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ABSTRACT
Recently there has been much interest in the role of indirect genetic
encodings as a means to achieve increased evolvability. From this
perspective, artificial ontogenies have largely been seen as a vehicle
to relate the indirect encodings to complex phenotypes. However,
the introduction of a development phase does not come without
other consequences. We show that the conjunction of the latent on-
togenic stucture and the common practice of only evaluating the
final phenotype obtained from development can have a net retard-
ing effect on evolution. Using a formal model of development, we
show that this effect arises primarily due to the relation between the
ontogenic structure to the fitness function, which in turn impacts the
properties being evaluated and selected for during evolution. This
effect is empirically demonstrated with a toy search problem using
LOGO-turtle based embryogenic processes.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods
and Search

General Terms
Algorithms, Performance, Theory

Keywords
development, evolutionary algorithms, evolvability, generative rep-
resentations, problem solving

1. INTRODUCTION
In the wake of advances in experimental embryology, the early

20th century saw the eclipse of a historical controversy surround-
ing the concept of recapitulation as the underlying relation between
the ontogeny of individuals in a particular species and the phylo-
genic history of the species.1 By this perspective, the ontogeny of

1All references to theories of recapitulation in this paper are drawn
from Gould’s authoritative volume [5] that describes the rise and
fall of these theories, and his attempt to re-interpret the apparent
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an individual in a species was treated as being a condensed trace
(or a recapitulation) of the phylogenic history of that species. This
was in a literal sense of the intermediate ontogenic states being
conceived as the adult phenotypes of an ancestral species. Further-
more, the ontogenic process was itself considered to be adaptive in
that the phenotypes occuring later in the ontogeny were treated as
being ’superior’ to those phenotypes that occured earlier. Conse-
quently, the increase in developmental complexity was conceptu-
alized as being directed towards an idealized superior being. This
view, based on a preformationist notion of development but within
a Darwinian framework, lead to Ernst Haeckel’s (infamous) bio-
genetic law that “ontogeny recapitulates phylogeny”. Interestingly,
the term ontogeny for the developmental history of an individual,
was coined by Haeckel, who was one of the most famous propo-
nents of a recapitulationist view within a Darwinian framework.

While Haeckelian recapitulation has long been discredited in bi-
ology, it no less presents some issues that are of relevance to arti-
ficial evolutionary-developmental systems. The key relation con-
necting the two is the observation that many computational imple-
mentations of development satisfy one of the fundamental premises
of a recapitulationist perspective. Unlike biological development,
the intermediate stages of an artificial ontogeny can in fact be valid
phenotypes themselves. Familiar examples of this include CA and
LOGO-turtle based embryogenies [10, 8] 2

Given that artifical ontogenies involve a temporal series of valid
phenotypes, it raises the question of where such systems stand with
regard to the issues of (a) the relation between ontogeny and phy-
logeny, and (b) the correlation between the relative positions of
phenotypes in the ontogeny with their fitness. In this paper, we
demonstrate that the latter relation between the ontogenic structure
and the fitness function is of particular importance to evolution with
development that takes a quasi-preformationist form as expressed
by the Genotype-Phenotype (G-P) map

���������
, i.e. where

a genotype is a ’generative representation’ or ’recipe’ for the con-
struction of a particular phenotype.

In the light of the rich ontogenic structure involving multiple
phenotypes, rather than a genotype being associated with a single
phenotype, it is effectively associated with a collection of pheno-
types with a highly structured relationship with each other. From
this perspective, development that satisfies a Genotype-Phenotype

relation between ontogeny and phylogeny in the light of the find-
ings of modern biology.
2This is not always the case as the embryonic stages could con-
tain structural elements that are never present in ’adult’ phenotypes.
However, this is not to be conflated with the non-terminals that are
present in grammatical genetic encodings, as they are distinct from
the structural entities that undergo developmental transformation
leading up to the ’adult’ phenotype [6]. These intermediate struc-
tural entities could be valid phenotypes.



map can now be seen as additionally involving a decision to pick
one phenotype from the generated collection that is to be evaluated
by the fitness function to compute the reproductive fitness of the
genotype.3

The commonly used policy has been to only evaluate the final
or maximal phenotype of the ontogenic process, i.e. a decision
made on the sole basis of the temporal position of the phenotypes
in the ontogeny. By the classical view of recapitulation, the fitness
of this final phenotype was deemed to be greater than that of all
the preceding phenotypes in the ontogeny. However, this does not
hold true in general with ’hardwired’ artificial ontogenies that are
unaffected by changes to the fitness function. Here, we show that
as a direct consequence of this property, development can cause a
retardation in the rate of evolution.

