
Abstract

From the many possible perspectives in which an
agent may be viewed, behavior-based AI selects
observable actions as a particularly useful level of
description. Yet behavior is clearly not structure,
and anyone using behavior-based constraints to
construct an agent still faces many implementa-
tional roadblocks. Such obstacles are typically
avoided by adopting a finite state automaton (FSA)
as a base representation. As a result, potential bene-
fits from alternative formalisms are ignored. To
explore these benefits, our work adopts a multi-
level view of an agent: behaviors and FSAs are but
two of many levels of description. We still focus on
behaviors for the expression of design constraints,
but we avoid using FSAs as an implementation.
Our particular agent, Addam, is comprised of a set
of connectionist networks, a substrate which pro-
motes the automatic design of subsumptive sys-
tems. Moreover, the implementational choice has
important behavioral consequences – some com-
plex behaviors emerge due to interactions among
networks and need not be specified explicitly. In
this way, the underlying layersleak into one
another, each affecting the others in subtle and
desirable ways.

1  Introduction

Historically, AI has viewed agents from the Knowledge
Level (Newell, 1982), in which an individual is character-
ized by its knowledge, goals, and rationality.1 The abstract
nature of this level has been called into question from many

1.  While none of these terms is ever rigorously defined, knowledge
is the set of “beliefs” of the agent, a goal is a desired state (of the
world, for instance), and the principle of rationality stipulates that
an agent will use its knowledge to accomplish its goals.

different directions: e.g., connectionism (Hinton et al., 1986;
McClelland et al., 1986), situated action (compare Vera and
Simon, 1993, with Agre, 1993), the observers’ paradox
(Kolen and Pollack, 1993, to appear), and others (e.g.,
Searle, 1993). Most recently, those studying the simulation
of adaptive behavior have stressed that intelligence should
not be viewed simply as knowledge and goals held together
with procedural glue; there is much to learn from studying
intelligence through self-sufficient agents competent to exist
in the world (Meyer and Guillot, 1991; Wilson, 1991).

Yet we often forget that agents can be viewed at multiple
levels of description, and as Chandrasekaran and Josephson
(1993) point out, there is no single level of description which
captures all aspects of an agent’s behavior. To borrow their
example, a simple coin sorter can be described as an abstract
machine which classifies coins based on their weight and
diameter, but if a lever jams, then the physical nature of the
device becomes particularly important. Chandrasekaran and
Josephson propose that agents be described by a set of
“leaky levels,” where each level of description contributes to
the overall story of agent behavior, but the total picture arises
due to the way the various levels interact.

The lesson is an important one, but it fails to address an
important question: How does the recognition of multiple
levels of description help one to implement an intelligent
agent? In particular, how should one approach the task of
constructing an agent which satisfies multiple behavioral
constraints?

Brooks (1986, 1991) proposes an interesting answer to
this question. Rather than observing a set of behavioral con-
straints and reasoning “The agent must have functional mod-
ules for perception, planning, etc.,” one can remain more
faithful to the actual observations by constructing an agent
which satisfies the first behavioral constraint, and then incre-
mentally adding layers of structure to satisfy the remaining
constraints sequentially. This behavior-based stance removes
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a large bias on the part of the designer: modules arise from
directly observable constraints on behavior rather than func-
tional constraints implicit in the mind of the designer.

Unfortunately, Brooks does not go far enough. After per-
forming a behavioral decomposition to define the functional-
ity of a layer, he then proceeds to design a set of finite state
automata (FSAs) to implement that layer. Yet, this is pre-
cisely the type of functional decomposition he warns against
(Brooks, 1991, p. 146). One might appeal to learning to
avoid performing this functional decomposition by hand, but
current work in automating behavior-based design focuses
instead on learning the interactions between preexisting
behavioral modules (e.g., Maes, 1991).

We feel that the reliance upon designed modules arises
from choosing FSAs as the level in which to implement sub-
sumptive systems; in particular, from the arbitrary ways in
which FSAs interact. Brooks achieves modularity through
task-based decomposition of complex behavior into a set of
simpler behaviors. In his system, for example, layer 0 imple-
ments obstacle avoidance and layer 1 controls wandering.
Activity in layer 1 suppresses the activity of layer 0, and yet
obstacles are still avoided becauselayer 1 subsumes the
obstacle avoidance behavior of layer 0. In order to avoid
duplication of lower layers as subparts of higher layers, he
allows the higher layers to randomly access the internal com-
ponents of any lower level FSAs. This fact, combined with
multiple realizability of layers forces us to question Brooks’
design methodology: development of single layer compe-
tence, freezing it, and then layering additional competencies
on top of the first. If layer 0 can be realized equally well by
method M1 or M2, then under Brooks’ methodology we will
not know until layer 0 is fixed which methodology’s internal
modules better facilitate the design of layer 1.

