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ABSTRACT

Compositional Evolution: Interdisciplinary Investigationsin

Evolvability, Moduarity, and Symbiosis.

A Disertation Presented to the Faaulty of the Graduate Schod of Arts

and Sciences of Brandeis University, Waltham, Massadusetts

by Richard A. Watson

Conventionally, evolution by retural seledion is amost inseparable from the notion o acamulating
successve dlight variations. Althoughit has been suggested that symbiotic mechanisms that combine
together existing entities provide an aternative to gradual, or ‘acaetive’, evolutionary change, there has
been disagreament abou what impad these mechanisms have on ou understanding o evolutionary
processes. Meawhile, in artificial evolution methods used in computer science, it has been suggested that
the cmmposition d genetic material under sexual recombination may provide alaptation that is not
available under mutational variation, but there has been considerable difficulty in demonstrating this
formally. Thus far, it has been urclea what types of systems, if any, can be evolved by such

‘compaositional’ mechanismsthat canna be evolved by acaetive mechanisms.

This dissertation takes an interdisciplinary approach to this question by bulding abstrad computational
simulations of acaetive and compositional medhanisms. We identify a dass of complex systems
possessng ‘moduar interdependency’, incorporating highly epistatic but moduar substructure. This class
typifies charaderistics that are pathologicd for acaetive esolution - the mrrespondng fithesslandscegpe is
highly rugged, has many locd optima aeding kroad fithess sddes, and includes ‘irreducibly complex’

adaptations that cannat be readed by a successon d gradualy changing proto-systems. Nonetheless we

Vi



provide simulations to show that this classof system is easily evolvable under sexual remmbination a a
mechanism of ‘symbiotic encgpsulation’. Our simulations and analytic results help us to understand the
fundamental differences in the alaptive caadties of these medhanisms, and the cndtions under which
they provide an adaptive advantage. These models exemplify how certain kinds of complex systems,
considered urevolvable under normal acaetive dange, are, in principle, easly evolvable under

compositional evolution.

Vi
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Chapter 1- Acaetive and compositional change
In natural and artificial evolution

Systems of many complex interdependent parts can appea unevolvable - espedally when any small change
in the system causes the system to cease functioning. In general, when faceal with the eistence of a
particular complex system in nature, the normal approach to explain how it may have evolved isto show
that there exists a successon d proto-systems that are gradually increasing in function where eab oreisa
small modification o the last. Accordingly, a straightforward approach to explain the plausible evolution o
a system where it is proposed that any small change caises it to cease functioning is to show that thisisin
fad not the cae - that there does after al exist a successon d gradually changing proto-systems
approaching the system in question. If such a successon can be found or reasonable hypatheses abou the

plausible existence of such a path can be upheld, then al well and good But isthis grictly necessary?

That is, isit esential to show that there exists a successon o gradualy improving proto-systems arriving
at agiven complex system in order to suppat the possbility that the system was evolved? And likewise, is

it the cae that it is only systems that permit such a gradual successonthat can be evolved?

In this dissertation we mnsider the impad that a cetain class of evolutionary mechanisms has on these
guestions and the necessty of gradualism in evolution. Spedficdly, we consider the dfed of medanisms
such as sexual recombination and symbiotic encgpsulation which are instances of a dassof medanisms

that can enable what we will term compasitiond ewolution. We arive & the following thesis:

Certain kinds of complex systems, considered urevolvable under normal acaetive
change, are, in principle aad undr certain circumstances, easily evolvable under

compositional change.

In the course of this dissertation we will describe the distinction between compaositional and acaetive

medhanisms, the dassof complex system that is at isaue, the properties of such systems that make them



difficult for acaetive evolution, and the drcumstances under which they are eaily evolvable via
compositional mechanisms. In the remainder of this introduction we will briefly outline the main ideas and
findings of the disertation in these respeds. Throughot this work, our approach to addressng these isaues
involves the use of abstrad computational models. In the following sedion, we outli ne the motivations for

thisinterdisciplinary approach.

1.1  Exchange between evolutionary biology and evolutionary computation

This dissertation examines a number of conceptual links between evolutionary biology and evolutionary
computation. The work develops conceptual understanding d natural genetic and evolutionary processes
by utilizing concepts and algorithmic goproaches from computer science It also develops understanding
and rew approadhes to artificial evolution and ogimisation techniques in computer science by utilising
concepts and inspiration from evolutionary biology. Interdisciplinary exchange provides an oppatunity to
explore biologicd isaues where dgorithmic principles are integral to ou understanding d the biologicd
processs. In particular, questions abou evolvahility, the likelihood d complex adaptations, and the dass
of landscapes in which continued adaptation is possble provide a fertile aea of investigation. By
examining dfferent assumptions and medhanisms in natural systems in light of their relationship with
different algorithmic dasses and computational mechanisms in computer science we gain leverage in our

uncerstanding o ead dscipline by barowing from the conceptual frameworks of the other.

1.1.1  Gradualism and the probability of large adaptive changes

Consider further the questions concerning gadualism in evolution raised abowve. It will be dea to some
readers that it is not esential to show that there eists a successon o gradually changing proto-systems
arriving at a given complex system in order to suppat the posshility that the system could be evolved.
Natural seledion dees nat in itself exclude the posshility of large dhangesin function (so longas they are
not significantly deleterious in fitnesg and there ae natural medanisms avail able that can provide large
changes in function. For example, an acawmulation d neutral genetic changes can subsequently arrive & a
configuration that is non-neutral and geneticdly distant from the ancestor type. Alternatively, sophisticated

ontogenetic mechanisms can provide large changes in phenotype from small changes in genotype.



Similarly, it is awell-known hypdhesis that the encgpsulation of symbionts into a new reprodictive entity
by, for example, endasymbiosis, as we shall discuss may provide ameans for large and relatively sudden

increasesin complexity.

The question then becomes nat whether large changes in the function d an evolved system are posshlein
principle, but when, and for what classof domains, large thanges provided by such medanisms are likdy
to be aaptive. Moreover, in oder for such mechanisms to warrant a significant change in ou
understanding o evolution, and in our understanding d what kind o system is evolvable, it is necessary to
identify the drcumstances, if any, under which the probability of evolving a complex system under such
mechanisms is dgnificantly greaer than the probability of evolving such systems withou such
mechanisms. Given the asence of clea analyses dowing that such mechanisms can provide alaptive
change more eaily than that which is avail able under gradual evolutionary change, it is not surprising that

the assumption o gradualism remains ubiquitous in evolutionary thougH.

However, we can make some progress in understanding the possbiliti es by defining cases where the
differences in the relevant probabilities would be fundamental rather than marginal. ldentifying
fundamental differences in the alaptive cgadties of such mechanisms asdsts us in understanding the
impad that such mechanisms may have in natural evolution andit isin this resped that our understanding
of different algorithmic frameworks and combinatorial analyses from computer science can provide a
valuable ntribution. In this disertation we develop concrete estrad models of evolutionary processes
under compositional mechanisms, and cetail a sufficient set of condtions where the likelihood d evolving
cetain kinds of complex systems under compositional mechanisms is fundamentally different and
significantly greaer than the probability of evolving such systems withou such medanisms. The
computational models that we develop provide ameans to analyse the impad of such mechanismsin a

formal manner and thereby complement existing intuiti ons abou the biologicd posshiliti es.

1.1.2 Evolutionary adaptation and artificial optimisation methods

At the same time, there eists considerable interest within computer sciencein computational optimisation
methods based loosely on Darwinian natural seledion. Work in ‘evolutionary algorithms', EAs, isa highly

adive and rapidly growing field. Moreover, there is ggnificant controversy over the suppaosed utility of



sexual crosover in such algorithms, and considerable interest in the passbility of methods that encegpsulate
primitive functional unitsinto higher-order comporents that can be re-used in subsequent evolution. These
issles have strong paralels with the biologicd medanisms of compaosition we mentioned above.
Acocordingly, as we develop computational models to help us understand Hologicd posshbiliti es we dso

answer some important questions impading evolutionary algorithms as optimisation techniques.

1.2  Accretive and compositional mechanisms

In this thesis we focus on the impaad of a particular classof adaptive medchanisms on evolutionary change.

We cal these mechanisms compositiond mechanismsin contrast to namal accretive mechanisms.

*  We use the term ‘compositional’ to refer to variation mechanisms that combine together systems
or subsystems of genetic material, or feaure ammplexes, that have been semi-independently pre-

adapted in paralél in dfferent lineages.

Examples in nature include: Normal medhanisms of sexual recmbination (under particular
condtions of popuation dversity and genetic linkage from the arangement of genes on the
chromosome), and medhanisms of interspedfic combination such as horizontal gene transfer; aso,
mechanisms of ‘symbiotic encapsulation’ such as endosymbiosis or other medhanisms that
encgpsulate agroup d simple antities into a cmplex entity at a higher level of organisation, as

exhibited in several of the major transitionsin evolution.

* In contrast, we use the term ‘acaetive’ to refer to variation mechanisms that acaumulate random
variations in genetic material or fedures, i.e. the new genetic materia or fedures that are
introduced by such changes have not been pre-adapted elsewhere & a set. Thus acaetive
evolution is driven predominantly by small modifications, i.e. ‘successve dight modifications

(Darwin 1859, which formsthe basis of our common undrstanding d evolutionary change.

Examples in nature include: Genetic mutation and sexual recombination in the @sence of

favourable genetic linkage.

Figure 1-1 & Figure 1-2 show simple representations of possble aceetive and compositional mechanisms.



e

oo

Eﬁnm@@n!n

[Aomzoog

Mutation

Sexual recombination withou genetic

Figure 1-1: Medhanisms of accretive change.

We use the term ‘acaetive’ to refer to variation mechanisms that acamulate randan
variations in genetic material or fedures, i.e. the new genetic material or feaures that are
introduced by such changes have not been pre-adapted elsewhere @ a set. Left) Mutational
variation: newly introduced genetic material (shown in grey) is entirely randam. Right)
Variation from sexual recombination withou genetic linkage: i.e. the set of alleles that are
newly introduced come from a subset of genes distributed randamly on the chromosome.
Thus althoughthe dleles may have been seleded for in the dona individual, the particular
subset of aleles introduced is not pre-adapted as a set (we will discussthisisaue a length
later). Since newly introduced genetic material is randam in these mechanisms, large
beneficial changes are likely to berare and acaetive evolutionisdriven predominantly by the

acamulation d small modificaions.
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Sexual recombination with strong genetic linkage
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Figure 1-2: Medhanisms of compositional change.

We use the term ‘compasitional’ to refer to variation mecdhanisms that combine together
systems or subsystems of genetic material, or fedure complexes, that have been semi-
independently pre-adapted in paralel in dfferent lineages. Left) Sexual recombination with




strong genetic linkage: When crosover points are few, subsets of adjacent genes may be
incorporated as a set. Right) Hierarchicd encagpsulation of symbiotic groups: Pre-adapted sets
of genetic material may be asembled together by endosymbiosis. The dfed is much like that
of sexual recombination with strong genetic linkage but the result is better described as a
union d the donas materia rather than a ‘half and helf’. Importantly, since there is no
alignment and exchange of correspondng sub-parts (as in sexual recmmbination), this
operationis not necessarily sensitive to the position d genes onthe chromosomes involved.

Compositional mechanisms, such as those depicted in the previous figure, form part of a genera
evolutionary processof subdvision and integration. Abstradly, a processof subdvision and integration
exhibits the foll owing comporents. Evolving entiti es of diff erent types are evolved in perallel lineages- i.e.
the popuation d evolving entities is subdvided. Subsequently, some mecdhanism of integration compases
genetic material from different lineages together into a new entity. After integration, integrated genetic

material reproduces together. Figure 1-3 shows a schematic of this process

Figure 1-3: Subdivision and integration

A number of reproductive antities, shown by noas, in different lineages. Lines in the graph
represent ancestral relationships with evolutionary time progressng from left to right: a) two
particular lineages (light shading and dark shading) progressindependently in a subdvided
popuation, b) some medchanism of integration, such as sxua recombination a symbiotic
encgpsulation, composes together pre-adapted subsets of genetic material from the previously
separate lineages. ¢) theintegrated genetic material is now replicated together. The integration
of genetic material from subdvided popuations may occur repeaedly in compositiona
evolution.

Medhanisms of subdvision and integration are seen at different scdes in natural systems. Spedficdly, at
the single-spedes <de, the separate lineages involved may be sub-popuations of a given spedes, semi-
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isolated perhaps by virtue of spatial locaion, and the medchanism of integration may be provided by
migration and sexua reprodiction. At the multi-spedes <de, the separate lineages may be separate
reproductively isolated spedes, and integration may occur through haeizonta gene-transfer or
endosymbiosis. Several of the major transitions in evolution share the charaderistic that “entiti es that were
cgpable of independent replication kefore the transition can replicate only as part of alarger whole dter it”,
(Maynard Smith and Szahmary 1995, and this nation is important in providing the ideathat processs of

composition may occur throughseveral incressesin scade.

In evolutionary biology, the single-spedes sde is relevant to models such as Shifting Balance Theory
(Wright 1977, and the multi-spedes sde is relevant to models such as Serial Endosymbiosis Theory
(Margulis 1993). In evolutionary computation, the single-spedes <de is relevant to isues such as
diversity maintenance methods, the utility of crossover, and the Building Block Hypothesis (Holland 1975
200Q Goldberg 1989 - and the multi-spedes sde is relevant to models sich as Cooperative Coevolution
(Potter 1997) and the explicit encapsulation of primitive comporents into re-usable cmmpasites in models

such as Automatic Modue Acquisition (Angeline & Polladk 1993.

In the models that we detail in this dissertation we include models of ead o the four medhanisms
illustrated in Figure 1-1 & Figure 1-2 in dfferent types of evolutionary algorithms incorporating, more or
less explicitly, mechanisms of subdvision and integration. We mntrast the impad that these mechanisms
have on evolvability and the likelihood d evolving certain classes of complex systems. In the next
subsedion we describe a t¢assof complex systems that we will use to exemplify their different adaptive

cgoadties.

1.3 Complex systemswith modular interdependency

1.3.1 Evolvability and algorithmic paradigms

We daim a fundamental distinction ketween acaetive and compositional mechanisms based on the
likelihood d evolving certain kinds of complex systems. The basic intuitions here ae provided by analogy
with well-known classes of optimisation algorithms in computer science. In ogtimisation, diff erent kinds of

optimisation algorithms are suitable in dfferent kinds of problems acording to the assuumptions we have



abou the dependencies between the problem variables being ogimised. A dependency between variables
occurs when the optimal setting for one variable is dependent on the setting o other variables. Table 1-1
outlines three main classes of asaumptions and the dgorithm types that are gpropriate for ead of them.
Starting with the leftmost column, when we have no knowledge of the nature or structure of
interdependencies between the problem variables we might assume that the dependencies are abitrarily
difficult. Such dependencies creae a randam, and eneraly highly-rugged fithess sirface and the
appropriate dgorithmic paradigms for this class of problem are exhaustive seach or randam seach. These
methods have computational complexity that is exporential in the number of problem variables - that is,
neither method ses any asaumptions abou the problem domain to gude or reduce the search necessary
and therefore the expeded time to find high-fitnessconfigurations of variables is propartionate to the size

of the entire search space

At the other extreme, addressng the rightmost column, we may in ather cases hold dff erent assumptions
abou the interdependencies of variables - in this case, that interdependencies between variables are week
or few. This creaes a relatively smoaoth, and generally mono-modal fitnesslandscape, and the gpropriate
algorithmic paradigms are ‘greedy’ agorithms making incremental improvements, and the simple dassof
‘hill -climbing algorithms, climbing the locd gradient in the fitness landscagpe. When the assumption o
wedk interdependencies between variables is corred, the expeded time to find Hgh-fitness configurations

of variablesislinea, that is, simply propartionate to the number of variablesin the problem.

These two cases - on the one hand, arbitrary interdependencies and exporential time cmplexity, and on
the other hand, we&k interdependencies and linea time complexity - represent the naive extremes of the
possbiliti es that might occur in a problem domain. These extremes correspondclosely to extreme paositions
prevalent in evolutionary though: spedficdly, if one asames that the interdependencies between
comporents of a natural system are abitrarily difficult and complex then it is inconcevable that that
system may have been evolved, or at least, the size of complex systems of this type that can be ahieved
with ‘uninformed’ processes is limited; in contrast, if one asaumes that the interdependencies between the
comporents of a natural system are wegk or few then such systems are eaily explained by the normal

acaetive model of evolutionary change.



In between these two extremes there ae many ather posshiliti es for the number, structure, and rature of
variable interdependencies, and in ogtimisation, there ae important algorithmic paradigms that addressthis
range. One posshility for the interdependencies of variables is that there may be strong and numerous
interdependencies but that these dependencies may have aparticular structure - for example, a moduar
structure. (It is not so obvious how to represent the high-dimensional landscgpe of a moduar problem
domain in the simple one-dimensional caricaures used here, but as we will see later, properties of
symmetry and self-similarity may be representative.) The dgorithmic paradigm that is appropriate for
problems of this class broadly includes those known as ‘divide and conquer’ techniques. Divide and
conquer, D& C, optimisation is a form of problem decompasition that utili ses the moduar structure of a
problem by bre&king it into smaller sub-problems that are eaier to solve, and wsing solutions to these
subproblems to compose asolution to the problem as a whole. For example, if a problem can be divided
into two equal halves then ead requires time exporential in N/2 (i.e. half the number of problem
variables), at worst. Importantly, under most circumstances there is ©me extra work to be dore (‘c’) in

determining howv to compaose together subsolutions to form whole solutions.

Dependency of arbitrary moduar few/wesk
variables interdependencies interdependencies interdependencies
L andscape WWM WM /‘\
. o Hill -climbing—
. . . Exhaustive seach, Divide and Conquer ;
Algorithmic paradigm randam seach problem decomposition acmmula_tlo_n o small
variations
Complexity K" 2K"*+c KN
. ‘impossble’/ ” . . .
Evolutionary analogue ‘I ntelli gent desigr? Compasitional evolution Accretive evolution

Table 1-1: Algorithmic dasss and their evolutionary analogues
Following these broad agorithmic dasss, the basis of our thesis is that compositional evolutionary
medchanisms can provide aaptation akin to dvide and conquer problem decompaosition under certain
circumstances. As is the cae for D&C methods in genera, the alaptive alvantage of compositional
mechanisms will depend onthe structure of interdependencies in the problem domain - in particular the

presence of a moduar interdependency structure. If such a structure is present, then compositional




mechanisms may provide aform of adaptation that lies in between, yet is fundamentally distinct from,
either of the extreme scenarios mentioned above. The paossbility of compositional evolution, and the
fundamental distinction from acaetive dhange, shares underlying intuitions with some previous work (e.g.
Bermudes & Margulis 1985 Margulis 1993). But the association d these intuitive idess with this
algorithmic dass has not been previously recogrised, and formal analyses of the relevant combinatorics
have not been developed in evolutionary theory. In computer science the underling intuition here is
basicdly that which underlies the Building Hock Hypothesis that has been present in evolutionary
computation, more or lessexplicitly, sinceits inception (Holland 1975 2000. But despite several attempts
to demonstrate the validity of this hypahesis, (e.g. Mitchell et a 1995 Forrest & Mitchell 19931, this has
proved dfficult. In large part, the difficulty in formalising the possble impad of compaositional evolution
in natura evolution, and the difficulty of demonstrating ogimisation d a cmpaositional style in artificial
evolution, stems from an inadequate understanding d moduarity. In the next subsedion, we describe a
classof complex systems that is sufficient to properly exemplify the diff erencein the alaptive cgadties of

acaetive and compositional mecdhanisms.

1.3.2 Modular interdependency

In a given system of variables, the awnfiguration o a subset of variables that maximises the fitnessof the
system may depend onthe setting d the remaining variables in the system. A system can be understood as
modudar if it can be described in terms of subsets of variables where the number of diff erent configurations
for a subset that could give maximal fitness(given all possble mnfigurations of variables in the remainder
of the system) is low. If there is only one nfiguration for a modue that coud be maximal then the
modue may be optimised entirely independently of the remainder of the system. However, this kind o
complete independenceis a simplistic conception d moduarity. In contrast, if asystem can be described as
a number of modues where the number of possbly maximal configurations for ead modue is low but
greater than ore, then the dimensionality of the system can be reduced, perhaps gredly, even thoughthe
modues are nat independent. We cdl this moduar interdependency. In systems exhibiting moduar
interdependency, this property means that the cnfiguration spacethat must be mnsidered to find high-
fitness configurations can be significantly reduced by an adaptive mecdanism that is able to discover and

manipulate modues effedively. However, a modue that has been ogimised in ore @ntext may
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noretheless be far from optimal (configurationally and fitnesswise) in another context. Thus acaetive

mechanisms that are unable to manipulate modues effedively are ineffedivein this classof systems.

In Chapter 4 we will be detailing a particular classof system exhibiting moduar interdependency and we
will build uponthis to ill ustrate the distinction between acaetive and compositional evolution. We start
with a basic pairwise relationship between variables: spedficdly, we define the fithess interadions

between two variables such that a‘fitness edde’ is creaed. Thisisill ustrated in Figure 1-4.
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Figure 1-4: A fitness sddle created by interdependency between two variables.

