
Scaling-up RAAMs

Alan D. Blair
Dept. of Computer Science

Volen Center for Complex Systems

Brandeis University

Waltham, MA 02254-9110

blair@cs.brandeis.edu

January 6, 1997

Abstract

Modi�cations to Recursive Auto-Associative Memory are presented,

which allow it to store deeper and more complex data structures than

previously reported. These modi�cations include adding extra lay-

ers to the compressor and reconstructor networks, employing integer

rather than real-valued representations, pre-conditioning the weights

and pre-setting the representations to be compatible with them. The

resulting system is tested on a data set of syntactic trees extracted

from the Penn Treebank.

1 Introduction

In the late 1980's a number of new connectionist models were developed in re-

sponse to criticisms (e.g. Fodor & Pylyshyn, 1988) that connectionism lacked

the
exibility and representational adequacy needed for higher level cogni-
tive tasks. Chief among these were coarse coding (Touretzky, 1986), tensor

based representations (Smolensky, 1990), reduced representations (Hinton et
al., 1986), and RAAM (Pollack, 1990). Compared to earlier systems, they

had the advantage of compositionality built more explicitly into their design,

and they have shown a great deal of promise in a number of areas (Chalmers,
1990, Elman, 1990, Chrisman, 1991, Blank et al., 1992, Plate, 1994, Niklas-
son & van Gelder, 1994). However the data used to test these models has

1

generally been con�ned to relatively simple structures { at most 3 or 4 lev-

els deep. Our aim was to see whether one of these architectures could be

adapted to handle linguistic data of `real world' complexity. To �nd such

data, we took a small fragment of the Penn Treebank (Marcus et al., 1993) {

a large corpus of text from the Wall Street Journal { and used a �lter to strip

out the text, leaving only the syntactic structures. We took the liberty of

slightly modifying the parse trees to make them binary { since our purpose

was not to get the syntactic details exactly right, but simply to gather data

of the appropriate size and complexity.

Many of the resulting trees (see Appendix) were quite complex { 8 levels

deep or more { making them problematic for traditional architectures. For

example, tensor-based representations require storage space that grows ex-

ponentially with the depth of the structures to be stored, while RAAMs have
di�culty learning deep structures like these because of roundo� errors that
grow exponentially with the depth of the trees being encoded. We therefore
developed a number of modi�cations to the RAAM architecture in the hope
of allowing such deep structures to be processed successfully.

2 Review of RAAM

LEFT RIGHT

WHOLE

LEFT RIGHT

A
A
AK

�
�
��

�
�
��

A
A
AK

6

6

2d OUTPUT UNITS

d HIDDEN UNITS

2d INPUT UNITS

RECONSTRUCTOR

COMPRESSOR

Figure 1. RAAM architecture - a single network composed of

a compressor and a reconstructor.

Recursive Auto-Associative Memory or RAAM (Pollack, 1990) is a method

for storing tree structures in a feed-forward neural network. It's architecture
is very similar to that of encoder networks (Ackley et al., 1985, Cottrell et

al., 1987), consisting of a compressor unit and a reconstructor unit. The
principal di�erence is that in a RAAM the compressor and reconstructor are

used recursively to encode and decode, respectively.

2

J
J
J
J
J
J
J

GF

E

b

a

F G

a

F G

��� AAK

AAK ���

E a

b

E a

��� AAK

AAK ���

Figure 2. A simple tree and the auto-associations that

encode it in a RAAM.

Figure 2 shows how a RAAM encodes the tree (E (F G)). First we feed

(F G) into the compressor network, giving output a. Then we feed in (E a),
giving b. To decode, we feed b into the reconstructor network, giving (E a).
At that point we need some kind of `terminal test' to tell us that E, F & G
are terminals (requiring no further decoding), while a is a non-terminal that

must be fed again into the reconstructor - giving (F G).
Several trees may be stored in the same RAAM at once. In what follows,

we shall measure the size of a data set by the number n of subtrees or
`auto-associations' required to encode it. In the above example n = 2.