The organization of the discussion is as follows: Section 2 pro-
vides a formal definition of the evolutionary search problem and an
order-theoretic description of the ontogenic premise of recapitula-
tion. Next we use this formal description to analytically demon-
strate how the ontogenic structure can impact selection (Section 3).
A toy-problem using a LOGO-turtle based embryogeny is used to
empirically demonstrate the retarding effect of the final-phenotype
policy on evolution (Section 4).

2. MODEL OF EVO-DEVELOPMENT

2.1 Background
Angeline [3] describes a simple formulation to express the con-

cept of an indirect genetic encoding which can be summarized as
follows.

Let
�

be the set of objects of interest. The objective is to find
an object in

�
that has certain desired properties expressed as an

evaluation function � � � ���
that provides a measure of the

relative suitability of each object to this desired end. So the general
search problem is to find a ��� � that has a value at or “sufficiently
near” a desired maximum in the range of � using an Evolutionary
Algorithm.

Suppose � is a vector representing a (multiset) collection of en-
tities from

�
i.e. the population, and, for convenience, let � be such

that ���	��
 produces a vector of real-numbered values corresponding
to the evaluation of each of the members of � . A general evolu-
tionary computation can be defined as an iteration of the equation:

�
�������	�������	��
�
 (1)

The function � is called the reproduction function as it generates
a new collection of entities from

�
from the previous collection �

(for a given random seed). So evolution is in effect the iterative
application of this function till some external stopping criterion is
reached. Here, the objects in

�
are referred to as the evaluated

entities and as they are also directly manipulated by � , they are
also the evolved entities.

Morphogenic Evolutionary Computation (as Angeline calls it) is
contrasted with this basic form by the introduction of an abstraction
that separates the evaluated entities from the evolved entities. The
reproduction function for a morphogenic evolutionary computation
is defined as �

���������
�
����� � �

�

�
�
 (2)

3When development occurs in a rich physical environment (as in
[4]), the ontogenic intermediates are in some sense being ’evalu-
ated’ at all stages. While this evaluation is of direct relevance to
the viability of the developing embryo, it may be only indirectly
relevant to the reproductive fitness, which is dependent on the com-
position of the population. So we will restrict our usage of the term
’evaluation’ to imply this latter role.

where,
� � � � �

is the development function (or as in more
common usage, the Genotype-Phenotype map).

�
is a vector rep-

resenting a (multi-set) collection of entities from
�

, and
� �
�

 is

considered to produce a vector � by the application of
�

to each of
the elements of

�
. The key difference here is that the elements of�

are the evolved entities as they are modified using � � , while the
elements of

�
remain the evaluated entities.

The main idea expressed by this formulation is that introducing a
development function

�
enables a modification of the search prob-

lem from being primarily defined on
�

(i.e. the set of phenotypes),
to being a search problem defined on a set of objects

�
(i.e. the

set of genotypes). As
�

is a function where each genotype deter-
ministically corresponds to exactly one phenotype, it follows that
this change in problem definition does not result in a modification
in the problem solving objective i.e. to find a ��� � that has a
value at or ’sufficiently near’ a desired maximum in the range of � .
Indeed, this is the very premise for considering multiple possible
encodings for the same problem and the value of designing encod-
ings that can improve the evolvability of the genetic representation
for the problem [3, 12].

Though this formalism suggests that search on the set
�

would
remain faithful to this objective, it remains to be assessed whether
this is actually the case when the ontogenic structure is explic-
itly considered. Towards making this assessment, we next provide
a formal description of what we specifically mean by ’ontogenic
structure’.