Furthermore, Brooks fails to limit the suppression and/or
inhibition which may occur between layers, so that a higher-
level may randomly modify a lower-level’s computation.
This unrestricted suppression/inhibition combined with the
unrestricted access problem described above permit compli-
cated interactions among layers. In Brooks’ case, careful
design keeps the interactions under control, and the resulting
behavioral modules perform well together. For evolving sub-
sumptive systems, however, such design-space freedom
must be limited.

In this paper, we present an alternative approach to sub-
sumptive learning. Recognizing the multitude of formalisms
with which to describe behaviors (Chandrasekaran and
Josephson, 1993), we explore the merits and drawbacks of
adopting a connectionist implementation for our layers.2 As
will be discussed below, our version of subsumption replaces
Brooks’ FSAs with feedforward networks and additional cir-
cuitry, combined so that each module in a hierarchy respects

2.  Cliff (1991) makes a similar proposal from the context of com-
putational neuroethology, but does not offer an implementation.

the historical prerogatives of those below it, and only asserts
its own control when confident. Given this basic architec-
ture, we demonstrate how multiple behavioral constraints
can be translated into network-level constraints. Finally, we
discuss the importance of the connectionist substrate for the
implementation of leaky levels which produce emergent
behavior in an agent.

2  Additive Adaptive Modules

Our control architecture consists of a set of Additive Adap-
tive Modules, instantiated asAddam, an agent which lives in
a world of ice, food, and blocks. To survive in this world,
Addam possesses 3 sets of 4 (noisy) sensors distributed in
the 4 canonical quadrants of the plane. The first set of sen-
sors is tactile, the second olfactory, and the third visual
(implemented as sonar that passes through transparent
objects). Unlike other attempts at learning that focus on a
single behavior such as walking (Beer and Gallagher, 1992),
we chose to focus on the subsumptive interaction of several
behaviors; hence, Addam’s actuators are a level of abstrac-
tion above leg controllers (similar to Brooks, 1986). Thus,
Addam moves by simply specifyingδx andδy.

Internally, Addam consists of a set of feedforward con-
nectionist networks, connected as shown in Figure 1. The 12
input lines come from Addam’s sensors; the 2 output lines
are fed into actuators which perform the desired movement
(δx, δy). Note that we desire δx, δy ∈(-1, 1) so that Addam
may move in the positive or negative direction. Initially, we
implemented desired movement as a single scalar value, but
this proved inadequate. It did not permit zero as a stable out-
put as the network outputs tended to saturate with training.
We then switched to a difference scheme in which the actual
movement control was the difference between two outputs
(+δx and -δx). This configuration allows the system to stably
learn and generate positive and negative movement, as well
as no movement at all.

Addam controls its movements as follows. First, the 12
sensors are sampled and fed into layer 0, placing its sugges-
tion for δx and δy on the output lines. Layer 1 combines
these same 12 sensor readings with the sum squared output
of layer 0, calculates its suggestions forδx andδy, and adds
these to the output lines. Layer 2 works similarly, and the
final δx andδy values are translated automatically to motor
controls which move Addam the desired amount and direc-
tion.

Note that we could have avoided feeding the sum-
squared activation line into each module Mi by gating the
output of Mi with the sum-squared line. We did not do this
because our architecture is more general; gating can be
learned as one of many behaviors by each Mi.. Our goal was
to have each module decidefor itself whether it should
become active – had we used gating, this decision would
have been made by Mi’s predecessors.



layer has access only to the sum-squared output of all previ-
ous layers, and any preemption of layeri results from a sin-
gle real value (ai). This eliminates the methodological
problem with multiple realizability: the inputai to a layer
depends only onwhat is computed below, not onhow it is
being computed.

A few more things should be noted about Addam’s archi-
tecture. First, it has no internal state (or equivalently Add-
am’s entire state is stored external to the agent in the
environment, as in Simon, 1969). Second, a few of Addam’s
connections are fixed a priori. (The changeable connections
are those in the boxes labelled layer 0, 1, and 2, above.) This
minimal structure is the skeleton required for preemption,
but it does not assume any prewired behaviors.

Finally, we should acknowledge the similarity of Add-
am’s internal structure to the cascade correlation architecture
of Fahlman and Lebiere (1990). There are several important
differences, however. First, our system is comprised of sev-
eral cascadedmodules instead of cascaded hidden units. Sec-
ond, Fahlman and Lebiere’s higher-level hidden units

Instead of lumping Addam with other subsumptive sys-
tems, we prefer to identify our architecture aspreemptive.
The modules are prioritized such that the behaviors associ-
ated with the lower levels may take precedence over those
associated with the higher levels. Prioritization is reflected
both architecturally as well as functionally. Architecturally, a
lower level provides its outputs to higher levels. Function-
ally, higher-level modules are trained to relinquish control if
a lower-level module is active. For example, suppose that
layer 0 behavior is to avoid predators, and layer 1 behavior is
to seek out food. In the absence of any threatening agents,
layer 0 would remain inactive and layer 1 would move
Addam towards food. However if a predator suddenly
appeared, layer 0 would usurp control from layer 1 and
Addam would flee.

