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Abstract
Programming languages provide a variety of mechanisms to associate

names with values, and these mechanisms play a central role in program-
ming practice. For example, they allow multiple references to the same
storage location or function in different parts of a complex program. By
contrast, the representations used in current genetic programming sys-
tems provide few if any naming mechanisms, and it is therefore generally
not possible for evolved programs to use names in sophisticated ways. In
this chapter we describe a new approach to names in genetic programming
that is based on Holland’s concept of tags. We demonstrate the use of
tag-based names, we describe some of the ways in which they may help
to extend the power and reach of genetic programming systems, and we
look at the ways that tag-based names are actually used in an evolved
program that solves a robot navigation problem.
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1. Programming with Names

It would be hard to imagine a modern computer programming lan-
guage that did not allow programmers to name data objects and func-
tional modules. Indeed, even the simplest assembly languages allow pro-
grammers to label defined code and data and then, later, to use those
labels to refer to the defined items. The binding of names is also a fun-
damental operation in the interpretation of lambda expressions, which
provide the semantic foundations of programming language theory.

Certainly for any task that lends itself to hierarchical, modular de-
composition, a programmer will want to assign names to modules and
to use those names to allow modules to refer to one another. Because we
can expect most complex real-world problems to fit this description to
some extent—as Simon put it, hierarchy is “one of the central structural
schemes that the architect of complexity uses” (Simon, 1969)—we can
understand why naming is such an important element of programming
language design.

Indeed, naming is so important that language designers accommodate
it even though it complicates both language and compiler design in a
variety of ways. The grammars of most programming languages fail to
be fully context free because name definitions and uses must match,
and special measures must be taken to ensure program validity and the
proper handling of name references in the context of language-specific
rules for name scope and extent.

The concept of a “name” is not, however, completely straightforward.
A great many subtleties in the use of names have been noted by philoso-
phers of language and logic over millennia, with seminal contributions
to the theory of names having been made by Aristotle, John Stuart
Mill, Gottlob Frege, Bertrand Russell, and others. Many of these the-
ories consider names to be abbreviated descriptions, a characterization
that might apply to binding forms in declarative languages such as Pro-
log, but which does not seem to apply to names as used in imperative or
functional programming languages. Arguably the most significant recent
work was done by Saul Kripke, whose Naming and Necessity breaks from
the tradition of description-based theories of names and presents a causal
theory that accounts for proper names as “rigid designators” (Kripke,
1972). While natural languages and programming languages are quite
different, aspects of Kripke’s theory do seem to apply to names in im-
perative and functional programming languages as well. The key insight
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is that a name is associated with a referent through an act of “dubbing”
or “baptism,” after which the name will designate the referent.1

How does this concept of naming apply to programming practice?
In most programming languages the programmer can use definitions to
perform the “dubbing” action, after which the defined names can be
used to refer to the values provided in the definitions. Names may also
occur within named values, of course, and these will in turn refer to
values that were associated with those names in previous definitions.
The use of a name that has not been defined is generally an error that
halts compilation or execution; this has implications for the evolution
of name-using programs, as discussed below. Additional complications
are introduced when the same name is defined more than once; different
programming languages deal with this issue in different ways, expressed
through the languages’ rules for scope and extent.

What about names in genetic programming? In the simplest tradi-
tional genetic programming systems, such as that described in (Koza,
1992), no explicit facilities for naming are provided. In systems with
automatically defined functions, such as that described in (Koza, 1994),
evolving programs define and use names for functions and their argu-
ments but the numbers and types of names are specified in advance
by the human who is using the system; they do not arise from the ge-
netic programming process. In systems with “architecture-altering op-
erations,” like that described in (Koza et al., 1999), the number and
types of names do indeed emerge from the evolutionary process but only
through the use of considerably more complicated program variation op-
erators that must ensure that calls to functions match their definitions
and that all names are defined before they are used. Furthermore, the
programs produced by these systems can only use names in certain pre-
defined ways; for example, they cannot dynamically redefine names as
they run, as many programs written by humans do.

However, even in the simplest traditional genetic programming sys-
tems one can include functions in the function set that provide name-like
capabilities. Perhaps the most straightforward of these is “indexed mem-
ory,” in which “write” and “read” functions store and retrieve values by
integer indices (Teller, 1994). In a sense, indexed memory provides a
naming scheme in which names are integers and in which undefined
names refer to a default value (e.g. zero). The standard indexed mem-
ory scheme does not permit the naming of code, but one could imagine
simple extensions that would allow this.