2.2 Definition of ontogenic structure
Consider an ontogenic computation that takes the form

������� ��!�"$# �%�	����
 (3)

where !�"$# � is the ontogenic transformation function for a given& � � . So a developmental process can be seen as being an it-
erative application of the ontogenic transformation function to the
phenotype produced at each time step till some stopping condition
is reached. Based on [5, 2], this temporally ordered sequence of
phenotypic states ��' �)(*(*( � � �)(*(*( ��+-,/.10-2 is referred to as an onto-
genic trajectory, where 34�657� (/(*( ��3 +-,8.90-2 .

Clearly, the genome may itself undergo changes during this de-
velopmental process however our focus here is restricted to phe-
notypic changes and we assume that all these genetic effects are
expressed in the temporally variable form of ! "$# � . We assume that
the development process for every genotype is guaranteed to halt
so
�

is a total function.
If this operational aspect is neglected then the only change to the

genotype-phenotype relation
�

would be in taking the expanded
form
� � given as:

� � � � � � � ' � � 
 (4)

as expressed in its intuitive curried form, where
� ';: � is the

set of initial phenotype states.4 To more transparently account
for these operational properties within the evolutionary model de-
scribed above, we formalize the notion of an ontogenic trajectory
as follows.

Every triple � & �<��'1�<��
�� � � is associated with a single ontogenic
trajectory = . For clarity, an ontogenic trajectory = is treated here
as a totally-ordered set =>�@?	���BADC where � is a finite subset
of
�

with ��'1�E�6�F� , and A is the “precedes” relation such that�G0HAI��J if phenotype �G0 appears prior to (precedes) phenotype� J in the ontogeny. So, the phenotypes ��' and � are the minimal
4To maintain consistency with published work on development,

� '
is assumed to have exactly one element

� 'K�L��' . With
� ' being

fixed, the equivalence to
�

is straightforward, as
� �M9N � � � � .
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Figure 1: Functional view of genotype-phenotype map

and maximal elements of = respectively i.e. no phenotype in �
precedes � ' , and � precedes no phenotype in � . This definition
assumes that there are no cycles in the trajectory. This is more for
analytical convenience and does not effect the conclusions that we
draw from the model in this paper.

With this concept of an ontogenic trajectory, we see that from
a functional conception of the genotype-phenotype map as shown
in Figure 1, we now have an operational conception of the form
shown in Figure 2. In Figure 2, the relation between genotypes,
phenotypes and ontogenic trajectories is such that for a given = �?	���BADC , a directed edge from � , to � � iff � , A � � and there is
no ��� such that ��, A ��� A � � ( ��,��<� � �<��� � � ). The maximal
phenotypes of = are shown as solid vertices and the trajectories are
distinguished by the type of edge.

As can be seen, this description abstracts away the mechanistic
details of how the genotype is involved in morphogenesis and the
component level structure of the phenotype but retains a focus on
the temporally varying stages of development at the scale of the
entire individual. A feature of our formulation is that it treats the
ontogenic trajectory = � ?����-ADC as having two components - the
collection of phenotypes generated � , and their relative orderingA . Since the genotype is now associated with multiple phenotypes,
for such a scheme to be used with a typical EA based on the one-
genotype

�
one-phenotype rationale (as described in Section 2.1),

there needs to be a deterministic policy in place to decide which of
these phenotypes is to be evaluated so as to compute the reproduc-
tive fitness of the genotype. We shall refer to this as the ontogenic
decision problem.

The focus here is on the basic case where the relative ordering
between the phenotypes is the sole basis for this decision, with the
maximal phenotype of a trajectory being ’chosen’ by default as the
phenotype to be evaluated. We now use this formulation of onto-
genic structure to deduce two immediate effects of this precedence-
based policy on evolutionary search.

3. IMPLICATIONS FOR EVOLUTION

3.1 Effect on selection
Over an ontogenic trajectory there is effectively a generation of

multiple phenotypes, of which only the maximal phenotype enters
the population. Here we have a novel situation that is absent with
a direct encoding, where there is no (non-trivial) developmental
phase. With a direct encoding, every member of

�
that is generated

over the evolutionary run is evaluated. However, with indirect en-
codings associated with development taking the form of ontogenic
trajectories, every member of

�
generated over an evolutionary run

is evaluated (from Equation 2) but such a guarantee clearly does
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Figure 3: Fitness variation along trajectory

not extend to all the members of
�

that are generated. This sit-
uation presents an akward problem as illustrated by the following
example.

