect of developmental noise on evaluated genotypes, each assem-

bly plan was interpreted 10 times, and average values over each objective were used

for selection.

5.4.1 Results

Three sets of experiments were run for 1000 generations each, with noise set to 0.1%,

1.0% and then 2.5% of a brick width. For comparison, parallel setups without modular

acquisition were run at noise levels of 0, 0.1 and 1.0%. Figure 5.11 demonstrates the

deleterious effects of noise on non-modular development. In the absence of noise,

evolution proceeds fairly well. But even with relatively modest noise, at a level of

0.1%, average fitnesses are half of what they are in the noiseless case. As noise is

increased to 1.0%, performance drops even further.

Figure 5.12 shows a comparison in performance for modular assembly across a

range of noise values. Not surprisingly, the modular setups reach near-optimal fitness

rather quickly, and outperform the non-modular ones in Figure 5.11. Furthermore,

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 84

there is very little difference in performance for modular assembly across the range

of noises. Interestingly, the modular noisy evolution shown in Figure 5.12, across

the entire range of noise values even outperforms non-noisy non-modular evolution in

Figure 5.11. We discuss this further below.

Figures 5.13 and 5.4.1 contain representative assembly trees for some of the

evolved objects. Appendix A contains several more examples. These trees provide

some insight into the processes by which evolved assembly plans were able to hierar-

chically assemble the objects.

Interestingly, modular assembly outperforms non-modular assembly, even in the

absence of noise. Consider that non-modular assembly must place structures brick

by brick, and so is in general limited to incremental improvements in fitness over the

course of evolution. The strength of modular assembly, on the other hand, lies in its

ability to add larger sub-assemblies to its vocabulary, and then place them as a single

unit, thus enabling faster progress.

This discovery of increasingly large sub-assemblies affects not only the speed of

evolution, but also the type of structure that is evolved. As we first noted in [84],

non-modular assembly plans in a non-stochastic environment tend to generate arches,

even though tree-shapes are a more optimal solution. Our conjecture at the time was

that this was due to the difficulty in building balanced trees brick by brick: both

matching branches of the tree must be discovered in parallel, and most mutations to

a balanced tree would unbalance it. Arches, on the other hand, are more evolutionarily

stable, because they are supported on two legs, and can be discovered by a process

which first creates a filled arch and then slowly learns to empty out the middle portion.

A key observation, therefore, is that the majority of structures evolved in this

noisy environment with modular assembly plans are trees rather than arches. This is

because the adaptive representation is able to generate larger, multi-brick modules,

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 85

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Generation

S
ha

do
w

 F
itn

es
s

Effects of Noisy Development on Non−Modular Evolution

no noise

0.1% noise

1.0% noise

Figure 5.11: A demonstration of the effects of noisy development. Without noise,
non-modular evolution proceeds well. Even with relatively low noise (0.1% of brick
width), however, runs do significantly worse. As noise increases, performance de-
creases. Averaged across 22 runs (noiseless) and 10 runs (noisy), with error bars.

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.1% noise, modular

1.0% noise, modular

2.5% noise, modular

no noise, non modular

Figure 5.12: Across a range of noise levels, not only does modular evolution outper-
form non-modular noisy evolution, but it also outperforms non-modular, non-noise
evolution. Averaged across 10 runs of each setup, with error bars.

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 86

and then place them as a single, balanced unit atop a column. As can be seen, in

every case it is a single module which forms both branches of the tree.

It could even be argued that several of the assembly trees shown in the tables

also exhibit a form of exaptation in the evolutionary process. The tree shown in

Figure 5.13 is an excellent example. Because symbiogenetic modules are selected for,

among other things, their presence on the pareto front, they often have a measurable

fitness when encapsulated as modules. When they are used in hierarchical assembly,

however, instead of being placed in a manner which takes advantage of this inherent

fitness (for instance, by placing them in parallel to form an arch), they are rotated

and placed sideways atop a newly formed trunk. As such they serve a new function -

for instance as a branch instead of a trunk, and in that role they are able to contribute

more fitness than they do alone.

5.5 Scalable Modular Assembly

The above experiments establish first that error during assembly has a deleterious

effect on the progress of Evolutionary Fabrication. Secondly, they show that our

modular extension to Evolutionary Fabrication is able to overcome that noise by a

form of “bootstrapping”, by finding small reliable sub-assemblies and then incorpo-

rating them as new primitives in the assembly process.

To determine whether these methods scale to larger environments and more com-

plex fitness functions, we next quadruple the size of the assembly environment, as

shown in Figure 5.15. Merely making the environment bigger would only result in

larger tree shapes, but not necessarily in more complex hierarchies of assembly. In

the following experiment, we therefore replace the “shade” fitness function with one

that measures the “leafiness” of a structure. We calculate this by taking vertical slices

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 87

Figure 5.13: An Example Hierarchical Assembly of Modules at 0.1% noise. Further
examples are provided in Appendix A

Figure 5.14: An Example Hierarchical Assembly of Modules at 1.0% noise. Further
examples are provided in Appendix A

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 88

along the width of the structure and counting the number of surfaces we cross along

the way, as illustrated in Figure 5.15.

2 131

Surfaces

A

B

Figure 5.15: Illustration of Larger Environment and “Leafy” Fitness. The larger
environment (Box B) is four times as large as the original (Box A). “Leafiness” is
measured as the number of surfaces encountered along a vertical slice.

The fitness objectives are listed below:

• Length Of Assembly Plan (minimizing)

• Mass of Objects in Environment (minimizing)

• Leafiness (maximizing)

The optimal structure is no longer a “T”, therefore, but a series of tightly packed

horizontal branches. Because of the interplay with the remaining mass objective, and

the exaptative nature of our modular acquisition, the structures we will see will be

less regular and more open than this.

5.5.1 Results

Three sets of experiments were run, at noise levels of 0.1% (11 runs), 1% (8 runs)

and 5%(10 runs). Figure 5.16 shows the progression of evolution across the three

noise levels, with error bars. As can be seen, even with noise at 5% of a brick width,

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 89

modular evolution is still able to progress to produce highly fit individuals – in fact,

at its best it does better than the average 1.0% run, and better than the worst 0.1%

run. This leads us to believe that higher noise has a retarding effect upon progress, in

the sense that it takes evolution longer to find reliable modules, but less so a limiting

effect: by allowing the 5% run to continue we see that it catches up to the 1.0% run

within the next 100 generations. Figure 5.17 contains sample assembly hierarchies

evolved at the 5% noise level. Further examples are shown in Appendix A.

5.6 Summary

This section has demonstrated Evolutionary Fabrication’s ability to overcome noise

and error during assembly. Even without the ability to explicitly place meltable

scaffolding, evolved assembly plans can nonetheless learn to reliably build a goal

structure in the face of error by placing ontogenic scaffolding - temporary elements

that are essential for the reliable assembly of the goal structure, but which are removed

before final evaluation.