3 Modi�cations to RAAM

3.1 Hidden layers

We enlarge the compressor and reconstructor networks to two layers each as
shown in Figure 3, in order to increase the number of functions computable
by the network.

3.2 Digital outputs

One problemwith RAAMhas been that, since the representations are allowed

to take on non-integer values, greater accuracy is required as the depth of

the trees increases, in order to prevent accumulation of round-o� errors. We
modify the network so that each output must take on a discrete value (+1 or
�1), thus allowing deeper structures to be stored in a noise tolerant fashion.

3

s t

u

x

v y

w z

�
��

A
AK

6

B
BM

�
��

B
BM

�
��

A B

C

P Q

L R

d UNITS (EACH)

2d UNITS

d UNITS

d + e UNITS (EACH)

d UNITS (EACH)

Figure 3. Architecture for Two Layer RAAM.

This is done by using a threshold function � at the second layer of the
compressor and reconstructor networks, while a hyperbolic tangent is used

at the hidden layers:

xi = �
�
Ci0 +

2dX
j=1

Cij tanh(Aj0 +
dX

k=1

(Ajksk +Bjktk))
�

wi = �
�
Li0 +

d+eX
j=1

Lij tanh(Pj0 +
dX

k=1

Pjkxk)
�

zi = �
�
Ri0 +

d+eX
j=1

Rij tanh(Qj0 +
dX

k=1

Qjkxk)
�

3.3 Pre-conditioned weights

It is well known that the success of neural network training using back-

propagation is sensitive to the initial weight con�guration (Kolen & Pollack,

1990), and indeed can be enhanced by pre-setting some or all of the weights
(Pratt et al., 1991). The complete randomness of the initial representations

and weights becomes a signi�cant problem as RAAMs are scaled up. To

4

increase the likelihood of convergence, we adopt the following strategy for

choosing the initial weights:

First, randomly choose two signed permutation matrices P0 and Q0. For

example, if d = 4, we may have

P0 =

2
6664

0 0 1 0

�1 0 0 0

0 0 0 1

0 1 0 0

3
7775 Q0 =

2
6664
0 0 1 0

0 0 0 �1

0 �1 0 0

1 0 0 0

3
7775

Once P0 and Q0 are chosen, we assign the initial weights for the reconstruc-

tors as follows:

P =
1

d

"
P0

0

#
Q =

1

d

"
Q0

0

#
L = R =

"
I(d)

d

�����
I(e)

n

0

#

where I(d) is the (d� d) identity matrix, and 0 denotes a zero matrix of the
appropriate dimensions. In other words, the �rst d nodes of the hidden layer
of the reconstructors (i.e. layers v and y in Figure 3) and compressor (i.e.

layer u) are connected in a 1-to-1 fashion with those of the input and output
layer (i.e. layers w, z and x, respectively) by connections with synaptic
strength d

�1, in such a way that the connections to the output layer are
component-wise and excitatory, while those to the input layer are randomly
assigned and may be excitatory or inhibitory. The remaining e nodes are

connected componentwise to the �rst e nodes of the output layer by weaker
excitatory links with strength n

�1 (where n is the number of subtrees to be
stored). All other connections are initially set to zero. Each layer also has
bias inputs, which are also initialized to zero. The initial compressor network
is wired as follows, where P0 and Q0 denote the transpose of P and Q:

A =
1

d

"
P0

0

0

#
B =

1

d

"
0

Q0

0

#
C =

1

d

h
I(d) I(d)

i

This setup has the following advantages:

(a) the initial compressor is a left inverse for the initial reconstructor,
(b) it produces compressors and reconstructors with much longer transients

than would be the case with random initial weights, thus allowing the network
to store trees of greater depth.