A system of two variables, or feaures, F1 and F2, showing nonradditive fitnessinteradion a
‘epistasis . Left) The surfaceshows a fithess landscgpe and the overlayed arrows sow the
paths of increasing fitnessthat can be followed by changing ore fedure & atime. Right) This
particular kind d interadion credes a ‘fitness sddle’ which is saown more dealy on the
rotated view of the same surface Thisfitness sddie aedestwo ogimaindcated bythelarge
dots located at “AB” and “ab”. An algorithm that arrives at “ab” canna cross the fitness
saddeto “AB” withou changing bah feaures at once

We then use this pairwise interdependency over a larger system of variables to define a system with
moduar interdependency. In Figure 1-5 below, we illustrate an example system exhibiting moduar
interdependency. The highly regular and symmetric construction used in this particular example enables us
to see d¢ealy the underlying structure that is important (thoughthe regularities of this example ae nat, in
fad, required). The dependency matrix onthe left of the figure shows the strength of pairwise dependencies
between eight problem variables, and the graph on the right depicts the same relationships. Sets of

dependencies with equal strengths are indicaed by appropriate borders in the table, and bythe number of
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edges and spatial proximity of nodes in the graph. The fitnessfor a given configuration for the system of
eight variables can be cdculated from the sum of pairwise interadions (as per Figure 1-4) between eat

variable and every other variable weighted by the correspondng entry in the dependency matrix.

y

e/

Figure 1-5: A system of variables exhibiting modular interdependency
The salient feaure of this gructure isthat there ae subsets of variables where the variables they contain are
more strongy dependent on aher variables within their own subset than they are on variables in ather
subsets. This creaes a dependency matrix where the large values are diagonalisable. But importantly, the
values of the matrix that are off the diagoral, representing the strength of dependencies of variables aadoss
modues, are nonzero. Clealy, the structure of dependency strengths in this example system are not just
moduar but also hierarchicdly moduar - i.e. there ae dusters and sub-clusters of more strondy
interdependent variables. This potentially alows an adaptive mechanism that is capable of exploiting
moduarity to decompose the system reaursively, or equivalently, to compose together subsolutions
repeaedly. This kind d hierarchicd decomposability is closely related to the notion d nealy

decomposable systems discussed by Simon (1969.

Thiskind d system may be interpreted in dff erent ways as appropriate for diff erent domains. For example,
we may interpret the graph onthe right of Figure 1-5 as the network structure of adynamicd system (in the

style of random Boodlean networks, Kauff man 1993 where the future state of ead variable is dependent on
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itself and the state of conneded nodks. A biologicd example using a dynamicad interpretation equates ead
variable with a gene, and interdependencies between variables may represent interadions that up-regulate
or down-regulate one ancther. In this interpretation, the fitnessof different configurations corresponds to
the stability of attradors in the gene expresson dyramics. In a diff erent interpretation, we may use such a
system to represent a moduar epistasis structure in the genetic coding o phenatypic fedures - seeFigure
1-6. The right hand side of Figure 1-6 indicates how the system of pairwise interdependencies ading
between two large modues of Figure 1-5 can be astraded into a single interdependency between two
‘agoregate’ variables, or understood as the interadion d the modues ‘aggregate dfeds’. This form of
moduar interdependency may be cmpadly represented by a simple reaursive equation, and we will use

thisform in our simulation experiments.

o,

Randam epistatic dependencies Moduar epistatic dependencies

Figure 1-6: Alternate dependency structures.

A system of genes (large white nodes), contribute to a number of simple fitnessaffeding
fedures (light grey nodes), a smaller number of more complex feaures (mid grey), and, in
these ill ustrations, just one feaure that is a product of all genes. Genes may aff ed more than
one fedure (pleiotropy), shown by outgoing arrows. And several genes may have non
additive dfedsin the expresson d afedure (epistasis), shown byincoming arrows. Left) In
a randam interdependency structure, the interdependency network of genes with feaures is
arbitrary. Right) In a hierarchicdly moduar interdependency structure, the expresson o
complex feaures can be understood as being dependent on (or resulting from the interadion
of) the expresson d a number of simpler feaures. A small number of complex feaures may
thereby be indirealy dependent on epistatic interadions amongalarge number of genes.
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To summarise this sibsedion, we suggest that the accetive view of evolution corresponds to the naive
classof optimisation methods that asaume wedk or few interdependencies between problem variables, and
point out that this is not the only type of system that is amenable to efficient adaptation in principle.
Spedficdly, in ogimisation, problem domains that have amoduar structure may be anenable to dvide
and conquer problem decompaosition, and we suggest that compositional medhanisms may provide
evolutionary adaptation d this form in certain circumstances. In this subsedion we have dso briefly
described an example system exhibiting what we term ‘moduar interdependency’ that we will use to
exemplify the distinction in the alaptive caadty of acaetive and compasitional evolution. This class of
system exhibits ggnificant epistatic interdependency between all variables, but these dependencies have a
clustered, or moduar, structure. Thiskind d moduarity defines formally an intuitive form of moduarity,
as described by Simon (1969, that has subsets of variables that are more tightly couped internally than
externaly. In certain cases, such as that which we describe in our example, the optimal configuration for a
modue is dependent on the configuration d other modues but only in an aggregate way. This reduces the
dimensionality of the seach spacefor an algorithm that is able to exploit such moduarity. In the next
sedion we will outline the properties of this classof system that make it unevolvable for normal acaetive

evolutionary mechanisms.

1.4  The (un)evolvability of systemswith modular interdependecy

Conventionally, evolution by ratural seledion is amost inseparable from the nation d acaimulating slight
modificaions: “If it could be demonstrated that any complex organ existed which could na possbly have
been formed by numerous, successve, sight modificaions, my theory would absolutely bres&k down”,
(Darwin 1859. The nation d evolution as a gradual processthat ascends locd gradients in an adaptive
landscape, has sgnificantly shaped ou conception o evolutionary change and evolutionary difficulty. For
example, Wright (1931) states that “the central problem of evolution” is the (in)ability of a popuation to
cross fitnesssaddles between locd optima in the fitness landscape, and Behe's nation d ‘irreducible
complexity’ (1996 isintended to characterise systems which are problematic for evolution kecause they do
not admit evolution byacaetion o small modificaions. Accordingly, in the 140 yeas snce Darwin agood

ded of reseach effort has been dreded at hypahesising smoaoth paths of dlight successve modificaionsto
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acourt for problematic complex adaptations, and in identifying ‘ missng links', intermediate preaursors of

a omplex adaptation.

Following the accetive ssauimptions of evolutionary change, there ae several concepts of evolutionary

difficulty that are pervasive in ou understanding d evolutionary processs:

* Ruggednessand the number of local optima.

When the fitnesscontribution o one variable is dependent on the setting d ancther variable, the resultant
fitnesslandscape may be rugged. Rugged landscapes crede difficulty for acaetive evolution. In particular,
a orfiguration d asystem where no small change in the system can produce ahigher-fitnessconfiguration
isknown as a‘locd optima, or alocd adaptive pea, and fitnesslandscape with many ogima can prevent

an acaetive mechanism from finding high-fitnessconfigurations.

* Width of fitness sddles

A semnd important concept of evolutionary difficulty concerns the width of fitness sddles - that is, the
distance between a mnfiguration and the nearest configuration with equal or higher fithess For acaetive
mechanisms we may measure distancein terms of the number of variables that need to changed ‘in ore go

- thisisthe Hamming dstance, for binary variables.

e Irreducibility

“Irreducible complexity” is defined by Behe (1996 asfollows:
By irreducibly complex | mean a single system composed o seveal well-matched, interacting
parts that contribute to the basic function, wherein the removal of any one of the parts causes the
system to effedivdy cease functioning. Anirreducibly complexsystem cannd be produced dredly
(that is, by continuowsly improving the initial function, which continues to work by the same
mechanism) by slight, successve modifications of a preaursor system, because any preaursor to
anirreducibly complexsystemthat is missng a pat is by definition norfunctiond. An irreducibly
complex biological system, if there is sich athing, would be a powerful challenge to Darwinian

ewolution. (p. 39)
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These dharaderistics together tell us abou whether there exists a path of monaonicdly increasing fithess
from all configurations to the global optima, and more generally, the likelihood d finding such a path
gtarting ou from a randam configuration. The suppased requirement of a ‘smocth path to the optimum’
typifies the normal understanding d evolvability, but our point is that this understanding d evolutionary

difficulty is dependent onthe ssaimption o acaetive processs.

Let us now examine these nations of evolutionary difficulty for the hierarchicd moduar interdependency
system we described above. Firgt, the difficult pairwise interdependency ading between al variables
credes a highly rugged fitness landscgpe with an exporential number of locd optima. Sub-optima ae
creged when variables within a modue have maximised their fithess dependencies but inter-modue
dependencies are unresolved. Global optima rrespondto configurations where dl dependencies, within
and acoss modues, are maximised. In the example system we will use in our simulations, there ae two
equally fit global optima which correspond to the two mutually exclusive ways to maximise dl
interdependencies (which in turn derive from the two mutually exclusive ways to resolve the pairwise
interadions (see “AB” and “ab” in Figure 1-4). Seaond, the number of variables that need to be changed in
order to escgpe from one locd optimum to the next best configuration increases as larger modues are
optimised. It thus becomes increasingly difficult for an acaetive mechanism to cross fitness sddles
between locd optima in this problem class Third, high fitness configurations of this g/stem appea to be

irreducibly complex becaise any small changein such a mnfigurationis catastrophicdly deleterious.

An intuition for these properties of the system can be gained by examining a particular crosssedion
throughthe fitnesslandscgpe. In particular, a cosssedion runring from one global optimum to the other
shown in Figure 5-2 indicates the large number of locd optima, the separation d the two dobal optima
shown at oppasite extremes of the aurve, and the width of fitness sddesin genera. It also shows that the
high fitnesspoints are aljacent to low fitnesspoints sich that any small change in these cmnfigurationsis

cdastrophicdly deleterious.
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Figure 1-7: A particular crosssedion througha fitnesslandscape derived from a system with
moduar interdependency.

SeeSedion 5.1 for detail s of thisfigure.

Finadly, there is no guranteed path of monaonicdly increasing fitness leading to highfitness
configurations in this /stem. In conclusion, this classof system exhibits all of the properties listed above

that are generally associated with evolutionary difficulty.

Given that the system of moduar interdependency we have defined can be used to define an adaptive
domain that exhibits all the normal feaures of evolutionary difficulty discussed abowe, it is not surprising
that an acaetive medhanism performs poaly. We prove that an acaetive mechanism canna be guaranteed
to succeal in time lessthan exporentia in N, the number of problem variables, in this classof system. This
proof is formed by considering the expeded time to escape from a high-fitnesslocd optimum to either of
the maximum fitness global optima. Our simulations ill ustrate the behaviour of acaetive mechanisms by

using mutation-only mechanisms on this fitnesslandscape.

1.5 Conditionsfor the adaptive advantage of composition

We provide two highly abstrad computational models to ill ustrate a sufficient set of mechanisms and

condtions for compaositional mechanisms that are ale to provide dficient adaptation easily in systems
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such as the one we have described with hierarchicd moduar interdependency. The first model is based on
sexual recombination (See Figure 1-2 left); the seaond is based on symbiotic encepsulation - the
hierarchicad encgpsulation of symbiotic groups inspired by endosymbiosis and the major evolutionary

transitions (SeeFigure 1-2 right).

151 Composition based on sexual recombination

We have suggested that compositional mechanisms may be a@le to exploit the moduar structure of this
classof problem domain and provide alaptation akin to divide and conquer problem decmposition. We
can prove that thisis posdgblein principle for a mechanism based onsexua recombination using crossover
between two complementary strings. Althoughthis exploits the a priori knowledge that the global optima
are built from mutually exclusive complementary configurations, it serves to ill ustrate the path that a
recombinative dgorithm may follow if appropriate popuation dversity can be maintained. This analysis
shows that a recombinative dgorithm using sexual recombination can find the global optima in time
poynomia in N given appropriate popuation dversity. We then show that a popuation-based model, a
form of evolutionary algorithm using a particular mechanism of popuation subdvision, is able to quickly
and reliably find the global optima in this problem class- in this case, withou the a priori knowledge that

the optima ae cmmplementary.

However, the aility of sexual recombination to search combinations of moduesis grondy dependent on
asumptions abou ‘genetic linkage’ coming from the placement or ordering d genes on the chromosome
(see Figure 1-8). If genes are not favourably ordered then, even thoughsolutions to large modues may
have been discovered in dff erent members of the popuation, the anourt of extra work (expeded waiting
time - represented by the term ‘c’ in Table 1-1) - is exponential in N, and this predudes efficient overall

solution times.
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Figure 1-8: Alternate genetic linkage possbili ties.

‘Genetic linkage' refers to the tendency of aleles of different genes to be inherited together,
or more eadly, to the deviation from all elic distributions that would be expeded under ‘free
recombination’ (6.4.1). In linea chromosomes, a system of genes must be mapped to
positions on the chromosome, and the distance between genes in this ordering affeds the
likelihood that they will co-occur in an offspring produced by recombination with another
string.' Left) Tight genetic linkage: Idedly, genes which are epistaticaly related, i.e. which
contribute to the same feaures (solid arrows), will be next to ead ather on the chromosome.
In this case, sexua remmbination (in some drcumstances) will be &le to recombine
subsystems effedively. Right) But withou such a favourable situation, epistaticaly
dependent subsets of genes may be abitrarily paositioned onthe chromosome. We cdl this
‘random genetic linkage'. In this case, sexua remmbination is unable to recmbine
subsystems effedively. In biologicd systems, the position d genes might be aaptively re-
ordered, but in engineeing danains where the interdependencies of variables are not known
a priori, we caana assume afavourable ordering o genes onthe chrromosome.

1

In evolutionary computation, ‘genetic linkage' is generally used to mean ‘genetic linkage caised bythe
pasitions of genes on alinea chromosome’ — biologicdly, the term is more general. The term *linkage’

is also sometimes used to mean epistatic dependence but thisisin principle aseparate isaue & we see
in thisfigure. We will continueto use the term ‘tight linkage’ as a spedal term to refer spedficdly to an
ordering d genes that corresponds favourably with the structure of epistatic dependencies between
genes.
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152 Composition based on symbiotic encapsulation

However, we ae &le to show that the aility of compasitional medhanisms to exploit the structure of
problems with moduar interdependency is not necessarily dependent on assumptions abou the favourable
positioning o genes on the cromosome. To show this we use a integration mechanism based on
symbiotic encgpsulation. Thisis derived from a mechanism of symbiogenesis or endasymbiosis rather than
sexual recombination. The salient distinction between sexual recombination and symbiotic encapsulation
for our purposesis that whereas sxual recombination produces an off spring bytaking, on average, half the
genetic material from one parent and telf the genetic material from a secnd prent, symbiotic
encgpsulation may simply take the sum of genetic material from both ‘parents’. Naturaly, this is most
prodictive when the expresson o genetic material from the two parents is not mutually exclusive.
Acocordingly, our model of this mecdhanism all ows for the passhbility of entities that spedfy complementary

charaderistics rather than ‘overlapping’ or mutually exclusive genetic material.

The ideais that different spedalist entities will evolve to cover different complementary parts of the
problem domain (much like Cooperative Coevolution, Potter 1997). Then ower time the dependencies
between spedalists will be resolved by forming urions between spedalists (much like the ‘splice operator
of the ‘Messy Genetic Algorithm’, Goldberg et a. 1989 to crede asuccesson d new reprodictive entities
at a higher levels of organisation. This process repeds incrementally discovering larger alli ances until a
complete solution is found - a generalist that solves al modues and inter-modue dependencies in the

hierarchica problem structure.

This model must acoommodate entities of increasing size & entities of many dfferent levels of
organisation are modell ed together and thus requires a means to prevent large sub-optimal generalists from
competitively excluding ogimal spedalists. This proved to be a citicd asped of the model that required us
to step ouside frameworks previoudy familiar in evolutionary computation. The model we develop, the
“Symbiogenic Evolutionary Adaptation Model”, or “SEAM” (to invoke the notion d joins), uses a
seledion scheme that explicitly respeds the context sensitivity of an entity’s fithess That is, a proposed
solution to amodue may be goodin ore mntext and nd in ancther, in the same way that the fitnessof an
organism is drondy dependent on environment. Seledion in a varied environment may prevent

competitive exclusion of one type of entity by ancther if the niches they inhabit are distinct, but in the cae
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where one entity is fitter than another in al environments we may asaume that the former will
competitively exclude the latter. We model this explicitly in SEAM by retaining multi-dimensional
measures of fitness coming from the performance of a spedalist in dfferent contexts, and applying
seledion conservatively using the dominance aiterion. This provides an abstrad form of automatic niching
seledion in an emsystem of diff erent spedes and replaces the normal single-dimensional fitness &ledion

famili ar in single-spedes models.

SEAM s able to properly identify and ofimise the modues in this class of problem automaticdly and
asemble them together to find larger modues repededly. It is thus able to quickly and reliably find
globally optimal configurations of the problem variables in this class of hierarchicd moduar
interdependency systems. We prove that if the discovery of conflicting modue anfigurations does not
beomme too untalanced, the expeded time to find dobally optimal configurations in this classof system
using SEAM ispaynomial in N. The behaviour of SEAM is entirely insensitive to the ordering o geneson
the chromosome. Thus we show that the dgorithmic advantage of compositiona medcanisms in this class

of problem is not dependent on assumptions of favourable gene ordering.

In summary, the @strad models of sexual recombination and symbiotic encapsulation ill ustrate sufficient
sets of condtions under which the alaptive cgadty of compositional mechanisms is fundamentally
different from that of acaetive medanisms. Spedficdly, we show that these medhanisms are ale to
exploit moduar interdependency structure and provide dficient adaptation in cases where accetive
mechanisms are not able to do so. The models that we use ill ustrate that the alaptive potential of sexual
crosover is endtive to gene ordering on the diromosome, but this is not a principled limitation o

compositional mecdhanisms snce amodel based onsymbiotic encgpsulationisinsensitive to gene ordering.
Simulation results from these models and algebraic analysis provide an existence proof for the thesis claim
-ie

Certain kinds of complex systems, considered urevolvable under normal acaetive change, are, in

principle and undr certain circumstances, easily evolvable under compasitional medhanisms.
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1.6 Impact for evolutionary biology and evolutionary computation

Taken together, these models and results provide important insight into the broader questions we
highlighted at the outset. Spedficaly, our simulations and analyses show that the existence of a successon
of gradually changing proto-systems is nat, in principle, essential to explain the evolution d a mmplex
adaptation. Although some intuitions to this effed are dready familiar in some fields, this dissertation
enables us to clarify the fundamental algorithmic distinction ketween compositional and acaetive
medhanisms, to define the dassof complex system that is at isaue, to analyse the properties of such systems
that make them difficult for acaetive evolution, and provide asufficient set of circumstances under which

they are eaily evolvable via compasitional medchanisms.
Together, the models we provide ill ustrate the following pants.

e The'accretive' conception of evolution can be misleading
The accetive model of evolution, and the arrespondng conceptions of evolutionary difficulty,
are inadequate in some drcumstances. To wit, there is a dass of adaptive landscape that is
pathologicd for acaetive evolution, exhibiting a high degree of ruggedness wide fitnesssaddles,
and irreducibly complex optima, yet this class affords adaptation easily for alternate alaptive

medhanisms.

e The'Compositional’ model affords different adaptive apacities
We ill ustrate two mechanisms that enable the manipulation o relatively large feaure ammplexes
evolved in pardlel lineages. These medchanisms permit adaptation in landscgoes where aceetive

mechanisms do rot. Spedficdly:

0 Sexua recombination, or crosover, under certain circumstances, provides adaptive
change that is very different from the acamulation d mutational changes in a single

popuation.

0 Medhanisms of symbiotic encgpsulation, derived from symbiogenesis, encapsulating
simple entities into a larger complex (asin severa of the major evolutionary transitions),

provides a seaond example. In terms of optimisation techniques, this mechanism provides
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a method d automatic modue aquisition - encgpsulating sub-solutions into a larger

composite.

0 Both sexual recombination/crosover and ou mechanisms of symbiotic encgpsulation
can be understood as forms of ‘ compositional evolution’ — evolution besed on \eriation

arising from the assembly of pre-adapted sub-systemsinto a new arrangement.

* Thestructure of dependenciesisimportant
The structure (not just number or strength) of dependencies between problem variables, or
epistatic dependencies between genes, can have significant effed on the evolvability of different
adaptive mechanisms. In particular, a dustered dependency structure, exhibiting semi-independent
subsets of interdependent variables, exemplifies the differences in the aaptive caadty of
accaetive and compositional mechanisms. Such a moduar structure has a significant impad on
evolvability, the likelihood d (nea-)optimal solutions, and the feasibility of continued
improvement in EAs, and on the likelihood d complex adaptations, and the feasibility of

continued adaptation in natural evolution.

In general, the models provide an existence proof that certain kinds of complex systems, considered
unevolvable under norma acaetive diange, are, in principle aad undr certain circumstances, easly

evolvable under compositional mecdhanisms.

However, the existence of this certain kind d complex system, built on a moduar epistasis structure, in
natural adaptive domains, and the particular condtions required for adaptive composition events in nature,
are a separate isaue outside our claims. We provide these models as an illustration d the important
potential that these medhanisms afford in principle, and to encourage analysis of evolutionary processes
such as these that go beyond the usual acaetive mnception d evolutionary change. Nonetheless the
mechanisms and condtions that we explore ae not arbitrary excursions into pcssble biologies. Firdt,
abstrad computational models, such as these, are relevant to natural evolution at least in the sense that we
demonstrate that it is possble for nonteleologicd adaptive processs, i.e. based orly on fitnessfeedbad,
to behave in this manner. There is nothing in our models that is ‘unevolutionary’ in this snse. Seaond,

mechanisms of sexual remmbination, horizontal gene transfer, and symbiogenesis, for example, are
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biologicd fad. Third, some of the other concepts that we ae exploring have arich, abeit controversial,
badkground in biologicd though—and we discuss withou prejudice, the posshility that the necessary
condtions may be present in natural evolutionary systems. In summary, our contribution to evolutionary
biology lies in ill ustrating the alaptive mnsequences of such mecdhanisms if the necessary condtions are
met in natural systems, andin providing a broader conceptua framework of possble alaptive processes by

indicaiing perall els with dfferent algorithmic dases.
In computational terms, we can be more spedfic abou our central claim. i.e.

Certain kinds of moduar complex systems take time exporential in the size of the system’ to
evolve under acaetive change. Yet these same systems may, in principle and undr certain

circumstances, be evolved in polynomial time under compositional mechanisms.