Section 5.3 introduced a form of modular encapsulation based upon phenotypic

symbiogenesis which addresses the context dependency of developmental representa-

tions. Structures which exhibit high reliability in the face of noisy development were

chosen as candidate modules, and added as a whole, to the set of primitives. Not

only does this method of modular assembly overcome the deleterious effects of noisy

development in an artificial ontogeny across a range of noise levels. Interestingly,

even at the highest level of noise it also outperforms non-modular methods evolved

without noise.

The strength of this method lies in a form of developmental bootstrapping - small

subcomponents are composed into larger stable modules available to the represen-

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 90

0 50 100 150 200 250 300 350 400 450 500
−500

0

500

1000

1500

2000

2500

3000

3500

Gens

F
itn

es
s

Modular Assembly Leafy Fitness across a range of Noise Values

0.1% noise

1.0% noise

5.0% noise

Figure 5.16: Evolutionary Fitness of the “Leafy” Fitness Function across a wider
range of noise values. Higher noise has more of a retarding effect than it does a
limiting effect.

Figure 5.17: An example of hierarchical assembly of larger structures at 5% noise.
Note the increased size and complexity of the assemblies. Further examples are
provided in Appendix A

CHAPTER 5. EVOFAB IN UNCERTAIN ENVIRONMENTS 91

tation, and in that manner multi-tier hierarchically composed assembly methods

emerge. As the size of the sub-assemblies increases, Evolutionary Fabrication is able

to make incrementally larger structures with relatively fewer instructions.

Chapter 6

Discussion and Conclusion

At this point we have introduced Evolutionary Fabrication as an alternative to blueprint-

based Evolutionary Design. Further, we have shown how Evolutionary Fabrication,

while allowing for the full automation of design and assembly, remains endowed with

the same level of creativity and innovation found in more traditional, blueprint-based

approaches. By directly evolving assembly plans, EvoFab is capable not only of find-

ing efficient means of manufacturing objects, but of discovering entirely novel and

unexpected ways of doing so. We can now discuss some of the broader themes and

implications of these results.

6.1 Novelty and Invention

What do we mean, exactly, when we say that Evolutionary Fabrication allows for the

“emergence” of “novel” means of assembly? In their work, Ronald et al. warn, “We

do not think...that emergence should be diagnosed whenever the unexpected intrudes

into the visual field of the experimenter” [85]. Inspired by the Turing Test, they

provide an observer-based test for emergence based on the notion of “surprise”: that

92

CHAPTER 6. DISCUSSION AND CONCLUSION 93

is the extent to which the connection between local rules of interaction and observed

global behavior is non-obvious. This meshes well with Koza’s notion of inventiveness

in [51], wherein he cites one of the US Patent Office’s criteria for a new invention:

that it should be non-obvious “to a person having ordinary skill in the art to which

said subject matter pertains”. Like the test for emergence, inventiveness is contingent

upon impressing an external observer with an unexpected and novel phenomenon that

seems to exceed the properties of the system.

A clear example of novel assembly occurs in the assembly of the goal arch from

Section 3.2, reproduced below in Figure 6.1. The scaffolding brick placed in frame 1

tumbles from its horizontal placement into a vertical position below. By falling into

position in this manner, the scaffolding ends up directly under the center of mass of

the brick it will support. This final location is actually between two of the discrete

print-head positions, and so the scaffolding could not have been placed directly. If it

had instead been directly placed by the print head the into an adjacent position the

brick it supports might have tilted sideways.

Figure 6.1: A non-reversible toppling motion. Note how the horizontal scaffolding
placed in frame 1 tumbles into a vertical position.

The “dynamic assembly” observed in Section 4.3 is yet another striking example

of a phenomenon which meets the criteria for novelty: watching those assembly pro-

cesses, particularly the one shown in Figure 6.2 never fails to elicit a certain frisson

of surprise. The non-obviousness of the phenomenon can be attributed to the fact

that even though Evolutionary Fabrication is limited to placing bricks one at a time,

it nonetheless discovers how to dynamically assemble two or more multi-brick sub-

CHAPTER 6. DISCUSSION AND CONCLUSION 94

assemblies by exploiting the settling phase of the construction process. This emergent,

modular, meta-assembly transcends the brick-by-brick language of assembly.

Figure 6.2: An extreme example of dynamic assembly

Each of these phenomena of unusual assembly meet the criteria of emergence and

inventiveness, and serve as a strong example of the ability of Evolutionary Fabrication

to inject novelty into the realm of assembly. While we do not claim that these exact

phenomena would arise in a the real world, we conjecture that equally novel and

interesting methods of assembly would emerge in a physically embodied system, just

as they have in Evolutionary Robotics [68, 102] and Evolvable Hardware [95].

6.2 Assembly vs. Disassembly

The emergence of phenomena such as dynamic assembly also demonstrates the com-

parative advantage of directly evolving assembly over post hoc methods of determining

assembly from a blueprint, such as Assembly Sequencing. Recall how Assembly Se-

quencing approaches simplify their task by assuming that assembly is a monotone,

two handed process [33, 45]. Operating under these assumptions, Assembly Sequenc-

ing can discover an object’s disassembly, and then reverse the steps to arrive at its

assembly.

And yet, the the assembly shown in Figure 6.1 and the dynamic assemblies in

Section 4.3 are clearly not reversible, even though the assembly mechanism is both

CHAPTER 6. DISCUSSION AND CONCLUSION 95

monotone and two-handed. The structure shown in 6.2 may have been assembled

brick-by-brick, but it certainly cannot be un-built brick by brick.

When assembly sequencing makes these assumptions about assembly, in does so

in order to make the problem more tractable. Searching for an assembly sequence

from the bottom up, as we do in Evolutionary Fabrication, opens up a much larger

search space. As we’ve shown, the benefit of this tradeoff is the ability to discover

unexpected, efficient, and novel means of assembly.

6.3 Hierarchy and Noise

Simon argues that “hierarchic systems will evolve far more quickly than non-hierarchic

systems of comparable size” [90]. Using the parable of the error-prone watchmakers

Tempus and Hora, he provides a quantitative analysis of the difficulty of assembly

under noise: if each watch contains 1000 parts, and the probability of an error during

assembly is p, then Tempus, who assembles his watches in a linear, non-modular

fashion, has a (1−p)1000 chance to create a complete watch. Hora, on the other hand,

builds 10-piece sub-assembles, each of which then has a (1− p)10 of interruption, and

when interrupted only loses the assembly he is working on rather than the complete

watch. With p = 0.1 Hora will successfully complete his watch about 4000 times

more often than Tempus.

Our results comparing modular assembly to non-modular assembly in Section 5.3

recapitulate this analysis in the context of Evolutionary Fabrication. As shown by

Figures 5.11 and 5.12, the hierarchical system far outperforms the non-hierarchal

system, even with only minimal noise. Figure 6.3 compares the rates of hierarchical

and non-hierarchical evolution at 0.1% noise.

