
Co-evolution, Determinism and Robustness

Alan D. Blair1 Elizabeth Sklar2 Pablo Funes2

1Dept. of Computer Science 2Dept. of Computer Science

and Electrical Engineering Brandeis University

University of Queensland, 4072 Australia Waltham, MA 02254 USA

+61-7-3365-1195 +1-781-736-3366

fax: +61-7-3365-1999 fax: +1-781-736-2741

blair@cs.uq.edu.au sklar,pablo@cs.brandeis.edu

Abstract. Robustness has long been recognised as a critical issue for co-
evolutionary learning. It has been achieved in a number of cases, though
usually in domains which involve some form of non-determinism. We
examine a deterministic domain { a pseudo real-time two-player game
called Tron { and evolve a neural network player using a simple hill-
climbing algorithm. The results call into question the importance of de-
terminism as a requirement for successful co-evolutionary learning, and
provide a good opportunity to examine the relative importance of other
factors.

Keywords: co-evolution, neural networks

1 Introduction.

In 1982, Walt Disney Studios released a �lm called Tron which featured a game

in a virtual world with two futuristic motorcycles running at constant speed,

making only right angle turns and leaving solid wall trails behind them. As the

game advanced, the arena �lled with walls and eventually one opponent would

die by crashing into a wall. This game became very popular and was subsequently

implemented on many computers with varying rules, graphic interpretations and

con�gurations.

In earlier work [Funes et al., 1998], we built an interactive version of Tron

(using Java) and released it on the Internet. With this setup, we created a new

type of co-evolutionary learning where one population consists of software agents

controlled by evolving genetic programs (GP) [Koza, 1992] and the other pop-

ulation is comprised of human users. This experiment has been fascinating for

many reasons and from various points of view. From a human factors standpoint,

the fact that this simple game has attracted a large number of users and that

many of them return to play multiple games is unexpected. From an evolution-

ary programming standpoint, the fact that the robot players have evolved to

embody a robust set of strategies, capable of overcoming a wide range of human

behaviours, is a powerful result.

We have been studying co-evolutionary learning environments in several con-

texts [Blair and Pollack, 1997,Juill�e and Pollack, 1996,Ficici and Pollack, 1998],

trying to understand the reasons why this paradigm works very well for some

tasks [Hillis, 1992,Sims, 1995,Tesauro, 1995] but poorly for others. In particular,

we have developed a \minimalist" co-evolutionary learning method that consists

of a neural network which evolves using a simple hill-climbing algorithm. We

have found this to be a very useful tool for studying the e�ect of co-evolutionary

learning in various task domains.

Previously, we have applied this method successfully to backgammon [Pol-

lack and Blair, 1998] as well as a simulated robotic hockey game called Shock

[Blair and Sklar, 1998]. Tron is similar to these domains in some respects but

di�ers in other, signi�cant, aspects. Backgammon is a stochastic domain in which

the outcome of each game is inuenced by random dice rolls as well as choices

made by the players. In the Shock domain, each game is started from a di�erent

random initial condition. Tron, on the other hand, is totally deterministic in the

sense that two games played by the same two opponents will necessarily be iden-

tical. Since many authors have cited non-determinism as a critical factor in the

success of co-evolutionary learning systems, particularly in relation to backgam-

mon, we were interested to apply our hill-climbing procedure to a deterministic

domain, hence Tron.

This paper is organised as follows: the �rst two sections describe our Tron

implementation and the network architecture and algorithm. Then we detail

some experiments that we conducted to compare the neural network player with

the GP players evolved in the Internet experiment. We conclude with some

discussion and ideas for extending this work further.

2 Tron

Our interpretation of Tron abstracts the motorcycles and represents them only

by their trails. Two players { one human and one robot { start in the middle

region of the screen, heading in the same direction. Players may move past the

edges of the screen and re-appear on the opposite side to create a wrap-around,

or toroidal, game arena. The size of the arena is 256�256 pixels. The robots are

provided with 8 simple sensors with which to perceive their environment.

Figure 1 Robot sensors. Each sensor evaluates the distance
in pixels from the current position to the nearest obstacle
in one particular direction. Every sensor returns a maximum
value of 1:0 for an immediate obstacle (i.e. a wall in an adja-
cent pixel), a lower number for an obstacle further away, and
0:0 when there are no walls in sight.