Earlier we criticized Brooks’ method of subsumption for
two of its freedoms: unrestricted access by one layer to
another’s internal state, and unrestricted modulation of a
lower-layer’s computation by suppression/inhibition from a
higher-layer. Neither problem is present in Addam. A higher
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Figure 1: Addam’s internal architecture. Each module possesses only limited information about the activity
of its predecessors. Layer 1 receives only the sum-squared activation of layer 0, implemented asa1. Similarly,
layer 2 monitors the activity of its predecessors through a single inputa2. Through training, each layer learns
to exert control only when relevant based on the current sensors, and when none of its predecessors is active.



function as higher-level feature detectors and hence must
receive input from all the preceding hidden units in the net-
work. This can lead to a severe fan-in problem. Due to the
preemptive nature of our architecture, higher-level modules
need only know if any lower-level module is active, so they
require only a single additional input measuring total activa-
tion of the previous modules. Third, Fahlman’s system
grows more hidden units over time, correlating each to the
current error. The nodes of our architecture are fixed
throughout training, so that modularity is not achieved by
simply adding more units. Finally, there is a difference in
training: Fahlman gives his network a single function to
learn, whereas our system attempts to learn a series of more
and more complex behaviors. (More on this below.)

3  Training Addam

As mentioned above, Addam’s environment consists of three
types of objects: ice, food, and blocks. Ice is transparent and
odorless, and is hence detectable only by the tactile sensors.
Blocks trigger both the tactile and visual sensors, and food
emits an odor which diffuses throughout the environment
and triggers the olfactory sensors. Addam eats (in one time
step) whenever it comes into contact with a piece of food.

Addam’s overall goal is to move towards food while
avoiding the other obstacles. This makes training problem-
atic – the desired response is a complex behavior indexed
over many environmental configurations, and yet we do not
wish to restrict the possible solutions by specifying an entire
behavioral trajectory for a given situation. Beer and Gal-
lagher (1992) attempted to solve this problem by using
genetic algorithms, which respond to the agent’s overall per-
formance instead of to any particular movement. We take a
different approach, namely, we train Addam onsingle moves
for a given number of scenarios, defined as one particular
environmental configuration. Under this methodology, the
extended moves which define Addam’s behavior emerge
from the complex interactions of the adaptive modules and
the environment.

Training begins with level 0 competence, defined as the
ability to avoid ice. The training scenarios are shown in
Figure 2, along with the desired response for each scenario.
Module 0 can successfully perform this behavior in about
600 epochs of backpropagation (adjusted so that the fixed
+1/-1 connections remain constant), and the connections of
this module are then frozen.

We next train Addam on level 1 behavior, defined as the
ability to move towards food,assuming no ice is present.
Once again, training is problematic, because there are a com-
binatorial number of environmental configurations involving
food and ice. We solve this problem as follows. First, we
define 14 scenarios as above, but with food replacing ice.
This defines a set S of {(SensorValues, MoveToFoodOut-
put)} pairs. Note that this does not define a value fora1, the
activation of the system prior to module 1. (See Figure 1.)
Instead of forcing module 1 to recognize the presence of ice,
we assume that module 0 is doing its job, and that when ice
is presenta1 will be >> 0. This allows us to define a training
set T for level 1 behavior by prepending the extreme values
of a1 to the SensorValues in S, thus doubling the number of
configurations instead of having them grow exponentially:

T={ {(0-SensorValues, MoveToFoodOutput)},
{(1-SensorValues, ZeroOutput)}}

Thus layer 1 (which is initially always active) must learn to
suppress its activity in cases where it is not appropriate.

After level 1 competence is achieved (about 3500
epochs), a training set for level 2 competence (avoid blocks)
is obtained in a similar manner. Note again that this avoids
the combinatorial explosion of specifying the many possible
combinations of ice, food, and blocks. Level 2 competence is
achieved in about 1000 epochs.

4  Results

Once Addam was trained, we placed it in the complex envi-
ronment of Figure 3. Its emergent behavior is illustrated in
the top half of the figure, where the small dots trace out Add-
am's path. Each dot is one time step (defined as one applica-

Figure 2: Training scenarios for level 0 behavior, along with desired responses. Circles denote patches of ice.
The scenarios capture a range of situations; from each, Addam’s target response moves it away from the ice.



and usurping control from layer 1. In other words, Addam's
aversion to ice overcomes its hunger, and it moves southeast.
After “bouncing off” the ice, the tactile sensors return to
zero, and layer 1 regains control, forcing Addam back
towards the ice. This time it hits the ice just a little farther
north than the last time, so that when it bounces off again, it
has made some net progress towards the food. After several
attempts, Addam successfully passes the ice and then moves
directly towards the food.

To reach the third piece of food, Addam must navigate
down a narrow corridor, demonstrating that its layer 1
behavior can override its layer 2 behavior of avoiding blocks
(which would repel it from the corridor entrance). After fin-
ishing the last piece of food, Addam is left near a wall,
although it is not in contact with it. Thus both the tactile and
olfactory sensors output zero, so both layers 0 and 1 are inac-
tive. This allows Addam's block avoidance behavior to
become activated. The visual sensors respond to the open

tion of the trained network to move one step), so the spacing
indicates Addam's speed.