As mentioned earlier, the fitness function is defined on the phe-
notype set rather than on the set of all ontogenic trajectories. So,
for any two phenotypes � , and � � in

�
, it can be the case that���	��,�
�� ���	� � 
 for a fitness function � , and � �	��, 
	�
� �	� � 
 for

a different fitness function � . Consequently, for a trajectory = �� � ' A (*(*( A6��, (/(*(*( A6� �
� , the maximal phenotype � � may or may
not have the highest fitness in = depending on the particular fitness
function in use. This is in contradiction to the philosophical view
of development in the recapitulationist framework.

Now, consider two trajectories = "�� � � ��' A � � A ��� � and=�"�� � � ' A � � A (*(*( ��� � having fitness values that vary as shown
in Figure 3. Here, the maximal phenotype of = "�� , namely ��� , has a
fitness value greater than that of ��� , the maximal phenotype of =�" .
However, = " contains a phenotype ��� that has a fitness value higher
than that of the maximal phenotypes ��� and � � . This, however, is a
piece of information that is unavailable to the evolutionary evalua-
tion and selection mechanisms until a genotype & � � having a trajec-
tory = "�� � with � � as its maximal element appears in the population.
This could be the case even if ��� was the globally optimal pheno-
type for the fitness function. This dependence on the contingencies
of genetic variation and the population dynamics to ensure the eval-
uation of the non-maximal phenotypes on the ontogenic trajectory
is paradoxical given that � � is generated as a tangible phenotype in=�" .

Since only � � and ��� are evaluated and used as the basis for
selection, & � would have a higher reproductive fitness than & , even
though & is capable of generating a higher fitness phenotype than& � . As a result, depending on the structure of the population, & �
would have a higher chance of being selected to produce variants
in the next generation as compared to & .



From these observations, we see that by only evaluating the fi-
nal phenotype the selection pressure is effectively for two proper-
ties, namely, (a) the production of high fitness phenotypes, and (b)
their production at the maximal position in the ontogenic trajectory.
Now, the search problem of interest was defined on the phenotype
set and the desired solution that is to be ultimately returned is a
phenotype rather than an ontogenic trajectory having a particular
form. This implicit redefinition of the problem on the structure of
the ontogenic trajectories can have a retarding effect as it limits the
ability of evolution to discover and exploit the presence of high fit-
ness phenotypes as and when they are tangibly generated over the
evolutionary process, in whatever position on the ontogenic trajec-
tory. This conflicts with the very motivation for introducing indirect
encodings as a way to enable increased evolvability.

The ’blindness’ of evaluation and selection leads to another re-
lated practical implication.

3.2 Uncertainty about solution quality
The absence of a guarantee that every generated phenotype would

be evaluated over an evolutionary run can have an additional effect
of bringing a degree of uncertainty with respect to the quality of the
results obtained. This can be described as follows.

Let ��� be the set of all phenotypes that have been generated
across � generations, independent of whether the phenotypes were
maximal or intermediate phenotypes of ontogenic trajectories, and
let ��� be the subset of these phenotypes that end up been evalu-
ated. Let ��� be a phenotype having the maximum fitness in � � . If
the selection mechanism used included elitism, where the highest
fitness individual in a particular generation is retained unchanged
in the next generation, then � � is guaranteed to be the highest fit-
ness individual in the population at the � ��� generation. Hence � �
would also be the solution returned by the EA obtained as a result
of search on

�
. Now, let �
	 be a phenotype having the maximum

fitness in � � . It clearly can never be the case that ���	� 	 
 �H���	����
 .
Ideally, the expectation of an ’efficient’ problem-solving EA is

that it returns the best possible result relative to the resources it has
already consumed. So, at the minimum it is desirable that ���	�
	 
 ����	��� 
 as each member of � � has actually been generated over
the evolutionary run by a consumption of computational resources.
Notably, this is a guarantee that is trivially provided by EAs when
the evolved and evaluated entities are identical as every phenotype
generated over the evolutionary run is evaluated.