5

3.4 Initial representations

In single layer RAAM, non-terminal representations are determined by the

network as an artifact of the training. This approach has the disadvan-

tage that two or more representations may become fused in the course of

the training (Angeline, 1992). The fusion problem gets more pronounced as

the number of nodes increases, and is even more prevalent when the rep-

resentations become digital. We circumvent this di�culty by assigning the

representations at the outset, in a way that is compatible with the initial

weights. To see how this is done, consider our earlier example:

J
J
J
J
J
J
J

GF

E

b

a

Now imagine a linearized version of the problem, in which the compressor

and reconstructors are e�ected by (linear) matrix multiplications, rather than
two-layer neural networks. In fact the initial weights as de�ned above do just
that, using the matrices

h
P0

0 Q0

0

i
, P0 & Q0, respectively. Now suppose we

assign a random representation to the root node b . For instance, we could
assign

x(b) =

2
6664

1

1
�1
1

3
7775

Then it would be natural to use our initial (linearized) reconstructors P0 &
Q0 to determine representations for the other nodes, putting

x(E) = P0:x(b) =

2
6664
�1

�1

1

1

3
7775 x(a) = Q0:x(b) =

2
6664
�1

�1

�1

1

3
7775

x(F) = P0:x(a) =

2
6664
�1

1

1
�1

3
7775 x(G) = Q0:x(a) =

2
6664
�1

�1

1
�1

3
7775

6

This is the strategy we follow in general, with the following provisos:

(a) In general there will be several trees in the data set, and we assign a

random representation to each root node.

(b) The above example is particularly simple because each terminal appears

only once. In general a typical terminal or subtree will appear several times

throughout the data set, and the above procedure will generate multiple

representations for it. We extract a single representation from this multitude

by �rst computing their average, then rounding o� each unit to +1 or �1,

depending on its sign.

(c) It may happen that two nodes end up having exactly the same represen-

tation. In this case, we must select P0 and Q0 anew, and repeat the above

procedure, choosing di�erent representations for the root nodes. In order to

estimate the probability of this problem arising, note that the total number
of available representations is 2d. Suppose the number of terminals and sub-
trees to be represented is N , and choose d large enough that 2d > N

2. If

each representation were chosen at random (which is not strictly the case,
but is probably a `reasonable' assumption), the probability of them all being
distinct would be

N�1Y
i=0

�
1 �

i

N2

�
> 1� e

�1
> 0:6

So, by repeating this procedure a couple of times if necessary, we should soon
satisfy the requirement that all representations be distinct.

4 Training

Since the representations are chosen in advance of training, the compressor
and reconstructor networks may be trained separately. We trained them us-

ing back-propagation (Rumelhart et al., 1986), with a modi�cation similar

to Quickprop (Fahlman, 1989)1. At the conclusion of training, the transfer

1Speci�cally, the cost function we used was

E = �

1

2
(1 + s)2 log(

1+ z

1+ s
) �

1

2
(1� s)2 log(

1� z

1� s
) + s (s � z)

(where z is the actual output and s the desired output) which leads to a `delta rule' of

� = (1� sz)(s � z):

7

function in the output layer is changed from a hyperbolic tangent to a thresh-

old function. In view of this, the network may be said to have successfully

learned the training set once the maximum error across all units of all out-

puts is less than 1.0 . However it is prudent to allow some safety margin, and

in the trials described below we continued to train until the maximum error

was less than 0.6 . The learning rate must be very small in order to ensure

successful training. After some preliminary trials, we settled on a learning

rate of (nd)�1 for the reconstructors and (2nd)�1 for the compressor.

Parallelization of the training set provides a signi�cant speed-up to back-

propagation (Blelloch & Rosenberg, 1987). By removing dependencies from

the original RAAM training regimen and parallelizing the algorithm on a

4096 processor Maspar MP2, we were able to run large scale experiments

with full parallelization over the training sets.