CHAPTER 6. DISCUSSION AND CONCLUSION 96

Figure 6.3: Our results comparing the progress of modular vs. non-modular evolu-
tionary systems recapitulates Simon: “hierarchic systems will evolve far more quickly
than non-hierarchic systems of comparable size” [90]

6.3.1 Measuring Modularity

We can also investigate how varying levels of noise affect the type of hierarchies which

emerge. Given the assembly plans for a structure and its corresponding modules we

can generate a directed graph of the hierarchical assembly process by creating an

adjacency matrix. (In fact, all of the graphs of hierarchical assembly shown in this

work were produced automatically in this manner). We can then measure properties

of the graph, such as the depth of the hierarchy, the number of modules (nodes),

and the amount of reuse (edges). Using these measurements we can compare relative

values between hierarchies evolved at differing noise levels.

Consider for instance the the matrix below, corresponding to the graph shown in

Figure 6.4. The value at (i, j) corresponds to the number of times modulei is used in

modulej. In this hierarchy there are four nodes, four edges, and the depth is four.

CHAPTER 6. DISCUSSION AND CONCLUSION 97

Figure 6.4: A robust hierarchical modular assembly from Section 5.3

A B C D

A 0 0 0 0

B 1 0 0 0

C 0 1 0 0

D 1 0 1 0

Using these metrics we can compare the properties of the hierarchies which emerged

in the “leafy” fitness function at 0.1% noise with those that arose at 5.0% noise. In

each survey we measure the properties of all structures with fitness between 1200

and 1800. Taking into account the retarding effect that increased noise level has on

the progress of evolution, in order to compare structures of equivalent fitnesses the

0.1% noise hierarchies were sampled at generation 280, and the 5.0% hierarchies were

sampled at generation 500. The survey consists of 109 individuals across 10 runs

at 0.1% noise and 212 individuals across 11 runs at 5.0% noise. In the bar graphs

below, measurements for each hierarchy were normalized by the overall fitness of the

hierarchy.

A two-sample T-test shows that the distributions of fitnesses between the two

surveys are equivalent (p = 0.778), as are the normalized depths (p = 0.9724) and

total number of edges (p = 0.5743). The distributions of nodes between the two

samples, however is quite distinct (p = 3.771e−8) - with the samples from the noisier

environment having significantly fewer nodes. These data are presented in the bar

CHAPTER 6. DISCUSSION AND CONCLUSION 98

graphs in Figures 6.6 and 6.7.

This above analysis shows a key quantitative difference between the hierarchies

that emerge at the different noise levels. While the fitness, depths and edge counts in

both sets of hierarchies remain comparable, those hierarchies which emerge in higher

noise have fewer nodes overall. The number of nodes in the hierarchy correspond

to the number of distinct modules that are found by evolution. It makes sense that

the hierarchies that emerged in the higher noise regime have fewer modules: as noise

levels increase, the number of reliably buildable sub-assemblies decreases. And yet,

while the number of nodes is different, the total number of edges between remains

the same. In other words, the relative number of edges per module increases as noise

increases.

This leads us to conclude that increased levels of noise lead to increased levels of

modular reuse in our evolved hierarchical assemblies (Figure 6.5).

REUSE INCREASES

NOISE INCREASES

Figure 6.5: As the noise in the developmental system increases, the height of the
trees remains essentially the same, as does the total number of edges. The number
of modules, however, decreases, meaning that there are more edges per module. In
other words, increased levels of noise lead to increased levels of modular reuse in our
evolved hierarchical assemblies.

CHAPTER 6. DISCUSSION AND CONCLUSION 99

1200

1300

1400

1500

1600

1700

1800

F
itn

es
s

Fitnesses @ 0.1% noise

1200

1300

1400

1500

1600

1700

1800

F
itn

es
s

Fitnesses @ 5.0% noise

0

100

200

300

400

500

600

F
itn

es
s

pe
r

D
ep

th

Fitness per Depth @ 0.1% noise

0

100

200

300

400

500

600

F
itn

es
s

P
er

 D
ep

th

Fitness per Depth @ 5.0% noise

Figure 6.6: Comparing the effects on noise on the shape of the hierarchical assemblies
which emerge. Increased noise does not seem to affect either the average fitness or the
average depth of evolved hierarchies. The distribution of fitnesses sampled at 0.1%
noise are indistinct from those sampled at 5.0% noise (p = 0.7778). The distributions
of normalized depth between the two samples are also similar (p = 0.9724).

CHAPTER 6. DISCUSSION AND CONCLUSION 100

0

20

40

60

80

100

120

140

160

180

200

F
itn

es
s

pe
r

E
dg

e

Fitness per Edge @ 0.1% noise

0

20

40

60

80

100

120

140

160

180

200

F
itn

es
s

pe
r

E
dg

e

Fitness per Edge @ 5.0% noise

0

100

200

300

400

500

600

F
itn

es
s

pe
r

N
od

e

Fitness per Node @ 0.1% noise

0

100

200

300

400

500

600

F
itn

es
s

pe
r

N
od

e

Fitness per Node @ 5.0% noise

Figure 6.7: Comparing the effects on noise on the shape of the hierarchical assemblies
which emerge. As noise increases, the amount of modular reuse increases. While
the distribution of normalized edges in each sample is comparable (p = 0.5743),
those hierarchies evolved in the higher noise regime have significantly fewer nodes
(p = 3.771e−8).

CHAPTER 6. DISCUSSION AND CONCLUSION 101

6.4 Measures of Complexity and Scale

Because the aim of Evolutionary Fabrication is to assemble things rather than merely

design them, the complexity of a structure has less to do with the size of the structure

or the total number of bricks, and more to do with the the complexity of the process

required to build it. By this measure, the trees seen in our evolution for “shade”

contain fewer bricks than equally fit arches, and yet require considerably more effort

to assemble, because of the need for scaffolding to produce balanced branches.

Building on this notion of complexity of process, and borrowing from the information-

theoretic notion of Kolmogorov complexity, we can provide a more formal, if prelim-

inary, notion of structural complexity. Returning briefly to the abstract model of

Evolutionary Fabrication provided in Section 2.5.1 we can say that the complexity

of a structure s vis a vis an Assembly Mechanism M and a language of assembly L

is the minimum length of the assembly plan a ∈ L∗ which, when interpreted by the

mechanism M produces the structure s. This corresponds well with the measures of

complexity for assembly sequences provided by Goldwasser, such as the total number

of steps, and the number of non-two-handed steps [33].

The question of how Evolutionary Fabrication scales to increasingly large and

complex structures rests, therefore, on its ability to evolve increasingly increasingly

large and complex processes of assembly. Non-modular assembly, for instance, is

limited in its scalability because an increase in the complexity of an assembly process

can only be accomplished by a corresponding increase in the length of the assembly

plan. Modular assembly, on the other hand, allows for a large degree of compression.