6 2

5

7 1

3

0

4

The robot can move in only two directions { horizontally and vertically.

The game runs in simulated real-time, where each player can select one of the

following actions: left, right or straight.

In the Internet experiment, data has been collected since August 1997 and

is still accumulating. Over 2500 users have logged into the system and played

at least one game. The average number of games played by each human is 53

games; the most games played by one player is 5028. Sixteen players have played

over 1000 games.

Figure 2 Internet Tron Results.

Our basic measure of performance is the win rate { the percentage of games

that the GP players have won in playing against humans. As shown in �gure 2,

this rate has steadily risen from approximately 30% initially to more than 60%

over a period of several months, resulting in a robust robot population capable of

beating a wide variety of opponents. This \database" of players, along with the

Java Tron environment, provide an excellent resource for testing and comparison

with other methods.

3 Implementation and Results.

In the present work, we develop Tron players controlled by two-layer feed-forward

neural networks with 5 hidden units. Each network has 8 inputs { one for each of

the sensors described earlier. There are 3 output units, representing each of the

three possible actions (as above). Of these, the largest is selected as the \move"

to make for the current time step.

We train the network using an evolutionary hill-climbing algorithm in which

a champ neural network is challenged by a series of mutant networks until one

is found that beats the champ; the champ's weights are then adjusted in the

direction of the mutant:

1. mutant champ + gaussian noise

2. mutant plays against champ

3. if mutant beats champ, champ (1� �) � champ + � �mutant

Using this neural network architecture, three players were evolved. Network

nn-0 was evolved for 1200 generations, networks nn-1 and nn-2 for 50000 gener-

ations each. The parameter �, which we refer to as the mutant inuence factor,

was set to 0:5 for nn-0 and 0:33 for nn-1 and nn-2. The network weights were

saved every 100 generations and tested against �ve of the best GP players se-

lected from our Internet experiment (referred to as robot players 510006, 460003,

480001, 540004 and 400010).1 Note that the GP players were used purely for

diagnostic purposes and had no e�ect on the evolving networks.

a. versus robot 510006

c. versus robot 480001

b. versus robot 460003

d. versus robot 540004

Figure 3 Network nn-1, generation 40500

Each of the robot players has a very distinctive behaviour (see �gure 3).

Players 510006 and 460003 follow similar strategies of trying to �ll the arena in

a contracting spiral, �rst carving an outline and then gradually moving inward,

attempting to reduce the area available to the opponent. They exhibit a con-

sistent inter-line spacing of approximately 12 and 4 pixels, respectively. When

1 Note that this numbering is consistent with our previous papers on this work
[Funes et al., 1998]; [Funes et al., 1997].

con�ned, both players seem to \panic", making a series of tight turns until either

crashing or out-lasting their opponent.

Player 480001 often performs a kind of \coat-hanger" manoeuvre, turning at

angles of 45� or 135� and proceeding diagonally by alternating left and right turns

in rapid succession. Player 540004 is more aggressive, darting about the space

in a seemingly erratic manner looking for opportunities to con�ne its opponent.

Finally, player 400010 (shown in �gure 4b) is very defensive, gradually moving

outward in a tight spiral pattern with an inter-line spacing of 1 or 2 pixels.

a. generation 20000 vs robot 480001 b. generation 10000 vs robot 400010

Figure 4 Defensive strategies.

The results of playing every 100th generation network against the �ve GP

players are shown in �gure 5, smoothed out by aggregation. The performance

of network nn-1 can be seen to gradually improve, peaking at around 70% after

40000 generations. In particular, the network sampled at generation 40500 was

able to beat all 5 robot players (refer to �gure 3).

0 10 20 30 40 50
0

25

50

75

100

Game no * 1000

N
eu

ra
l N

et
w

or
k

W
in

 R
at

e

nn−0
nn−1
nn−2

Figure 5 Neural network results.

It is interesting to note that the neural network players do not seem to evolve

individual \traits" in quite the same way as the GP players; rather, they adapt

to their opponent in a more reactive style (see �gure 3).

Figure 6 illustrates the evolution of network nn-1. Each game shown is

against robot player 510006. The network makes early mistakes (a), but quickly

learns a defensive strategy (b) and gradually (c) masters an o�ensive ability to

\box in" its opponent (d).

a. generation 10000

c. generation 30000

b. generation 20000

d. generation 40000

Figure 6 Evolution of Network nn-1, versus robot player 510006.

