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Abstract- As a test-bed for studying evolutionary and
other machine learning techniques, we have developed a
simulated hockey game calledShockin which players at-
tempt to shoot a puck into their enemy’s goal during a
fixed time period. Multiple players may participate – one
can be controlled by a human user, while the others are
guided by artificial controllers. In previous work, we in-
troduced the Shock environment and presented players
that received global input (as if from an overhead cam-
era) and were trained on a restricted task, using an evo-
lutionary hill-climbing algorithm, with a staged learn-
ing approach. Here, we expand upon this work by de-
veloping players which instead receive input from lo-
cal, Braitenberg-style sensors. These players are able to
learn the task with fewer restrictions, using a simpler fit-
ness measure based purely on whether or not a goal was
scored. Moreover, they evolve to develop robust strategies
for moving around the rink and scoring goals.

1 Introduction

We have developed a test-bed for studying evolutionary and
other machine learning techniques – a simulated hockey game
calledShock, in which players attempt to shoot a puck into
their enemy’s goal during a fixed time period. Multiple play-
ers may participate and can be controlled either directly by
humans or artificially, by any kind of intelligent software.
One of our objectives in building the system was to create an
environment for comparing and evaluating various learning
techniques, as well as human interfaces. The work presented
here focuses on the evolution of artificial controllers, trained
to play Shock using a simple evolutionary algorithm.

Although our long-term aim is to co-evolve teams of play-
ers, for the present we focus on one-player scenarios, where
the task is for a single player to learn the low-level motor
commands necessary for manoeuvring the puck into its en-
emy’s goal from a random initial condition and within a fixed
time period. In order to perform the task well, a player must
develop subtle skills, for example to nudge the puck away
from a wall or out of a corner or to recover when the puck re-
bounds behind it, requiring the player to double back behind
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the puck. We have been exploring several methods for train-
ing artificial controllers to learn these techniques; and here,
we concentrate on evolutionary computation.

In previous work [Blair and Sklar, 1998], we showed how
neural network controllers could be trained in the Shock en-
vironment using a hill-climbing algorithm. In that work, the
networks received complete information about their own po-
sition and that of the puck, expressed in theglobal coordi-
nate system of the rink. Although these players were able
to develop reliable goal-scoring strategies (given certain re-
strictions), a number of arguments can be made for trying to
develop players which instead receive input only from simu-
latedlocal sensing devices. While the use of global informa-
tion conforms to the spirit of competitions such as Robocup
soccer2 [Kitano et al., 1995], nevertheless from an artificial
life or adaptive behaviour perspective, creatures that observe
the world from their own frame of reference come closer to
the ideal of embodied cognition [Pfeifer, 1998]. Additionally,
if Shock is to be considered as a simulation domain within the
context of evolutionary robotics, it is preferable to develop
controllers which carry their sensors on-board rather than re-
lying on input from external sources. Finally, from a machine
learning standpoint, we may enquire as to whether local sen-
sors will provide a more natural representation and therefore
improve generalization and robustness of evolved controllers.

With these motivations in mind, we now describe our ef-
forts to evolve Shock players that take their input from local,
Braitenberg-style sensors [Braitenberg, 1984] which respond
when a stimulus appears in their field-of-view and return an
activation value dependent on the distance to the stimulus.
We show how these players are able to evolve robust strate-
gies in general conditions, using only the raw fitness function
of whether or not a goal is scored.

2 The Shockenvironment

Shock is a type of hockey game played in a rectangular
rink on a near-frictionless surface (see figure 1). Collisions
between the players, puck and walls are calculated by the
“spring” method of collision handling [Keller et al., 1993]
and are totally elastic. This means that each experiences a

2In the small sized league, players may receive information from a cam-
era positioned above the playing field.



restoring force in the normal direction, proportional to the
depth of penetration. The puck collides frictionlessly with
both players and walls, and therefore never acquires any spin.
Each player experiences sliding friction when it collides with
another player or a wall – a force in the direction opposite to
the relative tangential motion and proportional to the restor-
ing force. The players and puck also experience a frictional
force as they slide on the rink, proportional to their velocity
and in the opposite direction.

Figure 1: The Shock Rink.

The rink is 1m wide by 1.5m long, with 100mm diag-
onals at the corners, and a 300mm goal at each end.3

Each player has a rectangular body 150mm by 50mm
and a mass of 500 grams. The puck is circular in shape
with a radius of 25mm and a mass of 100 grams.

Each player has a “skate” at either end of its body with
which it can push on the rink in two directions, as illustrated
in figure 2. This is reflected in the output of the simula-
tor’s controller, which is in the form(xL; yL; xR; yR) where
(xL; yL) and(xR; yR) represent the forces exerted at the left
and right skate, respectively. A restriction on the magnitude
of the applied forces is imposed as follows:
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whereFmax = 0:1N. Note the redundancy in the format
of the output; each player actually has only three degrees of
freedom.