5 Results

The results are shown in Table 2, where n is the number of subtrees, d is

the dimension of the representations, e is the number of `extra' units in the
hidden layer of the reconstructors, m = (5d+2e+1)(2d+1)� 1 is the total
number of connections in the network, and tenc, tleft & tright are the number of
epochs to achieve successful encoding and decoding for the compressor and
the left and right reconstructors, respectively.

Table 2. Summary of Results.

n d e m m=n tenc tleft tright

1. 15 9 0 873 58.2 250 100 150

2. 45 12 0 1524 33.9 800 1,100 900

3. 169 16 8 3200 18.9 1,800 11,000 7,500

4. 327 17 17 4199 13.7 16,700 42,800 31,500

For large data sets, the compressor learned its task faster than the re-
constructors { presumably due to the larger number of connections in the

compressor network { and the right reconstructor learned faster than the

left one. This is probably due to the fact that parse trees tend to be right-
branching (in English), and the resulting `many-to-one' nature of the left

map makes it harder to learn.
Unfortunately, these networks had great di�culty in generalizing to re-

trieve new strings that were not in the training set. One possible reason for
this is the strictness of the terminal test, which we implemented simply as a

8

lookup table. If the terminal test were to be performed in a more `natural'

way (for example by an extra, separately trained, layer in the network), it

would be likely to pick up some activation vectors which were near to desig-

nated terminals, but not precisely equal to them. To test the possible e�ect

of this in simulation, we did an experiment where an activation vector was

accepted as a designated terminal if it agreed with that of the terminal in

(d� 1) of the d activation nodes. With this modi�cation, all the trees in the

training sets were still recovered successfully and in addition the following

new trees could be encoded and decoded:

Network (1): ((D (A N)) (D (A N)))

Network (2): (NP (VP VP))

(NP (S (NP (VP VP))))

(NP (SINV VP))

(VP NP)

(VP ((SINV VP) ((NP NP) (VP (NP (S VP))))))

Network (4): (NP ADVP)

As with traditional RAAMs, generalization ability might conceivably be
expanded by increasing the number of representation nodes, which in our
experiments was essentially chosen as just the minimum number required to
reliably store the training set.

6 Conclusion and Further Work

While existing work has adequately addressed the concerns of (Fodor &
Pylyshyn, 1988) in showing how compositional structures can be manipu-

lated within a connectionist framework, much work remains to be done in
order to determine the most reliable and e�cient way of doing so, especially
when the structures involved become large and complex.

We have shown that RAAM networks with appropriate modi�cations

can reliably store and retrieve compositional structures commensurate in

depth and complexity with real-world linguistic data. However this increased
capacity seems to have been gained at the expense of generalization ability.

Further work is called for: �rstly, on how to preserve generalization ability
while expanding capacity; secondly, comparing the e�ciency of storing such

complex data in a single large network with that of other approaches, for ex-

ample an ensemble of smaller networks arranged in a modular or hierarchical
fashion.

9

7 Acknowledgments

The author wishes to thank Jordan Pollack for many helpful comments and

suggestions. This research was funded by a Krasnow Foundation Postdoc-

toral Fellowship, and by ONR grant N00014-95-0173.

8 References

Ackley, D.H., G.E. Hinton & T.J. Sejnowski, 1985. A learning algorithm for

Boltzman Machines, Cognitive Science 9, 147{169.

Angeline, P.J. 1992. Avoiding fusion in
oating symbol systems, Tech. Re-

port 92-PA-FUSION, Computer Science Dept., Ohio State University.

Blank, D.S., L.A. Meeden & J.B. Marshall, 1992. Exploring the Sym-
bolic/Subsymbolic Continuum: A Case Study of RAAM, in: Closing

the Gap: Symbolism vs. Connectionism, J. Dinsmore, ed. (Lawrence
Erlbaum Associates).