1Kripke’s theory is considerably more complicated than this, and is expressed in terms of his
“possible world semantics.” We will not be concerned with these complications here.
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Of course, there are now many other forms of genetic programming,
and different opportunities for naming may arise in each of them. Any
system that permits the evolution of modules of any kind must have some
way of referring to the modules that have been defined, and such systems
will therefore have to have some capabilities or conventions for naming
(Koza, 1990; Koza, 1992; Angeline and Pollack, 1993; Kinnear, Jr., 1994;
Spector, 1996; Bruce, 1997; Racine et al., 1998; Roberts et al., 2001; Li
et al., 2005; Jonyer and Himes, 2006; Hornby, 2007; Hemberg et al.,
2007; Walker and Miller, 2008; Shirakawa and Nagao, 2009; Wijesinghe
and Ciesielski, 2010). Some other systems use forms of reference based
on pattern matching (Ray, 1991), which bear some similarities to the
tag-based naming scheme that we present below. However, we do not
believe that any of these systems have demonstrated the full gains that
we should expect from capabilities for the flexible evolution of complex
modular architectures.

In this chapter we describe work on a new technique for naming that is
based on “tags” as described by Holland (Holland, 1993; Holland, 1995).
Tags have been used in a variety of contexts, most notably in work on
the evolution of cooperation (e.g. (Riolo et al., 2001; Spector and Klein,
2006; Soule, 2011)), but their use for naming in genetic programming
is new. We will argue that this new technique provides powerful new
capabilities.

Although tag-based names can conceivably be used in many kinds of
genetic programming systems, our work to date has been conducted with
PushGP, a genetic programming system that evolves programs expressed
in the Push programming language. We will therefore next present the
core concepts of Push, including the facilities for naming that have long
existed in Push but which have never been shown to be useful for pro-
gram evolution. We will then introduce tags and describe how they may
be used to name modules in various kinds of genetic programming sys-
tems, with a focus on their implementation in PushGP. Following the
description of the technique we discuss recent results that demonstrate
the utility of tag-based modularity on standard problems, and we look
in detail at the ways that tags are actually used in evolved programs.
We conclude with a number of directions for future work.

2. Push and Push Names

The Push programming language was designed for use in evolutionary
computation systems, as the language in which evolving programs are
expressed (Spector, 2001; Spector and Robinson, 2002a; Spector et al.,
2005). It is a stack-based language in which a separate stack is used
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for each data type, with instructions taking their arguments from—and
leaving their results on—stacks of the appropriate types. This allows
instructions and literals to be intermixed regardless of type without je-
orardizing execution safety. Instructions act as “no-ops” (that is, they
do nothing) if they find insufficient arguments on stacks. Push imple-
mentations now exist in C++, Java, JavaScript, Python, Common Lisp,
Clojure, Scheme, Erlang, and R. Many of these are available for free
download from the Push project page.2

In Push “code” is itself a data type. A variety of powerful capabilities
are supported by the fact that Push programs can manipulate their own
code on the “exec” stack, which stores the actual execution queue of
the program during execution, and on the “code” stack, which stores
code but is otherwise treated as any other data stack. Push programs
can transform their own code in ways that produce the effects of auto-
matically defined functions (Koza, 1992; Koza, 1994) or automatically
defined macros (Spector, 1996) without pre-specification of the number
of modules and without more complex mechanisms such as architecture-
altering operations (Koza et al., 1999). Push supports the evolution of
recursion, iteration, combinators, co-routines, and novel control struc-
tures, all through combinations of the built-in code-manipulation in-
structions. PushGP, the genetic programming system used for the work
presented below, was designed to be as simple and generic as possible
(e.g. it has no automatically defined functions, strong typing mecha-
nisms, or syntactic constraints) aside from using Push as the language
for evolving programs, but it can nonetheless produce programs with all
of the features described above because of the expressive power of the
Push language itself.