Addam begins at (3.5, 1) touching nothing, so its tactile
sensors register zero and layer 0 is inactive. The olfactory
sensors respond slightly to the weak odor gradient, causing a
slight activation of layer 1, disabling the block-avoidance
behavior of layer 2. Thus we observe a constant eastward
drift, along with random north-south movements due to the
noise inherent in the sensors. As Addam approaches the
food, the odor gradient increases, the olfactory sensors
become more and more active, and layer 1 responds more
and more strongly. When the random noise becomes negligi-
ble at about (6.5, 1), Addam speeds up and reaches the food,
which is consumed.

Subsequently, Addam detects the faint odor of another
piece of nearby food, and once again layer 1 controls its
movement. However, at about (9, 5.5) Addam's tactile sen-
sors detect the presence of a piece of ice, activating layer 0,
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area to the north, so Addam slowly makes its way in that
direction. When it reaches the middle of the enclosure, the
visual sensors are balanced and Addam halts (except for
small random movements based on the noise in the sensors).

The bottom half of Figure 3 shows the activation of each
layer i of the system (where the activation of layeri is
||(δx,δy)i||, the norm of layeri’s contribution to the output
lines). L0 is generally quiet, but becomes active between
time t=52 and t=64 when Addam encounters an ice patch,
and shows some slight activity around t=140 and t=168
when Addam’s tactile sensors detect blocks. L1 (“approach
food” behavior) is active for most of the session except when
preempted by the “avoid ice” behavior of L0, as between
t=52 and t=64. The 5 peaks in L1’s activity correspond to
Addam’s proximity to the 5 pieces of food as it eat them;
when the last piece of food is consumed at t=164, L1’s activ-
ity begins to decay as the residual odor disperses. Finally, we
see that L2 (“avoid blocks” behavior) is preempted for
almost the entire session. It starts to show activity only at
about t=160, when all the food is gone and Addam is away
from any ice. The activity of this layer peaks at about t=190,
and then decays to 0 as Addam reaches the center of its room
and the visual sensors balance.

5  Remarks

The behavior of Chandrasekaran and Josephson’s coin sorter
is best described by appealing to multiple levels of behavior
(Chandrasekaran and Josephson, 1993). Addam is best
described in a similar way. At one level, it is an agent which
exhibits only three behaviors: avoid ice, go to food, and
avoid blocks. But the underlying connectionist levels leak
through in the complex interaction that allows Addam to
navigate around the ice in Figure 3. Had Addam been imple-
mented as a set of FSAs, such complex behavior would not
have emerged; it would have required explicit design (Cari-
ani, 1989). Similarly, had preemption been absolute, Addam
would have become stuck at the ice as module 0 and module
1 alternately controlled the agent’s behavior.3

This performance benefit of simplified subsumption is
complemented by a benefit in training. As mentioned above,
Brooksian FSAs are difficult to train because of the compli-
cated ways in which they may interact. Our connectionist
networks, on the other hand, permit a host of training algo-
rithms. In fact, the work of Beer and Gallagher (1992) or
Maes and Brooks (1990) is really complementary to ours, for
although Addam’s modules were instantiated with feedfor-
ward networks trained by backpropagation, they could have

3.  This also illustrates how our work differs from other methods of
connectionist modular control (e.g., Jacobs, Jordan, and Barto,
1990), which adopt a negative view of the interactions between
modules. In fact, some work along these lines explicitly focuses on
training away such interactions (Nowlan and Hinton, 1991).

just as easily been trained by either genetic or correlation
algorithms.

Our work also sheds light on the issue of neural network
representations for agents. Collins and Jefferson (1991)
explored such representations, but found them lacking
because of their inability to shift behavior based on changing
inputs. Preemption offers one way in which these shifts may
be obtained.

One drawback, or at least cause for concern, with our
method of preemption arises from the way in which the
structural modules were defined. First, as with Brooks’ sub-
sumption, we used a behavioral decomposition to define the
number of modules, and second, we assumed a fixed net-
work architecture for each module. Angeline (1994) has
explored how modularization can arise without a behavioral
decomposition, and elsewhere, we have explored how the
structure of a module (i.e., number of hidden units and net-
work connectivity) can arise from an evolutionary program
(Saunders, Angeline, and Pollack, 1994).