Every module has associated with it a corresponding assembly procedure, and so

a single modular reference in an evolving assembly plan increases the compressed

length of the assembly plan by one instruction, but corresponds to a significantly

CHAPTER 6. DISCUSSION AND CONCLUSION 102

larger uncompressed set of instructions.

The measure of compression of a modular representation can be provided by cal-

culating the mass per compressed instruction (MPI) of a modular assembly. Non-

modular assembly is uncompressed, and so we would expect to see a relatively con-

stant MPI over the course of evolution: the only way to place more bricks is to add a

corresponding number of instructions. In modular assembly, by contrast, we should

expect to see a significantly higher MPI, in that a single instruction can result in the

placement of a multi-brick module.

Figure 6.8, which measures the MPI of both methods over the course of the first

300 generations confirms this. The MPI of non-modular assembly remains flat, while

the MPI of modular assembly increases significantly over the same time period. This

effect is repeated in the larger environment used of the “leafy” fitness in Section 5.5,

as shown by Figure 6.9.

It is important to observe in these charts not only that modular representations

are relatively compressed, but that their measure of compression increases over the

course of evolution. This means not only that the scalability of modular assembly is

higher than that of non-modular assembly, but that the rate of scalability increases

over the course of evolution: as hierarchical assemblies of modules evolve, each module

contains an increasing number of bricks.

6.5 Embodied Evolutionary Fabrication

We have shown how, in principle and if phrased correctly, Evolutionary Fabrication

allows for the full automation of both design and assembly. We have yet to demon-

strate a physical Evolutionary Fabrication system. The reasons for the delay are

clear: rapid prototyping machines are expensive to own and to operate, and until this

CHAPTER 6. DISCUSSION AND CONCLUSION 103

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Generation

M
as

s
pe

r
In

st
ru

ct
io

n

Mass per Instruction

modular

non−modular

Figure 6.8: Mass per instruction (MPI) in modular and non-modular evolution. MPI
is a metric of the compression. While non-modular assembly has relatively flat MPI,
modular assembly is able to place increasingly more bricks per instruction.

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

2

2.5

Generation

M
as

s
pe

r
In

st
ru

ct
io

n
(M

P
I)

Mass per Instruction for "Leafy" Fitness @ 5.0% noise

Figure 6.9: Mass per instruction (MPI) in the larger, “leafy” fitness function. Not only
is MPI higher than non-modular assembly, it increases over the course of evolution.

CHAPTER 6. DISCUSSION AND CONCLUSION 104

body of research we lacked any foundational theory or reassurance that the scheme

would even work in simulation.

How might we go about accomplishing “embodied” Evolutionary Fabrication?

Two obvious approaches exist: the first is to take a cue from Watson et al.’s work

on Embodied Evolution [102], wherein we may remove the notion of simulation

entirely by fully embedding both design and assembly in the real world. Their results

indicate that real-world evolution can often exploit physical phenomena to arrive at

solutions manifestly different, and more optimal, than those found in simulation. This

recapitulates in a robotic context Thompson’s work on the “Silicon Evolution” of an

FPGA, in which his physically evolved circuit exploited the analog characteristics of

the device to arrive at a solution that could not be produced in simulation. Outside

of the realm of Evolvable Hardware, there are few other examples of fully-embodied

evolution [58].

Realistically speaking, a fully embodied approach to Evolutionary Fabrication

would not be practical. The costs of building and evaluating thousands of generations

of assembly plans directly on a rapid prototyping machine would be prohibitively

expensive and prohibitively slow.

Evolving in simulation, however, raises the spectre of Jakobi’s “Reality Gap”. How

can we be certain that physical assembly will behave the same as simulated assembly?

Evolutionary Robotics accomplishes this by ensuring critical elements of reality are

accounted for in simulation [42]. While this approach works for evolving controllers

for robots with fixed sensor morphologies in fixed environments, it presents a challenge

as robots scale and environments become more variable. Furthermore, realistically

modeling requires a priori knowledge of the operating environment, which may not

be available.

Scaling simulations to larger and unknown environments requires adaptive simu-

CHAPTER 6. DISCUSSION AND CONCLUSION 105

lations. One approach, first proposed by Brooks in 1992 [14], is to co-evolve phys-

ical robots and their simulators, fine-tuning the simulation over the course of time.

Bongard and Lipson’s recent work uses a genetic algorithm to co-evolve a robotic

controller and the parameters of an ODE-based simulation to compensate for unan-

ticipated morphological changes in the robot, offers promising results [12].

An adaptive simulation of a manufacturing process, one which evolves in tandem

with its physical counterpart, is therefore the best way to realize a physical Evolution-

ary Fabrication System. Assembly plans could be speedily evolved within simulation,

and promising results could in turn be printed by the actual machine. Such an Em-

bodied Evolutionary Fabrication machine would be the first real example of Fully

Automated Design and Assembly, capable of inventing and building novel solutions

to design problems at the touch of a button.

6.6 Conclusion

The advent of state of the art rapid prototyping machines, capable of producing

three-dimensional objects out of plastic, ceramic, and metal, replete with circuitry

and power sources, promises to revolutionize the realms of personal and industrial

manufacturing. In parallel, Evolutionary Design has been creating, without human

intervention, a wide range of novel and human-competitive solutions to challenging

design problems.

Up until now, however, there has been no satisfactory means of joining the two

fields to establish fully automated design and assembly. As we have shown, progress

has been shackled by its dependence on blueprints which evolve form, but leave unan-

swered the vital question of formation. As a consequence there is growing Fabrication

Gap between evolved designs and the processes required to build them.

CHAPTER 6. DISCUSSION AND CONCLUSION 106

In this dissertation we have proposed a reformulation of the Evolutionary Design

task: the co-evolution of form and formation, simultaneously evolving how to build

an object and what to build it out of. Artificial Ontogenies, inspired by the biological

processes of growth and development, provide us with the tools to accomplish this.

This approach is not without its drawbacks. Most significantly it requires the

realistic simulation of an object’s entire assembly, rather than only its behavior once

complete. The benefits of this approach, arise when evolution is allowed to range

through the entire space of assembly methods, discovering not just novel objects, but

novel means of assembling those objects.

The specific framework we have introduced to demonstrate this approach is Evo-

lutionary Fabrication (EvoFab). In our model, the genotypes are assembly plans:

linear, ballistic sets of instructions to an assembly mechanism rapid , and assembly

itself unfolds within a simulation of that mechanism. This is, in essence, the direct

genetic programming of a rapid prototyping machine.

We have provided several examples of the emergence of novelty, innovation, and

efficiency within EvoFab, most notably the dynamical assembly of sub-assemblies in

Section 4.3 , a form of meta-assembly which transcends the sequential and monotone

nature of the manufacturing process.