Push supports several forms of program modularity that do not in-
volve naming. For example, a Push program can use standard stack-
manipulation instructions on the exec stack (e.g. exec.dup, which du-
plicates the top element of the exec stack, and exec.rot, which rotates
the top three items on the exec stack) to cause sub-programs to be ex-
ecuted multiple times, providing a form of modular code reuse. More
exotic forms of nameless modularity can be implemented by manipulat-
ing code in arbitrary ways prior to execution, using Push’s full suite of
code manipulation instructions that were inspired by Lisp’s list manip-
ulation functions (including versions of car, cdr, list, append, subst,
etc.). Push also includes versions of the K, S and Y combinators in com-
binatory logic (Schönfinkel, 1924; Curry and Feys, 1958), each of which

2http://hampshire.edu/lspector/push.html
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performs a specific transformation on the exec stack to support the con-
cise expression of arbitrary recursive functions. These mechanisms have
been shown to support the evolution of programs with evolved control
structures that are in some senses modular and that solve a wide range
of problems. For example, even before the introduction of the exec stack
manipulation instructions (which appeared with “Push 3” in 2005 (Spec-
tor et al., 2005)) Push’s code manipulation mechanisms had been shown
to automatically produce modular solutions to parity problems (Spector
and Robinson, 2002a) and to induce modules in response to a dynamic
fitness environment (Spector and Robinson, 2002b). More recent work,
using Push 3, has produced solutions to a wide range of standard prob-
lems (including list reversal, factorial regression, Fibonacci regression,
parity, exponentiation, and sorting (Spector et al., 2005)) along with
the production of human-competitive results in quantum circuit design
(Spector, 2004) and pure mathematics (Spector et al., 2008).

But what about named modules? Push includes a data type for
names, along with instructions for associating names with values and
for retrieving named values, but the use of names has never been evi-
dent in evolved programs. One can write Push programs that use names
by hand, but such programs have not readily emerged from genetic pro-
gramming runs. This has been an issue of concern to the Push devel-
opment team, and consequently the details of the ways in which Push
handles names have been revised and refined several times over the his-
tory of the project. The current version of the language specification,
for Push 3 (Spector et al., 2004), allows names to be defined and used
quite parsimoniously.

For example, consider this program fragment from (Spector et al.,
2005):

(times2 exec.define (2 integer.*))

Because times2 is not a pre-defined Push instruction and does not yet
have a defined value the interpreter will push it onto the name stack
when it is processed. When exec.define is processed it will pop the
name stack and associate the popped name (times2) with the item that
is then on top of the exec stack (which will then be (2 integer.*); the
exec stack will also be popped). Subsequent references to times2, unless
they are quoted, will cause the value (2 integer.*) to be pushed onto
the exec stack, with the effect that times2 will act as a named subroutine
for doubling the number on top of the integer stack. Of course one could
do the same thing with any arbitrarily complex module code.

However, even though the Push 3 naming scheme is both powerful and
parsimonious we have rarely seen it used in significant ways in evolved
programs. Why? Our most recent thinking on this question has focused
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on the difficulty of matching name definitions and references, which de-
pends in part on the number of names in circulation and in part on the
details of the genetic programming system’s code generation and vari-
ation algorithms. Concerning the former, one faces a dilemma because
the best way to promote the matching of definitions and references is to
provide only a small number of names, but doing so would also limit the
complexity of the name-based modular architectures that can possibly
evolve, which is antithetical to our research and development goals. A
variety of approaches to this dilemma might be envisioned, and we have
explored options such as gradually increasing the number of available
names over the course of a genetic programming run. But the mea-
sures that we have taken have not been particularly effective. One can
also envision a variety of modifications to code generation and varia-
tion algorithms that would encourage or enforce the proper matching of
name definitions and references, for example by adding definition and
reference expressions to programs only in matched pairs and by repair-
ing mismatches after crossover. Such approaches deserve study, but
we are more interested in approaches that allow name-use strategies to
emerge more naturally from the evolutionary process, without putting
constraints on the ways in which names can be used and without requir-
ing the re-engineering of the overarching evolutionary algorithm.3

This is the context within which we turn to the concept of tags, to
provide a mechanism for naming and reference that is more suited to
use in genetic programming systems.

3. Tags

John Holland, in his work on general principles of complex adaptive
systems, has presented an abstraction of a wide variety of matching,
binding, and aggregation mechanisms based on the concept of a “tag”
(Holland, 1993; Holland, 1995). A tag in this context is an initially mean-
ingless identifier that can come to have meaning through the matches
in which it participates. Holland provides several examples of tag-like
mechanisms in human societies and in biological systems, including ban-
ners or flags used by armies and “the ‘active sites’ that enable antibodies
to attach themselves to antigens” (Holland, 1995, p. 13). In some but
not all of the examples of tag usage presented by Holland and others the

3It is particularly desirable to avoid constraints on code generation and variation in meta-genetic
programming systems and autoconstructive evolution systems, in which code generation and vari-
ation algorithms are themselves subject to random variation and selection. But we think it is
desirable to do this even in the context of standard genetic programming with hand-designed code
generation and variation algorithms.
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matching of tags may be inexact, with binding occurring only if the de-
gree of match exceeds a specified threshold, or with the closest matching
candidate being selected for binding. This inexact matching will be cru-
cial for the application to genetic programming that we present below.