Many of the problems of training behavior-based sys-
tems stem from the failure to recognize the multiplicity of
levels in agents. We whole-heartedly agree with Brooks that
the level of behaviors is particularly useful for the expression
of design constraints. The level of FSAs may also be useful
for refining the behavioral description. Yet, in the context of
evolving agents, the network level is more appropriate. Our
connectionist approach maintains the benefits of subsump-
tion: a behavior-based view, incremental construction of the
agent, and distributed control. But, in addition to the perfor-
mance and training benefits described above, the neural net-
work substrate offers a many-to-many mapping between
structure and behavior: a single module can affect multiple
behaviors, and a single behavior can arise from the interac-
tion of multiple modules. Chandrasekaran and Josephson
proposed such leaking from a philosophical point of view;
here we have shown how leaking occurs naturally and aids
performance in an evolved connectionist system.
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Abstract

From the many possible perspectives in which an
agent may be viewed, behavior-based AI selects
observable actions as a particularly useful level of
description. Yet behavior is clearly not structure,
and anyone using behavior-based constraints to
construct an agent still faces many implementa-
tional roadblocks. Such obstacles are typically
avoided by adopting a finite state automaton (FSA)
as a base representation. As a result, potential bene-
fits from alternative formalisms are ignored. To
explore these benefits, our work adopts a multi-
level view of an agent: behaviors and FSAs are but
two of many levels of description. We still focus on
behaviors for the expression of design constraints,
but we avoid using FSAs as an implementation.
Our particular agent, Addam, is comprised of a set
of connectionist networks, a substrate which pro-
motes the automatic design of subsumptive sys-
tems. Moreover, the implementational choice has
important behavioral consequences – some com-
plex behaviors emerge due to interactions among
networks and need not be specified explicitly. In
this way, the underlying layersleak into one
another, each affecting the others in subtle and
desirable ways.

1  Introduction

Historically, AI has viewed agents from the Knowledge
Level (Newell, 1982), in which an individual is character-
ized by its knowledge, goals, and rationality.1 The abstract
nature of this level has been called into question from many

1.  While none of these terms is ever rigorously defined, knowledge
is the set of “beliefs” of the agent, a goal is a desired state (of the
world, for instance), and the principle of rationality stipulates that
an agent will use its knowledge to accomplish its goals.

different directions: e.g., connectionism (Hinton et al., 1986;
McClelland et al., 1986), situated action (compare Vera and
Simon, 1993, with Agre, 1993), the observers’ paradox
(Kolen and Pollack, 1993, to appear), and others (e.g.,
Searle, 1993). Most recently, those studying the simulation
of adaptive behavior have stressed that intelligence should
not be viewed simply as knowledge and goals held together
with procedural glue; there is much to learn from studying
intelligence through self-sufficient agents competent to exist
in the world (Meyer and Guillot, 1991; Wilson, 1991).

Yet we often forget that agents can be viewed at multiple
levels of description, and as Chandrasekaran and Josephson
(1993) point out, there is no single level of description which
captures all aspects of an agent’s behavior. To borrow their
example, a simple coin sorter can be described as an abstract
machine which classifies coins based on their weight and
diameter, but if a lever jams, then the physical nature of the
device becomes particularly important. Chandrasekaran and
Josephson propose that agents be described by a set of
“leaky levels,” where each level of description contributes to
the overall story of agent behavior, but the total picture arises
due to the way the various levels interact.

The lesson is an important one, but it fails to address an
important question: How does the recognition of multiple
levels of description help one to implement an intelligent
agent? In particular, how should one approach the task of
constructing an agent which satisfies multiple behavioral
constraints?

Brooks (1986, 1991) proposes an interesting answer to
this question. Rather than observing a set of behavioral con-
straints and reasoning “The agent must have functional mod-
ules for perception, planning, etc.,” one can remain more
faithful to the actual observations by constructing an agent
which satisfies the first behavioral constraint, and then incre-
mentally adding layers of structure to satisfy the remaining
constraints sequentially. This behavior-based stance removes
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a large bias on the part of the designer: modules arise from
directly observable constraints on behavior rather than func-
tional constraints implicit in the mind of the designer.

Unfortunately, Brooks does not go far enough. After per-
forming a behavioral decomposition to define the functional-
ity of a layer, he then proceeds to design a set of finite state
automata (FSAs) to implement that layer. Yet, this is pre-
cisely the type of functional decomposition he warns against
(Brooks, 1991, p. 146). One might appeal to learning to
avoid performing this functional decomposition by hand, but
current work in automating behavior-based design focuses
instead on learning the interactions between preexisting
behavioral modules (e.g., Maes, 1991).

We feel that the reliance upon designed modules arises
from choosing FSAs as the level in which to implement sub-
sumptive systems; in particular, from the arbitrary ways in
which FSAs interact. Brooks achieves modularity through
task-based decomposition of complex behavior into a set of
simpler behaviors. In his system, for example, layer 0 imple-
ments obstacle avoidance and layer 1 controls wandering.
Activity in layer 1 suppresses the activity of layer 0, and yet
obstacles are still avoided becauselayer 1 subsumes the
obstacle avoidance behavior of layer 0. In order to avoid
duplication of lower layers as subparts of higher layers, he
allows the higher layers to randomly access the internal com-
ponents of any lower level FSAs. This fact, combined with
multiple realizability of layers forces us to question Brooks’
design methodology: development of single layer compe-
tence, freezing it, and then layering additional competencies
on top of the first. If layer 0 can be realized equally well by
method M1 or M2, then under Brooks’ methodology we will
not know until layer 0 is fixed which methodology’s internal
modules better facilitate the design of layer 1.