If � � : � � then it is logically possible (as discussed above)
that ���	��	 
 � ���	� � 
 , as high fitness phenotypes arising as inter-
mediates on ontogenic trajectories, can be routinely lost as these
phenotypes are ’invisible’ to the evaluation and selection mecha-
nisms of evolution. The net consequence is that even though � �
may have a high fitness in absolute terms (and possibly a higher
fitness than with a comparable direct encoding of the problem), the
search process comes without the basic guarantee of being able to
return the phenotype ��	 having the highest fitness of all the pheno-
types that were generated during evolutionary search, as shown in
Figure 4.

The uncertainty associated with this efficiency gap is absent when
the globally optimal phenotype appears in � � in which case ���	� 	 
4����	� � 
 . However, this is hardly a property that can be guaran-
teed with non-trivial search problems where the fitness value of
the globally optimal phenotype may be unknown.

So, the ’efficiency gap’ can be seen as the opportunity cost of
not evaluating every generated phenotype during the developmental
process.

3.3 An informed G-P map, �

Phenotype set

Generated
 phenotypes

Evaluated 
phenotypes

Max. fitness
of generated
phenotypes

Max. fitness
of evaluated
phenotypes

Re

"Gap"

Figure 4: Efficiency gap

Before proceeding to the empirical demonstration of these ef-
fects, we will consider an alternative basis for the ontogenic deci-
sion problem to provide a contrast. The goal is not to present this
as an alternative technique or a resolution to the above problems
but merely as an experimental control.

As may already be evident to the reader, the above issues to do
with selection and ’efficiency’ become irrelevant when the relation
between the fitness function and the ontogenic structure is such that���	� +$,/.10B2 

� ���	��
 ( � � � ) is true for =�"�� ?	� � ADC for every& � � . To ensure that the G-P map behaves as if the fitness function
satisfied this property, we can use an ’informed’ version of

�
.

Rather than using an ’uninformed’ policy based only on the nat-
ural structure of the ontogenic process as defined by A , an alter-
native is to completely ignore the ordering in the ontogenic trajec-
tory and treat development as if it generated a flat subset of phe-
notypes � . A phenotype is then picked from � by a process of
local search using the fitness function to return �
� 0�� ( ��� 0�� � � ),
where ���	� � 0�� 
�� ���	��
 ( � �;� ), as the phenotype ’encoded’ by
the genotype. This approach is superficially similar to the effect of
life-time learning with phenotypic plasticity as in [7]. As the high-
est fitness is unknown a priori, local search to find � � 0�� here is
effectively an exhaustive evaluation of all the phenotypes in � .

This informed G-P map is labelled as � � � � � . Even though�
and the ontogenic trajectories produced are identical with both�
and � , each genotype could now be associated with a different

phenotype in � . Hence
�

is behaviorally a different encoding of
�

when used with � as compared to its usage with
�

, with � being
guaranteed to be efficient (in the sense described above) while

�
is

not so. This comes with two important subtleties.
The use of the fitness function � here is to pick a phenotype to

enter the population from among the genetically identical pheno-
types in the same trajectory. So, these fitness evaluations do not
provide information about the variational structure of the genotype
space as with the genetically distinct phenotypes in the population.
As a result, the fitness of � � 0�� alone determines the reproductive
fitness of the genotype in the context of the population.

Another key requirement to enable such a local search is that
the entire ontogenic trajectory be explicitly cached. During de-
velopment a particular phenotypic state is transformed by !�"9# � to
produce the next phenotypic state. Hence the ontogenic interme-
diates are irreversibly lost when the trajectory is non-cyclic rather
than being being present in memory when the final phenotype is
obtained. Given this irreversibility, it would be impossible to ascer-
tain whether the present phenotypic state at time 3 is � � 0�� during
run-time without the generation of the subsequent phenotypes. On
generating the next phenotype, it would be impossible to return to
the previous phenotype if that phenotype was indeed ��� 0�� . So
the mere introduction of run-time fitness evaluation does not imply
that it would lead to an identification of ��� 0�� , without maintaining
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Figure 5: Target patterns (randomly generated)

additional state information.
In the next section we explore the characteristics of evolution

with these two differing G-P maps
�

and � using a strategy sim-
ilar to the comparative studies described in [9, 8, 10]. The strat-
egy in these studies was to keep the fitness function, selection and
population size fixed over the evolutionary run for the encodings
being compared. So the observed differences in the fitness in-
crease and absolute fitness over a fixed number of fitness evalua-
tions with these differing encodings were attributed to differences
in the evolvability of the genetic encoding (and their associated
variation operators). In this case the genetic encodings and vari-
ation operators are identical for both

�
and � , the only difference

is in the basis used for the ontogenic decision making.