One of the areas in which the concept of tags has been applied by
several researchers is the study of the evolution of cooperation. For ex-
ample, in the model of Riolo, Cohen, and Axelrod, one agent will donate
to a second agent if difference between the tags of the two agents is less
than the “tolerance” threshold of the donor (Riolo et al., 2001). In this
model, and the related models that have subsequently been developed
by others (Spector and Klein, 2006; Soule, 2011), tags and tolerances
are allowed to change over evolutionary time. These studies show that
the existence of a tagging mechanism can have major effects on the fea-
tures of the systems that evolve, sometimes permitting the evolution of
cooperation in contexts in which it would not otherwise emerge.

How can tags be used to address the issues described in the previ-
ous section, concerning the use of names in genetic programming? We
suggest that tags be incorporated into genetic programming systems by
providing mechanisms that allow programs to tag values (including val-
ues that contain executable code), along with mechanisms that allow for
the retrieval and possible execution of tagged values. Tags differ from
names in this context because we can allow inexact tag matching, and
because this can better facilitate the coordination of “name definitions”
(now “tagging” operations) and “name references” (now tag-based re-
trieval operations, also called “tag references”). In particular, we can
specify that a tag reference will always recall the value with the closest
matching tag. This will ensure that as long as any value has been tagged
all subsequent tag references will retrieve some value. As more values
are tagged with different tags, the values retrieved by particular tag
references may change because there may be different closest matches
at different times.4 But at almost all times—except when no tagging
actions have yet been performed—each tag reference will retrieve some
tagged value. If our current thinking about the evolutionary weakness
of ordinary names is correct then tag-based names, with “closest match”
retrieval, should make it easier to evolve programs that make significant
use of named (actually tagged) modules.

4The set of tagged values will grow dynamically during program execution, as tagging instructions
are executed. In addition, new tagging instructions may be added to programs over evolutionary
time by mutation and by other genetic operators. Such events may cause a tag reference to refer
to a different value than it referred to previously.
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Versions of this general tagging scheme might be applied to a wide
range of genetic programming systems. One implementation choice that
must be made for any application concerns the representation of tags. In
biology tags may be complex, structured objects, while in applications to
the evolution of cooperation they have often been floating-point numbers
with tag matching based on numerical differences.5 In our work on tag-
based modules in genetic programming we have used an even simpler
representation in which tags are positive integers and tag matching is
based on a ceiling function. We say that the closest match for a reference
to tag tref , among all tags tval that have been used to tag values, is the
tag tval ≥ tref for which tval− tref is minimal if at least some tval ≥ tref ,
or the smallest tval if all tval < tref . This means that if there is no
exact match then we “count up” from the referenced tag until we find
a tag that has been used to tag a value, wrapping back to zero if the
referenced tag is greater than all of the tags that have been used.

Another implementation choice concerns the relation between tags,
the instructions that tag values, and the instructions that use tags to re-
trieve values. It would be possible to treat tags as first-class data items,
and to write tagging and tag reference instructions to take these data
items as arguments. For the sake of parsimony, however, we have opted
instead to embed tags within the tagging and tag reference instruction
names so that, for example, an instruction such as tag.float.123 would
be used to tag a floating-point value with the tag “123” and an instruc-
tion such as tagged.123 would be used to retrieve the value that has
been tagged with the tag closest to “123.”

In the context of these implementation decisions we can consider fur-
ther steps required to provide tagging in various types of genetic pro-
gramming systems. In the simplest traditional genetic programming sys-
tems, which represent programs as Lisp-style symbolic expressions and
which do not include any facilities for automatically defined functions, we
might support calls to one-argument functions of the form tag.i, which
would act to tag the code in their argument positions with the tags em-
bedded in their names (and presumably return some constant value or
the results of evaluating their arguments), and also zero-argument func-
tions of the form tagged-i, which would act as branches to the code with
the closest matching tag (or presumably return some constant value if no
code had yet been tagged). The system’s code generation routines would
have to be modified to produce such function calls, and the program ex-
ecution architecture would have to be modified to support an execution

5In some of the work in this area tags are points in a multi-dimensional space, with matching
determined by Euclidean distance (Spector and Klein, 2006).
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step limit that prevents unbounded recursion. This particular imple-
mentation would only allow the tagging of zero-argument functions, but
it might nonetheless have utility.