Blelloch, G. & C.R. Rosenberg, 1987. Network learning on the Connection
Machine, Proceedings Tenth International Joint Conference on Arti�-

cial Intelligence, Milan, Italy.

Chalmers, D.J. 1990. Syntactic transformations on distributed representa-
tions, Connection Science 2(1-2), 53{62.

Chrisman, L. 1991. Learning Recursive Distributed Representations for

Holistic Computation, Connection Science 3, 345{366.

Cottrell, G., P. Munro & D. Zipser, 1987. Learning internal representa-
tions from gray-scale images: An example of extensional programming,
Proceedings Ninth Annual Conference of the Cognitive Science Society,

Seattle, WA, 461{473.

Cowper, E.A. 1992. A Concise Introduction to Syntactic Theory (University

of Chicago Press, Chicago, IL).

Elman, J.L. 1990. Finding Structure in Time,Cognitive Science 14, 179{211.

Fahlman, S.E. 1989. Fast-learning variations on back-propagation: an em-
pirical study. In D. Touretzky, G. Hinton & T. Sejnowski, eds. Pro-

ceedings of the 1988 Connectionist Models Summer School, Pittsburgh,

PA, 38{51 (Morgan Kaufman, San Mateo).

10

Fodor, J.A. & Z.W. Pylyshyn, 1988. Connectionism and cognitive architec-

ture: a critical analysis, Cognition 28, 3{71.

Hinton, G.E., J.L. McClelland & D.E. Rumelhart, 1986. Distributed Rep-

resentations. In D.E. Rumelhart, J.L. McClelland and the PDP Re-

search Group, eds. Parallel Distributed Processing: Experiments in the

Microstructure of Cognition 1: Foundations (MIT Press, Cambridge,

MA).

Kolen, J. & J.B. Pollack, 1990. Back propagation is sensitive to initial con-

ditions, Complex Systems 4, 269{280.

Marcus, M., B. Santorini, M.A. Marcinkiewicz, 1993. Building a large anno-

tated corpus of English: the Penn Treebank, Computational Linguistics

19 (also at ftp.cis.upenn.edu/pub/treebank/doc/).

Niklasson, L.F. & T. van Gelder, 1994. Can Connectionist Models Exhibit
Non-Classical Structure Sensitivity, Proceedings of the Sixteenth An-

nual Conference of the Cognitive Science Society, 664{669.

Plate, T.A. 1994. Distributed Representations and Nested Compositional
Structure, Ph.D. Thesis, University of Toronto.

Pollack, J.B. 1990. Recursive Distributed Representations, Arti�cial Intelli-
gence 46(1), 77{105.

Pratt, L.Y., J.A.Mostow & C.A. Kamm, 1991. Direct Transfer of Learned In-

formation Among Neural Networks, Proceedings of the Ninth National

Conference on Arti�cial Intelligence (AAAI-91), 584{589.

Rumelhart, D.E., G.E. Hinton, G.E. & R.J. Williams, 1986. Learning repre-
sentation by back-propagating errors, Nature 323, 533{536.

Smolensky, P. 1990. Tensor product variable binding and the representation

of symbolic structures in a connectionist system, Arti�cial Intelligence

46(1-2), 159{216.

Touretzky, D.S. 1986. BoltzCONS: Reconciling connectionism with the re-

cursive nature of stacks and trees, Proceedings Eighth Annual confer-

ence of the Cognitive Science Society (Erlbaum, Hillsdale, NJ).

11

9 Appendix - Data Sets

Each of our data sets consisted of parse trees for a collection of English

sentences. Data Set (1) is from (Pollack, 1990). Data Set (3) was taken from

an introductory text on Syntactic Theory (Cowper, 1992). Data Sets (2) and

(4) were extracted from a small fragment of the Penn Treebank (Marcus et

al., 1993).