In addition to this claim and the broad padnts listed abowve, there ae anumber of points pertaining more

direaly to evolutionary algorithms/algorithmic theory. For example:

» EAscan sometimes enable divide-and-conquer problem decomposition (as BBH suggests)
A variety of EA can, under certain circumstances, on a particular problem class perform seach
more dosely allied to dvide-and-conquer problem decomposition than hill -climbing. Spedficdly,
it is able to exploit the moduar structure of a problem and combine sub-solutions to find awhade
solution. This, we suggest, demonstrates the intuition o the Building Block Hypothesis for a

particular classof agorithm and problem domain.

» Crosver isnot (always) equivalent to ‘macro-mutation’.
A maao-mutation is smply a large mutation, a large random change, and some reseachers
sugeest that the large genetic changes produced by crosover are nothing more than maao-
mutations. But, the set of variants produced under crosover with other members of a popuation
prodwces quite a different distribution from unhiased randamn change, and in particular, the

distribution d variants by crossover isbiased by prior seledion onthe popuation.

2 Number of variables - e.g. primitive cmmporents, charaderistics, or genes.
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e Mutation-difficult and GA-easy
There is a dassof problem that is easy for a variety of GA with crosover, but pathoogicdly
difficult for a GA withou crosover. We will show proofs for restricted cases in addition to
empiricd studies and reasoned argument for general cases. In short; certain kinds of moduar
complex systems take time exporentia in the size of the system to evolve under mutation—Y et
these same systems may, in principle and uncr certain circumstances, be evolved in pdynomial

time under crossover.

In addition to theoretic understanding, and better understanding d existing EA methods, we dso provide

some hew algorithmic comporents for implementing artificial evolutionary algorithms.

For example, we develop a diversity maintenance technique that encourages a popuation to spread-out to
cover different niches in an adaptive landscgpe; this can be understood as a method to automaticaly
identify semi-independent sub-problems in an optimisation problem, as is demonstrated in the moduar
problem we use in our experiments. Furthermore, in the symbiotic encapsulation model, we dso develop an

encgpsulation methodthat can be understood as a method for automatic modue aguisition.

The astrad models we develop, applied to ou synthetic moduar problem domain, provide proof of
concept for these dgorithmic techniques, and the mechanisms of the adaptive processes we ill ustrate ae
readily implementable. However, the gplicability of these principlesin pradicd engineaing ogimisation
is a separate isaue outside our claims. We provide these models as an ill ustration d the important potential
that these mecdhanisms afford in principle, and to encourage analysis of artificial evolutionary processes
such as these that go beyondthe usual acaetive conception d evolutionary change implemented in namal
evolutionary algorithms. However, (as was the cae for the natural evolution courterparts), the atificial
mechanisms and condtions that we explore ae not arbitrary excursions into passble dgorithms/problems.
The dgorithmic medanisms we develop include some that are in common usage in artificial evolution
pradise, and addressdifficulties that are broadly accepted as important research isaues in the field. Other
isaues invalved in these models have arich, albeit controversial, badkgroundin the theory of evolutionary

algorithms.
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1.7

Related isaues

There ae anumber of other issuesraised by these experiments and results. At this gage, we do nd attempt

to gve full explanations. Our intent is to adknowledge the existence of important related issues and gve

some ideaof the cnnedions to related issues that the reader may have in mind. Chapters 2 and 3introduce

relevant badgroundin evolutionary biology and evolutionary computation, and dscussthose concepts that

are necessary for groundng the main models that we will i ntroduce in the body d the dissertation. The

remaining issueswill be left until discusson - Chapters 8 and 9

171

Related issuesin Evolutionary Biology

Shifting Balance Theory

Shifting Balance Theory, SBT, (Wright 1977), addresses the alaptation o a popuation when sub-
divided into a number of subsets or ‘demes’. Wright suggests that diff erent demes may converge
on dfferent ‘interadion systems', sets of interading al eles. We discussthe relationship of SBT to
the evolution d modues in the mechanisms we ill ustrate, and the importance of mechanisms to

promote or maintain diversity in apopuation.

Coevolutionary dynamics

In wsing a model that involves the multiple interading lineages we necessarily develop a
coevolutionary system. In contrast to the more common adversarial relationships €e in many
coevolutionary models (e.g. Hillis 1992 Reyndds 1994 Pollak & Blair 1998, the
coevolutionary relationships we ae most interested in here occur between entities having
complementary adaptive ailities (see Sigmund 1998. We devise anovel abstrad model of
easystem niching that permits different entities to dversify into dfferent environments (eah
environment being creaded by reighbouing entities in the ewosystem). This <wgregates

competiti on and avoids degenerate dynamics where one spedes competitively excludes all others.

Hierarchical seledion
Thenation d prior or parallel adaptation seleding for useful modues, and the ideaof mechanisms

that encapsulate agroup d entities into a new whole, suggest that seledion reels to ad at more
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than ore level - on primitive feaures and onmodues, on modues and onindividuals. Isaues of
group seledion and herarchicd seledion are poaly understood and hHghly controversial in
evolutionary biology. The models we enploy can be interpreted as implementing seledion at
different levels in a very abstrad and subtle manner. Yet we ae caeful to consider the selfish
interests of the parties invaved in a symbiotic encapsulation, as required by a microscopic,
‘Selfish Gene' style model (Dawkins 1976. Although ouw experiments do nd attest to the
biologicd validity of hierarchicd seledion, they doill ustrate the fundamental adaptive impad that
seledion ower severa scdes affords if present. This gives us goodcause to examine the empiricd
guestions in this sibjed, and suggests that some reinterpretation d common mechanisms sich as

sexual recombination may be informative.

Evolution of Coaoperation

By propasing a mevolutionary model of co-adapting entities that are composed together by
symbiogenic mecdhanisms, we necessarily enter the subjed of evolved cooperation. However, the
notion d whether a symbiotic pair cooperates becaise they are encgpsulated, or whether they are
encapsulated because they are moperative, is not distingushed in ou abstrad models. However
we make some preliminary observations abou the relationship of the models we present to Selfish

Gene theory.

M odularity in the organism and modularity in the adaptive domain

In thiswork we ae primarily concerned with moduarity in the adaptive domain. We suppcse that,
given appropriate variation mechanisms and condtions to exploit this gructure, organisms can
adapt to it more reaily than is possble in a nonmoduar domain bult on a randam
interdependency structure. This is related to moduarity within an organism in two ways. 1) If we
take the structure of gene dependencies as given, then if these gene dependencies are moduar (see
Figure 1-6), then the problem of finding fit configurations of alleles for these genes constitutes a
moduar problem domain. 2) The moduarity of a problem domain is expeded to induce moduar
internal structure in the entities that evolve in that domain. (There ae several plausible reasons
that may produce some degree of internal moduarity: for example, reorganisation d epistatic
linkage resulting from implicit seledive presaure to increase robustnessto genetic variation.)
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1.7.2

Related isuuesin Evolutionary Computation

M odules are not the same as building blocks - they do not necessarily have tight-linkage
The modues in the problem classwe define, and the modues that crossover and the symbiogenic
mechanism are &le to manipulate, are adifferent in important respeds from Holland' s nation o

building Hocks (19795.

0 For the caes where the GA with crosver can operate successully, they are indeed
‘short low-order schemata with above average fitness. But this is not the definition that
we find wseful or acarate for ‘modues. Importantly, there is a sense in which the
modues are meaningful entiti es regardlessof which arrangement is used for the geneson
the chromosome. In ather words, the modues are meaningful entiti es even when they do
not have short defining length—although crosover is admittedly unable to manipulate

them when they have long dfining length.

0 It isthe more genera sense of modue, independent of defining length and gene ordering,
that is succesully manipulated by the mechanism of encgpsulation based on

symbiogenesis.’

M odules do not haveto be ‘ separabl€e’

Importantly, whether we ae talking abou building Hocks for the GA or the general kind o
modue for the encgpsulation mechanism, it shoud na be asumed that the notion d modue
implies a problem that can be decompased into separable sub-problems. Thisis a grosserror. We
will discuss how this assumption hes been involved in the mntroversy aroundthe BBH and the
operation d the GA. A modue, in the sense that is useful to us, is a subset of variables for which
the interdependency interfaceto the remainder of the problem is low dimensiona. That is, the
state of the modue, for the purpases of itsinteradion to the rest of the problem, can be alequately
described with lessunique states than the total number of possble internal states (we will define

these terms later 4.3.1). There ae alditional constraints required in order for these modues to be

3

Briefly, we use “modue” to refer to a subset of variables, whereas a “schema” requires a wnfiguration

for that subset, and a"building Hock” isa short, low-order schema (Figure 3-5).
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ealy identifiable by a seach agorithm. But, we stress that there may be strong nonlinea
interadions between modues, i.e. modues do nd imply that a problem is separable. We use the
word decomposable, in preference over separable, to indicate that a problem has moduar

structure.

Hierarchically decomposable problems

The interdependencies between modues that we describe in 1.3.2 show clusters of modues,
creding the same kind o clustered interdependency between modues as there is between the
primitive problem variables within each modue. This alows for a hierarchicdly consistent notion
of modues, and ‘scde-invariant’ problem structure. These nations of hierarchicd moduarity, and
hierarchicd decomposability, relate to Herbert Simon's ideas (Simon 1969, and the wedth of
design/engineaing and social systems he refers to. However, we show that a system of
hierarchica interdependency does not depend onthe ideaof ‘ nealy-decompasable’ modues with

wedk inter-modu e dependencies.

Validity of the Building Block Hypothesis

One of the primary EC motives for this thesis reseach is to clarify whether the EA can in some
circumstances provide an agorithmic avantage &in to dvide ad conguer problem
demmposition as the intuition d the Building Block Hypothesis siggests. With resped to the
controversy around the Building Block Hypothesis, it is worth nding that in the endeasour to
demonstrate problem decmposition by an EA, we ae quite prepared to use non-standard varieties
of EA—our objedive is naot to identify whether the ‘standard’ or ‘simple’ Genetic Algorithm (a
particular form of evolutionary algorithm) provides this algorithmic cgadty, but rather to
determine whether some kind d evolutionary algorithm can. We dso nde that for any algorithm,
the dgorithmic advantage of the method is dependent on the dass of problem to which it is
applied (Wolpert and Maaeady 1997. Accordingly, it is not our intent to show that an EA,
standard or otherwise, is advantageous in all problem classes. On the ontrary, we invest a good
ded of this dissertation identifying and illustrating the properties of a particular problem

domain—spedficdly, the dassof problems with moduar interdependency. Thus, any fail ure of
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the Building Block Hypothesis to explain the operation d the simple GA in aher problem

domainsis smply nat relevant to our conclusions.

The Schema Theorem

A ‘schema is a partial spedficaion of a candidate solution, or, more formally, the set of all
candidate solutions that contain that partial spedfication. The Schema Theorem (Holland 1975
concerns the increase in copies of schemata with above average fitness in a popdation, and
historicdly, it is suppasedly resporsible for the supdy of building Hocks for the Buil ding Block
Hypothesis. In the models we develop we find the notion d schemata, and schema combination,
very useful, but we have no reel to invoke or defend the Schema Theorem since our seledion
schemes are quite different. Our seledion schemes also make mnventional disruption analysis

ineffedive for our analytic purposes.

Automatic module acquisition

The model of symbiotic encgpsulation we develop is conceptually allied to medhanisms of
automatic modue aquisition that explicitly ‘encgpsulate’ subsets of feaures for subsequent re-
use during the search process- for example, ‘ Automatic modue aquisition’ (Angeline & Polladk
1993, ‘automaticdly defined functions' (Koza1994), and ‘ adaptive representation’ (Rosca1997).
However, our model operates on the simple string representation d chromosomes, and therefore

asdsts usin seangthe utility of modues and their relationship to schemata more dealy.

Representational recoding

In enabling search to move from the cmbination d genes to the mmbination d schemata of
increasingly higher-order, the encgpsulation mechanism we ill ustrate constitutes a mechanism of
representational reading. That is, the representation o solution spaceis ‘re-coded’ at a higher
level of organisation. Having been encgpsulated as a modue, alternate solutions to sub-problems
may be treded as ‘aleles of higher-level variables within the problem, and the origina high-

dimensional problem is explicitly reduced to alower-dimensional one.

Other methods using seledion on partsand wholes

There ae many ather algorithmic methods related to naions of seledion ower modues/parts and

30



wholes: clasdfier systems (compare Michigan and Pitt approaches) (Holland & Reitman 1978 De
Jong 1988, SANE (Moriarty 1997, MIL (Juille 1999, immune systems (Dasgupta & Forrest
1999, and Ant Algorithms (Dorigo et al 1999. We outli ne the simil ariti es of these methods with
eath oher and ou own methods, and povide a onceptua framework in which they can be

understoodmore dealy.

Other models of interdependencies

Perhaps the best known model of genetic dependencies is Kauffman's ‘NK-landscapes (1993.
When the number of variablesinvaved in eat dependency, K, islarge they produce very rugged
landscepes that are very difficult for acaetive evolution. However, these landscgpes have no
structural moduarity and are therefore dso difficult for compositional evolution. We will seethat
two landscgpes with the same number of dependencies can be very different in difficulty becaise
of differences in the structure of those dependencies. We dso discussthe interesting properties

and inadequades of ‘ NKC landscapes' .

Linkage Learning

Since the encgpsulation medhanism we develop addresses the limitations of the tight-linkage
requirements of crosover, we must also discussother existing methods of ‘linkage-learning (see
3.4.2). However, it isnot our goal to ouperform alternate methods—and we do nd compare with
them in our experimental work. It is our intent to ill ustrate the concept of moduesin away that is
independent of gene ordering, which ouw mechanism does. However, we do dscuss ®me
theoreticd limitations associated with some linkage leaning methods that assume modues are

separable.

Diversity maintenanceand Pareto dominance

The method d diversity maintenance that we develop for the encgpsulation mechanism is naot like
other existing methods. It is based on the nation d Pareto daminance from multi-objedive
optimisation techniques. More spedficdly, we do nd alow one schemata to competitively
exclude another unlessit dominates it. That is, for two schemata, A and B, if A isfitter in some

context than B, and B is fitter in some other context than A, then we dlow the two schemata to
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coexist. This model of easystem diversity has interesting connedions to niche overlap in natural
esystems. But computationally, it is an almost dired cdculation o whether a schemata ‘ could’
be useful for building hgher-level systems, or alternatively, whether it is ‘goodfor nothing' and

can be discarded from future seach.

Cooperative Coevolution
‘Cooperative Coevolution' (Potter & De Jong 1994 200Q Potter 1997) explicitly uses the notions
of divide and conqler problem demmposition and colledive problem solving by coevolved

paral e lineages. Our model basicdly appliesthisideahierarchicdly.

‘No Free Lunch’

The NFL theorem (Wolpert and Maaeady 1997 basicdly saysthat ‘you canna get something for
nothing —spedficdly, you canna have an algorithm that is better than randam search uriessyou
also restrict the dassof problems to which it is applied. In this dissertation we take considerable
cae to define the dass of problems for which compositional mechanisms are superior -

spedficdly, problems with moduar interdependency.

Summary

M otives, research questions, and claims

Motives and goads:

To foster and capitali se on two-way interdisciplinary exchange between Evolutionary Biology and

Evolutionary Computation.

To provide a ©nceptual framework that incorporates a broader view of evolutionary mechanisms
than the adaptation o single popuationin asingle niche. In particular, to understand the alaptive

role, if any of symbiosis and symbiogenesis.

To better understand the competence of the Genetic Algorithm, and in particular the utility, if any,

of crossover and the Building Block Hypathesis.
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Research questions:
*  What are the limitations and cgpadties of aternate alaptive mechanisms, such as mutation, sexual

recombination, and symbiogenesisin natural and artificial evolution?

« What are the ansequences and affordances of alternate dependency structures in an adaptive

domain, in particular, moduar structures?
Claims:

« ‘Accretive evolution’, i.e. evolution based onthe acceetion d small successve modificaions, is
not the only posshle mechanism of change in evolution, and acmmpanying concepts of

evolutionary difficulty, are sometimes inadequate and misleading.

* ‘Compositional evolution', i.e. evolution based onthe asembly of sub-systems pre-adapted by
prior adaptation in parallel lineages, is different from the accetive view of evolutionin important

respeds.

e Certain kinds of complex systems, considered urevolvable under normal acaetive change, are, in

principle and under certain circumstances, easily evolvable under compasitional medhanisms.

More spedficdly, certain kinds of moduar complex systems take time exporentia in the size of
the system to evolve under acaetive change. Y et these same systems may, in principle and uncer

certain circumstances, be esolved in pdynomial time under compasitional medhanisms.

1.8.2 Approach and outline of models

Approach

Our approach to investigating these reseach questions and suppating these daimsisto develop conceptual
argument and forma analyses sippated by computational ill ustrations and mathematicd proofs where

possble.
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Outline of models

Our main arguments concern three kinds of models, given below. Together these models ill ustrate
important charaderistics in dfferent types of problems/landscepes, and the fundamental distinctions

between acaetive esolution and compositional evolution.

* Modelsof the problem clasd adaptive landscape:
We define aproblem class with a moduar interdependency structure that creaes moduar sub-
problems at many different scdes. This problem classis designed to represent an interdependency
structure that ill ustrates the distinction between the aceetive and compositional mechanismsin the
following models. The moduesin the problem have significant interdependencies that prevent the
problem being ogimised by incrementally solving individua modues. The crrespondng
adaptive landscape typifies one that is difficult for acaetive models of evolution: e.g. it is highly-
rugoged, and hghfitness points appea to be irreducibly complex. Nonetheless the moduar

dependencies in the problem are, in principle, amenable to problem decompasition.

* Modelsof accretive evolution
Here we use eisting algorithms to ill ustrate the difficulty of our defined problem classfor this
type of adaptive mechanism. We use a mutation Hhill-climber, and various types of genetic
algorithm, e.g. with crosover but with no gnetic linkage (i.e. freerecombination). We dso use a
large range of mutation rates to ill ustrate that large randam changes do nd help in this problem
class These experiments provide ill ustrations for reasoned argument and related mathematicd

proofs.

e Modelsof compositional evolution
Here we use two particular models. First we use a Genetic Algorithm using sexual
recombination/crosover. We show that this is able to solve problems with moduar
interdependency in limited circumstances. We then provide a novel model of evolutionary
adaptation based onthe encgpsulation of coadapted simple antities into a new whale. This model
is based on retura medhanisms of encagpsulating genetic material from diff erent entities evolved

in paralel, in particular, symbiogenesis. This medcanism, together with suppating methods for
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1.8.3

maintaining appropriate popuation/ecsystem diversity, is able to find ogimal fitness points in
the fitness landscgpe eaily. These experiments provide ill ustrations for ressoned argument and

related mathematicd proofs.

Contributions

The main contributions for evolutionary biology are:

Clarifying the structure of epistatic dependencies that produce different kinds of evolutionary

difficulty.

Demonstrating the mnceptua contrasts of acaetive evolution and compaositional evolution,

broadening ou interpretation d evolutionary processes.

Providing a conceptual framework for evolution that begins to acoommodate alaptive roles for

symbiosis and symbiogenesis.

Providing spedfic models for fragments of evolutionary processes sich as genetic linkage,

popuation/emsystem diversity, popuation sub-division, and Shifting Balance Theory.

The main contributions for evolutionary computation are:

Clarifying the structure of dependencies between variables in moduar problem domains, in
particular, hierarchicdly moduar problems. (These ae related to, but resolve important

limitations of, ‘building Hock’ problemsin GA theory).

Demonstrating the onceptual contrast of hill-climbing and dvide-and-conquer problem
demmposition medchanisms in evolutionary algorithms. (This is related to, but less pedfic than,

the nations of the Building Block Hypothesis).

Providing a cncrete illustration o medhanisms that permit automatic modue agquisition and
assembly in evolutionary algorithms, and a mnceptua framework that acoommodates cooperative
coevolution and function ogimisation; together addressng fundamental issues such as

‘representational re-coding and open-ended scdability in evolutionary search.
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Providing spedfic models for fragments of algorithmic methods such as methods for maintaining
appropriate schema diversity, and the use of partially-spedfied genotypes to represent epistatic

dependency in away that isinsensitive to gene ordering bu aff ords appropriate recombination.

Scope

It isimportant to be dea abou the scope and boundries of this dissertation. The work in this dissertation

is theoretic and conceptual. As indicaed in the motives, approadh, and contributions above, our studies

addressisaues of principle, not empiricd observations abou natural or engineaing danains or processes.

Accordingly:

Our claims do nd purport that compositional mechanisms provide ageneral purpose problem
solving algorithm. However, the thesis work is useful in expanding pssble computational
methods, and undrstanding existing computational methods. It aso provides sme spedfic
algorithmic comporents, and spedalised algorithms for the purpases of ill ustrating algorithmic
possbiliti es.

An empiricd survey of general evolutionary methods and their performance in genera problem
clasesisnot required to suppat our claim. However, we will discuss me principled limitations

and aff ordances of diff erent algorithmic goproaches when explanatorily useful.

Our claims do nd require that the problem classwe define be equivalent to any particular problem
classin engineaing damains, or any particular adaptive landscape in natural domains. However,
our models of problem classes are useful for expanding ou nations of evolutionary difficulty, and
problem difficulty in general. We dso discussprincipled limitations and aff ordances of diff erent

general problem classes.

Conclusions derived from our abstrad models shoud be transferred to natural evolution orly with
extremely careful qualificaion. Abstrad computational models, such as thase we use, are relevant
to natural evolution at least in the sense that we demonstrate that it is possble for nonteleologicd
adaptive processes, based orly on fitnessfealbad, to behave in this manner. There is nathing in

our models at this abstrad level that is ‘unevolutionary’. Moreover, the experiments that we
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explore ae not arbitrary excursionsinto passble biologies. Mecdhanisms of sexual recombination
and symbiogenesis are biologicd fad. The other concepts that we ae exploring heve arich, abeit
controversial, badkgroundin hiologicd thought—and we shall do ou best to draw the relevant
conredions to the biologicd literature, and provide gpropriate biologicd interpretations of
models and results. In short, we do nd claim the availability of the necessary condtions for
compositional evolution in nature—this is an empiricd matter. However, our models assst usin
identifying what those cndtions might be and provide adescription d the feaures that may be
examined in natural systems. In the meantime, the conceptual and theoretic principles of the thesis

stand independently.