We have also demonstrated two methods by means of which Evolutionary Fabri-

cation can cope with the noise and error that arise in real-world assembly. The first is

the emergent scaffolding in section 5.1.3, which allows EvoFab to reliably build a goal

object in the presence of noise. The second is the open-ended hierarchical modular

assembly in Section 5.3, in which the entire language of design evolves by discovering

increasingly large, reliably buildable sub-assemblies and incorporating them as new

building blocks. This bootstrapping approach allows for the hierarchical assembly of

large objects across a wide range of noise levels.

CHAPTER 6. DISCUSSION AND CONCLUSION 107

Each of these accomplishments can be considered a cornerstone in the emerging

field of Fully Automated Design and Assembly. This marriage of Evolutionary Design

and Automated Manufacturing holds the promise of revolutionizing a broad array of

fields, ranging from product design to planetary exploration. Armed with the progress

presented in this dissertation, the next logical step towards Fully Automated Design

and Assembly is to create a real-world embodied Evolutionary Fabrication system

with which to recreate these results in a more tangible form.

Appendix A

Example Hierarchies

Figure A.1: An Example Hierarchical Assembly of Modules at 0.1% noise

108

APPENDIX A. EXAMPLE HIERARCHIES 109

Table A.1: Example Hierarchical Assemblies of Modules at 0.1% noise

APPENDIX A. EXAMPLE HIERARCHIES 110

Figure A.2: An Example Hierarchical Assembly of Modules at 0.1% noise

APPENDIX A. EXAMPLE HIERARCHIES 111

Figure A.3: An Example Hierarchical Assembly of Modules at 0.1% noise

APPENDIX A. EXAMPLE HIERARCHIES 112

Figure A.4: An Example Hierarchical Assembly of Modules at 0.1% noise

Figure A.5: An Example Hierarchical Assembly of Modules at 0.1% noise

APPENDIX A. EXAMPLE HIERARCHIES 113

Figure A.6: An Example Hierarchical Assembly of Modules at 1.0% noise

APPENDIX A. EXAMPLE HIERARCHIES 114

Figure A.7: An Example Hierarchical Assembly of Modules at 1.0% noise

Figure A.8: An Example Hierarchical Assembly of Modules at 1.0% noise

APPENDIX A. EXAMPLE HIERARCHIES 115

Figure A.9: An Example Hierarchical Assembly of Modules at 1.0% noise

APPENDIX A. EXAMPLE HIERARCHIES 116

Figure A.10: An Example Hierarchical Assembly of Modules at 1.0% noise

APPENDIX A. EXAMPLE HIERARCHIES 117

Figure A.11: An Example Hierarchical Assembly of Modules at 5.0% noise

APPENDIX A. EXAMPLE HIERARCHIES 118

Figure A.12: An Example Hierarchical Assembly of Modules at 5.0% noise

APPENDIX A. EXAMPLE HIERARCHIES 119

Figure A.13: An Example Hierarchical Assembly of Modules at 5.0% noise

APPENDIX A. EXAMPLE HIERARCHIES 120

Figure A.14: An Example Hierarchical Assembly of Modules at 5.0% noise

APPENDIX A. EXAMPLE HIERARCHIES 121

Figure A.15: An Example Hierarchical Assembly of Modules at 5.0% noise

Bibliography

[1] M. Abrantes and S. Hill. Identifying and explaining infeasible assembly op-
erations. In International Conference on Manufacturing Automation, pages
612–617, 1997.

[2] S. H. Al-Sakran, J. R. Koza, and L. W. Jones. Automated re-invention of a pre-
viously patented optical lens system using genetic programming. In M. Keijzer,
A. Tettamanzi, P. Collet, J. I. van Hemert, and M. Tomassini, editors, Proceed-
ings of the 8th European Conference on Genetic Programming, volume 3447 of
Lecture Notes in Computer Science, pages 25–37, Lausanne, Switzerland, 2005.
Springer.

[3] P. Angeline and J. Pollack. Competitive environments evolve better solutions
for complex tasks. In S. Forrest, editor, Proceedings of the 5th International
Conference on Genetic Algorithms, pages 264–270. Morgan Kaufmann, 1993.

[4] P. J. Angeline and J. B. Pollack. Coevolving high-level representations. In C. G.
Langton, editor, Artificial Life III, volume XVII, pages 55–71, Reading, MA,
15-19 1992 1994. Addison-Wesley.

[5] P. Bentley. Modern Heuristic Search Methods, chapter The Evolution of Solid
Object Designs using Genetic Algorithms, pages 199–213. John Wiley and Sons
LTD, 1996.

[6] P. Bentley and P. Wakefield. Conceptual evolutionary design by genetic algo-
rithms. Engineering Design and Automation Journal, 3(2):119–131, 1997.

[7] P. J. Bentley, editor. Evolutionary Design by Computers. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999.

[8] H.-G. Beyer and H.-P. Schwefel. Evolution strategies, a comprehensive intro-
duction. Natural Computing, 1(1):3–52, 2002.

[9] E. Bonabeau, S. Guerin, D. Snyers, P. Kuntz, and G. Theraulaz. Three-
dimensional architectures grown by simple ’stigmergic’ agents. In Biosystems
56. Elsevier Science Publishers B. V., 2000.

122

BIBLIOGRAPHY 123

[10] J. Bongard and R. Pfeifer. Morpho-functional Machines: The New Species (De-
signing Embodied Intelligence), chapter Evolving complete agents using artificial
ontogeny, pages 237–258. Springer-Verlag, Berlin, 2003.

[11] J. C. Bongard. Evolving modular genetic regulatory networks. In Proceedings
of the 2002 IEEE Conference on Evolutionary Computation (CEC2002), pages
1872–1877, Piscataway, NJ, 2002. IEEE Press.

[12] J. C. Bongard and H. Lipson. Once More Unto the Breach: Automated Tuning
of Robot Simulation using an Inverse Evolutionary Algorithm. In Proceedings
of the Ninth Int. Conference on Artificial Life (ALIFE IX), pages 57–62, 2004.

[13] J. C. Bongard and R. Pfeifer. Repeated structure and dissociation of geno-
typic and phenotypic complexity in artificial ontogeny. In L. Spector et al.,
editors, Proceedings of the 2001 Genetic and Evolutionary Computation Con-
ference (GECCO-2001), pages 829–836, San Francisco, California, USA, 2001.
Morgan Kaufmann.

[14] R. A. Brooks. Toward a Practice of Autonomous Systems, chapter Artificial
Life and Real Robots, pages 3–10. MIT Press, 1992.

[15] T. Broughton, P. Coates, and H. Jackson. Evolutionary Design by Computers,
chapter Exploring 3D Design Worlds using Lindenmayer Systems and Genetic
Programming, pages 323–341. Morgan Kaufmann, 1999.