Data Set (1)
(D(A(A(A N))))
((D N)(P(D N)))
(V(D N))
(P(D(A N)))
((D N)V)
((D N)(V(D(A N))))
((D(A N))(V(P(D N))))

Data Set (2)
((NP(PP NP))

(S(VP(PP((NP(NP(NP(PP NP))))

(NP(PP(NP(ORD NP)))))))))
(NP(VP(NP(PP(NP(PP((NP NP)

(ADJP NP))))))))
(((SINV VP)((NP NP)(VP(NP(S VP)))))

(S(NP(S(VP((PP(NP NP))
(PP(ADJP NP))))))))

(S(NP(S(VP(PP((NP(PP NP))NP))))))
(NP(VP(NP(PP(NP NP)))))

Data Set (3)
((D(AP N))(AUX(V(D N))))
((D N)(AUX(V(P(D(AP N))))))
(NP(AUX(V(NP(AUX(V NP))))))
(NP(AUX(V(AUX(V NP)))))

((D(AP N))(V((D N)(P(D N)))))
(NP(V AP))
(N(V((D N)P)))
(NP(V((D N)(P(D N)))))
(D(AP((N PP)PP)))
(D((N PP)PP))
(D(AP N))
(D(AP(AP N)))
(D(N PP))
(D(AP(AP(AP N))))
(D(((N PP)PP)PP))
(D(AP(N PP)))
(D((AP N)PP))
(N((V(D N))(P(D N))))
(D(AP((NP PP)PP)))
(NP(((V NP)PP)(CONJ((V NP)PP))))
(NP((V(CONJ V))NP))
(N(((V NP)(CONJ(V NP)))PP))
(D((AP N)(CONJ(AP N))))
(D(AP((N(P NP))(CONJ(N(P NP))))))
((D(AP NP))(CONJ(D(AP NP))))
(D((N(CONJ N))(P NP)))
(NP(V NP))
(N(P NP))
(NP(V(AP NP)))
(AP(P NP))
(D((N PP)PP))
(NP(CONJ(NP(CONJ NP))))
(V(NP PP))
(NP(I(V(NP(I VP)))))
(NP(I(V((C S)(CONJ(C S))))))
(NP(I(V(C(S(CONJ S))))))
(D(NP(NP(C(NP(I(V NP)))))))
(NP(I(V(C(NP(I(V NP)))))))

(VP(C(NP(I VP))))
(NP(I(V(C(NP(I VP))))))
(NP(C(NP(I(V(C(NP(I(V(C(NP(I(V NP)))))))))))))

(NP(I(V(D(NP(NP(C(NP(I(V(C(NP(I(V(C(NP(I(V NP))))))))))))))))))
(NP(C(NP(I(V(NP(C(NP(C(NP(I(V NP))))))))))))
(NP(C(NP(V(NP(C(NP(V(NP(C(NP VP)))))))))))
(NP(C(NP(I(V(NP(C(NP(I(V NP))))))))))
((NP(I(V(C(NP(I VP))))))(CONJ(NP(I VP))))
(NP(I(V(C(NP(I(V(AP(C(NP(I VP)))))))))))
(NP(I(V(C((C(NP(I VP)))(I(V NP)))))))

Data Set (4)
((NP(PP NP))(S(VP(PP((NP(NP(NP(PP NP))))(NP(PP(NP(ORD NP)))))))))
(NP(VP(NP(PP(NP(PP((NP NP)(ADJP NP)))))))
(((SINV VP)((NP NP)(VP(NP(S VP)))))(S(NP(S(VP((PP(NP NP))

(PP(ADJP NP))))))))
(S(NP(S(VP(PP((NP(PP NP))NP))))))

(NP(VP(NP(PP(NP NP)))))
((PP(PP(NP NP)))(((NP(ADJP NP))ADVP)(S(VP NP))))
((VP((PP NP)(PP(VP(NP(ADJP NP))))))((NP(NP NP))(S(VP(S(VP((NP NP)