1.8.,5 Dissertation structure

Overview of dis®rtation structure

In the following badground chapters we introduce the relevant badkgroundin evolutionary biology and

computation. The middie chapters (4, 5, 6 and 7) describe the models and experiments.

Chapter 4 describes a dass of systems built on moduar interdependency. This is designed to distinguish

the aaptive cagadties of acaetive and compositional mechanisms in the other main chapters.

An obvous division d the mechanisms investigated might have been provided by dviding them into
simulations of acaetive mechanisms, and simulations of compaositional mechanisms. However, it transpires
that sexual recmbination can behave ather acaetively or compasitionally and daes nat therefore fit nealy

into either category. Accordingly, we divided the simulations by threemain classes of genetic operator- i.e.:

Chapter 5 - mutation (acaetive),
Chapter 6 - sexua recombination (either acaetive or compositional), and

Chapter 7 - symbiotic encapsulation (compositional).

The models themselves are quite simple: the fitness landscape can be defined in a smple equation, and
ead algorithm can be defined in afew lines of pseudacode. However, sincethe purpose of the modelsisan
illustration d deeper conceptual isaues, they require afair amourt of set-up in order to convey why the

models are the way they are, and what the results do and do nd mean.
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In the discusson chapters we indicate the implicaions of the thesis work with related isauesin the EB and

EC literature.

Chapter-by-chapter Outline

Chapter 1 -

Chapter 2 -

Chapter 3 -

Chapter 4 -

Chapter 5 -

Chapter 6 -

Chapter 7 -

Accretive and compositional change in natural and artificial evolution. Lays out the

basic ideas and arguments and scope of the thesis.

Accretion and Composition in Evolutionary Biology. Describes the relevant biology that
motivates the ideas of the thesis and the mntroversial concepts in evolutionary biology that

are & issle.

Accretion and Composition in Evolutionary Computation. Describes the relevant models
in artificial evolution and the controversial concepts that eff ed evolvability and the utility of

evolutionary algorithms in contrast to ather problem solving methods.

Defining Modular Interdependency. Describes the various models that have been
proposed, bath to capture the qualitative nature of landscape structures in natural evolution,
and to exemplify the utility of evolutionary algorithms (or naot). Clarifies the mncepts of
demposability and separability in the interdependency of problem variables, and

introduces anew problem classwith hierarchicdly clustered moduar structure.

Mutation on Modular Interdependency. Describes the main charaderistics of the
landscepes defined in the previous chapter, and ill ustrates the difficulty of this landscgpe for

simple accetive medhanisms, spedficaly mutation.

Sexual Recombination on Modular Interdependency. lllustrates the operation and
limitations of evolution wsing sexua remmbination, represented by the Genetic Algorithm

with crossover, on a problem with moduar interdependency.

Symbiotic Encapsulation on Modular Interdependency. Introduces a omplete, though
simple, computational abstradion d symbiotic encapsulation, and ill ustrates its operation on

aproblem with moduar interdependency.
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Chapter 8- Implications for Evolutionary Biology. Outlines the implicaions of these models and

results for EB, and dscusses related isaues and future reseach.

Chapter 9- Implications for Evolutionary Computation. Outlines the implicaions of these models

andresultsfor EC, and dscusssrelated issues and future reseach.

Chapter 10- Summary and Conclusions. Summarises the aguments, experiments and contributions of

the dissertation, and concludes.
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Chapter 2- Acaetion and Composition in
Evolutionary Biology

In this, and the correspondng EC chapter that foll ows, we will use the following ouline:
« Firstwewill talk abou acaetive evolution, and correspondng ndions of evolutionary difficulty.

*  Then we introduce some mechanisms that step ouside this ¢andard model, towards mechanisms
of compasitional change. And, where avail able, we highlight correspondng ndions of what might

be eay or difficult for evolution undr these medchanisms.

2.1 Theaccretive model

211 Successve slight modifications/ gradualism

Conventionally, evolution by ratural seledion is amost inseparable from the nation d acaimulating slight
modificaions. This is evident from the beginning: “If it could be demonstrated that any complex organ
existed which could na possbly have been formed by numerous, successve, dight modifications, my
theory would absolutely brea&k down”, (Darwin 1859. In fad, this datement is “clealy invalid” (Gould
19823, p.84) because if, somehow, large fitnesspositive’ changes are avail able then natural seledion can

ad onthem. Nonethelessthe suppased necessty of gradualism is quite pervasive, aswe will discuss

The nation o dight modifications perhaps originates from ohserving charader variation uncer artificial
seledion, and by olserving spedra of small quantitative variation in natural organisms. Of course,
ohserved dlight modifications might not be representative of evolutionary changes in general, and even if
they were, it does not caegoricdly exclude the posshility of large canges. But there is a more

fundamental reason to suppat this nation. Even before knowing the genetic basis of variation, the ideathat

Or, not appredably fitnessdeleterious.
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evolution must proceel by succesdve dight modificaions, SSMs, follows from the ideathat changes are
randam and wnguded. That is, large randam unguded changes are generally considered urikely to be
beneficial. This follows from the aaumption that a small change from an adaptive pe&k will li kely remain
somewhere on the alaptive pe&k, whereas a large change will probably nat - then, given that high fithess
points are rare, a large dhange is more likely to arrive & a lower fitness configuration than the pesk we
started on Accordingly, we arive & the cnclusion that it is likely to be the cae that beneficial changes

are more likely to be small than large.

When the genetic basis of variation is understood, the idea of SSMs is further reinforced. If genetic
mutations are the source of variation, and these ae small andrare, then SV seansto be the only option. It
isclea that we shoud separate genotypic variation from phenatypic variation—a small change in genotype
does not necessrily mean a small change in phenotype. But, still the general concept of changes being
unguded might suggest that even if a genetic mutation dd induce alarge phenatypic change, it would be
unlikely to be beneficia. In short, large dhanges would have to rely on ‘hopeful monsters (Goldschmidt

194Q Gould 1982h.°

The ssaumption that evolutionary change must be based ondlight modifications leads to the perception that
evolutionary change & a whole may be dharaderised merely as the acumulation d successve dight

modifications. Thisisthe model werefer to as ‘acaetive evolution'.

In summary, the notion d acaetive evolution, evolution ia the acamulation o successve dight
modificaions, is sippated in three ways: @) by the observation that organismic variation in phenotypic
charaders, both thase occurring returally and those occurring under artificial seledion, are generally dight,
b) by considering the prima facie likelihood d large randam unguded variations being keneficial, and c)

by the existence of mechanistic sources of small variations, i.e. mutation.

The notion d acaetive evolution hes become embedded in evolutionary thinking in many dff erent ways.

For example, as popuation genetics took shape (i.e. with Fisher, Haldane, and Wright in the 1930), the

5

It will be dea to the reader that this argument is ignaring the posshility that although the genetic
mutation may be random, the large phenotypic consequences of a mutation are nonrandam. We will
shortly discussthis and the posshility that large nonrandam phenaotypic changes may also be ‘guided’
by prior seledion, i.e. more likely to be adaptive than arandam change of the same scde.
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asumption o evolution by SSVIs becane entrenched. Goldschmidt’s theory of ‘ saltations ® was rejeded,
and evolution by small changes was also suppated in more subtle ways. Spedficdly, if we asume that
evolutionary change involves snall modificaions then the only fitnesseffeds that matter are those that can
be acouned for by additive dfeds of small changes. Put ancther way, evolution by SSMs can ony
respondto the fitnesseffeds of small changes. So, athoughthe fitnesseffed of alarge change might not
be equal to the sum of fitnesseffeds from the small changes of which it is compaosed, we need na consider
the influence of this posshility on evolutionary tragjedories. The upshat of this, is that popuation genetics
models generally consider only additive dfeds of genes and generally ignare epistasis (which for now, we

will j ust define & non-additi ve fithesseffeds of allele combinations).

This leads us to consider the main influence of acaetion on evolutionary thinking that we want to

discuss—the impaa of acaetive models on ndions of evolutionary difficulty.

2.1.2  Evolutionary difficulty under accretion

Fitnesslandscapes

Wright (1967 introduced a highly pervasive tod in thinking abou evolutionary processs, the fitness
landscape. A fitnesslandscape, is a surfacewhere the verticd position at ead pant is given by the fitness
of a crrespondng genotype, and the neighbourhood d points onthe surfaceis given bythe neighbouhood
of correspondng genotypes under genetic variation. That is, genotypesthat are ajacet under the operators
of genetic change, correspondto adjaceit points in the fithesslandscgpe, and the height of ead pant is

given bythe fitnessof the mrrespondng genatype.

‘saltation’: evolutionary change within a spedes originated by sudden, drastic changes that reorganize
the whole genome. Although most such reoganizaions are deleterious, a few of those “hopeful
monsters’ would be progenitors of new groups, Goldschmidt argued. (The viability of ‘hopeful
monsters' was later resurreced by Gould 197Q drawing onthe ohservation that changes in phenctype
are strongy nonrandam, aswe shall briefly discuss)
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Figure 2-1: A fitnesslandscape.
In principle, the fitnesslandscape can be defined the same way regardlessof the genetic operators involved
(Jones 1995. For example, we could define adjacent points in the landscgpe using k-point mutation instead
of single point mutation. In general, for the fitnesslandscape to be intuitive, we want it to be the case that
the doser two pdnts are to ead ather in the landscgpe, the higher the probability of transitioning between
them under genetic variation. Thisis natural and intuitive when the distance metric is mutational distance
(or Hamming dstance—the sum of differences in all dimensions of change). We will discuss non
mutational neighbouhood metrics later, but the metric of small modifications (genetic or phenatypic) is

intuitive and byfar the most pervasive.

Armed with the fitness landscape, we can nov understand evolutionary processes as a hill -climbing
process That is, evolutionary change can be seen to ascend locd gradients in the fitness landscgpe by
making small changes in the neighbouhood d the popuation mean, and ‘moving towards', or seleding
for, variants that are fitter or ‘higher’. Then, since evolutionary change dlows movement to orly locd
points on the landscape (by definition), evolution must ascend locd gradients to arrive & locd optima,

locd pe&ks, in the landscgpe.

43



a) b) C)

Figure 2-2: Population mean climbing alocal fitnesspeak.

The arve represents the locd fitness landscape, the points represent individuals of a
popuation, the drcle represents the gproximate popuation mean pasition onthe landscgpe.
a) a popuation d individuals can be represented by its mean. b) seledion removes lessfit
individuals but all ows more fit individuals to ‘ passthrough c) the remaining individuals have
anew popuation mean, as does the next generation o new individuals generated from them.
In the processthe popuation mean in (c) has climbed the locd fithessgradient with resped to

).

Epistasis, ruggedness local optima and fitness sddles

The problem arises when fedures have eistatic interadions. That is, when the change in ore feaure
changes the fitness effea of changes in ancther feaure. Or at the genetic level, epistasis occurs when the
allele at one locus changes the fitnesseffeds of alleles at anather locus. If genetic changes are epistatic then

the rrespondng fitnesslandscape is non-planar.

Intuitively, the ruggednessof a surfaceis the extent to which it deviates from aflat plane. Evolutionarily,
the problem with ruggednessis that it may creae local optima—Ilocd pe&ks on the landscgpe where no
neighbouing pants have higher-fitness From this, one of the predominant nctions of evolutionary

difficulty foll ows.

the cantral problem of evolution .. is that of a trial and error mechansm by which the locus
of a popuation may be crried across a sadde from one peak to andher and perhaps

higher one,

Wright, (1939 p.264.
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Thus, the ideathat evolution proceeds by the acamulation o dlight modifications gives rise to the intuitive
notion o a popuation climbing alocd fitnessgradient in a fitnesslandscape. And from here, the ideathat
the popuation might become trapped in alocd optimum, a point that has no reighbous of higher fitness
credes a powerful nation o evolutionary difficulty. Spedficdly, we must explain hov evolutionis able to

crossa ‘fitness sddl€, the region d depres=d fitnessbetween ore locd optimum and another.

Figure 2-3: A fitness sddle.

Wright charaderises evolutionary difficulty as the problem of crossng afitness sddle. i.e. a
popuation climbs a locd gradient to the locd fithesspe&k, and is unable to crossto higher
fitnesspaints on aher fitnesspedks.

We note that there ae several alternative scenarios that could enable succesgul adaptation in problematic
cases. For example, one possbility isthat large anourts of genetic material may acawmulate without being
expressed in the phenotype thus all owing reutral evolution (Kimura 1983 and permitting variants to travel
along reutral pathways (Huynen et al. 1996 Reidys et al. 1997 that ‘tunnel’ their way to fitter parts of
feaure space This possbility enables a valley crossng by utili zing large anourts of randam mutation that
isunguded by seledion, but unlike the hopeful monster, this need na occur in a single mutational event.

(seeSedion 5.3).

Irreducible ommplexity

Ancther, less ®phisticated yet still emotive, nation o evolutionary difficulty is also based on violating the

assumption o acaumulating small changes. “Irreducible complexity” is defined by Behe (1996 asfoll ows:

45



By irreducibly complex | mean a single system composed o seveal well-matched,
interacting pats that contribute to the basic function, wherein the removal of any one of the
parts causes the system to effedivdy cease functioning. An irreducibly complex system
cannd be produced dredly (that is, by continuowsly improving the initial function, which
continues to work by the same medanism) by dight, successve modifi cations of a preaursor
system, because any preaursor to anirreducibly complex system that is missng a pat is by
definition norfunctiond. An irreducibly complex biological system, if there is such athing,

would be a paverful challenge to Darwinian evolution.

(p- 39)

Behe then indicates that many hiologicd systems are irreducibly complex at the moleaular level. The
nation d an irreducibly complex system sounds a lot like the nation o a designed system, such as the
infamous watch, from Paley almost 200 yeas ealier (1802. But Behe incorporates the anti-Darwinian
nation that not only is the system complex and spedfic in its gructure, but that it also canna be formed by

acamulating small modificaions. Behe is right that an irreducibly complex system is a problem for
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Figure 2-4: A hypothetical irreducibly complex system.

(acaetive) evolution.

A system of autocaalytic enzymes forming a hypercycle. If any ore enzyme is removed the
whole gycleis broken.

Following the asssumption that acaetive evolution is the only posshbility for natural evolution there has
bee, in the 140 yeas snce Darwin, agrea ded of reseach eff ort spent hypahesising abou plausible fine-
scde paths of monaonicdly increasing fithess approaching problematic adaptations (e.g. Dawkins 1996),
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(and similarly, a good ad of effort spent identifying systems that do nd appea to have smooth paths of

approach astypified by Behe).

This eff ort is expended with goodcause. If there ae paths of small changes approaching al adaptationsin
nature then there is no evolutionary difficulty. But we have taken pains to emphasise that the perceived

need for such paths arises from the asumption d slight successve modificaions.

21.3 Consegquences of the accretive model

In summary, the asumption o acaetion is embedded in many ndions of evolutionary change and

evolutionary difficulty. For example, the ssuumption d acaetive changeisembedded in...:

e ...the aaumption that there must aways be some path of successve dight modificaions

conferring monaonicdly increasing fitnessapproaching any evolvable feaure or adaptation.

o ...the ssamption that there is a meaningful neighbouhood metric on which a fitnesslandscgpe
may be based, giving a meaningful notion o locd adaptation and locd hill-climbing for

evolutionary change.

« ...theideathat ruggednessin a fitnesslandscapes, and the eistence of locd optima, corresponds

to evolutionary difficulty.

» ...the ideathat a popuation will, for the most part, be more-or-less converged around a locd

fitnesspe, i.e. stuck onalocd fithessoptimum.

« ...thebelief that a system where the removal of any ore part causes nonfunction (irreducibility) is

difficult for evolution.

o ...the aamption that, although epistasis is not necessrily absent, natural seledion will ad

primarily onthe alditive dfeds of gene substitutions.

e ...the saumptionthat large aaptive changes $roud be relegated to ‘hopeful monsters'.

All of these sssumptions and ndions of evolutionary change and evolutionary difficulty are based, diredly

or indiredly, onthe assumption o acaetive change.
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2.2  Compositional medhanisms

Despite the pervasiveness of acaetive nations in evolutionary thinking, it is clea to many that the
assumption d successve dight modificaions is a smplification. Perhaps the most obvious mechanism
effeding large dhanges are mechanisms that enable large changes in phenotype from small changes in
genatype. Other mechanisms enabling large modificaions include mechanisms that re-use pre-adapted
sedions of chromosome, such as gene-dugication. But the mechanisms we want to address first are

compositional mechanisms.

221 A spedrum of compositional mechanisms

There ae many mechanisms that manipulate subsets of pre-adapted genetic material in nature:

*  Sexual recombination combines genetic material from members of the same spedes.
¢ Natura hybridization may occur between very similar organisms.

e Allopdyploidy (having chromosome sets from different spedes) (Werth et al. 1985

generally occurs between related spedes.

e Horizonta or lateral gene transfer (Mazodier & Davies 1991, Smith et al. 1992 Davies

1996 Ochman et a. 2000 can occur between bah similar and dssmilar organisms.

¢ Endosymbiosis can encagpsulate the genetic material of whally unrelated microbial

spedes (Margulis 1993).

Figure 2-5: Medhanisms of genetic composition
All of these mechanisms manipulate pre-adapted gene complexes between individuals and sometimes
between spedes. In this list we begin to emphasise a spedrum of medhanisms. Spedficdly, the
medhanisms nea the beginning o this list re-use wmplexes that are pre-adapted in similar organisms
(same spedes); whereas the mechanisms toward the end d the list may manipulate genetic material pre-

adapted in relatively urnrelated perall e li neages (diff erent spedes).
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The two mechanisms that we will examine in our models are taken from either end d the spedrum abowe.
The first is sxua recombination. Althoughsex is usually considered to occur within a lineage, or at least
within a popuation, sexual recombination manipulates feaure mmplexes by exchanging them between
different individuals. Indeed, to the extent that organisms are similar, sexual recombination between them
has no effed, so it is the diversity of internal lineages within a popuation that makes sxual recombination

prodictive (if it is).

The second mechanism we will examine subsequently is one which can combine gene complexes from
unrelated parallel lineages, i.e. entirely different spedes. Spedficdly, we examine a mechanism of

interspedfic genetic integration based onEndasymbiosis, which we cadl ‘ symbiotic encapsulation'.

Margulis (1992 suggests that sexual recombination and endosymbiosis can be thouglt of as forms of the
same process but with dfferent degrees of relatedness between the antities involved: “symbiosis and
meiotic sexuality entail the formation o new individuals that carry genes from more than asingle parent. In
organisms that develop from sexua fusion d cdls from two parents, these parents dare very recent

common ancestors; partnersin symbioses have more distant ancestors.”

The foll owing sedions overview these two mecdanisms.

2.2.2  Sexual recombination

To an opimistic adaptationalist, sexual reammbination dfers the posshility that it might take the good rts
from two parent individuals and kring them together in the off spring by crosover (Figure 2-6). But not
every adaptationalist is optimistic. In fad, the alaptive utility of sex, if any, is very controversial. We ae
not going to try and urravel the detail s of al the various arguments that have been proposed for and against
the alaptive potential of sexual recombination in this dissertation. In particular, we ae not going to address
the benefit or deficit of sex to theindividual - but rather the adaptive cgadty of the popuation aff orded by
sexual recombination. In general, we will focus on the isaues that we can addresswith the models that we

will i ntroducelater.
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Figure 2-6: Crossover

Sexua recmbination certainly has the potential to make new combinations of all eles by bringing together
genes from two dfferent dona individuals. However, it also has the potential to bregk-up combinations of
alleles that were resident in either parent. The observation that alele combinations are not stable, not
reliably reprodicible, under sexua recmbination is the motivating tenet of ‘the selfish gene’ (Dawkins
1976. Spedficdly, if gene complexes canna be reliably reproduced becaise they are broken-up by sexual
crosover, then the only unit remaining that is reliably reproduced is very short sedions of chromosome—
on the order of a gene. On the basis of this, it is concluded that al adaptive change in sexua populationsis

driven by the selfish interests of genes, not individuals, (because evolution is driven by the ‘selfish’

interests of whatever unit of reproductionisin operation).’

The bre&k-up o alele combinations by sexua reproduction is ancther part of the picture in popuation
genetics models that places focus on the alditive dfeds of aleles. In a large panmictic® polymorphic’
popuation “combinations [of alleles] are broken-up too rapidly to permit effedive seledion among
interadion systems'”® (unlessthe loci are so closely linked that alleles at different loci behave dmost as if

aleles of ead ather).” Andthus sledionis“restricted to the net effeds of alleles’ (Wright 1977, p.470).

Note that we, like Dawkins, are thus far assuming that the mechanism of reprodiction is a given—as
thoughit were not subjed to evolutionary change. The esolution d sex is a more mmplicated subjed
altogether, and in a framework that adknowledges the posshility of aternate reproductive mechanisms,
the units of reproduction are a much a product of the evolutionary processas they are the actors of the
evolutionary process

‘panmictic’, unstructured or fredy mixed. Wright is introducing the asaumptions behind * Shifting
Balance Theory’, (which we will discusslater), where in contrast, he aldresses the adion o small sub-
popuations within a spatialy sub-divided popuation.

‘palymorphic’, containing dfferent alleles (in dfferent individuals).

10

Wright uses “interadion system” to refer to a set of coadapted interdependent all eles.
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This introduces ancther important concept in sexual reproduction—‘linkage’. ‘Linkage’ or ‘genetic
linkage' refers to the tendency of alleles of diff erent genes to be inherited together, or more exadly, to the
deviation from alelic distributions that would be expeded uncer ‘free recombination’ (6.4.1). In linea
chromosomes, the distance between genes on a chiromosome dfeds the likelihoodthat they will co-occur
in an offspring produced by recmbination with another string. Wright observes in the @owve quae, in

passng, that linkage may enable seledion onsets of closely linked genes under sexual reproduction.
Thusfar, we seethat:

e Sexua recombination hes the potential to creae new combinations of aleles.