The simulation is updated in time intervals of 0.01
seconds, which runs in approximately real-time. A non-
graphical version of the simulator, used for evolutionary
runs, executes much faster and can complete a game of 15
simulated seconds’ duration in about a quarter of a second4.

3Earlier work [Blair and Sklar, 1998] used rectangular corners and
150mm goals. The new configuration was introduced because it discour-
ages players from getting stuck in the corners, and prevents the goal-keeper
from simply blocking the entire goal.

4on one dedicated processor of an SGI Power Challenge.
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Figure 2: The Shock Player.

Shock differs from other real-time game simulators in
some significant ways:

� It uses anear-frictionlessenvironment, which provides
special challenges distinct from those of traditional sur-
faces [Brooks, 1986, Sims, 1995].

� The rink is compact, distinguishing the playing
arena from games that take place in an open plane
[Miller and Cliff, 1994, Funes et al., 1998].

� A strategy for collision management (as op-
posed to collision avoidance [Xiao et al., 1997,
Lee et al., 1996]) is needed in order to maneouvre
successfully within the confines of the rink space and
given the “zero-gravity” conditions provided by the
near-frictionless surface.

� The players have rectangular bodies, which makesori-
entationa consideration and allows players to develop
techniques different from those of circular players.

� The controllers employ two-dimensionalholonomic
actuators, enabling the players to move with more dex-
terity than standard one-dimensional wheels would al-
low.

Shock has been implemented in Java, and the controllers
are coded in extensible classes. The entire package is avail-
able so others can download it, create controllers of their own
and test them in our environment. Shock also includes a
graphical user interface that allows us to view the controllers
that have evolved and also to engage in games between a hu-
man player and a software controller. This gives us both vi-
sual and “hands-on” methods for evaluating players, to sup-
plement statistical results of training runs.

3 Artificial controller development

We have been developing a number of neural network con-
trollers, all of which take input information about the current
game condition and return four output values indicating the
magnitude and direction of forces to be applied at each skate
(as described in section 2).



3.1 Input

We equip the player with six simulated Braitenberg-style sen-
sors, each with a range of one meter and spanning an arc of
90�, with an overlap of30� between neighboring sensors (see
figure 3). Each of the six sensors responds to three different
kinds of stimuli: puck, enemy goal and friendly goal. This
provides 18 input values; three additional inputs act as “en-
coders”, informing the player of its current “observed” veloc-
ity (the difference between its current position and its previ-
ous position, divided by the time interval, expressed in the
player’s local frame of reference). As our work progresses
from single- to multi-player scenarios, we plan to include two
additional types of sensors which detect enemy and friendly
players, respectively.

Figure 3: Local sensors.

These local, Braitenberg-style sensors respond to a
stimulus in their field-of-view. A sensor reading near
1:0 indicates that the stimulus is nearby, while a read-
ing near0:0 indicates that it is some distance away. The
six overlapping cones emanating from the center of the
player show the field-of-view of each sensor. The vary-
ing diameters are used for illustrative purposes only; in
actuality, the range of each sensor is uniform.

3.2 Architecture

We explore two different architectures: one-layer networks,
which implement a linear function (as shown in figure 4),
and two-layer networks with 10 nodes at the hidden layer (as
shown in figure 5). Both architectures are fully connected.
In the two-layer networks, the hyperbolic tangent function is
employed at the hidden layer.

The output of each controller is a four-dimensional vector,
z, and is converted to an applied force vector as follows:

(xL; yL; xR; yR) = G
�
jjzjj

� z

jjzjj
Fmax

whereG is a bounded monotonic “transfer” function, and
Fmax is the maximum force (defined in section 2). This pre-
serves the direction of the output vector, altering only its mag-
nitude. It also allows the network sometimes to apply a very
small force by choosingxL andxR to be nearly opposites of
each other. In the results reported here, the hyperbolic tan-
gent function is used forG (although later experiments have

revealed that a linear threshold function produces nearly iden-
tical results).
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Figure 4: Single-layer (linear) network controller.
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Figure 5: Two-layer neural network controller.

In our first experiments with the local coordinate system
and the neural network controller, we found that in the initial
stages of evolution, the outputs were dominated by the bias
activation at the final layer; consequently, players would spin
uncontrollably and were unable to learn. To counteract this
problem, we removed the bias connections to the output layer,
and kept them only at the hidden layer.