Systems that already support automatically defined functions and ar-
chitecture altering operations present different opportunities, and we
might begin by simply replacing function names with tags, both in def-
initions and in calls. This would allow us to drop many of the measures
that must ordinarily be taken in such systems to ensure that all calls
refer to defined functions, since calls would refer to the function with the
closest matching tag (or to some default function if no function has yet
been defined). Measures would still have to be taken to ensure that the
numbers of arguments in calls match the numbers of parameters of def-
initions, but initial experiments might be conducted with settings that
mandate a single, constant number of parameters for all automatically
defined functions.

In the context of Push it is quite simple to define even more gen-
eral and powerful tagging and tag-reference mechanisms. Each tagging
instruction, of the form tag.<type>.i, pops the stack of the specified
type and associates the popped value with the specified tag. As with
all other Push instructions, if the needed value is not on the specified
stack then the instruction does nothing. Tagging instructions specifying
a type of “code” or “exec” can be used to tag bodies of code, which
can be used as named (tagged) code modules that take any number of
arguments and return any number of values. Instructions of the form
tagged.i retrieve the value with the closest matching tag and push it
onto the exec stack. If the value is a literal of some type other than
code then its execution will push it onto the appropriate stack, follow-
ing the standard Push execution semantics. If the value is code then
it will be executed. Additional instructions (not used here) of the form
tagged.code.i retrieve tagged values to the code stack rather than the
exec stack, allowing for further manipulation prior to execution. And
additional instructions (also not used here) of the form untag.i can be
used to remove tags from previously tagged values.

In previous work (Spector et al., 2011) we have demonstrated that tag
usage readily emerges in runs of PushGP and that the availability of tags
allows PushGP to scale well on problems such as the lawnmower prob-
lem, which Koza used to show that systems with automatically defined
functions scaled better than those without them (Koza, 1994). In fact,
the results showed that PushGP with tags scaled better than PushGP
with combinators and exec stack manipulation instructions, which are
the PushGP mechanisms that had previously been most effective in sup-
porting the evolution of modularity. It is therefore clear that we have
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succeeded in our goal of developing a way to evolve programs using ar-
bitrary named (tagged) values, and it is also clear that this capability
does indeed enhance the power of genetic programming.

4. What’s in an Evolved Name?

Our prior work showed that tags can support the evolution of modu-
larity and that this capability can allow a genetic programming system
to scale well on problems that have regularities that can be exploited by
modular programs (Spector et al., 2011). But in the prior work we did
not study the modules that were actually produced by genetic program-
ming. In the remainder of this chapter we take this additional step.

One of the problems to which we applied PushGP with tags in our
prior work is the “dirt-sensing, obstacle-avoiding robot problem” (orig-
inally described in (Spector, 1996)). This problem is much like the
lawnmower problem, in which one seeks a program that causes a robotic
lawnmower to mow the grass in all of the squares in a “lawn” grid, but
with the following modifications: the metaphor is changed from lawn
mowing to mopping, there are irregularly placed objects through which
the robot cannot move, and sensors are provided for dirt and for ob-
stacles. Each program is tested on two grids with differently placed
obstacles. The details of the problem specification and system configu-
ration are not relevant to our purposes here, but the interested reader
may consult (Spector et al., 2011).6

In one PushGP run on this problem, on an 8 × 12 grid, we evolved a
successful program that had the modular calling structure shown in Fig-
ure 1-1 for one of the two obstacle placements on which it was tested, and
the modular calling structure shown in Figure 1-2 for the other obstacle
placement. Each of these figures was produced by tracing tag references
dynamically during a run of an automatically simplified version of the
evolved program, with each unique retrieved value being represented as
a distinct node in the graph and with Module 0 being added to the
graph to represent the entire program (with which execution starts).
The thicknesses of the node outlines indicate the size of the code in the
corresponding modules. Arrows between nodes indicate that the module
at the tail of an arrow initiates a call of the module at the head of the
arrow, and the numbers by the arrows indicate the number of times that
such calls are made in a single execution of the program.