Furthermore, Brooks fails to limit the suppression and/or
inhibition which may occur between layers, so that a higher-
level may randomly modify a lower-level’s computation.
This unrestricted suppression/inhibition combined with the
unrestricted access problem described above permit compli-
cated interactions among layers. In Brooks’ case, careful
design keeps the interactions under control, and the resulting
behavioral modules perform well together. For evolving sub-
sumptive systems, however, such design-space freedom
must be limited.

In this paper, we present an alternative approach to sub-
sumptive learning. Recognizing the multitude of formalisms
with which to describe behaviors (Chandrasekaran and
Josephson, 1993), we explore the merits and drawbacks of
adopting a connectionist implementation for our layers.2 As
will be discussed below, our version of subsumption replaces
Brooks’ FSAs with feedforward networks and additional cir-
cuitry, combined so that each module in a hierarchy respects

2.  Cliff (1991) makes a similar proposal from the context of com-
putational neuroethology, but does not offer an implementation.

the historical prerogatives of those below it, and only asserts
its own control when confident. Given this basic architec-
ture, we demonstrate how multiple behavioral constraints
can be translated into network-level constraints. Finally, we
discuss the importance of the connectionist substrate for the
implementation of leaky levels which produce emergent
behavior in an agent.

2  Additive Adaptive Modules

Our control architecture consists of a set of Additive Adap-
tive Modules, instantiated asAddam, an agent which lives in
a world of ice, food, and blocks. To survive in this world,
Addam possesses 3 sets of 4 (noisy) sensors distributed in
the 4 canonical quadrants of the plane. The first set of sen-
sors is tactile, the second olfactory, and the third visual
(implemented as sonar that passes through transparent
objects). Unlike other attempts at learning that focus on a
single behavior such as walking (Beer and Gallagher, 1992),
we chose to focus on the subsumptive interaction of several
behaviors; hence, Addam’s actuators are a level of abstrac-
tion above leg controllers (similar to Brooks, 1986). Thus,
Addam moves by simply specifyingδx andδy.

Internally, Addam consists of a set of feedforward con-
nectionist networks, connected as shown in Figure 1. The 12
input lines come from Addam’s sensors; the 2 output lines
are fed into actuators which perform the desired movement
(δx, δy). Note that we desire δx, δy ∈(-1, 1) so that Addam
may move in the positive or negative direction. Initially, we
implemented desired movement as a single scalar value, but
this proved inadequate. It did not permit zero as a stable out-
put as the network outputs tended to saturate with training.
We then switched to a difference scheme in which the actual
movement control was the difference between two outputs
(+δx and -δx). This configuration allows the system to stably
learn and generate positive and negative movement, as well
as no movement at all.

Addam controls its movements as follows. First, the 12
sensors are sampled and fed into layer 0, placing its sugges-
tion for δx and δy on the output lines. Layer 1 combines
these same 12 sensor readings with the sum squared output
of layer 0, calculates its suggestions forδx andδy, and adds
these to the output lines. Layer 2 works similarly, and the
final δx andδy values are translated automatically to motor
controls which move Addam the desired amount and direc-
tion.

Note that we could have avoided feeding the sum-
squared activation line into each module Mi by gating the
output of Mi with the sum-squared line. We did not do this
because our architecture is more general; gating can be
learned as one of many behaviors by each Mi.. Our goal was
to have each module decidefor itself whether it should
become active – had we used gating, this decision would
have been made by Mi’s predecessors.



layer has access only to the sum-squared output of all previ-
ous layers, and any preemption of layeri results from a sin-
gle real value (ai). This eliminates the methodological
problem with multiple realizability: the inputai to a layer
depends only onwhat is computed below, not onhow it is
being computed.

A few more things should be noted about Addam’s archi-
tecture. First, it has no internal state (or equivalently Add-
am’s entire state is stored external to the agent in the
environment, as in Simon, 1969). Second, a few of Addam’s
connections are fixed a priori. (The changeable connections
are those in the boxes labelled layer 0, 1, and 2, above.) This
minimal structure is the skeleton required for preemption,
but it does not assume any prewired behaviors.

Finally, we should acknowledge the similarity of Add-
am’s internal structure to the cascade correlation architecture
of Fahlman and Lebiere (1990). There are several important
differences, however. First, our system is comprised of sev-
eral cascadedmodules instead of cascaded hidden units. Sec-
ond, Fahlman and Lebiere’s higher-level hidden units

Instead of lumping Addam with other subsumptive sys-
tems, we prefer to identify our architecture aspreemptive.
The modules are prioritized such that the behaviors associ-
ated with the lower levels may take precedence over those
associated with the higher levels. Prioritization is reflected
both architecturally as well as functionally. Architecturally, a
lower level provides its outputs to higher levels. Function-
ally, higher-level modules are trained to relinquish control if
a lower-level module is active. For example, suppose that
layer 0 behavior is to avoid predators, and layer 1 behavior is
to seek out food. In the absence of any threatening agents,
layer 0 would remain inactive and layer 1 would move
Addam towards food. However if a predator suddenly
appeared, layer 0 would usurp control from layer 1 and
Addam would flee.