4 Evolutionary learning paradigm

The work presented here uses hill-climbing as a learning
paradigm, applying a method which may be thought of as a
simple evolutionary algorithm with a population of two. A



champneural network is challenged by a series ofmutant
networks until one is found to do “better” than the champ;
the champ’s weights are then adjusted in the direction of the
mutant. The initial weights of the champ are all0. The basic
steps for evaluating a single generation are as follows:5

1. mutant champ + Gaussian noise
(with standard deviation� for each weight)

2. champ and mutant play up ton games6

3. if mutant does better than champ,
then champ (1� �) � champ+ � �mutant

Each game begins with a randomgame initial condition
(GIC) – a vector specifying a starting location and orientation
for the player, and a starting location for the puck. These po-
sitions may be anywhere in the rink. The player then moves
about the rink until either the puck goes into one of the goals,
or the allotted time of 15 seconds elapses. A score is then
awarded as follows:

+1 for hitting the puck into theenemygoal

�1 for hitting it into thefriendlygoal (i.e. the player’s own
goal)

0 for failing to hit it into either goal

Note that, even with no opponent, the need to avoid hitting
the puck into the friendly goal is an important part of the task,
since it prevents the player from learning to win by simply
batting the puck around randomly until any goal is scored.

The specific criteria we chose in order for the mutant to
be considered “better” than the champ were that the mutant
must score strictly higher than the champ in the first game,
and must continue to score at least as high as the champ in all
subsequent games. In this way, no further games are played
if the champ scores as high as the mutant in the first game,
or higher than the mutant in any of the other games. Thus,
the average number of games per generation is actually much
lower thann.

The practice of making only a small adjustment in the di-
rection of the mutant, modulated by the parameter� (which
we call themutant influence factor) was introduced in previ-
ous work on backgammon [Pollack and Blair, 1998] on the
assumption that most of the strategies of the (well-tested)
champion would be preserved, with only limited influence
from the mutant – since a small number of games are not
enough to determine absolutely whether the mutant is really
better, or just lucky. In related work [Blair et al., 1998], ap-
plying a similar learning algorithm to the deterministic do-
main ofTron [Funes et al., 1998], we found that a larger value
of � generally led (within limits) to a more robust player, by
exposing the champ to a greater variety of challengers. Of

5The results presented here used parameter values:� = 0:3, � = 0:067

andn = 5.
6The mutant is given the same GIC’s as the champ.

course the optimal value of� will likely vary from one task
domain to another.

In our earlier Shock experiments – which used controllers
with input and output expressed in global coordinates – we
found it necessary to introduce a restriction on the GIC’s in
order for the evolution to succeed. The restriction was as fol-
lows: the player must begin in the lower third of the rink,
and the puck in the middle third. In the current, local coor-
dinate system, we found that this restriction was unnecessary
– i.e. the player and puck may begin anywhere in the rink.
Although these unrestricted GIC’s ultimately make the task
harder, nevertheless in the early stages of evolution the oppo-
site effect may be true, since occasionally a GIC will occur in
which the puck and player are lined up close to the goal.

Additionally (in the previous work) we found it helpful
to modify the fitness function, since in the early stages
of evolution, the players are very unlikely to score at all.
Therefore, we introducedpartial credit adjustments in the
fitness measure which rewarded a player for moving closer
to the puck or for moving the puck closer to the enemy goal
(and away from the friendly goal). This kind of “staged
learning” or “shaping” [Dorigo and Colombetti, 1994,
Perkins and Hayes, 1997, Digney, 1996] has proven very
useful in a variety of contexts. However, there are potential
drawbacks: first, its implementation may require the use of
domain-specific knowledge, potentially compromising the
generality of the learning algorithm; second, the shaping
process may introduce distortions or perverse incentives
which distract the learner from its primary objective
[Angeline and Pollack, 1992]. For example, a player seeking
partial credit might push the puck close to the goal without
bothering to score, or might hover near to the puck without
actually touching it – for fear of moving it in the wrong
direction. We therefore attempt with the present work to
determine whether the task can be learned with only a raw
fitness function based purely on the number of goals scored.

5 Results

We present here results from four controllers: two single-
layer networks (lin0 andlin1) and two 2-layer networks (nn0
andnn1). Each pair of networks was evolved using the ex-
act same algorithm and parameters; only their starting seeds
were different. First, we show the percentage of successful
mutants, as the evolution proceeds, for all four controllers
(figure 6). This is a good indication of how the pace of learn-
ing accelerates. Very few mutants are successful in the early
stages of the 2-layer network evolution, since the network
outputs are very small and the player is unable to score un-
less it is lucky in the assignment of GIC. This will be the case
for both the champ and the mutant; recall that the mutant is
considered successful only if it does strictly better than the
champ – if neither champ nor mutant score, then the champ
is not replaced. After 100K generations or so, the advance-
ment begins in earnest.
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Figure 6: Percentage of successful mutants.

We tested the players on 1000 random GIC’s, after every
10000th generation. Figures 7a and 7b show the percentage
of goals scored out of these 1000 games, for contests lasting
both 15 and 30 seconds of elapsed time. Both win rate and
loss rate are shown. A “win” means that the puck went into
the enemy goal; a “loss” implies that the puck went into the
friendly goal. The win and loss rates are asymmetric because
in some games, the contest time passed before the puck went
into either goal.