[16] J. Canny, J. Risner, and V. Subramanian. Flexonics. In Proceedings of the Fifth
International Workshop on Algorithmic Foundations of Robotics, Nice, France,
2002.

[17] D. Cliff and G. F. Miller. Co-evolution of pursuit and evasion II: Simulation
methods and results. In P. Maes, M. J. Mataric, J.-A. Meyer, J. B. Pollack, and
S. W. Wilson, editors, From animals to animats 4, pages 506–515, Cambridge,
MA, 1996. MIT Press.

[18] P. Coates and D. Makris. Genetic programming and spatial morphogenesis. In
U. of Sussex, editor, Proceedings of the 1999 Symposium on Creative Evolution-
ary Systems, 1999.

[19] C. A. C. Coello. An updated survey of evolutionary multiobjective optimization
techniques: State of the art and future trends. In P. J. Angeline, Z. Michalewicz,
M. Schoenauer, X. Yao, and A. Zalzala, editors, Proceedings of the Congress on
Evolutionary Computation, volume 1, pages 3–13, Mayflower Hotel, Washington
D.C., USA, 6-9 1999. IEEE Press.

[20] H. de Garis. Artificial embryology: The genetic programming of an artificial
embryo. In B. Souček, editor, Dynamic, Genetic, and Chaotic Programming,
pages 373–393. John Wiley, New York, 1992.

BIBLIOGRAPHY 124

[21] E. D. de Jong. Representation development from pareto-coevolution. In
E. Cantu-Paz, J. Foster, K. Deb, D. Lawrence, R. Roy, U.-M. O’Reilly, H.-G.
Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Das-
gupta, M. A. Potter, A. C. S. N. Jonoska, K. A. Dowsland, and J. F. Miller,
editors, Proceedings of the 2003 Genetic and Evolutionary Computation Con-
ference (GECCO-2003), pages 265–276, Heidelberg, 2003. Springer-Verlag.

[22] E. D. de Jong, R. A. Watson, and J. B. Pollack. Reducing bloat and promoting
diversity using multi-objective methods. In L. Spector et al., editors, Proceed-
ings of the 2001 Genetic and Evolutionary Computation Conference (GECCO-
2001), pages 11–18, San Francisco, California, USA, 2001. Morgan Kaufmann.

[23] F. Dellaert and R. Beer. Toward an evolvable model of development for au-
tonomous agent synthesis. In Artificial Life IV, Proceedings of the Fourth Inter-
national Workshop on the Synthesis and Simulation of Living Systems, Cam-
bridge, MA, 1994. MIT press.

[24] F. Dellaert and R. D. Beer. A developmental model for the evolution of complete
autonomous agents. In P. Maes, M. Mataric, J. Meyer, J. Pollack, and S. Wilson,
editors, From Animals to Animats 4: Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior, pages 393–401. MIT Press,
1996.

[25] P. Eggenberger. Evolving morphologies of simulated 3d organisms based on
differential gene expression. In Proceedings of the 4th European Conference on
Artificial Life. Springer-Verlag, 1997.

[26] D. Floreano, S. Nolfi, F. Mondada, M. Patel, V. Honavar, and K. Balakrishnan.
Co-Evolution and Ontogenetic Change in Competing Robots. In Advances in
the Evolutionary Synthesis of Intelligent Agents. MIT Press, Cambridge (MA),
2001.

[27] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

[28] D. Frutiger, J. Bongard, and F. Iida. Iterative product engineering: Evolu-
tionary robot design. In P. Bidaud and F. Amar, editors, Proceedings of the
Fifth International Conference on Climbing and Walking Robots, pages 619–629.
Professional Engineering Publishing, 2002.

[29] P. Funes. Evolution of Complexity in Real-World Domains. PhD thesis, Bran-
deis University, Dept. of Computer Science, Boston, MA, USA, 2001.

[30] P. Funes and J. Pollack. Evolutionary Design by Computers, chapter Computer
Evolution of Buildable Objects, pages 387–403. In Bentley [7], 1999.

BIBLIOGRAPHY 125

[31] P. Funes and J. B. Pollack. Evolutionary body building: Adaptive physical
designs for robots. Artificial Life, 4(4):337–357, 1998.

[32] M. Goldwasser, , J. Latombe, and R. Motwani. Complexity measures for as-
sembly sequences. In Proc. IEEE Int. Conf. on Robotics and Automation, pages
1581–1587, Minneapolis, MN, Apr. 1996.

[33] M. H. Goldwasser and R. Motwani. Complexity measures for assembly se-
quences. International Journal of Computational Geometry and Applications,
9(4/5):371–417, 1999.

[34] S. J. Gould. Ontogeny and phylogeny. Belknap Press, 1985.

[35] G. Halder, P. Callaerts, and W. J. Gehring. Induction of ectopic eyes by tar-
geted expression of the eyeless gene in drosophila. Science, New Series, Vol.
267(5205):1788–1792, March 1995.

[36] B. Hall. Phylotypic stage or phantom: is there a highly conserved embryonic
stage in vertebrates? Trends Ecol. Evol., 12:461–463, 1997.

[37] W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimiza-
tion procedure. Phys. D, 42(1-3):228–234, 1990.

[38] G. S. Hornby. Generative Representations for Evolutionary Design Automation.
PhD thesis, Brandeis University, Dept. of Computer Science, Boston, MA, USA,
February 2003.

[39] G. S. Hornby. Measuring, enabling and comparing modularity, regularity and
hierarchy in evolutionary design. In H.-G. Beyer et al., editors, Proceedings of
the 2005 Genetic and Evolutionary Computation Conference (GECCO-2005),
pages 1729–1736. ACM Press, 2005.

[40] J. Hugues. Evolution of non-deterministic incremental algorithms as a new
approach for search in state spaces. In L. J. Eshelman, editor, Proceedings of
the Sixth International Conference on Genetic Algorithms, 1995.

[41] C. Jacob. Genetic l-system programming. In Parallel Problem Solving from
Nature (PPSN III), Lecture Notes in Computer Science 866, pages 334–343.
Springer-Verlag, 1994.

[42] N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use of
simulation in evolutionary robotics. In Proc. of the Third European Conference
on Artificial Life (ECAL’95), pages 704–720, Granada, Spain, 1995.

[43] U. Jayaram, Y. Kim, and S. Jayaram. Reorganizing cad assembly models (as-
designed) for manufacturing simulations and planning (as-built). Journal of
Computing and Information Science in Engineering, 4:98–108, 2004.

BIBLIOGRAPHY 126

[44] L. Jiang-sheng, Y. Ying-xuue, S. Pahlovy, and L. Jian-guang. A novel data
decomposition and information translation method from cad system to virtual
assembly application. International Journal of Advanced Manufacturing Tech-
nology, 28(3), 2006.