4. EXPERIMENTS

4.1 Problem
The toy-problem chosen here is one of pattern construction, sim-

ilar to that used in [10]. A target pattern consists of a bit-pattern
on a �B5����B5 grid (Figure 5). The general objective is to evolve a
pattern that corresponds to this target pattern. Here, the phenotype
space

�
of interest is the set of connected patterns on this �B5����B5

grid, even though the target patterns are not connected. This is ir-
relevant as the goal is to study the evolutionary dynamics rather
than the properties of the solutions obtained.

The fitness function � is defined as follows: Given a phenotype� � � , and the target pattern � , a value � is assigned to each cell
of � that matches the target pattern, and a value � is assigned to
each cell that does not match this target. The overall fitness is the
sum of the � and � values of each cell of � . Here �;�
	��-5 and
� �
���-5 .
4.2 Ontogenic system: Turtle construction

The developmental system used is based on the the well known
mathematical animal - the LOGO turtle. The turtle’s movements
are controlled by the execution of a procedure based on heading
and orientation commands. The trace of the turtle’s movements in
space forms the basis for the construction of geometric objects (for
details see [1]).

To focus on the canonical properties of evolution with a develop-
mental phase, here we consider a simplified version of this turtle.
The turtle moves on the �-5����B5 grid defined by the problem. The
basic commands accepted by the turtle are: forward, back,
left, right. The commands forward and back change the
turtle’s position, while the commands left and right change
both the turtle’s heading and position.
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Figure 6: Fitness variation along ontogenic trajectory

The turtle always moves in unit steps. The default input for the
right command is �15�� with respect to the current heading, and
��� 5 � for the command left with respect to the current heading,
with a single unit step taken in the new orientation for both com-
mands. So the turtle always moves with the direction of its heading
being parallel to one of the (globally defined) principal axes.

All the cells on the grid are assumed to have an initial state 5 , and
each time the turtle vists such a cell, the state changes to � . Once
the state changes from 5 to � , it remains unchanged. As a result,
the turtle’s movements on executing a series of commands result
in a connected pattern defined by the cells having the state � . The
start position for the turtle is always at ���7��� 
 on the grid pointing
upward, i.e. in the ��� direction.

The procedure executed by the turtle takes the form of a list of
these commands that are executed in sequential order. The set of all
such procedures (with a minimum length = � and maximum length
= �1515 ) is taken to be the set of genotypes

�
. Every connected trace

produced by the turtle is a valid phenotype � � � . The ordered
sequence of phenotypes produced during the execution of a partic-
ular genotype & starting from the first command is be considered
to be an ontogenic trajectory =�" . The phenotype obtained when all
the commands in & have been executed is therefore the maximal
phenotype of =�" .

The fitness function is ontogenically non-monotonic for this sys-
tem. Figure 6 shows the fitness variation along the ontogenic trajec-
tory for a randomly generated sequence LRBFLLR LFRLFFLFFR
RFFLBFLB FBFBLLLL BFBFFLRFRLFL (where L = left,
R = right, B = back, F = forward). If the trajectory
never leaves the starting state ��' , the corresponding genotype is
assigned a fitness of ���15 5 .
4.3 Variation and selection operators