»  Sexua recmbination also has the potential to bresk-up combinations of alleles.

e Sexua recmbination introduces units of reproduction smaller than the whole dhromosome.

» These units may be & snall asthe individual gene, in which case amodel neal only consider the

additive dfedsof alleles.

e Genetic linkage may enable seledion on sets of genes if they are dose together on the

chromosome.

We amphasise the point that the potential of sexual recombination to manipulate gene complexes
effedively, if at all, will be dependent on appropriate genetic linkage coming from the ordering o geneson

the chromsome. Thiswill be asignificant feaure in some of our models.

We dso nde that if a popuation is completely converged, sexual recombination dfers no rew
combinations of aleles. In the limit, if al members of a popuation are identicd (no pdymorphism at any
locus) then sexual recombination has no effed. Accordingly, if we ae interested in the ideaof bringing
together new combinations of al eles, we need also to consider isaues of popuation dversity. Thiswill also

be asignificant feaure in some of our models.

We ad&nowledge that the ideaof sexual recombination bringing together new combinations of alleles, and
at the same time, not breaking-up existing combinations of al eles, seems problematic. Nonetheless we will

explore the posshility that sexual recombination can, with favourable genetic linkage, enable dfedive
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adaptation by bringing together sets of alleles that have been coadapted in dff erent individuals of adiverse

popuation.

Finaly, there ae many theoreticd studies on sexua recombination, its limitations and aff ordances that we
have not mentioned. Often these asaume no genetic linkage, or no-epistatic dfeds between genes, or
simple models of popuation dversity (or ladk thereof). These ae not unreasonable asumptions in some
cases, but there ae dternative scenarios. In the models that follow, we step ouside these asumptions.
Acocordingly, since we use different assumptions in ou epistasis model, our linkage model, and ou
diversity model, our conclusions complement rather than contradict the models in the literature. Thereby,
we ae ale to show spedfic dfeds of sexual recombination that are radicdly adaptive, whilst not

contradicting existing arguments that are generally to the mntrary.

2.2.3 Interspedfic genetic integration

Horizontal genetransfer

The exchange of genetic material between members of diff erent spedes is more widespread than might be
imagined gven the normal definition o spedes. Recent nucleotide sequencing indicates that processes of
interspedfic genetic transfer acoourt for the origin of significant amourts of both cytoplasmic and nuwclea

DNA in microorganisms.

The most reasonalle exlandion... [for anomalies in the phylogenetic treq is that the
pattern of evolution is not as linear andtredike as Darwin imagined it. Although gnes are
passd vertically from generation to generation, this vertical inheritance is not the only
important processthat has affeded the ewlution o cdls. Rampart operation d a dfferent
process lateral, or horizontal, gene transfer [ has also affeded the course of that evolution
profoundy. Swch transfer involves the delivery of single genes, or whole suites of them, not

from parent to dffspring bu across pedesbarriers. (Dodlittl e, 2000
Thereisaso evidencethat lateral gene transfer is possble between multi-cdlular organisms:

“DNA €elements have been olserved transferring into and between higher organisms, such as

plants, fung and metazoans, including humans.” (Syvanen & Kado, 1998.
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Lateral transfer may involve agene or a suite of genes, but there ae occasionaly more radica processes of
interspedfic genetic integration - as follows.

Endosymbiosis and symbiogenesis

Endosymbiosis is the symbiosis (living together) of two organisms where one lives inside the other. In
some caes of endosymbiosis, it is very difficult to establish the independent status of the parties involved.
Indeed, the endosymbiosis of prokaryotes (baderia) with ore another has to a large extent becwme
irreversible, i.e. the parties involved have subsequently become dependent on ore ancther and canna live
independently. Such endasymbiosis acourts for the origin of various organelles, e.g. mitochondia and

chloroplasts, in eukaryote cdls. And there is me evidence to suggest that other organelles, such as

flagell a, also resulted from the physicd inclusion d symbiotic baderia (Margulis 19938.

In some cases, the symbiatic entities remain as physiologicdly distinct ‘organelles” within the larger ‘host’
cdl — eg. plastids such as mitochondia axd chloroplasts (Figure 2-7). But there ae dso mecdhanisms,
such as transposons, that can transfer genetic material from plastids to the nucleus or vice versa, implying
that symbiotic origins may acourt for nuclea DNA as well as cytoplasmic DNA, as Goodright’s data

concords.

Such evidence suggests a more general process—' symbiogenesis, the origin of new spedes from the
integration o symbionts. In this view, endosymbiosisis not simply responsible for the origin of eukaryote
organelles, but for the origin of the aukaryotes themselves (including all plants and animals). The ideathat

new organisms could be aeaed in such amanner was introduced as ealy as 1890

“Complex organisms might arise “throughthe unification o elementary organisms into colonies,
and the transformation d the aygregate of them into an entity of a higher order...”™ (Khakhina

1992 p.33, quaing, Famintsyn 1890Q.

The symbictic origin of organisms was further developed by Merehzkovsky (1909, through studying
lichens, algae and fung, and by Kozo-Polyansky (1921) (see Khakhina 1992. Meawhile in western
biologicd though, Wallin (e.g. 1927 had similar thougts abou the origin of mitochondia, but at that
time the ideawas ridiculed and dsmissed. The symbiogenic origin of eukaryote organelles now accepted,

the mncept of symbiogenesisis most well known in modern western sciencethroughMargulis (197).
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Marguli s describes the processas foll ows:

..different bacteria form consortia that, under ewlogical presares, asciate and
undergo metabdic and gnetic change such that their tightly integrated communities

result in individudity at a more complexleve of organzation. (Margulis 1995.

Moreover, evidence suggests that secondary endosymbiosis has also taken place that is, endosymbiosis
invalving the inclusion d an endosymbiont (see Figure 2-7). This processof credaing rew spedes from
symbiotic relationships is known as symbiogenesis, and is the basis of Serial Endosymbiosis Theory
(Margulis 1970 Margulis 19933). This theory propcses that endosymbiosis has been a reaurring source of

innovation in the evolution d complex cdls.

Primary endosymbiosis Semndary endosymbiosis
ancestral host cdl  cyanobacterium ancestral host cdl photosynthetic
eukaryote (alga)
mitochondion R
™~ s I\
nucleus O

plasma membrane

chI_oropIast
chloroplast with with four
doude membrane membranes
nucleomorph
phaosynthetic
eukaryote (alga)

Figure 2-7: Endosymbiosis.

Left) Primary endosymbiosisinvolving hast cdl and phdosynthetic cyanobaderium resulting
in a phaosynthetic eukaryote. Right) Secndary endosymbiosis involving hat cdl and
eukaryote.
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Acocordingly, thoughits adion may be rare in evolutionary history, the impad of symbiogenesis has been
profound (eukaryotes include dl plants and animals). Certainly, the genetic impad of symbiogenesisis, to
say the least, unconventional. Symbiogenesis involves the encgpsulation of genetic material from parall el
lineages into a new whole—a new entity replicating as an individual. Certainly, from the point of view of
either entity involved, it aff ords large non-randam jumps in genotype (and prenotype) that introduce large
amourts of pre-adapted DNA. And moreover, the ideathat the organisms involved were symbionts before
they were encgpsulated, even if their relationship was not mutually beneficial, suppats the ideathat the

combinations of organisms © creaed are favourably biased by prior co-adaptation.

The aaptive utility of symbiogenesis is under reseached and poaly understood Its potential to provide
large aaptive jumps is of primary interest in this thesis. Moreover, the nations of serial endosymbiosis
sugeest an ideaof repeded inclusion and herarchicd encgpsulation, the ansequences of which are even
more poaly understood Hierarchicd encapsulation is one of the feaures common in the “the major

transitionsin evolution”.

TheMajor Transitionsin Evolution

The major evolutionary transitions (Buss1987, Maynard Smith & Szathmary 1995 Michod 1999 involve
the aedion d new higher-level complexes of simpler entities. Summarised by Michod for example, they
include the transitions “from individual genes to networks of genes, from gene networks to baderia-like
cdls, from baderia-like cdlsto eukaryotic cdlswith organelles, from cdls to multicdlular organisms, and
from solitary organisms to societies’. There ae many goodreasons to be interested in the evolutionary
transitions. they challenge the Modern Synthesis preoccupation with the individual as the unit of seledion,
they involve the aloption o new modes of transmitting information, and they address fundamental
guestions abou individuality, cooperation, fithess and nd least, the origins of life (Buss1987, Maynard

Smith & Szathmary 1995 Michod 1999.

In several of the transitions:
entities that were capalie of independent replication before the transition can replicate

only as part of a larger whole after it (Maynard Smith & Szahmary 1995.
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AlthoughMaynard Smith and Szathmary identify several transitions which do na fit what they describe &
“symbiosis followed by compartmentation and synchronised replication”,” several of the transitions
including the origin of eukaryotes from prokaryotes (Margulis 1993 & 19931, and the origin of
chromosomes from independent genes (Maynard Smith & Szathmary 1993, do invalve the quite literal

union d previoudly freeliving entities into a new whole.

Thisform of change has ©me obvious contrasts with howv we normally understand the mechanisms of neo-
Darwinist evolution. The ordinary (hontransitional) view of evolutionary change involves the
acaumulation o relatively small randan genetic variations within an entity, whereas innowation by
composition involves the union d two dfferent entities, ead contributing relatively large anourts of
genetic material to the new composite entity. Moreover, the result is quite different from a randam
variation applied to either dona entity since eab contributes highly nonrandam genetic material by virtue

of being independently pre-adapted as entities in their own right, if not in their symbiotic role.

224  Compositional evolution

We @nsider all the mechanisms listed above (Sedion 2.2.1) as compositional mechanisms. As mentioned
we will focus onthe first and last of these, sexual recombination and interspedfic integration, becaise they
represent the extremes of a spedrum: exchange of genetic material between very similar organisms (within

aspedes) and exchange of genetic material between paentially unrelated spedes.

In the latter medchanism, we will use the ideathat entities at one level of organisation are encgpsulated into
a new individual at a higher level of organisation. We shall refer to this mechanism as ‘symbiotic
encgpsulation’. Symbiotic encgpsulation is our term for the union d previoudy freeliving, and

independently adapted entities, into a new whole.

Symbioctic encgpsulation might be seen as a transitiond change in the sense of the major evolutionary

transitions, whereas sxual recombination is an intra-transition form of compasition.

In general, we define ampasitional mechanisms as foll ows:

" A notable exceptionin Michod s list above is the transition to multi-cdl ularity—althoughthe existence

of sime moulds that spend part of their lifegycle & colonies of single-cdled arganisms, and part as
multi-cdlular fruiting bodes, is of interest here.
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»  Compoaositiona variation medchanisms combine together systems or subsystems of genetic material,
or feaure amplexes, that have been semi-independently pre-adapted in paralel in dfferent

lineages.

And we include both sexual remmbination ketween members of a diverse popuation (in some
circumstances) and symbiotic encgpsulation of members from different spedes as examples of

compositional mechanisms.

2.25 Is gradualism necessary and/or sufficient?

Our interest in compositional medchanisms is as a source of large aaptive canges, in contrast to the
acaetive model of successve dight modificaions. This posshility, and the possble cntrast with
gradualism, is remgnised in the evolutionary biology literature (e.g. “Symbiosis as a Source of
Evolutionary Innovation” (Margulis & Fester 1991). However, there is sme disagreement abou whether
symbiotic encgpsulation contradicts the supposed need for gradualism, and sufficiency of gradualism, in

evolutionary change.

For example, Ridley (1989, having spedficdly mentioned symbiosis as a posshble source of increases in
complexity, states that, “The Darwinian denies (as he must) that the complex co-adaptation arose in a
single chance event.” (p.35) - “In al these caes, including symbiosis, complex organs have been built up
in small stages.” (p.41). So ead adaptation “...appeas at first impossble to buld upin a series of small
but advantageous gages. But in fad they probably were.” (p.41). And thus Ridley concludes that “ Complex
adaptations must have evolved by the natural seledion d alarge number of small mutations over a long

period d time.” (p.42).

Similarly, on the subjed of the gparent contradiction with Darwinian change, Maynard Smith (1991
states. “ Symbiosis may give rise rather suddenly to evolutionary nowelty; it istherefore seen as presenting a
challenge to Darwinian gradualism. | think this is to misunderstand the resson why Darwin was a
gradualist: esentialy, it was because the origin of a complex adaptation would be miraaulous.” But,
Maynard Smith pants out that in light of mechanisms that exchange genetic material acosslineages, we
seethat a complex adaptation aaquired in such a manner is not ‘miraailous’, and - “There is, therefore, no
contradiction between Darwin’s belief that complex adaptation arise by the natural seledion o numerous
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intermediates, and the posshility that new evolutionary patentialiti es may arise suddenly if genetic material
that has been programmed by seledion in different ancestral lineages is brough together by symbiosis.”

(Maynard Smith 1991 p.37)

However, let us take amoment to bresk apart this reasoning, because there ae some points that need to be
clarified. First, as Ridley says, the comporents (or ‘organs) that are brought together in a compositional
event may well have been evolved gradually, or in any case, are the result of prior adaptation and are not
‘pulled ou of thin air’, as it were. Thus, in agreament with Maynard Smith, there ae no ‘miraaulous’ large
changes in effed in compositional events. But we shoud be caeful with what we anclude from this

observation. Although there ae no miraculous large changes - there are large changes.

What does this sy abou the necessty and sufficiency of gradualism in evolutionary change? If the
comporents were e/olved gradually then it appeas that gradualism is necessry in order to explain the
evolution d the new entity. But is gradualism sufficient? Consider the new entity rather than the
comporents - it shoud be dea that, even if the comporents were evolved gradualy, the new entity was
not. Spedficdly, there nead na necessarily be apath of small changes of monaonicdly increasing fitness
approaching the configuration d feaures exhibited in this new entity. If there is nat, then gradualism is not
sufficient to explain its evolution - and even if there is sich a path, no such path was followed in this

historicd case.

A more fundamental question arises from these mnsiderations: spedficdly - Isit in principle possble that
an entity may be evolved despite the fad that it could nad be evolved orly by acamulating small

mutations?

It might appea that this is not possble. Consider a new entity AB that happens to have been composed
together from two independently evolved comporents A and B. We might suppcse that if A is evolvable
from some start point, throughappropriate intermediates, to a fully formed A, and likewise B is evolvable
from some start point, throughappropriate intermediates, to a fully formed B, then surely, even if AB was
contingently the result of composition, AB could in principle have been evolved from nothing through
appropriate intermediates to a full-formed AB withou using adaptation d the partsin parall €l lineages and

without compasition. However, we will show that thisis not necessarily the case.
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Spedficdly, we will show that it may be the case that althoughA and B are eat independently evolvable
gradually, AB is not evolvable gradually as a whole. This will be the cae when A and B correspondto
interdependent modues in the sense that we define in Chapter 4. Aswe will show, in systemswith moduar
interdependency, eathy modue is independently evolvable but the two modues canna be evolved together

acaetively becaise of dependencies ading between the modues.”

Acocordingly, we condwt simulations and analysis for non-compaositional, purely acaetive mechanisms,
and show that acaetive mechanisms are not sufficient to provide mmplex adaptations in an adaptive
landscegpe aising from this kind o epistatic dependency. Moreover, for the sake of making apoint, we dso
show that gradualism isnot even necessary in thiskind d landscape. Spedficdly, athoughthe cmmporents
that are composed together are the result of prior adaptation (and are not therefore miraaulous), they need
not necessarily be the result of acaetive dhanges, but may themselves be the result of seledion on pior
compositional events. This nation d ‘ compaosition al the way down’ (in the style of ‘ serial endosymbiosis
theory’ Margulis 1993 - asif there were no variational changes except compasitional ones - isused in our
simulation models to make the point: spedficdly, that in principle, there is a dassof adaptive changes for

which gradualism is neither necessary nor sufficient.

However, we by nomeans intend to imply that acaetive changeis nat adually in effed in natural scenarios
- of courseit is. Yet, we will discussthe isaue, outside our central claim, of whether acaetive changeisin
principle possble of affording continued open-ended adaptive innowation, and contrast this with the

possbility of continued innovetionin the presence of compaositional mechanisms.

2.3 Other related medhanisms

Medhanisms auch as ontogenic processes and gene dugicaion provide adiff erent source of large changes.

The distinction between these mechanisms and compaositional mechanisms is based onwhere the bias for

12

We shoud qualify that ‘can be evolved’ and‘cannad be evolved’ ismore exadly understoodas ‘is easy
to evolve and‘ishard to evolve' - but, in the framework of combinatorial optimisation, these terms are
not as sibjedive & they might appea. Spedficdly, in the former case the expeded time to evolve the
adaptation is polynomial in the size (number of elementary variables) of the alaptation, and in the
latter, the expeded time to evolve the adaptation is exporentia in the size of the alaptation.
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large dhanges comes from. Spedficdly, whether it comes from prior adaptation within the same lineage or
from prior adaptation in parallel lineages. This dion dscusses the implications of these two pcssbiliti es

and the mnsequences of our choiceto focus on the latter.

231 Largephenotypic changesfrom small genotypic changes: ontogenesis

Ontogenic mechanisms, ‘trandating the genotype into the phenotype, may permit large nonrandam
changes in more than ore way. For example, a small genotypic change may cause a omplex of feauresto
be expressed more than orcein the phenotype, as in an additional repetition o a body segment. They may
also allow subsequent modificaions in the genatype to produce dangesin all phenaotypic repeds of abody
segment, for example. “Small changes ealy in embryology acawmulate through gowth to yield profound
diff erences amongadults...Indedd, if we do nd invoke discontinuows change by small alterations in rates of
development, | do nd see how most major evolutionary transitions can be acomplished at all.” (Gould

1982

There ae perhaps other ways in which ortogenic proceses may assst in increasing the viability of large
modificaions. For example, we might imagine a process of ‘ontogenic repair’'—a locd modificaion
processthat adjusts the physiologicd charaderistics of a developing arganism towards those that are more
likely to be viable. Such ortogenic mechanisms may help ‘proted’ against nonviable variations and all ow
large changes that are viable with higher probability than large randam changes. “Monsters may be hopeful
becaise the regulative properties of development tend to channel perturbations along vable (if
discontinuous) routes.” (Gould 1982 p.89). Some daim that genetic repair is biased so as to prevent

deleterious changes (Smuts (1926 termed this “internal seledion”, see &so Arthur 1997).

Asaming that ontogenic processes are, at least to some extent, subjed to adaptation and na entirely the
result of pre-determined hbiologicd causation, then such favourable ontogenic processes would presumably

be seleded for if they shoud occur.

Other processs patentialy involved in large nonrandam changes include exaptation (Gould & Vrba
1982). Exaptation refers to cases where a olledion o feaures adapted for some purpose is co-opted for
some other purpose or function. With resped to the function d interest, alarge set of phenotypic feduresis

introduced simultaneously. And since this st of feaures has been subjed to prior seledion (albeit for a
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different function) it is a nonrandam set of feaures. The utility of this senario requires that the feaure of
interest be variationally close to a structure that, althoughfunctionally different, is also well-adapted for

SOMeE purpase.

2.3.2 Medanismsfor large genetic changeswithin alineage: Gene duplication

Any genetic mecdhanism that re-uses a subset of genetic material that has been pre-adapted by prior

adaptation pdentially enables alarge non-random change.

Gene-dugication (Ohno 1970 provides a cae in pdnt. Genetic arorsin replication can produce repeded
segments of genetic material. Such mechanisms are resporsible for the observation that many genes appea
to be derived from similar sequences, i.e. they are dupicaed and subsequently modified by mutation. The
new sedion d chromosome so introduced, are of course quite different from random genetic material
becaise they are sequences that have been arrived at through pior adaptation. Of course, they may cause
some disruption, but it is essy to seethat they may permit a large nonrandan change that has a higher

likelihood d being nondeleterious than arandom change would have.

Other genetic mechanisms manipulating sedions of chromosome within a single chromosome include

trandocaion andinversion.

2.3.3 Large dangeswithin alineage and self-similarity

Medhanisms like gene dugdicaion have some further similarities with ortogenic medcanisms of large
changes. That is, they bath utili se biases coming from prior adaptation within a single lineage. It can also
be seen that this biasislargely related to the repetition a dugicaion d feaure complexes. Thisintroduces
anation d repeaed modues and the implication that the alaptive alvantage of these medchanisms, if any,
may depend onthose modues being similar or at least being derived from similar beginnings. Put another
way, thisimplies that these mechanisms will be useful when the alaptive domain is such that self-simil arity

in subsets of feduresis auseful heuristic.
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234 Within alineage vs between parallel lineages

In contrast to the medhanisms discussed above, mechanisms that exchange subsets of genetic material
between parallel lineages (outlined previously), do nd necessrily involve repetition a dugicaion o
fedure complexes, and donat invoke any implicaion that the newly introduced feaures are similar to
existing feaures. Rather, from the paint of view of ead of the entities involved, the feaures introduced
from a different lineage ae not a rearangement or dugicdion d something it already has, but something

new.

In this thesis, we focus on medhanisms manipulating subsets of genetic material pre-adapted in parallel
lineages. Accordingly, we will nat pursue further mechanisms of ontogenic change or genetic dugicaion—
mechanisms utilising bas from repeaed o dugicaed structure. We make this choice for three main

reasons.

1) We wanted to illustrate the posshbility of large, adaptive dhanges with as few assumptions abou
the problem domain as passble. In particular, we discovered that there ae means by which
large alaptive changes may occur that do nd rely on the heuristic of self-similarity between

moduesin the problem domain.

2) The sexua exchange of genetic material between members of a spedes does not involve
dugicding sedions of chromosome, and we wanted to understand haw, if at al, sexual

recmbination may allow large changes.

3) Medanisms combining genetic material from parallel lineages are involved in severa of the

‘Major Transitionsin evolution'.