(PP((NP NP)(NP(VP(S(VP((PP NP)(PP(NP((PP NP)(PP NP))))))))))))))))))
((PP((NP NP)(VP(PP NP))))(S((VP NP)(S(VP ADJP)))))
(((SINV(NP(VP(NP(PP(VP(NP(PP NP))))))))(NP(S VP)))(S((PP((NP ADJP)

(NP(PP NP))))(NP(S(VP(ADJP(S(VP(NP VP))))))))))
(((NP NP)NP)(VP(PP NP)))
(NP((VP NP)((PP NP)(NP(SBAR(NP((X(VP(NP(PP(NP(NP(ADJP(PP NP))))))))

(X(X(VP(NP PP)))))))))))
((NP(ADJP(PP(NP(NP(S((VP PP)(NP(S(VP NP))))))))))

(VP(NP(PP(NP(PP(NP(NP(VP NP)))))))))
(NP(S(VP(PP(NP(S(VP(NP(WHNP(NP(S((VP VP)

(VP(NP(PP(NP ADJP))))))))))))))))
((NP(S(VP NP)))(S(NP(S(VP((PP NP)(PP NP)))))))
(NP(S(VP(S(VP(PP(NP(PP NP))))))))
(S((NP(ADJP(PP(NP(ADJP(PP NP))))))(S(VP(NP(PP((NP(PP NP))

(WHNP(NP(S((VP NP)((PP(NP(PP NP)))(PP NP)))))))))))))
((NP(PP(NP NP)))(VP((NP(NP(ADJP NP)))(S(VP((NP(PP(VP(NP(PP NP)))))

(S(VP(PP(NP NP))))))))))
(((NP(S(VP(VP(PP NP)))))(S(NP(VP((PP NP)(SBAR(NP(S(VP((ADJP(S VP))

(SBAR(NP(S(VP ADJP))))))))))))))(NP VP))
((ADVP PP)((PP NP)((NP(ADJP NP))((VP(NP(ADJP NP)))(NP((PP NP)

(PP NP)))))))
(NP(((VP NP)(VP NP))(X(X(VP NP)))))
(NP((VP NP)(VP((PP NP)NP))))
((NP(VP(NP(PP(VP(PP NP))))))(VP(NP(X(NP(PP(NP NP)))))))
(NP(VP(NP(SBAR(NP(S(VP(NP(PP NP)))))))))
(NP(NP((VP(PP NP))((PP NP)(PP(NP(PP NP)))))))
((SBAR(VP(NP(PP NP))))(NP(VP((VP((NP NP)(S(VP(S(VP NP))))))

(VP((VP NP)((PP(NP NP))PP)))))))
((NP(PP(NP NP)))(VP(NP(PP(NP(VP(NP NP)))))))
((NP(S(VP(VP(NP((WHNP(NP((VP NP)(VP(PP NP)))))

(VP(VP(VP(ADJP(PP NP)))))))))))(VP(NP(NP NP))))
(NP(VP(NP(S(VP(S(VP(NP(SBAR(NP VP))))))))))

(ADJP((VP(NP NP))((NP(S(VP NP)))(S(NP(S(VP(NP(PP NP)))))))))
(S(NP VP))
(ADJP(VP ADJP))
((NP(S(VP(PP NP))))(NP(S(VP NP))))
((S(NP(S(VP(NP NP)))))(S(ADJP(VP(S(VP(PP NP)))))))
((PP((NP(PP(NP(PP(NP NP)))))((NP((VP NP)(VP(NP(PP NP)))))(NP NP))))

(((NP(PP NP))(VP(PP NP)))(S(VP(PP NP)))))
(NP(VP(NP(VP(NP(S((VP ADJP)((PP(PP NP))PP))))))))
(NP((NP VP)(NP(PP NP))))
((NP(NP(NP NP)))(VP(NP(VP(NP((PP NP)((PP(NP(NP NP)))

(PP(PP(ADJP NP))))))))))

12