[45] L. E. Kavraki, J.-C. Latombe, and R. H. Wilson. On the complexity of assembly
partitioning. Information Processing Letters, 48(5):229–235, 1993.

[46] G. J. Kim, S. Lee, and G. A. Bekey. Interleaving assembly planning and design.
IEEE Transactions on Robotics and Automation, 12(2):246–251, 1996.

[47] C. Kirschman and C. Jara-Almonte. A parallel slicing algorithm for solid
freeform fabrication processes. In Solid Freeform Fabrication Conference, pages
26–33, 1992.

[48] M. Komosinski and S. Ulatowski. Framsticks: Towards a simulation of a nature-
like world, creatures and evolution. In Proceedings of the 5th European Confer-
ence on Artificial Life. Springer-Verlag, 1999.

[49] J. Kopena and W. C. Regli. Extensible semantics for representing electrome-
chanical assemblies. In Proceedings of the 2003 ASME Design Engineering
Technical Conferences (DETC’03), 2003.

[50] J. R. Koza. Genetic Programming: on the Programming of Computers by Means
of Natural Selection. MIT Press: Cambridge, MA, 1992.

[51] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers, 2003.

[52] S. Kumar and P. J. Bentley. Advances in evolutionary computing: theory and ap-
plications, chapter Computational embryology: past, present and future, pages
461–477. Springer-Verlag New York, Inc., 2003.

[53] W.-P. Lee, J. Hallam, and H. H. Lund. A hybrid GP/GA approach for co-
evolving controllers and robot bodies to achieve fitness-specified tasks. In Pro-
ceedings of the 1996 IEEE International Conference on Evolutionary Compu-
tation, Nagoya, Japan, 20-22 1996. IEEE Press.

[54] R. Lewontin. The Triple Helix. Harvard University Press, 2000.

[55] R. Lewontin. Cycles of Contingency, chapter Gene, Organism and Environment,
pages 59–66. In Oyama et al. [69], 2001.

[56] D. Linden. Automated Design and Optimization of Wire Antennas using Ge-
netic Algorithms. PhD thesis, MIT, 1997.

BIBLIOGRAPHY 127

[57] D. Linden and E. Altshuler. Automating wire antenna design using genetic
algorithms. Microwave Journal, 39(3):74–86, 1996.

[58] H. Lipson, J. C. Bongard, and V. Zykov. Evolving dynamic gaits on a physical
robot. In K. D. et al., editor, Proceedings of the 2004 Genetic and Evolution-
ary Computation Conference (GECCO-2004), volume Late Breaking Papers.
Springer-Verlag, 2004.

[59] J. D. Lohn, G. S. Hornby, and D. S. Linden. An Evolved Antenna for Deploy-
ment on NASA’s Space Technology 5 Mission. In U.-M. O’Reilly, R. L. Riolo,
T. Yu, and B. Worzel, editors, Genetic Programming Theory and Practice II.
Kluwer, 2005.

[60] S. Luke and L. Spector. Evolving graphs and networks with edge encoding:
Preliminary report. In J. Koza, editor, Late Breaking Papers at the Genetic
Programming 1996 Conference (GP96), pages 117–124. Stanford Bookstore,
1996.

[61] H. Lund, J. Hallam, and W. Lee. Evolving robot morphology. In Proceedings
of IEEE Fourth International Conference on Evolutionary Computation. IEEE
Press, 1997.

[62] S. W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, University
of Illinois at Urbana-Champaign, Urbana, IL, USA, 1995.

[63] E. Malone and H. Lipson. Functional freeform fabrication for physical artificial
life. In Proceedings of the Ninth International Conference on Artificial Life
(ALIFE IX), pages 100–105, 2004.

[64] P. Massey, J. A. Clark, and S. Stepney. Evolution of a human-competitive
Quantum Fourier Transform algorithm using genetic programming. In H.-G.
Beyer et al., editors, Proceedings of the 2005 Genetic and Evolutionary Com-
putation Conference (GECCO-2005), pages 1657–1664. ACM Press, 2005.

[65] S. A. McMains. Geometric Algorithms and Data Representation for Solid
Freeform Fabrication. PhD thesis, University of California, Berkeley, 2000.

[66] Z. Michalewicz, D. Dasgupta, R. G. L. Riche, and M. Schoenauer. Evolutionary
algorithms for constrained engineering problems. Computers and Industrial
Engineering Journal, 30(2):851–870, 1996.

[67] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[68] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to Evolve Autonomous
Robots: Different Approaches in Evolutionary Robotics. In 4th International
Workshop on Artificial Life, 1994. R. A. Brooks and P. Maes (eds.).

BIBLIOGRAPHY 128

[69] S. Oyama, P. E. Griffiths, and R. D. Gray, editors. Cycles of Contingency. MIT
Press, 2001.

[70] A. Pamecha, C. Chiang, D. Stein, and G. Chirikjian. Design and implementa-
tion of metamorphic robots. In Proceedings of the 1996 ASME Design Engi-
neering Technical Conference and Computers in Engineering Conference, 1996.

[71] G. B. Parker, A. S. Anev, and D. Duzevik. Evolving towers in a 3-dimensional
simulated environment. In R. Sarker, R. Reynolds, H. Abbass, K. Tan,
B. McKay, and T. G. D. Essam, editors, Proceedings of the 2003 Congress on
Evolutionary Computation (CEC 2003), pages 1137–1144. IEEE Press, 2003.

[72] M. Peysakhov and W. C. Regli. Using assembly representations to enable evolu-
tionary design of lego structures. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 17:155–68, 2003.

[73] J. Pollack, H. Lipson, P. Funes, S. Ficici, and G. Hornby. Coevolutionary
robotics. In EH ’99: Proceedings of the 1st NASA/DOD workshop on Evolvable
Hardware, page 208, Washington, DC, USA, 1999. IEEE Computer Society.

[74] J. B. Pollack. Mindless intelligence. IEEE Intelligent Systems, 21(3), 2006.

[75] J. B. Pollack, H. Lipson, G. Hornby, and P. Funes. Three generations of auto-
matically designed robots. Artificial Life, 7(3):215–223, Summer 2001.

[76] S. Preble, H. Lipson, and M. Lipson. Two-dimensional photonic crystals de-
signed by evolutionary algorithms. Applied Physics Letters, 86, 2005.

[77] J. Reisinger. An overview of modularity in artificial evolutionary systems. In
Proceedings of Parallel Problem Solving From Nature 2004, 2004.

[78] M. K. Richardson. Heterochrony and the phylotypic period. Dev. Biol.,
172:412–421, 1995.

[79] M. K. Richardson, J. Hanken, M. I. Gooneratne, C. Pieau, A. Reynaud, L. Sel-
wood, and G. M. Wright. There is no highly conserved embryonic stage in
the vertebrates: implications for current theories of evolution and development.
Anat. Embryol., 196:91–106, 1997.

[80] M. Ridley. Evolution. Blackwell Publishers, 2003.