We note that many natural complex systems do invalve self-similar structure (Mandelbrot 1982, so this
may be avery good leuristic for adaptive bias, and these processes also warrant further investigation (e.g.
Hornby 2002—but we chocse not to focus on thisisale in this thesis. We list them here for contrast and to

explain ou chosen focus.
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2.4  Evolutionary difficulty under composition

In this sdion we discuss what we know abou what is easy and what is hard for compasitional
medhanisms in evolution. We intend to move towards an understanding o what kind d complex

adaptations are evolvable in compositional evolution that are unevolvable under acaetive mechanisms.

24.1 Transferring concepts of accretive difficulty (where posshble)
L et us examine some of the concepts of evolutionary difficulty previously outlined for acaetive esolution.

Fitnesslandscapes under compositional medhanisms

We mentioned ealier that, in principle, afitnesslandscgpe aould be defined using whatever neighbouhood
metric is given by the genetic variation operators (Jones 1995. One might argue then, that in the new
neighbouhood metric given by compasitional variation operators like sexual crosover, the evolutionary
process may till be described as one that moves the popuation mean up the locd fitness gradient—
seleding among reighbouing variants based on fitness—but where ‘neighbous are defined using a

different distance metric adiff erent neighbouhoodmetric from that defined by mutation.

This is ressonable and wseful in some drcumstances. However, there ae some problems with this
interpretation. Spedficdly, the way in which a genotype can be changed under crossover is dependent on
the mmposition d other members in the popuation. Since the make-up d the popuation is atered over
evolutionary time, the neighbourhood metric is not constant. Accordingly, the ideaof moving aroundin a
fitness landscape is confusing, and most of the intuition d the landscape metaphar is lost, becaise the

proximity of pointsin the landscgpeis constantly changed by the movement of the popuation.

An dternative isto discussthe movement of the popuationin the spaceof possble popuations (e.g. Nix &
Vose 1992 Wright & Rowe 2001). For a given operator, even a popuation-sensitive operator, the
neighbouhoodmetric is then constant. That is, the new popuation configurations that can be readed from
a given popuation configuration is fixed. However, this is quite aradicd departure from the intuitive
notion d afitnesslandscape. First, eat pdnt in the landscgpe now represents a popuation, not a genotype.
Seoond what shoud the height at ead pdnt be now? In ather words, what is the fitnessof a popuation? If

the popuation is diverse (and to the extent that it is not diverse, the landscgpe of a popuation with sexual
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crosover degenerates to the mutational neighbouhood then taking an average of the fitnesses for the
members of the popuation loses a lot of information. And besides, it is not clea that this appropriately

describes the gradient that a popuation would foll ow.

Another posshility isto consider the neighbouhood ketween pairs of individuals (Jones 1995 Gitchoff &.
Wagner 1996. Again, it is not clea what the fithessof a pair is or whether the movement of a popuation
can be understood from the neighbourhood d pairs to ore aother under crosover. However, in restricted

circumstances, this approach can be very useful (6.6.3).

In the meantime, we conclude that the nation o a fitnesslandscape does not easily acoommodate variation
operators that are popuation-sensitive such as sxual crosover.” However, we fed that the spatial intuition
behind fitnesslandscapes is too paverful to discard completely. One partial resolution is as follows. We
sugegest that the mutational neighbouhood metric provides a natural default metric for the fithess
landscepe. In the neighbouhood dfined by this metric, variations under crosover are seen as jumps. Thus
the movement of the popuation mean cannat be described by locd hill -climbing. However, the landscegpe
gtill has me useful intuitions. For example, the size of the jump enabled by a adosover event is
propational to the paymorphism between the two perents. That is, by the introduction d new genetic
material from Parent-2, the off spring d Parent-1 may be distant from Parent-1."* Also, we can seethat since
crosover cannd introduce dleles that are not already present in ore parent or the other, the offspring d a
crosover event must lie somewhere in the hypervolume whose oppasite crners are defined by the parents.
Acocordingly, we suggest that the fitnesslandscape defined by the mutational distance metric is gill useful

in intuiting the adion o crosover in some respects.

Addtionally, our intent in this thesis is in large part to compare the operation d mutation and
recombination and acordingly it will be useful to use the fitness landscape based on the mutational

neighbouhoodmetric as one of those that we examine in detail .

®  Although in some of our analysis of recombination (see 6.5) we will consider properties (such as the

absence of locd optima) of the fitnesslandscape defined by the recombinative neighbourhoodmetric by
using ‘invariants of the popuation.

14

We find it useful to imagine the aosover operation an apair of strings, C(A,B), asa‘curried’ function
on ore string, C_A(B), describing the transformations that may occur between B and its off spring
produced by ‘crossng with A’. (seediscusson d multiple inheritance and single parent inheritancein
Section 2.5.1).

64



Medhanisms like symbiotic encapsulation are even more difficult to acammodate into the notion o a

popuation climbing the locd gradient of afitnesslandscepe. For example:

Medhanisms of encgpsulation involve changes in the number of feaures exhibited by an entity, or
changes in the number of genes gedfied by an entity. Accordingly, the space of genatypic

possbiliti es does not have afixed number of dimensions.

Since the genatype of two dfferent entities may nat overlap completely, if at al, in the set of
genes they spedfy, it is reasonable to suppcse that they exist in dfferent fitness landscgpes. In

what landscape then, would their composite exist?

The nation d symbiotic encgpsulation, by introducing the nation o symbiotic relationships,
makes explicit the fad that the fitnessof one organism is sgnificantly dependent on the bictic (as
well as abiatic) environment in which it is placed. In short, the fitnesson an entity is undefined in
isolation (Lewontin 1982 1983, and if we want to discuss models involving symbiotic

encgpsulation this cannat be ignared.

These mnsiderations challenge the utility of discussng a fitness landscape under encapsulation

medhanisms. But, let us sewhat utility, if any, can be recovered.

Let usfirst consider the union o all fedures, al genes, that an entity or any pcsdble entities may
exhibit. Let us take this to be alarge, but fixed, dimensional space We suggest, for the same
ressons given abowe, that the mutational neighbouhood metric provides a useful default for a

fitnesslandscgpe in this gace

Any entity that spedfies me vaue for al feaures, or alele for al genes, can be & a unique
position in this gace But in general, entities will exhibit some subset of these feaures, and
acordingly, they will occupy a hypervolume in this space™ The encagpsulation of two entities is

then properly defined as the intersedion d these two vaumes.

15

This corresponds to the nation d schema in GA theory, as we will discuss
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 We dso seethat, at any ore time, any particular entity is resident at a particular location in this
volume of possbilities and hes a particular fitness even though its own genotype does naot
uniquely define that position. That is, its environment, biotic and abiotic, defines a @ntext in
which its own feaures reside, and this context is required to define its gedfic locaion in the

volume.

When talking about symbiotic encapsulation, we will continue to talk about fitness landscagpes, and in
particular, we will continue to use the mutational neighbourhood metric as the default. But the landscape
must be interpreted as described abowve, and the nation o a popuation mean climbing the loca gradient

must be discarded.

However, ruggedness and locd optima produced by epistasis still provide meaningful concepts of
evolutionary difficulty for acaetive evolution in this landscape. And thus it provides a way to think abou

some of the diff erences between the alaptive cgadty of acaetive aad compositional mechanisms.

Crossng fitness sddles

The introdwction o a large subset of genetic material into an organism constitutes a large ‘jump’ in
genotype. A large jJump in genotype may concevably enable an adaptive processto crossa fitness sddle
(in the original, mutation-based landscgpe). But on the other hand, it could just take it somewhere randam.
We have agued that, by virtue of the fad that the new material introduced has been pre-adapted in a
paraléd lineage, the large dhanges aff orded by compositional medhanisms may be more likely to produce
adaptive change than a large undreded mutation. However, the hope that such a change might take us
aaoss a fitness sddle seams overly optimistic. If we ae to understand how large jumps enabled by
compositional mechanisms enable movement in the fitnesslandscepe then we will need to understand the
adaptive relationships between ore locd peak and ancther. We will neal to understand the structure of the

fitnesslandscgpe in away that incorporates nontlocd relationships.

Irreducible ommplexity

The definition d irreducible complexity that Behe gives (see2.1.2) assumes explicitly that modifications
must be small: “the removal of any ore of the parts causes the system to effedively ceae functioning’.

Behe is asauming that if the removal of a small part isa cdastrophicdly deleterious, then evolution o that
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system as awhale is problematic: thisin turn is based onthe assumption that the only way to arrive & the
whole system must be by the aldition o asmall part to a‘proto-system’ that is independently viable. Since
compositional medchanisms may introduce large parts, or many small parts, simultaneously, they may in

principle enable the evolution d irreducibly complex systems, by Behe' s definition.

However, the idea of irreducibility could be defined more generally. For example, we might say that a
system is irreducible if the largest subset of the system that is independently viable is distant from the
whole system by many variational steps. This would be aproblem for compaositional mechanisms (as well

as acaetive mechanisms).

So what redly matters is whether there ae any subparts of the system that are independently viable, and
whether we can get from them to the system of interest in a small number of variational operations. Behe
asaumes that if the largest viable subsystem is more than a small modificaion away from the final system
then it is unevolvable. However, if it is a large modificaion away, it may still be evolvable if the large
modificaion can be described as the aldition d a subsystem that is available in some other individual. On
the faceof it, this sams unlikely, but if that subsystem is itself independently viable then the idea of

combining two sub-systems to make the final system is not inconceivable.
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Figure 2-8: Hypercycl%wnh multi-level structure.

A system that appeas to be irreducible by Behe's definition (i.e. the system function is
broken you remove any ore part) but nonetheless it may be compased of useful/functional
subsystems. A system of autocaalytic enzymes form two hypercycles, with caalytic
interadion between the two hypercycles. If any ore part of the system is removed then its
subsystem collapses and therefore the eitire system breaks. However, it is noretheless
plausible that eat subsystem is gable independently, and the whole system could be aeaed
from the assembly of the two subsystems in ore variational step. Thus, under compasiti onal
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mechanisms, such a moduar system is dgill conceivably evolvable, though apparently
irreducible by Behe' s definition.

The revised ndion d (ir)reducibility introduces the ideathat a system might be compaosed of a small
number of large, relatively self-contained, subsystems. This emphasizes the need for us to discuss and
define ‘moduar’ systems. And the ideaof compasitional mechanisms that assemble together pre-adapted

feaure complexes s1ggests medchanisms that can manipulate modues.

We ae goingto dscussmoduarity at length in Chapter 4. For now, let us just note that moduarity isgoing
to be an important part of the models that we will examine. Importantly, these modues are not separable
sub-systems having nointeradion; the interadion between modues will be important in uncerstanding
what the manipulation d modues under compositional medianisms can enable that large mutation rates
under acaetion cannad. We dso stressthat the moduarity we ae going to discuss does nat depend on

notions of modues that are self-simil ar.

2.5 Discusdon

The isaues discussed above suggest that we shoud broaden our perspedives of evolutionary processesin

several respeds, covered in the following subsedions.

25.1 Singleinheritanceand multiple-inheritance

Non-random changes, directed by prior selecion

It shoud be dea that the medhanisms we discussed above ae caable of producing large modifications (in
phenotype in some caes, and in genotype in athers). The important issue that we ae moving towards,
however, is whether such changes are likely to be alaptive, and more spedficdly, whether they are more

likely to be adaptive than random changes.

In order to talk about the posshility of nonrandam changes, we neal to define what we mean by randam
changes. Before doing that, it is useful to chocse a definition d a randam distribution o strings (or
configurations of variables). A common default definitionis adistribution d strings where dl aleles at all

loci are equally represented, and in fad all combinations of alleles at different loci are equally represented.
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This is a uniform distribution d strings in the spaceof paossble strings based onthe metric of Hamming

distance.

Now arandam change necessarily requires the nation d a point of origination. For our purposes, thisis a
‘parent’ string. Then a natural definition for a distribution d randam changes is a uniform distribution o
strings in Hamming space aoundthe parent. We may then picture arandam change & the aldition d a
vedor (to the parent vedor) drawn with uriform probability from a distribution d vedors that have no et
diredional comporent. More spedficdly, the set of pasdgble off spring that may occur agiven dstancefrom

the parent occur with equal probability (and uriformly distributed in dredion).

This notion d randam changes matches exadly with ou norma notion o mutational change' -
spedficdly, a medhanism that introduces randam genetic material to a string with a uniform distribution
over the loci and uriform distribution ower the dleles of ead locus. One-point, k-point, and per-locus
methods of mutation are dl valid examples - though they will have different distributions over the

allowable distances that an off spring may be from the parent.

Now clealy, the dhanges produced by recombination (or compasition) are not like this. Spedficdly, the
genetic material of possble off springis partly biased by the material of the first parent and pertly biased by
the material of the second parent. From the point of view of ead parent, the new genetic material that is
introduced into the diromosome of the offspring is not (necessarily) randam. Spedficdly, in mutational
change, genetic material is either inherited from one parent or is introduced stochasticdly, and in
recombination, genetic material isinherited from two parents. Thus, in any case where the popuation from
which the second prent is drawn is honrandam, the dhanges between eat parent and the off spring are

also nonrandam.”

16

Other definitions of random strings, and randam changes may be derived from diff erent neighbourhood
metrics and dff erent notions of uniformity in the spaceof passble strings. For our purpases, we may as
well define randam change to be whatever kind o changes mutation produces. But the definitions given
here reflea quite natural meanings for ‘random string’ and ‘randam change'.

Y This is smply a mnsequence of defining a ‘change’ to be a movement from a single point of

origination. Note that we could, if we wished, define achange with resped to two strings - for example,
a randan change might then be one drawn uriformly from the possble results of recombination
between two perents - in which case, mutational change would be ‘nonrandam’. The point is that
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Thisisavery trivial observation - but it isworth clarifying: nonrandam variationisnat ‘ unevolutionary’ in
any way. Now, immediately we must clarify that recombination oy produces a nonrandom distribution
of variants when the popuation from which the parents are drawn is nonrrandom. Thus in the ésence of
seledion, neither repeaed mutation na repeded recombination produce onsistently direded change.
However, when seledionis applied this does not affed the distribution o changes produced by mutation -
but it does affed the distribution o variants produced by recombination. Under recombination, it is not
only the seledion that ads on the variants produced at some given generation that direds evolutionary
change, but also the biases in the distribution o variants produced coming from prior seledion onthe

popuation.

The ontext sensitivity of genetic material

By the reasoning above, mecdhanisms that exchange subsets of genetic material between individuals are a
source of large, nonrandam genetic changes. The next obvious question is: When will this kind d bias,

coming from recombinative variation, be better than the ‘unbiased’ variation o mutation?

Of course, thisis not a new question, or one that is easy to answer. But the éove reasoning provides ome
intuition that may be useful. Spedficdly, we have been thinking about both mutational and recombinative
variation in terms of a distribution o variants produced using inheritance from at least one parent. The
diff erence between these mechanisms is that under recombinative change some of the new genetic material
that arrives in the off spring (i.e. that which was nat inherited from the first parent) comes from a second
parent, whereas under mutation all the new genetic material in the off spring is randam. Note that if both
parents of a recombinative off spring have been subjed to exadly the same seledion, then the new genetic
material introduced from the second prent is not likely to be significantly different in its adaptive
affordances from that which is inherited from the first parent. In contrast, if the two parents have been

subjed to diff erent seledive presaures, the following ndion arises:

To the extent that pre-adapted genetic material, when re-located to a diff erent genetic context (e.g.

a different individual), is more likely to be alaptive than randam genetic material placed in that

whichever operation we use to define randam change - mutational change and recombinative change
are different - and they canna both be randam in the same terms.
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context, mechanisms that exchange sedions of genetic material from existing individuals will
prodwce adistribution o offspring that are fitter on average than the distribution produced by

randam mutational changes.

If, on the other hand, genetic material adapted in ore @ntext is, when paced in some other context, no
fitter on average than randam genetic material, then mechanisms that exchange sedions of genetic material
from existing individuals will not be better than random mutational changes. The alvantage of
compositional medhanisms may thus be said to depend onthe extent to which genetic material is ‘ context

sensitive’ (or perhaps, more exadly, ‘ context in-sensitive').

It does not seem unreasonable in some cases to suppcse that genetic material that is adaptive in ore @mntext,
a protein-encoding gene, for example, will have abetter chance of being adaptive in some other context
than randam genetic material. If the gene till transcribes into the same protein, then for sure, the protein
may be useful in some mntexts and nd in athers, but in contrast, nealy all completely randam sequences
of genetic material do nd transcribe to a protein at all. But ultimately, the context insensitivity of genetic

material isan empiricad matter.

In this thesis, we will discussand define adaptive landscgpes with limited context-sensitivity - which we
cdl ‘moddar interdependency’. This will help us in understanding when such compositional genetic

mechanisms do and do na provide variation that is fitter on average than mutational change.

25.2 The rest of the genotype asa ‘backdrop’ vsimportant epistasis

In order to study the seledion effeds for one dlele in comparison to ancther allele of the same gene we
might consider the ‘net effed’ of ead allele & Wright suggests. However, if there is any epistasis between
this gene and aher genes then the fithesscontribution o ead allele will be different in diff erent contexts.
In singe-loci popuation genetics models, which are not uncommon, epistatic efeds are ignared and the
remainder of the genome is treaed as thoughit were astatic badkdrop against which the dlelesin guestion

are evolved.

As Wagner (1997 dstates, the absence of epistasis in popuation genetics models does not come aou

becaise popuation geneticists believe that there ae no epistatic &feds between genes. It is becaise they
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believe that seledion canna ad on nonradditive dfeds. At least, thisis the cae for mutation, for example.
Indeed, Wright’s conception d evolutionary difficulty is based onlocd optima aeded by epistatic feds.
In fad, it is predsely because evolution by small modifications operates on additive dfeds that epistasis
forms the basis of evolutionary difficulty in the acecetive model. Popuation genetics models that do

addressepistatic interadions often model the epistatic interadion d only two loci.

Now, by changing ou assumptions abou the aility of variational mechanisms to manipulate subsets of

genetic material (rather than individual genes), two things must change:

« Epistatic interadions with the rest of the genotype can nolonger be treded as a ‘badkdrop’ and we

must addressthem explicitly,

e Our nations of evolutionary difficulty must scde-up—instead of pair-wise epistatic interadions
between individual loci, we need to address non-additive interadions between larger subsets of

genetic material.

In short, by modelling genetic mecdhanisms that manipulate modues, we will have to consider epistatic
interadions within and between modues (of al scdes that are manipulated) and seledion on modues.

Next we introduce an important additional pieceof badground onthistopic.

25.3 Seledion on interaction systems: Shifting Balance Theory

Wright considered seledion onmodues to be vitally important and he suggested mechanisms to enable it.
Wright's ‘ Shifting Balance Theory’ (SBT) describes a mechanism to enable the evolution o “interadion

systems’, i.e. sets of coadapted all eles.

Shifting Balance Theory (SBT) describes the alaptation o a popuation when sub-divided into a number of
semi-isolated ‘demes’. Wright suggests that the aumulative dfed of a sub-divided popuation is quite
different from the dfed of adaptation in a single panmictic (unstructured) popuation. Spedficdly, sub-
division permits different sub-popuations to dfferentiate by genetic drift (nonadaptive genetic change
arising from stochastic seledion poceses in smal popdations) and arrive & different genetic
combinations (see &so Barton 1993 Slatkin 1981 Wakeley 2000. This paralel exploration o many

demes increases the possbility that at least one sub-popuation may discover a higher adaptive pe&k, and
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subsequent migration d the superior variants to ather demes permits the whole popuation to shift to the
superior pe&. Alternatively, a few demes may ead dscover diff erent high fitnessadaptive pegs, and the

mating o migrants from these sub-types may result in a superior integration d their charaderistics.

Wright thus compares two paossbiliti es for the ‘progress of evolution: @) seledion among mutations, b)
seledion among ‘interadion systems'. In a large panmictic polymorphic popuation “combinations [of
alleles] are broken-up too rapidly to permit effedive seledion among interadion systems (unlessthe loci
are so closely linked that alleles at different loci behave dmost as if aleles of ead ather).” And thus
seledion is “restricted to the net effeds of alleles’ (Wright 1977, p.470). Accordingly, in the panmictic
case, “progress of mass ®ledion undr a @nstant set of condtions is limited by the extremely rare

occurrence of novel favourable mutations.”

But, athough a favourable mutation might be rare, “The fixation o a gene by mass ®ledion tends,
however, to be followed by a successon d favourable modifiers that build up a favourable interadion
system”. So, Wright suggests that finding fit combinations of alleles, ‘interadion systems’, (together with
the occasional new mutation) is more likely than the occurrence of mutations whaose net effed is positive.
Then, since a panmictic popudation provides no means to seled among interadion systems, Wright
employs the notions of sub-division and dift to enable locdized adaptation where eat deme can discover
and focus on a different interadion system. Thus Wright states that “inferior interadion systems are
replaced by superior ones’ if apopulationis“divided into small popuations, sufficiently isolated to permit
wide stochastic deviations in numerous loci but not so isolated as to prevent excessdiffusion from those

centers that happen to have aquired the most adaptive interadion systems...” (p. 471).
In SBT we seesome important feaures that will appea in our own models:
» Seledion oninteradion systems (modues)

*  Semi-independent, paralel adaptation d many subsets of genetic material. (An emphasis on

diversity.)
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e Significantly locdized seledion (i.e. competition is predominantly between

members within a subset).

» Significant among-subset variancein the dfed of an al ele/feaure. Different demes
contain dfferent genetic badkgrounds and therefore, through epistatic dfeds,

prodwcedifferent effedsonagiven alele.

e Possble 'asembly' of "complex adaptations whose cnstituent parts arise via peak

shiftsin different demes' (Coyne & al. 2000.

Wright's work on SBT provides an example of a popuation genetics model that explicitly addresss the
evolution d interadion systems or modues, the importance of medianisms that can enable seledion on
interadion systems, and finally the ideathat the rest of the genotype caana be treded as a static baddrop

to the aaptation o anindividual locus.