There are many interesting things to note about these diagrams. First
it is interesting to note that they are different, which means that the pro-

6See also the source code and erratum note at http://hampshire.edu/lspector/tags-gecco-2011.
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Figure 1-1. The modular calling structure of an evolved solution to the dirt-sensing,
obstacle-avoiding robot problem when executed on one particular 8× 12 grid.

gram executes different code, with altered modular architectures, when
it confronts different environments. But there are also many commonali-
ties between the two diagrams. In particular, each shows that module 4,
which is relatively large and complex, is used as a main loop that makes
many calls to Module 2 which in turn calls Module 3. Table 1-1 shows
the actual code associated with each module, and while we have not pre-
sented enough details about the problem or instructions to explain this
code completely, we can nonetheless see, for example, that Module 3 is
the only one of the large and frequently called modules that performs
obstacle sensing; we can therefore infer that it serves as something like
a subroutine for obstacle avoidance.

In producing these diagrams we also noticed that this evolved program
does not dynamically redefine any tagged modules after their first uses.
That is, it is never the case that the same tag retrieves two different
values at different times during the execution of the program. This
is interesting in part because it is an emergent property that is not
mandated by the tagging mechanism; programs that perform dynamic
redefinition may be produced in other runs.

One other interesting observation regarding this solution is that it
treats module boundaries in unconventional ways. For example, Module
3 ends with (if-dirty frog) which is part of a conditional expression.
If the robot is facing a dirty grid location then frog will be executed,
but if it is not then the first expression in the code that follows the call
to Module 3—in this case this will be tagged.10, in Module 2—will be
executed. Furthermore, if the robot is facing a dirty grid location then
not only will frog be executed but also the call to tagged.10, which is
not textually within the same module as the if-dirty conditional, will
be skipped. This arrangement clearly has utility but it is quite unusual
from the perspective of ordinary human programming practice.
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Figure 1-2. The modular calling structure of the same evolved solution to the dirt-
sensing, obstacle-avoiding robot problem that produced the structure diagrammed in
Figure 1-1 but, in this case, executed on a different 8× 12 grid.

Table 1-1. Code modules retrieved by tag references in an automatically simplified ver-
sion of an evolved solution to the 8× 12s dirt-sensing, obstacle-avoiding robot problem.
See (Spector et al., 2011) for full descriptions of the instructions used for this problem.

Module # Tag # Value
0 [main] [omitted to conserve space]
1 242 mop
2 608 (tag.exec.489 frog left tagged.220 tagged.10)
3 238 ((left) (if-obstacle (if-obstacle) (mop if-dirty

if-obstacle left mop) (if-obstacle (left
tagged.243 tagged.239 left)) tag.exec.770)
(tagged.343) (if-dirty frog))

4 360 ((mop mop (mop mop left mop tag.exec.143
v8a if-dirty if-dirty left tagged.435) (if-dirty)
(tagged.662 tag.exec.91) (if-dirty mop))
(if-dirty if-dirty tagged.580) (tagged.336))

5 489 frog
6 695 if-obstacle
7 143 v8a
8 245 left
9 200 left
10 920 left
11 258 mop
12 770 tagged.343
13 90 mop
14 248 frog
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5. Conclusions and Future Work

We have described a new technique for evolving programs that use
name-like designators to refer to code and data modules, and we have
situated this new mechanism within the literature of related mecha-
nisms that have been used in genetic programming. In previous work
we demonstrated that this new mechanism, which is based on Holland’s
concept of tags, supports the evolution of modular programs and allows
genetic programming to scale well on certain benchmark problems. Here
we also exhibited the actual modular architectures produced by the sys-
tem for the dirt-sensing, obstacle-avoiding robot problem. We believe
that we have demonstrated that tags can support the evolution of pro-
grams with complex, modular architectures, and that they may therefore
play an important role in the future application of genetic programming
to complex, real-world problems.

We have outlined ways in which tags could be implemented genetic
programming systems that evolve Lisp-like symbolic expressions, but
we have only experimented with tag-based modularity in PushGP so
far. An obvious area for future work is to implement and test versions
of the technique in other kinds of genetic programming systems.

Among the other next steps that we would like to take are the tracing
and analysis of tag usage over the course of evolutionary runs. We would
expect tag usage to grow incrementally, and we would expect to see evo-
lutionary transitions when new tags arise and “steal” references from
pre-existing tags. We would also like to explore variations of the tech-
nique. For example, preliminary experiments in PushGP indicate that
tag-based modules may arise even more readily if tagging instructions
do not pop their arguments from their stacks, so that the insertion of a
tagging instruction into a program is more likely to leave the function-
ality of the program unchanged until a tag reference instruction is later
added; we would like to explore this variation more systematically. More
ambitiously, would also like to investigate tag reference mechanisms that
support more sophisticated notions of scope and extent, along with tag
matching schemes in which the conditions for matching are themselves
subject to variation and natural selection.7
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