The variational operators include both mutation and crossover.
Three mutational operators were used. Mutational operator � �
randomly replaces a randomly selected command (with uniform
probability) on the given procedure by one of the other three com-
mands. The operators � � and � � were specifically designed not-
ing that the procedures are executed sequentially. Mutational op-
erator � � reduces the length of the given procedure by remov-
ing a segment of randomly chosen length (with a maximum of �
commands) from the end of the procedure upto the minimum per-
missible procedure length. � � adds a list of randomly generated
commands (with a maximum of � commands) to the given pro-
cedure upto the maximum permissible procedure length. �H� was
applied with a probability 5 ( � , and � � and � � with probability5 ( ��� each. Crossover is at a single common locus that is randomly
chosen on the shorter procedure with uniform probability over its
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Figure 7: Fitness of best evaluated individuals (Pattern-1)
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Figure 8: Fitness of best evaluated individuals (Pattern-2)

entire length.
Selection is fitness proportionate. The initial population consists

of randomly generated procedures of lengths ranging from 5 to 60.
This population is evolved with a fixed-population size, genera-
tional EA with an elitism of 3. �15�� of the remaining slots (rounded
to the nearest even number) of every successive generation are re-
served for genotypes obtained by crossover, while the remaining
slots are filled by mutational variants.

4.4 Results
The results of evolution with the encodings

�
and � with a popu-

lation of 50 individuals over 150 generations (over 10 runs) for the
randomly generated patterns in Figure 5 are described below.

Figure 7 is a comparison of the change in fitness values of the
best evaluated phenotypes with the encodings

�
(uninformed) and

� (informed) for pattern-1, with respect to search relevant fitness
evaluations (as discussed earlier in Section 3.3). As can be seen
the rate of fitness increase as well as the fitness of the best individ-
ual after � �15 generations is considerably greater than that obtained
using

�
. This is also the case with Pattern-2 as shown in Figure 8.

Due to the similarity of the results obtained with both patterns as
well as several other randomly generated patterns, we will restrict
our discussion to the results obtained with pattern-1 from this point
on.

In Section 3.1, we argued that the presence of selection mis-
matches was a key property that could cause a retarding effect on
evolution with a precedence-based ontogenic decision policy. In-
deed, this is the only difference between

�
and � in this turtle-

implementation as all other aspects of evolution (i.e. genetic en-
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Figure 9: Selection mismatches with
�

(Pattern-1)
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Figure 10: Non-selective mismatches with � (Pattern-1)

coding, variation, fitness function, population size) are common to
both. We see that such selection mismatches do indeed occur here.

A mismatch is deemed to occur when the value of ���	� +-,/.10-2 
 for
genotype & � is greater than for genotype & � , but where the value
of ���	��� 0�� 
 for genotype & � is greater than for genotype & � . This
is expressed as a percentage of the total number of pair-wise com-
parisons of genotypes in the population. With a population of �15 ,
the total number pair-wise comparisons is equal to � ��� � . Figure
9 shows the frequency (averaged over �B5 runs) with which these
selection mismatches occur in the population with

�
. Here the

number of such mismatches is high ����� (approx. ���15 mismatched
pairs) in the initial random population which then shows a decreas-
ing trend, remaining at the order of ��� (approx. �15 mismatches)
without entirely stabilizing to zero over the � �15 generations.

To provide a contrast, consider the mismatches that occur be-
tween ��� 0�� and ��+-,8.90-2 with � as shown in Figure 10. With � ,
these mismatches do not have any consequences for selection as� � 0�� is explicitly identified. Even so, it is noticeable that the
number of such mismatches consistently remains at a high level
(at about �-5�� or � � � mismatches) with large fluctuations.

This suggests that the search strategy in each case is very dif-
ferent specific to the characteristics of the genetic representation
and variation operators used here. This is also noticeable in the
significant difference in the rate at which the average length of the
ontogenic trajectories 5 changes over evolutionary time as shown in
Figure 11. The difference in the rate of growth of the phenotypes
suggests that a reason for the low number of selection mismatches

5The length of an ontogenic trajectory =6��?	���BADC is �	� ��
 ��
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Figure 11: Average length of ontogenic trajectories (Pattern-1)
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Figure 12: Example of efficiency gap (Pattern-1)

with
�

may be reflective of a population that has low diversity,
which reduces the possibility of a mismatch.

Finally, this brings us to the uncertainty in the quality of the re-
sults or what we termed the ’efficiency gap’. An example of this
gap arising between the maximum fitness of all the generated phe-
notypes in a particular generation and the maximum fitness of the
evaluated phenotypes in that generation from a single evolution-
ary run with

�
is shown in Figure 12. Depending on the stopping

condition, the solution returned may have a fitness less than that of
phenotypes that have been generated but have remained unevalu-
ated.