Earlier we criticized Brooks’ method of subsumption for
two of its freedoms: unrestricted access by one layer to
another’s internal state, and unrestricted modulation of a
lower-layer’s computation by suppression/inhibition from a
higher-layer. Neither problem is present in Addam. A higher
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function as higher-level feature detectors and hence must
receive input from all the preceding hidden units in the net-
work. This can lead to a severe fan-in problem. Due to the
preemptive nature of our architecture, higher-level modules
need only know if any lower-level module is active, so they
require only a single additional input measuring total activa-
tion of the previous modules. Third, Fahlman’s system
grows more hidden units over time, correlating each to the
current error. The nodes of our architecture are fixed
throughout training, so that modularity is not achieved by
simply adding more units. Finally, there is a difference in
training: Fahlman gives his network a single function to
learn, whereas our system attempts to learn a series of more
and more complex behaviors. (More on this below.)

3  Training Addam

As mentioned above, Addam’s environment consists of three
types of objects: ice, food, and blocks. Ice is transparent and
odorless, and is hence detectable only by the tactile sensors.
Blocks trigger both the tactile and visual sensors, and food
emits an odor which diffuses throughout the environment
and triggers the olfactory sensors. Addam eats (in one time
step) whenever it comes into contact with a piece of food.

Addam’s overall goal is to move towards food while
avoiding the other obstacles. This makes training problem-
atic – the desired response is a complex behavior indexed
over many environmental configurations, and yet we do not
wish to restrict the possible solutions by specifying an entire
behavioral trajectory for a given situation. Beer and Gal-
lagher (1992) attempted to solve this problem by using
genetic algorithms, which respond to the agent’s overall per-
formance instead of to any particular movement. We take a
different approach, namely, we train Addam onsingle moves
for a given number of scenarios, defined as one particular
environmental configuration. Under this methodology, the
extended moves which define Addam’s behavior emerge
from the complex interactions of the adaptive modules and
the environment.

Training begins with level 0 competence, defined as the
ability to avoid ice. The training scenarios are shown in
Figure 2, along with the desired response for each scenario.
Module 0 can successfully perform this behavior in about
600 epochs of backpropagation (adjusted so that the fixed
+1/-1 connections remain constant), and the connections of
this module are then frozen.

We next train Addam on level 1 behavior, defined as the
ability to move towards food,assuming no ice is present.
Once again, training is problematic, because there are a com-
binatorial number of environmental configurations involving
food and ice. We solve this problem as follows. First, we
define 14 scenarios as above, but with food replacing ice.
This defines a set S of {(SensorValues, MoveToFoodOut-
put)} pairs. Note that this does not define a value fora1, the
activation of the system prior to module 1. (See Figure 1.)
Instead of forcing module 1 to recognize the presence of ice,
we assume that module 0 is doing its job, and that when ice
is presenta1 will be >> 0. This allows us to define a training
set T for level 1 behavior by prepending the extreme values
of a1 to the SensorValues in S, thus doubling the number of
configurations instead of having them grow exponentially:

T={ {(0-SensorValues, MoveToFoodOutput)},
{(1-SensorValues, ZeroOutput)}}

Thus layer 1 (which is initially always active) must learn to
suppress its activity in cases where it is not appropriate.

After level 1 competence is achieved (about 3500
epochs), a training set for level 2 competence (avoid blocks)
is obtained in a similar manner. Note again that this avoids
the combinatorial explosion of specifying the many possible
combinations of ice, food, and blocks. Level 2 competence is
achieved in about 1000 epochs.

4  Results

Once Addam was trained, we placed it in the complex envi-
ronment of Figure 3. Its emergent behavior is illustrated in
the top half of the figure, where the small dots trace out Add-
am's path. Each dot is one time step (defined as one applica-

Figure 2: Training scenarios for level 0 behavior, along with desired responses. Circles denote patches of ice.
The scenarios capture a range of situations; from each, Addam’s target response moves it away from the ice.



and usurping control from layer 1. In other words, Addam's
aversion to ice overcomes its hunger, and it moves southeast.
After “bouncing off” the ice, the tactile sensors return to
zero, and layer 1 regains control, forcing Addam back
towards the ice. This time it hits the ice just a little farther
north than the last time, so that when it bounces off again, it
has made some net progress towards the food. After several
attempts, Addam successfully passes the ice and then moves
directly towards the food.

To reach the third piece of food, Addam must navigate
down a narrow corridor, demonstrating that its layer 1
behavior can override its layer 2 behavior of avoiding blocks
(which would repel it from the corridor entrance). After fin-
ishing the last piece of food, Addam is left near a wall,
although it is not in contact with it. Thus both the tactile and
olfactory sensors output zero, so both layers 0 and 1 are inac-
tive. This allows Addam's block avoidance behavior to
become activated. The visual sensors respond to the open

tion of the trained network to move one step), so the spacing
indicates Addam's speed.