[81] J. Rieffel and J. Pollack. The Emergence of Ontogenic Scaffolding in a Stochastic
Development Environment. In K. D. et al., editor, Proceedings of the 2004
Genetic and Evolutionary Computation Conference (GECCO-2004), pages 804–
815, Heidelberg, 2004. Springer-Verlag.

BIBLIOGRAPHY 129

[82] J. Rieffel and J. Pollack. An endosymbiotic model for modular acquisition in
stochastic developmental systems. In Proceedings of the Tenth International
Conference on the Simulation and Synthesis of Living Systems (ALIFE X),
2006.

[83] J. Rieffel and J. B. Pollack. Artificial ontogenies for real world design and
assembly. In M. B. et al., editor, Ninth International Conference on the Simu-
lation and Synthesis of Living Systems (ALIFE9) Workshop: Self-Organization
and Development in Artificial and Natural Systems (SODANS), pages 37–41.
MIT Press, 2004.

[84] J. Rieffel and J. B. Pollack. Automated assembly as situated development: Us-
ing artificial ontogenies to evolve buildable 3-d objects. In H.-G. Beyer et al.,
editors, Proceedings of the 2005 Genetic and Evolutionary Computation Con-
ference (GECCO-2005), pages 99–106. ACM Press, 2005.

[85] E. M. A. Ronald, M. Sipper, and M. Capcarrère. Design, observation, surprise!
a test of emergence. Artificial Life, 5(3):225–239, 1999.

[86] J. P. Rosca and D. H. Ballard. Discovery of subroutines in genetic program-
ming. In P. J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, pages 177–202. MIT Press, Cambridge, MA, USA, 1996.

[87] M. Rosenman. The generation of form using an evolutionary approach. In
D. Dasgupta and Z. Michalewicz, editors, Evolutionary Algorithms in Engi-
neering Applications, pages 69–86. Springer-Verlag, 1997.

[88] I. Ross, U. O’Reilly, and P. Testa. Emergent design: Artificial life for architec-
ture design. In Artificial Life 7 Proceedings, 2000.

[89] D. Rus, Z. Butler, K. Kotay, and M. Vona. Self-reconfiguring robots. Commu-
nications of the ACM, 45(3):39–45, 2002.

[90] H. A. Simon. The architecture of complexity. Proceedings of the American
Philosophical Society, 106(6):467–482, December 1962.

[91] K. Sims. Evolving 3d morphology and behavior by competition. In R. B. . P.
Maes, editor, Artificial Life IV Proceedings, pages 28–39. MIT Press, 1994.

[92] K. Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, pages 15–22. ACM Press,
1994.

[93] J. Slack, P. Holland, and C. Graham. The zootype and the phylotypic stage.
Nature, 361:490–492, 1993.

BIBLIOGRAPHY 130

[94] K. O. Stanley and R. Miikkulainen. A taxonomy for articial embryogeny. Ar-
tificial Life, 9(2):93–130, 2002.

[95] A. Thompson. Silicon evolution. In J. R. Koza, D. E. Goldberg, D. B. Fogel,
and R. L. Riolo, editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 444–452, Stanford University, CA, USA, 28–31 1996.
MIT Press.

[96] M. Toussaint. Demonstrating the evolution of complex genetic representa-
tions: An evolution of artificial plants. In E. Cantu-Paz, J. Foster, K. Deb,
D. Lawrence, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall,
S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. S. N.
Jonoska, K. A. Dowsland, and J. F. Miller, editors, Proceedings of the 2003
Genetic and Evolutionary Computation Conference (GECCO-2003). Springer-
Verlag, 2003.

[97] S. Viswanathan. How artificial ontogenies can retard evolution. In H.-G. Beyer
et al., editors, Proceedings of the 2005 Genetic and Evolutionary Computation
Conference (GECCO-2005). ACM Press, 2005.

[98] S. Viswanathan and J. Pollack. On the robustness achievable with stochas-
tic development processes. In The 2005 NASA/DoD Conference on Evolvable
Hardware. IEEE Press, 2005.

[99] S. Viswanathan and J. B. Pollack. Towards an evolutionary-developmental
approach for real-world substrates. In M. B. et al., editor, Ninth International
Conference on the Simulation and Synthesis of Living Systems (ALIFE9), pages
45–41. MIT Press, 2004.

[100] G. P. Wagner and L. Altenberg. Complex adaptations and the evolution of
evolvability. Evolution, 50(3):967–976, 1996.

[101] R. Watson. Compositional Evolution: Interdisciplinary Investigations in Evolv-
ability, Modularity, and Symbiosis. PhD thesis, Brandeis University, Dept. of
Computer Science, Boston, MA, USA, 2002.

[102] R. A. Watson, S. G. Ficici, and J. B. Pollack. Embodied evolution: Embody-
ing an evolutionary algorithm in a population of robots. In P. J. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, editors, Proceed-
ings of the Congress on Evolutionary Computation, volume 1, pages 335–342,
Mayflower Hotel, Washington D.C., USA, 6-9 1999. IEEE Press.

[103] G. M. Whitesides and B. Grzybowski. Self-assembly at all scales (viewpoint).
Science, 295(5564):2418–2422, March 2002.

BIBLIOGRAPHY 131

[104] R. Wilson, L. Kavraki, T. Lozano-Perez, and J. Latombe. Two-handed assembly
sequencing. The International Journal of Robotics Research, 14(4):335–350,
1995.

[105] R. H. Wilson. On Geometric Assembly Planning. PhD thesis, Stanford Univer-
sity, 1994.

[106] H. P. Winston. Artificial Intelligence: Third Edition, chapter Learning By
Analyzing Differences, pages 349–364. Addison-Wesley, Reading MA, 1993.

[107] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

[108] L. Wolpert. The evolutionary origin of development: cycles, patterning, privi-
lege, and continuity. Dev. Suppl, pages 79–84, 1994.

[109] J. D. Wolter. On the automatic generation of assembly plans. In Proceedings
of the IEEE International Conference on Robotics and Automation, 1989.

[110] A. S. Yilmaz and A. S. Wu. Preservation of genetic redundancy in the ex-
istence of developmental error and fitness assignment error. In H.-G. Beyer
et al., editors, Proceedings of the 2005 Genetic and Evolutionary Computation
Conference (GECCO-2005), pages 1317–1324. ACM Press, 2005.

[111] M. Yim. Locomotion With A Unit-Modular Reconfigurable Robot. PhD thesis,
Stanford University, 1995.

[112] Z.-P. Yin, H. Ding, and Y.-L. Xiong. A virtual prototyping approach to gen-
eration and evaluation of mechanical assembly sequences. Proceedings of the I
MECH E Part B Journal of Engineering Manufacture, 218(1):87–102, 2004.

[113] V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson. Self-reproducing machines.
Nature, 435(7038):163–164, 2005.