Network nn-0 (not shown) developed a fragile defensive strategy similar to

robot 400010, �lling the screen as slowly as possible in a series of expanding

spirals. This method works well against 400010, an opponent with a similar

strategy. It also happens to beat 510006 consistently, but loses almost all the

time to the other three players.

4 Discussion

Co-evolutionary systems { particularly self-learning hill-climbers { often develop

brittle strategies that perform well against a narrow range of opponents but are

not robust enough to fend o� strategies outside their area of specialisation. This

brittleness has been overcome in a number of instances, but usually in domains

that involve some form of non-determinism. Even though Tron is a deterministic

domain, our self-learning hill-climbers seem to have learned the task quite well {

performing capably against a selection of high quality GP players with a variety

of di�erent strategies.

It is interesting to note that nn-0, with a mutant inuence factor of � = 0:5,

developed a fragile strategy which plays an almost identical game against every

opponent, while nn-1, with � = 0:33, developed an ability to react to di�erent

opponents in a robust manner. The practice of making only a small adjustment

in the direction of the mutant { determined by the parameter � { was orig-

inally introduced in [Pollack and Blair, 1998] on the assumption that most of

the strategies of the well-tested champion would be preserved, with only lim-

ited inuence from the mutant. However, it may also be that a lower value of �

improves the robustness of the champion by exposing it to a greater variety of

mutant challengers. Indeed, we conjecture that there may be an optimal value

for � { which likely varies from one task to another. We plan to explore these

issues in further experiments.

In future work we intend to make more extensive studies of Tron and other

domains, in the hope of gaining more insight into the role of non-determinism in

co-evolutionary learning, and the relative importance of other factors. We also

plan to make the neural network players available in the Tron Internet system.

Look for them on our web site... http://www.demo.cs.brandeis.edu/tron.

Acknowledgements

Thanks to Jordan Pollack, Janet Wiles and Brad Tonkes, and to Hugues

Juill�e for his help in providing the genetic program players. This research was

funded by a University of Queensland Postdoctoral Fellowship and by the O�ce

of Naval Research under grant N00014-98-1-0435.

References

[Blair and Sklar, 1998] Blair, A. and Sklar, E. (1998). The evolution of subtle ma-
noeuvres in simulated hockey. In Proc. of SAB-5.

[Blair and Pollack, 1997] Blair, A. D. and Pollack, J. (1997). What makes a good
co-evolutionary learning environment? Australian Journal of Intelligent Information

Processing Systems, 4(3/4):166{175.

[Ficici and Pollack, 1998] Ficici, S. and Pollack, J. (1998). Challenges in coevolution-
ary learning: Arms-race dynamics, open-endedness, and mediocre stable states. In
Proc. of ALIFE-6.

[Funes et al., 1997] Funes, P., Sklar, E., Juill�e, H., and Pollack, J. (1997). The inter-
net as a virtual ecology: Coevolutionary arms races between human and arti�cial
populations. Computer Science Technical Report CS-97-197, Brandeis University.

[Funes et al., 1998] Funes, P., Sklar, E., Juill�e, H., and Pollack, J. (1998). Animal-
animat coevolution: Using the animal population as �tness function. In Proc. of
SAB-5.

[Hillis, 1992] Hillis, W. D. (1992). Co-evolving parasites improve simulated evolution
as an optimization procedure. In et al., L., editor, Proc. of ALIFE-2, pages 313{324.
Addison Wesley.

[Juill�e and Pollack, 1996] Juill�e, H. and Pollack, J. B. (1996). Dynamics of co-
evolutionary learning. In Proc. of SAB-4, pages 526{534. MIT Press.

[Koza, 1992] Koza, J. (1992). Genetic Programming: On the Programming of Comput-

ers by Means of Natural Selection. MIT Press, Cambridge, MA.
[Pollack and Blair, 1998] Pollack, J. B. and Blair, A. D. (1998). Co-evolution in the
successful learning of backgammon strategy. Machine Learning (to appear).

[Sims, 1995] Sims, K. (1995). Evolving 3d morphology and behavior by competition.
In Proc. of ALIFE-4. MIT Press.

[Tesauro, 1995] Tesauro, G. (1995). Temporal di�erence learning and td-gammon.
Commun. of the ACM 39(3).