Addam begins at (3.5, 1) touching nothing, so its tactile
sensors register zero and layer 0 is inactive. The olfactory
sensors respond slightly to the weak odor gradient, causing a
slight activation of layer 1, disabling the block-avoidance
behavior of layer 2. Thus we observe a constant eastward
drift, along with random north-south movements due to the
noise inherent in the sensors. As Addam approaches the
food, the odor gradient increases, the olfactory sensors
become more and more active, and layer 1 responds more
and more strongly. When the random noise becomes negligi-
ble at about (6.5, 1), Addam speeds up and reaches the food,
which is consumed.

Subsequently, Addam detects the faint odor of another
piece of nearby food, and once again layer 1 controls its
movement. However, at about (9, 5.5) Addam's tactile sen-
sors detect the presence of a piece of ice, activating layer 0,
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area to the north, so Addam slowly makes its way in that
direction. When it reaches the middle of the enclosure, the
visual sensors are balanced and Addam halts (except for
small random movements based on the noise in the sensors).

The bottom half of Figure 3 shows the activation of each
layer i of the system (where the activation of layeri is
||(δx,δy)i||, the norm of layeri’s contribution to the output
lines). L0 is generally quiet, but becomes active between
time t=52 and t=64 when Addam encounters an ice patch,
and shows some slight activity around t=140 and t=168
when Addam’s tactile sensors detect blocks. L1 (“approach
food” behavior) is active for most of the session except when
preempted by the “avoid ice” behavior of L0, as between
t=52 and t=64. The 5 peaks in L1’s activity correspond to
Addam’s proximity to the 5 pieces of food as it eat them;
when the last piece of food is consumed at t=164, L1’s activ-
ity begins to decay as the residual odor disperses. Finally, we
see that L2 (“avoid blocks” behavior) is preempted for
almost the entire session. It starts to show activity only at
about t=160, when all the food is gone and Addam is away
from any ice. The activity of this layer peaks at about t=190,
and then decays to 0 as Addam reaches the center of its room
and the visual sensors balance.

5  Remarks

The behavior of Chandrasekaran and Josephson’s coin sorter
is best described by appealing to multiple levels of behavior
(Chandrasekaran and Josephson, 1993). Addam is best
described in a similar way. At one level, it is an agent which
exhibits only three behaviors: avoid ice, go to food, and
avoid blocks. But the underlying connectionist levels leak
through in the complex interaction that allows Addam to
navigate around the ice in Figure 3. Had Addam been imple-
mented as a set of FSAs, such complex behavior would not
have emerged; it would have required explicit design (Cari-
ani, 1989). Similarly, had preemption been absolute, Addam
would have become stuck at the ice as module 0 and module
1 alternately controlled the agent’s behavior.3

This performance benefit of simplified subsumption is
complemented by a benefit in training. As mentioned above,
Brooksian FSAs are difficult to train because of the compli-
cated ways in which they may interact. Our connectionist
networks, on the other hand, permit a host of training algo-
rithms. In fact, the work of Beer and Gallagher (1992) or
Maes and Brooks (1990) is really complementary to ours, for
although Addam’s modules were instantiated with feedfor-
ward networks trained by backpropagation, they could have

3.  This also illustrates how our work differs from other methods of
connectionist modular control (e.g., Jacobs, Jordan, and Barto,
1990), which adopt a negative view of the interactions between
modules. In fact, some work along these lines explicitly focuses on
training away such interactions (Nowlan and Hinton, 1991).

just as easily been trained by either genetic or correlation
algorithms.

Our work also sheds light on the issue of neural network
representations for agents. Collins and Jefferson (1991)
explored such representations, but found them lacking
because of their inability to shift behavior based on changing
inputs. Preemption offers one way in which these shifts may
be obtained.

One drawback, or at least cause for concern, with our
method of preemption arises from the way in which the
structural modules were defined. First, as with Brooks’ sub-
sumption, we used a behavioral decomposition to define the
number of modules, and second, we assumed a fixed net-
work architecture for each module. Angeline (1994) has
explored how modularization can arise without a behavioral
decomposition, and elsewhere, we have explored how the
structure of a module (i.e., number of hidden units and net-
work connectivity) can arise from an evolutionary program
(Saunders, Angeline, and Pollack, 1994).

Many of the problems of training behavior-based sys-
tems stem from the failure to recognize the multiplicity of
levels in agents. We whole-heartedly agree with Brooks that
the level of behaviors is particularly useful for the expression
of design constraints. The level of FSAs may also be useful
for refining the behavioral description. Yet, in the context of
evolving agents, the network level is more appropriate. Our
connectionist approach maintains the benefits of subsump-
tion: a behavior-based view, incremental construction of the
agent, and distributed control. But, in addition to the perfor-
mance and training benefits described above, the neural net-
work substrate offers a many-to-many mapping between
structure and behavior: a single module can affect multiple
behaviors, and a single behavior can arise from the interac-
tion of multiple modules. Chandrasekaran and Josephson
proposed such leaking from a philosophical point of view;
here we have shown how leaking occurs naturally and aids
performance in an evolved connectionist system.
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