The win rate for the 2-layer neural network players (fig-
ure 7a) reaches about 50% after generation 200K for contests
of 15 seconds; for games lasting 30 seconds, it approaches
80%. The win rate continues to climb to around 60% and
85% by generation 500K. The loss rate, after reaching briefly
into the teens within the first 100K generations, finally settles
down to around 4%. As for the “linear” players (figure 7b)
althoughlin0 improves much more rapidly thanlin1 in the
early stages, in the long run, both achieve a win rate of around
55% for the shorter games and 85% for the longer games.

Figure 8 illustrates the progress of playernn0 over 500K
generations. The blackened player and puck highlight the
GIC. The grey shapes are the final positions of each. We out-
line the player at regular intervals during the course of the
game, to emphasize the changes in the player’s orientation.
In order to highlight the evolution of the player’s abilities, we
use the same GIC throughout the figure.

Initially (8a), the player spins uncontrollably and does not
even approach the puck. By generation 200K (8b), the player
has learned to move towards the puck, but has not yet devel-
oped adequate control over the direction of its approach. It
narrowly misses the friendly goal, recovers well enough to
come close to scoring, but then fumbles the puck at the edge
of the enemy goal. Fortunately, it is able to swing around for
a second shot.

The network at generation 300K (8c) is able to recover
from the less serious folly of simply nudging the puck in
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a. Two-layer neural network controllers.
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Figure 7: Number of wins and losses for contests lasting 15
and 30 seconds of elapsed time.

the wrong direction initially. By generation 500K (8d), the
network has learned to integrate sensor information from the
three different stimuli and comes around behind the puck to
guide it smoothly into the goal. Training on the full reper-
toire of GIC’s encourages players to develop robust strategies
which help them to recover from their own blunders.

Finally, in Figure 9 we compare the abilities of some of
the most advanced players. As an example, we chose one
of the more challenging GIC’s that was used in our previ-
ous work. Controllersnn0 (9a) andlin0 (9c) as well aslin1
(not shown) learn to handle this GIC with relative ease, while
nn1 (9b) eventually scores, but not before fumbling the puck
in two corners, doubling back and finally dribbling the puck
into the goal. The controller in figure 9d was evolved in our
earlier work, where some of the environmental and learning
parameters were different. In particular, the maximum force
allowed by the controller was double that of the value used
in the current scenario (which accounts for the fewer number



a. generation 100K b. generation 200K

c. generation 300K d. generation 500K

Figure 8: The progress of playernn0.

of rectangles, implying a shorter amount of elapsed time oc-
curred). Despite these differences, it makes for an interesting
comparison – recall our aim to construct an environment in
which to contrast various learning techniques.

6 Further work

Using simple evolutionary techniques, we have developed
neural network controllers that learn to perform effectively
in a simulated hockey environment. We are currently investi-
gating how other training methods may be applied to this task
– including supervised and reinforcement learning – which
may reduce the amount of computation currently required.

We have found the Shock environment to be an interesting
and non-trivial domain, allowing exploration of many factors
that may contribute to the success or failure of evolution-
ary algorithms and other machine learning techniques. Our
earlier work (with global coordinates) required shaping the
task and modifying the fitness function during the prelimi-
nary stages of evolution. However, these adjustments were
not necessary in the present work (with local coordinates).

a. nn0, 500K b.nn1, 500K

c. lin0, 300K d. global coordinates, nn 300K

Figure 9: A comparison of controllers.

With further studies, we hope to understand better the issue
of how a change in input method and reference frame can
affect the learning process.

Aside from these ongoing efforts examining learning tech-
niques, we are using Shock for several other avenues of re-
search. These include (1) team play, (2) on-line human train-
ing, and (3) web-based tournament play.

In the area of team development, the next step is to in-
troduce two-player scenarios. These will allow us to make
direct comparisons by initiating contests between two play-
ers that use different controllers and/or training techniques.
Eventually, teams with two or more players will lead us into
the realm of multi-agent systems, where issues like commu-
nication and specialization become important factors.

Also, we are using the Shock environment to study the ef-
fect of active human input to a machine learner while it is
adapting. We are building an interactive version of Shock
which enables humans to train players using a supervised
learning method.

Finally, we are in the process of creating a Shock tour-
nament on the web. The purpose is to establish a proving



ground for different controllers, trained using a variety of
methods. Users may submit controllers that will then com-
pete in a continually running off-line tournament, and visitors
to the web site will be able to check on their progress. Hu-
mans can also select any artificial controller and play games
against it. Please visit our web site and participate...

http://www.demo.cs.brandeis.edu/shock
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