254 Other spedesasa ‘backdrop’ vsimportant interspedfic relationships

When approaching the task of modelling a system as complex as natural evolution it is necessary to make
many simplificaions. A common simplificaionisto examine the alaptation o asingle spedes as thoughit
were isolate - as thoughthe alaptation o other spedeswere akind o ‘baddrop’ merely defining the niche
for the spedes of interest. Althoughchanges in the biotic environment may affed the niche of the spedes
in question, and may in some caes produce quite tightly couped co-adaptive dynamics, there is a deeply
rooted asaumption that interspedfic relationships are not an integral part of evolutionary mechanisms - at
least in the following sense. Changes in the genetic make-up d other popuations may affed what is
seleded for in the given popuation, but they do nat affed the genetic make-up d the given popuation
direaly. Spedficdly, it seans reasonable to study the evolution d a popuation as though it were
independent from other popuations becaise the mechanisms of genetic variation, spedficdly mutation and

sexual recombination, ad only within apopulation nd acosspopuations.

What then are we to make of events that involve the integration d genetic material aaoss popuations
(2.2.3)? The «istence of horizontal gene transfer, for example, means that modelling the evolution d a

single spedes in isolation is not easily judtified. But further, since several of the major evolutionary
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trangitions involve the quite literal union d previously freeliving entities into a new whole, clealy,

evolutionary models addressng the alaptation o asingle popuation are not capturing the whole process

The phenomenon we focus on in this thesis canna be properly understood with a single-spedes sngle-
niche model. By looking explicitly at multi-spedes multi-niche models, many assuumptions need to be
revised. For example, competitive exclusion is not the only possble dynamic, and convergence of the

popuation/emsystem to asingle type is not the only stable state.

255 Intragenomic dependencies and intergenomic dependencies

The previous subsedions highlight the need to consider the interadions between ore locus and ancther and
between ore organism and another. In short, they suggest that we must develop a model of both

intragenomic interadions and intergenomic interadions.

But further, in models of symbiotic encgpsulation it will be dea that these caegories will change. That is,
when two entities reside in parallel lineages, any fithessdependencies between them are intergenomic. But
if those two entities shoud bemme encapsulated into a new organism then those same interadions are, for

al intents and pupaoses, now intragenomic.

Acocordingly, it will be important that the model of genetic dependencies that we develop ke ale to

encompasshboth intra- and inter- genomic dependenciesin aunified fashion.

2.6 Summary

This chapter has defined the distinction between acaetive and compositional mechanisms of change. We
discussd the normal (acaetive) nations of evolutionary difficulty: e.g. saddle dossng and irreducibility,
and their dependence on the assumption o small successve variations. We discused a spedrum of
compositional mechanisms and identified sexual recombination and symbiotic encgpsulation to represent
this gpedrum for our upcoming models. Finally, we suggest that these mechanisms are not just a different
kind d acaetive change but that they cause us to revise important assumptions regarding for example, the
meaning d afitnesslandscape and the movement of a popuation onit, seledion onmodues, and the role

of intragenomic and intergenomic interacions.
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Chapter 3- Acaetion and Composition in
Evolutionary Computation

In this, asin the previous EB chapter, we will use the following ouline:

» First we will talk abou acaetive processs in artificial evolution, and correspondng ndions of

evolutionary difficulty. This gartswith an overview of smple EA models.

»  Then we introduce some mechanisms that step ouside this gandard model, towards mechanisms
of compasitional change. And, where avail able, we highlight correspondng ndions of what might

be eay or hard for artificial evolution unar these mechanisms.

3.1 Evolutionary Algorithms

3.1.1 Evolutionary algorithm basics

Evolutionary Computation is, in general, the field encompassng computational techniques based on or
inspired by, evolution. In pradise, the term is essentially synonymous with the dassof problem solving and
optimisation techniques known as Evolutionary Algorithms (EAS), (see De Jong 2002. Evolutionary
Algorithms, EAs, are aform of computational optimisation a design technique based loosely on Darwinian
evolution (seeDe Jong 2002for an overview). Any attempt to overview the cmporents of an EA that are
common to al varieties will not do justice to all emphases. But, withou being spedfic to procedural

detail's, an EA generally has the foll owing comporents.
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The components of a simple EA The biological metaphor/inspiration

An EA maintains a (large) number of candidate A popdation d individuals.
solutions or designs for a problem.

All candidate solutions are evaluated with resped to Every individual has a“fitness'.

some quality or performance citerion.

Those candidate solutions that are higher quality are Differentia reproduction.
used for generating new solutions with higher Differential survival.
probability than those that are low quality. Low
quality solutions may be discarded.
New candidate solutions are aeaed byrandom Descent with modification.
variations of the existing candidate solutions. And Heritable variation.

those variations may propagate to future candidate

solutions.

Table 3-1: Components of an evolutionary algorithm
The basic form of the dgorithm uses repeaed cycles of ewaluation, seledion, and reproduction with
variation to shape apopuation o candidate solutions for some problem. A number of randam candidate
solutions, individuals, are generated to initialise the popuation. Evaluation is the processof assessng the
value or quality of a candidate solution with resped to some objedive measure of quality or performance
Seledion is applied to (probabilisticdly) focus sach around those solutions that are superior.
Reproduction produces new candidate solutions by randam variations of seleded individuals. Successve
repetitions of evaluation, seledion, and reproduction (with variation) change the compaosition d the
popuation by pomoting candidate solutions that are superior and exploring the spaceof posshble solutions

in the vicinity of superior solutions.

The principle of an EA isthat by making successve randam variations of candidate solutions that are good
so far, the dgorithm is able to hias exploration o solution space(with resped to randam seach) to invest
more exploration in those parts that are ‘most promising . If, by virtue of the fad that ‘off spring may
inherit some of their ‘parent’'s desirable dharaderistics (i.e. fit individuals have a better chance of
prodwcing fit variants than urfit individuals do), then repeaed seledion and variation shoud exploit this

bias appropriately and acaimulate successve aaptive modifications. Accordingly, an EA is often
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considered to proceal something like a hill-climbing process (Muhlenbein 1993, except that an EA is

usualy based onapopuation o solutions rather than asingle solution.

3.1.2 TheSimple Genetic Algorithm

Evolutionary Algorithms, EAs, come in many flavours, for example: Genetic Algorithms, (Holland 1975,
Evolutionary Strategies (Badk et al. 1991, Evolutionary Programming (Fogel 1966, and Genetic
Programming (Koza 1992. The diff erences between these methods largely depend onthe default choice of
representation (e.g. bit strings or red-valued vedors), the dhoice of variation operator (e.g. mutation and/or

crosover), and the default seledion method (e.g. fitnesspropartionate seledion, or truncation seledion).

For most of the work that follows in this disertation, the genetic dgorithm, GA, is the best archetype (see
Mitchell 1996. A GA usualy uses a binary encoding ower large linea chromosomes (fixed length hit
strings), a large popuation (on the order of 100to 100Q, both pdnt-mutation and crossover for variation,
and fitnesspropartionate seledion by dfault. The overall operationis often ‘ generational’ meaning that the
entire popdation o individuals is evaluated, seleded and reproduced as a batch before the next cycle
commences. Something like this is what is meant when referring to ‘the Simple GA’, SGA. A procedura

outline of the Simple GA is given below (Figure 3-1).

78



1. Initidise popuation with randam individuals, i.e. randam bit strings.

2. Repea until stopping criterion (e.g. threshold quality readied, or popuation nolonger changing
significantly).

a. Evaluate the fitnessof all individuals in popuation wsing an ‘objedive fitnessfunction’

giving the quality of ead string.

b. With sdledion pobability of ead individua propationate to their fitness seled (with
replacement) individuals from popuationto be ‘ parents’.

c. For ead parent, pl, generate an ‘off spring’ individual by:

i. Pick another parent to be p2, creae anew string that has me bits from p1 and

some hit/genessfrom p2. - ‘ crosover’

ii. Randomly change some of the bits in the string. i.e. apply pant-mutation with

low per-locus probabilit y.

d. Replaceorigina popuationwith new popuation d off spring.

Figure 3-1: A procedural outlinefor a generational ‘Simple GA’, SGA.

Step i) may be omitted for a‘mutatiorronly’ version, in which case step ii) mutates a opy o
the parent. There ae afew implementation detail s that are not spell ed-out in this description;
we will give more predse descriptions for the dgorithms that we implement.

This description includes mutation (Figure 3-2) and crosover as variation ogerators. However, some kinds
of EA do nd include aossver, and the basic intuition for many researchers (but no means all) abou how
EAswork considers crosover to be optional. Further, some researchers consider the operation d crossover
to be useless or, at least, nothing more than a ‘maao-mutation’ equivalent to a large number of point
mutations. Whether this is necessrily true or not is one of the reseach questions we want to answer.
Acocordingly, we will start by considering the operation o the GA withou crosver, i.e. a mutation-only

GA. Following sedions will discusstheimpad of crosover in detail .

101010001010010100 - parent

101000001011110100 - offspring with pant mutations (bold)

Figure 3-2: Point mutationson a bit-string individual.
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There ae many dfferent varieties of GA (as there ae for other types of EA). For example, there ae
varieties that use diff erent seledion methods, different variation operators, diff erent representations, and all
sorts of sophisticated add-ons auch as diversity maintenance techniques. There ae dso parametric choices
to be made: the size of the popuation, whether or not to use aosover (or for what propartion o off spring
to use aosover), how much mutationto use, etc. These diff erences makeit very difficult to make thorough
comparisons between ore type of GA and another. In this thesis we ae not going to try to make
comprehensive comparisons. The particular variants of algorithms that we define, and the experiments that
we perform, are provided for ill ustration. But we will seefrom analytic agument that different kinds of
algorithm have profound dfferences in their behaviour and the kind o problems they can solve in

principle.

3.1.3 EAsasEvolutionary Models

Evolutionary algorithms in computer science EAs are inspired by natural processes, but are not generally
intended to be acarate models of biologicd evolution. EAs, as noted, are an optimisation and design
technique, and most reseachers fed freeto introduce new feaures as required to address computational
needs. Having said that, it is common to seereseachers taking inspiration from evolutionary biology to
enhance performance, e.g. island models to promote diversity (Starkweaher et al. 1991), and also to see
reseachers appeding to hiologicd plausibility as a guide for making choices in certain design dedsions

(usualy in cases where computational preferenceis undedded).

Althoughevolutionary algorithms are generally nat required to follow biologicd models closely, the basic
framework of the EA outlined above alheres to some quite strong assumptions in common with ealy
popuation genetic models - for example, the preoccupation with the genetic change of a single popuation
(i.e. the aevolution of multiple spedes is often handed simplisticdly as purely adversarial interadions
and ceneraly does not involve genetic exchange between popuations), and the assumption o a single
fixed niche (i.e. al individuals are evaluated with a single given fitness function). The compasitional
phenomenonwe aldressin this thesis require that we expand our models and relax our assumptions both in

EC andin EB (asdiscussd in 2.5).
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These ssumptionsrestrict the kind d dynamicsthat may occur. In particular, starting with the assumptions
that we ae modelling the adaptation o a single spedes in a single niche. That is, al individuals in the
popuation are candidate solutions for the same problem. This has sveral important consequences: Firgt, al
individuals are in a competiti ve relationship - superior solutions are promoted by competitively excluding
inferior solutions from the popuation. In the asence of any additional measures to the mntrary, this
introduces an inherent presaure for the popuation to converge to a single type - aroundthe airrent best
solution. Seoond, it is therefore not possble that some subset of the popuation may diversify into a
different niche and coexist without competing with the remainder of the popuation. Third, it foll ows that
there is no passhility for different types to spedalise diversely in parallel, or coexist, let alone enter into
colledive behaviours or cooperative relationships. Althoughthere ae afew exceptions and qualifications
(e.g. fitness $aring and cooperative mevolution) that we will detail |ater, these limitations are true of the

basic Simple GA and uncbrlie the sssumptions of EAsin general.

Some asaumptionsin the basic EA framework include:

» Themodel isbased onthe alaptation d asingle popuationin afixed niche. i.e. al individuals are

asssd with resped to the same aiteria - the same fitnessfunction.

» Every individual has an identifiable fithess (objedive performance metric) and all individuals can

be ranked in this $ngle dimension d quality.

e The only type of dynamic between variants is competitive exclusion. i.e. all individuals are in the

same niche and compete to be members of the next generation.

» There is no change in the mechanisms of seledion, variation, reproduction, or evaluation ower

evolutionary time.

e (Atleast in versions withou crossover), the unit of seledion, the individual, is considered to be

unambiguots. i.e. parts do nd reproduce withou wholes, and whales do nd reproducein groups.
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3.2 Evolutionary difficulty for the Simple EA

The basic intuition d an EA isthe same @ the basic intuition for natural evolution: by acaimulating small

randam variations that incrementally improve fithesswe can arrive & progressvely fit adaptations.

Accordingly, many o the same nations of evolutionary difficulty apply for artificial evolution as they do

for natural evolution.

Fitnesslandscape

The fitness landscape is a surfacedefined over the genotype spacewhere the height of ead pdnt is the
fitness of that genotype and adjacent points are genotypes that can be readed by padnt mutation.
Acocordingly, the evolutionary processcan be charaderised as the ascent of the popuation mean uplocd

gradients in the fitnesslandscape.

I nterdependencies, ruggedness and local optima

Difficulty in a combinatorial optimisation poblem is largely creaed by the ‘frustration’ of problem
variables. One variable is sid to be dependent on ancther when the dfed of changing the variable is
dependent on the state of the other. Following the biologicd terminology, this is often cdled epistasis.
Epistasis creaes non-planar fitnesslandscgpes, ruggedness and locd optima. A locd optimais apoaint in
the fitness landscgpe where dl neighbouing pants are of lower fitness i.e. a paint correspondng to a
candidate solution that canna be improved by any small change i.e. a mutation (we ae till assuming that

we ae taking abou algorithms withou crossover, for now.)

AlthoughGAs generally operate in a high-dimensional binary space it is gill popuar to visualise fithess
landscapes as two, or sometimes one dimensional, metric spaces. Intuitively, these ae often imagined as a
‘walk’ throughadjacent points in the high-dimensional space—i.e. adjacent pointsin the 1-D landscgpe ae
adjacent points in the high-dimensional space The ruggednessof this landscape is then taken to indicate
the aorrelation between the fitness of mutation reighbous in the seach space The figure shows me
landscapes of increasing ruggedness and increasing nunber of locd optima, that are taken to indicae a

spedrum of evolutionary difficulty.
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Figure 3-3: smocthnessand local optima

a) a smooth urimodal landscagpe with no locad optima—considered easy for EAs. b) a
landscgpe with some ruggedness ¢) an ‘impaossbly hard’ highly-rugged landscape with many
locd optima. (see‘NK landscgpes’, Kauffman 1993.

Paths of monotonically increasing fitness(absence of ~)

In general, the evolvahility of a solution for an evolutionary processis understoodto be wmnreded to the
presence of apath of monatonicaly increasing fitnessto that solution.* In general, in nontrivial problems,
we do nd exped there to be such paths from most points to the global optimum of a landscgpe. The

absence of such a path corresponds to the nation o irreducible systemsin evolutionary biology literature.

Convergenceand diversity

In the Simple GA, one common explanation for failure is premature wnvergence, where the popuation
loses diversity and becomes geneticdly similar before finding the global optimum. Thus it becomes guck

onalocd optimum.

We will seethat operators like recombination require us to revise our nations of evolutionary difficulty, and
that these ‘classcd’ nations of evolutionary difficulty are dependent on the underlying assumption o

acaetive change.

3.3  Compositional medchanismsin EAs

In the discusson above we have been considering the operation o the GA withou crosover, i.e. a
mutationronly SGA. If we view crosver as merely a maao-mutation then the difficulti es discussed would

apply equally to the operation d the smple GA with crosover. One of the main pdnts we want to

* Infad, asthe ‘long mth’ problems attest (Horn et al. 1994, we dso need this path to be short, asit is
acdualy possble to construct problem spaces that have exporentialy long mths of monaonically
increasing fitnessto the global optima.
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elucidate in this work is that there ae some drcumstances where aosver cannd be acarately
charaderised as a merely a source of large mutations, and that the operation o an EA with crosover is
fundamentally different in those drcumstances from the operation d a mutation-only EA. For this reason,
we have discussed the operation d the mutation-only GA, but for those that charaderise the operation o
crosover as maao-mutations, the discusson o evolutionary difficulty would end there. In short, the
discusdon thus far presents the acretive view of EAs (whether or not they use aossover). But, now we
will discuss the operation d the EA from a compositiona framework, in particular, the compasitional

interpretation d crosover.

Crosover potentially allows genetic material pre-adapted in dfferent individuals to be combined together
into a new offspring. Accordingly, crosover is a medanism that potentialy alows large nonrandamn
modificaions and introduwes the first of what we cdl ‘compostional’ operators for evolutionary

algorithms.

3.3.1 Theoperation of crosover

Crosover, a simple astradion d sexual recombination, creaes an off spring individual by taking some
genes (bits) from parent 1 and some genes from parent 2. Threetypes of crosover, commonly used in GAs

are shown in Figure 3-4.

one-point crossover two-point crosover uniform crossover

parent 1 | 101010010010100 101010010010100 101010010010100

parent2 | 100101010011110 100101010011110 100101010011110

offspring 101010010q11110 1010]]1010011'100 101100010010110

Figure 3-4: Crossover operationson bit-string individuals.

Crosver points are indicaed by the short verticd tick marks. Possble aosover paints for
uniform crosover are indicated by the dotted marks. In GAs we normally consider only a
haploid chromosome, i.e. crosover is applied as ®on as the two haploid chromosomes
coming from the parents are brouglt together and before evaluatiorn/seledionis applied.
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In ore-point crosover, a aosover point is chosen, and al aleles on the left of this point are taken from
parent 1, all aleles on the right are taken from parent 2, or vice versa. In two-point, or more generally n-
point crosver (asiscommon in drosophill @), contiguous blocks of all eles between nrandomly positioned

crosover points are taken from ead parent, swapping donas at ead crosover paint, as siown.*

Under uniform crosover (Syswerda 1989, al eles (bits) are taken from either parent with equal probability
on an independent per locus basis. The most obvious diff erence between uriform crosover and npoint
crosover is that under uniform crossover there is no correlation between adjacency on the chromosome
and the probability of genes being transferred to the off spring. Put ancther way, the combination d p1and
p2 genes that end-up in the off spring would be the same (statisticdly) regardlessof how thase ae ordered
or pasitioned onthe diromosome. In the terminology d popuation genetics, it would be said that there is
no genetic linkage between genes under uniform crossover, but there isfor one and two pdnt crossover. In
biologicd terms, uniform crosover correspondsto a cae where dl the genes of interest reside on dff erent
chromosomes, or cases where there ae avery high number of crosovers per reproduction, or cases where

several (one-paint) recombinative events occur before seledion hes an appredable dfed onitsresults.

Lastly, note that for binary strings, uniform crosover has the same dfed as producing an off spring with
alleles the same &s the parents’ all eles where the dl eles of the parents agree and randomly assgned al eles
at al other loci (Watson & Polladk 20000). From thisit is easy to seewhy uriform crosover, in particular,
is considered to be nothing more than a maao-mutation (albeit one that preserves smilar parts of the

parents - Chen 1999.

Whether becaise they assume the use of uniform crosver, or becaise (quite reasonably) they do not want
to make any asaumptions abou the paositions of genes on the diromosome, for the many reseachers that
consider crosver to behave like amaao-mutation, the same ideas about evolutionary difficulty had for
GAs with crosover as for crosover withou. In this point of view, it is merely the cae that crossover
allows large nonrandom changes—more spedficdly, changes that are no more likely to be aaptive than

an equivalent number of point mutations. However, there has been a long-standing tettle in GA theory

¥ We can seethat one-point crosover is the same @ two-point crossover where one of the two padnts is

always positioned before the first (or after the last) locus. Accordingly, one-point crosover treds the
end-points of the string as edal points whereas two-point crosover does naot.
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abou the aaptive utility of crosover (if any). Primarily, this revolves aroundthe nations of the building

block hypothesis.

3.3.2  TheBuilding block Hypothesis, BBH

Following the notions outlined by Holland (1975, Goldberg (1989 says the foll owing abou the operation

of the GA under the heading “ The building Hock hypahesis’:

Shat, low-order, and hghly fit schemata are sampled, recombined, and resampled to
form strings of potentially higher fitness In a way, by working with these particular
schemata (the building Hocks), we have reduced the complexty of our problem; instead
of building hgh-performance strings by trying evay concevable cmbination, we

construct better and tetter strings from the best partial solutions of past samplings.
Forrest and Mitchell (1993) restate these ideas as follows:

The Building Hock Hypothesis dates that the GA works well when short, low-order, highly-fit

schemas recombine to form even more highly fit higher-order schemas.
More recantly, Holland (2000 says the following:

The ‘BB thesis holds that most of what we know abaut the world pivots on descriptions and
medhanisms constructed from elementary building Hocks...Once a computer scientist starts
thinking abou building Hocks as a source of innovation, the nex obvious dep is to look for
algorithms that can dscover and exploit building Hocks. It is my daim that genetic algorithms
(GA's) are particularly qudified for this task.... What purpose does crosover serve then? As is
well known to most practitioners it serves two purposes: First of all, it recombines building Hocks
residing onseparate strings into combination on asingle string. The second effed is more subtle.
Crosover uncovers new building Hocks by placing dlelesin new contexts. Moreover, ...building
blocks are often combinations of more dementary building Hocks, so recmbination works at this

levd too.

Put simply, the BBH suggests that the GA will perform well when short sedions of chromosome that

confer above average fitness contributions (‘building Hocks') can be recombined to discover longer
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sedions of chromosome that are till fitter. The intuition is that diff erent members of the popuation will
discover different building Hocks, and that sexual recombination will then seach combinations of small

building Hocksto find larger building Hocks, and so on

Before we delve into the ideas in this hypahesis, we stressthat it concerns the operation o the Simple GA
(with crosover) and the aility of the hypahesis to explain the operation d the simple GA is quite a
different isue from whether or not there is me useful intuition abou how a ‘GA-like' algorithm could
work. More spedficdly, we ae going to argue that the ideadescribed here, if it can be made to work (for
some type of EA on some dassof problems), would be avaluable process—even if it does not explain the

operation d the Simple GA on problemsin general.