It with this plot that the retarding effect that artificial ontogenies
of the form

�
have on evolution can be explicitly seen. There is

a distinct time lag between when a high fitness phenotype is first
generated, and when variation can produce an evaluated phenotype
with a comparable fitness value. This is fundamentally different
from the phenomenon of canalization where a high fitness pheno-
type is discovered by interaction with the environment, and there
is a time lag before this phenotype can be produced directly inde-
pendent of the environment. Unlike canalization, in this case the
presence of these high fitness phenotypes appearing as ontogenic
intermediates is invisible to selection and does not exert any selec-
tion pressure for canalization to occur. Rather than driving adap-
tation, here the ontogenic structure retards the rate of adaptation in
preventing these high fitness phenotype from being discovered and
exploited by selection and variation mechanisms. As can be seen
in Figure 7, the removal of these constraints in � make a significant
difference on the rate of evolution.
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Figure 13: Frequency of efficiency gap occurence (Pattern-1)

Figure 13 shows the frequency with which these gaps occured
across the 10 evolutionary runs with

�
, and for contrast, with � .

Here we see that the efficiency gaps appear and disappear sporadi-
cally and are neither isolated occurences on a particular evolution-
ary run or necessarily a constant presence.

5. DISCUSSION AND CONCLUSIONS
One of the main motivations for using indirect genetic encodings

in evolutionary problem solving has been the possibility of improv-
ing the evolvability of the genetic representations by design [3, 12].
From this evolvability perspective, the genetic representation is a
’rate-limiting factor’ [13] in that different representations of a given
problem are seen as effecting differences in the rate at which high
fitness variants are produced under variation and selection.

To this end, development has largely been treated as a vehicle
for an indirect genetic encoding of the search problem. However,
in this paper, we have demonstrated that evolution with an explicit
developmental phase can bring some novel issues to bear on evolu-
tionary search different from the genetic issues. By explicitly con-
sidering the structure latent in developmental processes, we have
shown that this additional structure can have the net effect of re-
tarding rather than promoting evolution. Where phenotypic plas-
ticity aided by life-time learning by interaction with the environ-
ment leads to an expediting effect on evolution, here the plastic
phenotypic transformations occuring under the control of the geno-
type has the contrary effect of retarding evolution. Analogous to
the Baldwin expediting effect [7], we can refer to this contrary phe-
nomenon as the Haeckel retarding effect based on the classic reca-
pitulationist conflation of the awe-inspring process of morphogen-
esis with evolutionary progress.

Looking forward, the key conceptual issue that this phenomenon
raises is that the genotype needs to be viewed as more than just a
recipe for how a phenotype is to be constructed but also as a strat-
egy for the evaluation of the products of development. While the
’informed’ strategy of evaluating every phenotype generated was
presented as a basic resolution of the problem posed by evaluating
only the final phenotype, it is far from being a satisfactory natural
resolution. As described earlier, by completely ignoring the inher-
ent structure in the ontogeny, it takes a hammer to the problem by
converting it into one of local search. However, this involves the
caveats of having to cache the entire trajectory rather than provid-
ing a solution that is integrated into the generative character of the
development process. Finding a more sound solution is an open
question that needs to be resolved. To this end, we have begun to
explore the possibility of a game-theortic conception of develop-



ment [11].
There are also several empirical issues associated with address-

ing this problem. The analysis and the demonstration presented
here is clearly simplistic and, among other things, does not (a) ade-
quately address the properties of several existing developmental ap-
proache, and (b) says little about the prevalence or the importance
of this effect in ’real-world’ problems. Furthermore, the critical
issue of whether the cost of resolving this issue is commensurate
with the gains obtained has remained largely unaddressed here.

Evolution with indirect encodings have already produced numer-
ous successes even without the recognition of this underlying issue.
The recognition of this retarding effect therefore suggests an oppor-
tunity, rather than a shortcoming, to tap the structure provided by
the development processes to further enhance the evolutionary ca-
pabilities with such encodings.
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