Goldberg (above) describes building Hocks as “short, low-order, and highly fit schemata”. As dated, a
schema is a partial spedficaion of the problem variables, or the set of al candidate solutions containing
that subset of values. A schema is often depicted as a tertiary string as in the figure, where “*” can be read
as “any alele can go tere”, or “this gene is not spedfied by the schema”. The order of a schema is the
number of spedfied genes, and so a low-order schema is one with a small number of spedfied genes.
Finaly, the length of a schema, or defining length, is the number of loci between the first and last spedfied

loci (inclusive) (Figure 3-5).
a) ***1**10*******0*0*
b) ***11*10*0*********

c) 1**0010100*01010000

Figure 3-5: Schemata of various orders and defining lengths

a) alow-order schema (order 5, length 15). b) a short, low-order schema (order 5, length 7). c)
ahigh-order schema (order 16, length 19.

Underlying the daim in the BBH is the ideathat the GA promotes copies of short, low-order schemata of
high fitnessin the popuation. This claim is based onwhat is known as the Schema Theorem (Goldberg
p.33) which says “short, low-order, above-average]-fitnesy schemata receve an exporentially increasing
number of triadls in subsequent generations’. (See a&so Altenberg 1995. This is intuitive erough

individuals containing above-average fitness ghemata will tend to be @dove-average fitnessindividuas;
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these individuals will produce more off spring than ather individuals under fitness propartionate seledion;
and when the schemata have short defining length, there is a good chance that they will appea intad in
their offspring. However, whether the Schema Theorem has anything to dowith explaining the operation o

the GA is questionable (Vose 1999.”

Nevertheless it is worth examining what crosver can adieve (if anything) by searching combinations of
schemata, regardless of how they come to be in the parents, and regardless of whether or not they are
building Hocks as Goldberg defines them, i.e. we suggest that the Building Hock Hypothesis warrants
some discusdon regardless of the validity of the Schema theorem. The intuition from the BBH that we
want to examine is that low-order schemata can be combined together to find Hgher-order schemata of
higher fitness—and we separate this ideafrom the spedfic hypahesis that this is the way the Simple GA

operates.

Goldberg indicaes the nation d problem decomposition that is implied. Spedficdly, that the search space
is reduced to a processof seaching combinations of schemata rather than searching combinations of the
origina problem variables. In this manner, the GA shoud be &le to move from searching combinations of
the original problem variables to searching combinations of modues, and this process $ioud continue
throughcombinations of modues of successvely larger scde. If it were possble for an EA to discover and
manipulate useful modues effedively, it would be fundamentally valuable: 1) the EA would reduce the
dimensionality of the search space effedively making a new problem over a smaller number of variables;
2) introducing a useful modue into a candidate solution introduces a large pre-adapted set of features

simultaneoudly. (The latter isredly a different interpretation o the former.) Algorithmicdly, this, if it can

* Onereasonfor thisis because it is difficult to believe that seledionin the GA can acarrately respondto

‘schema fitness. Schema fitnessis the arerage fitness of points in the schema hypervolume, and is
suppased to indicae the fitness contribution coming from that schema. However, in pradise, the GA
can orly assessthe fitnessof individuals in the popuation which provides a very impowverished sample
of the schema hypervolume. For example, consider a very low-order schema, say with ore defined
alele. This shema ontains 2" strings, where N is the number of bitsin an individual. The members
of the popuation can hardly be expeded to gve areasonable sampling d the schema fitnesstherefore.
(However, a possble exception to thisisimplied by the assumption that the dependencies between loci
in this hema and loci outside the schemais week, low, or limited in some sense, as we shall discuss
In this case, acarrate schema fithess could be as®sed from a small number of individuals) The
guestion then, is whether a sub-string representing a schema of interest is exchanged from one genetic
context to another fast enoughto test enoughcontexts auch that it is redly schema fitnessthat is being
rewarded. If nat, it is likely to be the individuds (containing fit schemata aad some unfit schemata, or
‘hitch-hikers', residing in the same individual) that get propagated, not the schemata per se.
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be made to work, is an intuition worth pusuing. In order to better understand the fundamental issues
involved here, let us first take a step badk to consider the placanent of EAs in the larger picture of

optimisation algorithmsin general.

3.3.3 Algorithmic Principles - Divide-and-Conquer Problem Decomposition

Algorithms for combinatorial optimization can be divided into dfferent classes depending on the different
asumptions they entail about the nature and structure of interdependencies in a problem domain. At one
extreme we might assume that the interdependencies of the variables are abitrarily difficult or random. In
this case, the gpropriate dass of optimizaion methods are those that make no assumptions about the
structure of the fitnesslandscape. These include exhaustive seach, which explores the spaceof posshiliti es
in its entirety, and random search, which explores the spaceof posshiliti es with uriform probability. Of
course, these ae impradicd in all but the smallest of problems gnce the number of posshiliti esis saibjed

to ‘combinatorial explosion’ as the number of problem variables increases.

At the other extreme, we might suppose that the interdependencies between variables are wed or few. In
this case, the gppropriate dassof algorithms uses this assumption to sample paints non-uniformly, direded
by prior samplings using the heuristic that effeds of variables are approximately additive. These include
‘greedy’ ‘hill-climbing algorithms, which accept small variations to a candidate solution if they are
superior, and gradient ascent methods. The dfedivenessof this classdepends on the implicit assumption of
low interdependency between the variables in the problem because its effediveness requires that localy

beneficial variations may acawmulate without mutual interference

These two classes represent the naive extremes of algorithmic posshiliti es: whereas exhaustive dgorithms
can ded with arbitrarily difficult interdependency of the problem variables, hill -climbing algorithms are

only guaranteed ogtimal when the interdependency of the variablesiswe&k or unimportant.

In between these two extremes there ae many ather posshiliti es. One posshility isthe dassof ‘divide and
conquer’ agorithms (seg for example, Cormen et a. 1991) which broadly include dgorithms that utili ze
moduar structure in the interdependency of problem variables. Divide and conquer, D&C, techniques
exploit decomposable problems by dviding them into manageable sub-problems. Their appropriateness

depends on the asumption that the problem variables are neither close to independent (as for hill-cli mbers)
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nor arbitrarily interdependent (as for exhaustive methods) but that the problem variables have some

intermediate moduar structure of semi-independent subsets.

There ae anumber of different D& C methods. In design and engineaing damains, top-down functional
decomposition of a problem into semi-independent sub-problemsis famili ar and intuitive. In combinatorial
optimisation, dynamic programming methods are a important class of D&C technique that utilize
structured dependency battom-up by cadiing al partial solutions, withou a priori knowledge of how to
deammpose the problem. Either top davn or bottom up, divide and conquer strategies are fundamentally
important because they exploit moduar structure in a problem by re-using solutions to semi-independent
sub-problems and they thereby avoid the ‘combinatorial explosion’ associated with high-dimensional

problem spaces. SeeFigure 3-6.
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Consider optimising afunction, f, over aset of N variables each of arity k. i.e. optimise f(n,,n,,...,n,).
Random Search

If we make no assumptions about the interdependencies of these variables then the size of the search space

that must be mvered to find the optimal solutioniis (at most) S.=K".
Hill -climbing

If the variables are individualy separable, that is, if the cntribution o one variable is unaffeded by the
values of other variables, then f can be described using the summation o N functions over one variable
ead. i.e. the function f(n,,n,,...,n )= f,(n)+ f,(n,) +...+ f (n). In this case, the size of the seach spacethat

must be mvered to ogtimise f is at most S, .=kN.

These ae the two naive extremes. no assumptions abou interdependency gives a seach spaceof k', the
asuumption that all variables are independent of one another gives a seach spaceof kN. The former is

intradable for al but very small N, and the latter gives a problem that istrivially easy.
Divide and Conquer problem decomposition

In between these two extremes, there ae alot of other posshiliti es. Consider a cae where the variables
have some interdependency but their interdependencies are formed ower two dgoint subsets of the

variables. For example, f(n,,n,,...,n)=f,(N,N,,....N,) + F,(Nyers NMymens-- -2y

Here, where the problem can be divided into two separable sub-problems (e.g. see Roya Roads and
Concatenated trap functions Sedion 3.5.1), we can maximise the function f by maximising the function f,
and the function f, separately (later, we will define a d¢ass of problems that is decompaosable but not
separable (4.3.1)). So, if this decompasition is known, then the total search spacethat must be covered is at
most S,.=2-K". In genera of course, the decomposition is nat known and dscovering the decomposition
adds ome overhead to the method 2K is much better than K", of course, and forms the basis of the divide
and conquer algorithmic advantage—when the overheal of finding the decompasitionislow. Concevably,
a problem could be divisible into many small sub-problems, and/or ead sub-problem may be further

divisible into sub-sub-problems, and so on

Figure 3-6: Outline of algorithmic advantage from problem decomposition
In human design and engineging problems, we use top-down knowledge of the problem structure to divide

a problem into sub-problems. For example, we might divide the problem of designing a vehicle into the
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problems of drive power, steaing and control, load beaing, etc. Or we may divide the problem of
timetabling a rail network into the many sub-timetables within ead region. However, natice that although
it is famili ar and intuitive to approach design problems this way, and we gain significant leverage by dang
S0, we ae agrisant of the fad that the sub-problems are dmost never entirely independent. For example,
the detail s of the drive power system, if we choose aheary engine for example, places constraints on the
design d both the control system and the load beaing system. Similarly, trains do travel between regions,
as well as within regions, so the timetable of one region is not independent of that in ather regions. Thus
the divison d a problem into nonoverlapping sub-functions depicted above isunredistic. More likely, the
sub-functions are not completely independent. We will discussthis further in later sedions, and define the
notion d a decomposable function in contrast to this kind d separable function. However, despite sub-
problem interdependencies, design problems are often fruitfully approached by working on the sub-
problems, finding some reasonable solutions for the sub-problems, and then resolving the

interdependencies between aternate sub-solutions.

So, this divide-and-conquer problem decompasitionis very advantageous algorithmicdly, when appli cable.
And it is an intuitive and fruitful approach for human desigh and ogimisation problems. Moreover, as
mentioned, there ae bottom-up methods of gaining this algorithmic advantage that do nd require the
decomposition of the problem to be known a priori. (The need for top-down knowledge must be avoided if

we geinterested in biologicd analogues.)

Clealy, if some form of problem decomposition were avail able to an EA, it would be quite diff erent to the
simple *hill -climbing notion d gradual improvement throughrandam variation and seledion. The intuition
uncerlying the Building Block Hypothesis is just this - that the GA with crosver, by manipulating
building Hocks, exploits a form of problem decomposition. Our reseach motives are not spedficaly
wedded to the Simple GA, but this question provides one of the primary EC motives for this thesis
reseach: to clarify whether some form of EA can in some drcumstances provide an algorithmic advantage

akin to dvide and conquer problem decomposition.

It isnaot clea that it isavailable in a Simple GA, but our later experiments will show that it isavailablein a
particular variety of GA when applied to a suitable dassof moduar problem. In the next chapter we will

discuss carefully the kind d moduarity that is in principle anenable to decompasition, or more to the
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point, composition, by mechanisms like aosover. And later in this chapter we will discuss ®me of the

condtions that must be met for crosover to successully manipulate and reambine modues.

334 Medhanismsof encapsulation in EAs

In addition to the operation d sexual recmbination, there ae dso ather variation mechanisms employed in

artificial evolution methods that enable forms of composition.

For example, moddarity is addressed implicitly by the use of variable-length, moving-locus, nonlinea,
and generative encodings - for example, Messy GA (Goldberg et a. 1989, Linkage leaning GA (Harik &
Goldberg 1996, Genetic Programming (Koza 1992, and cdlular encoding (Gruau 1994. And moduarity
is addressed explicitly in medhanisms that ‘encapsulate’ subsets of feaures for subsequent re-use during
the seach process - for example, ‘automatic modue agquisition’ (Angeline & Pollak 1993,
‘automaticaly defined functions' (Koza 1994), and ‘adaptive representation’ (Rosca1997). The alvantage
of these explicit methodks is that “the moduarization d representational comporents and their protedion
from mutation [/internal variation] can be viewed as removing unrecessry dimension[s] from the seach

space..” (Angeline & Polladk 1993.

Methods explicitly addressng problem decompasition (the division d labour) include Leaning Classfier
Systems (Holland & Reitman 1978, Cooperative Coevolution (Potter 1997, Evolutionary Divide and
Conguer (Rosca 1997, MIL (Juille 1999, ‘arbiters’ (Husbands 1993, ‘Multi-level Cooperative Seach’
(Valenzuela & Jones 1994, and SANE (Moriarty 1997, aswell as techniques embedded in the moduarity

methods li sted above.

We aldress ®me apeds of some of these models in the following subsedions. However, we will find that
Cooperative Coevolution and the Mesy GA encompass most of the important concepts in a
straightforward manner and we will refer to these repeaedly as we develop the models that follow in later

chapters.
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3.3.5 Other related divide and conquer methods

Adaptive representation and hierarchical learning

Rosca, (1997, develops techniques covering most of the fundamental ideas we ae developing.
Spedficdly, the work explicitly addresses divide and conguer problem decmposition where individuals
spedfy for a sub-domain of a function, and Rosca eplicitly pursues hierarchicd assembly of spedalists
into complete solutions. Individual spedalists are evaluated colledively. Diversity is maintained by
techniques smilar to restricted mating — where mating is restricted to individuals in the same sub-domain
cluster. The role of an individua in the olledive task is gedfied by the ‘sub-domain’ part of an
individual, and the behaviour of the individual is gedfied by afunctionwithin that sub-domain (analogows
to the “condtion” and “output” parts of individual classfier rules). The sub-divison d the problem
domain is nat given a priori, (see &so Juille & Pollack 1996. The substrate is genetic programming s-
expressons and the problem domain is symbadlic regresson. Crosover of s-expressons can enable
composition. The main limitation in this work is that athougha) there ae diverse spedadlists covering the
problem space b) there is a combination operator (GP crosover) that could pu spedali sts together into a
generdi &, - in fad, the aossover operator canna put diverse spedalists together into a cmposite becaise
the only way they were maintained as diverse spedalists in the first placeis by restricted mating. So, in
fad, there is no clea hierarchicd assembly of coadapted spedalists into composites. Additionally, since
this work is in the GP domain we caina conred it to the BBH and string-based crossover. Also when
applied to arbitrary symbdlic regresson problems that may or may nat be anenable to decompaosition, it is
difficult to asess exadly how it works when it does and anayse its behaviour. However, this work

suggests alot of potential to bring the ideas we developin thisthesisinto the GP domain.

Cooperative Coevolution

Potter (1997, Potter & De Jong 2000 presents a general divide and conquer approach to evolutionary
algorithms he cdls “Cooperative Coevolution”. In general, individual spedalists are mevolved to
colledively solve aproblem and the nations of divide and conquer problem decompaosition are very explicit
in thiswork. In ealier work, (1997), there ae eplicit fixed roles for the individuals, later methods (Potter

& De Jong 2000 show some &dility for individual spedes to adaptively cover the problem domain and
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vary in the number of spedalist spedes required. Potter also explicitly uses the idea of restricting
competition to ad only between spedalists of the same type — spedalists of different types canna

competiti vely exclude one ancther becaise they are held in diff erent popuations.

However, the ‘spedalisation’ demonstrated in the ‘string covering problem’ (Potter & De Jong 2000 is of
a particular type. Spedficdly, a mlledion o individuals are eat evaluated against a test string and the
best one is used. This means that if some other member of the wlledion contradicts the spedficaions
required for the test case then it does not affed the fitness of the group In a straightforward function
optimisation scenario thisis not the cae — the wlledion o spedalists must internally resolve what single
value will be used for ead parameter. In short, this example does not show automatic discovery of the
roles of spedalists in away that we can use. The way that spedalists are used in some other examples of
the methodis quite diff erent and more gpropriate for our purposes — spedficdly, ead spedalist covers an
explicit subset of the problem parameters. However, there is no automatic method to determine which

subset shoud be avered in Cooperative Coevolution.

Also, there is no ndion in Cooperative Coevolution of asembling spedalists together in a hierarchicd
fashion. Representatives of spedalists pedes are evaluated together in a group bu a successul groupis
never encgpsulated so that we can form meta groups. This means that if there ae two alternate waysto be a
particular kind o spedalist and ore kind works well in some @ntexts and the other kind works well in
other contexts then there is no way to maintain bah competing types in a way that respeds the preferred
contexts of ead. Rather there is only one groupthat can be reliably maintained — the group formed by the
representatives of ead sub-spedes where eat sub-spedes is converged. In short, alternate assemblies of
spedalists canna be maintained and seleded for, and the problem decmposition is necessarily only a

singlelevel of decompasition.

In summary, Cooperative Coevolution does not have a composition operator or a way of assmbling
spedalists into compasites reaursively; also Potter does not provide aformal description o the dass of
problems for which Cooperative Coevolution is well suited. However, this work explicitly uses the nation
of divide and conguer problem decompasition in many diff erent substrates including string-based function
optimisation, the notion that competition shoud occur between spedalists within a type, and spedalists

aaosstypes $houd be dlowed to coexist and colledively cover the problem domain.
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Clasdfier systems

Classfier systems provide an interesting spedrum of divide and conquer optimisation at diff erent scaes.
‘Michigan-style’ classfiers (Holland & Reitman 1978 only optimise & the small-scde (seledion is for
individual rules). This is efficient when rule interdependency is insignificant or of the eay kind (see4.2),
but will produce sub-optimal results otherwise. In contrast, the ‘ Pitt” approach to classfiers (De Jong 1988
canin principle find opgimal configurations of rules by seleding for whole rule sets - but in general suffers
from the cmbinatorics introduced by the much larger search spacethis defines. Hierarchicd classfiers
(seeBarry 1996 potentialy offer the advantage of both approaches. Some of the mechanisms we develop
in this thesis, for seleding for complementary sets of schemata and for determining when a olledion o

schemata makes a valuable cmpaosite, may be useful in classfier domains.

Other problem decomposition approaches

Immune systems (Dasgupta & Forrest 1999, and Ant Algorithms (Dorigo et a. 1999 aso gain their basic
intuition from the dgorithmic advantage of problem decompasition by seleding for individual antigens and
individual ants that colledively provide solutions to a protedion problem or graph routing problem,

respedively.

3.3.6  Explicit symbiosis/'symbiogenesis models

There ae a number of models in the EC literature pertaining spedficdly to symbiosis and/or
symbiogenesis. We review these below with particular emphasis on: @) the use of a mmposition operator
that joins entities together into a new whade, b) multiple hierarchicd levels of compasition, c) the
moduarity of the problem domain, d) whether the roles of symbiotic spedalists are predefined or are
defined adaptively.

Barricdli, 1957 “ Symbiogenetic Evolution Processes Realised by Artificial Methods”

Barricdli (1957 sets out to model symbiogenesis, and to use computer simulations to investigate the
dynamics of symbiotic processes. This work predates me of the work often cited as the foundation o
work in genetic dgorithms (e.g. Holland 1975 and it is remarkable how many of the ideas we ae
discussng in this thesis are present in this work. For example, the ideaof compositional mechanisms and
their combinatorial advantage, the potential for open-ended evolution under compasitional mechanisms and
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its superiority to mondithic gproaches, and the dose relationship of sexua recombination and
symbiogenesis, are dl present in this work. Additionally, Barricdli uses a substrate where the boundxries
of organisms are flexible and allow for the posshility of encapsulation. He dso discusses horizontal gene

transfer, and the tendency of popuations to converge withou diversity maintenance mechanisms.

However, thiswork is performed in 1D and 2D cdlular automata with fairly ad ha transition rules. Thisis
an interesting substrate and the implicit boundxries of replicaing petterns in the automata is potentially a
powerful means to develop complex composition results, but it is entirely impenetrable to analytic
treaments. It is also very difficult to seehow resultsin this domain impad our understanding o, what have
now beame, the traditional GA and related hypdheses like the BBH. The main problem in this resped is
that there is no explicit goal or function to be optimised in this g/stem, which is fine & an artificia life
experiment, but does not asdst us in identifying the alaptive cgadty of different medchanisms in a

measurable way.

Bull & Fogarty, 1995 “Artificial Endosymbiosis’

Bull and Fogarty (1995 Bull et a. 1995, present a mmputational model of endosymbiotic medhanisms.
This and aher models that these authors present, seem to be intended as an examination o the cndtions
under which endasymbiotic relationships will occur rather than an examination d when such mechanisms
can provide superior optimisation. The aiuthors provide two passhilities for evolving entities — a) a
spedficaion for the evolving genes is provided by two independently evolved half-spedficaions, b) a
specification for the evolving genes is evolved as a whaole. Pairs of individuals from the first case may be
composed together to form individuals of the second case. The problem domain is a two-componrent NKC
landscape andit is srown that when the dependency between the two clusters of variablesin the problemis
low case-a predominates, and when it is high case-b predominates. The roles for eah of the ettities
involved is predetermined (ead individual isassgned ore of the dusters of variablesin the problem), and
there is no passhility that one kind o spedalist may over-write aspedalist of the other type. In summary,
this work ill ustrates the idea of problem decmposition and composition d sub-solutions, and it also
caefully examines the condtions of the problem domain that induce different results. However, the
problem domain has only two modues and no herarchicd structure, so there is no pasbility of repeaed
composition o entities. There is also no mechanism for automaticdly identifying the sub-domains in the
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problem. Later work, (1996, examines the dternatives of individuals that are éther, a) a sexual host plus
an endosymbiont, or b) as before. This work explicitly refers to the parall els of sexual recombination and
symbiosis. However, it does not use a ®mposition ogerator, and hes the same limitations with resped to
the number and identity of spedalist’s roles. Bull (1997 and (1999 apply similar ideas to ather
evolutionary transitions. Bull (1999 interestingly, mentions the possble involvement of the Baldwin effed

which relates to some ideas that we developin Chapter 7.

Tomlinson & Bull, 2001 “ Symbiogenesisin L earning Classfier Systems”

Followingideasintroduced by Wilson and Goldberg (1989, Tomlinson & Bull examine the compasition o
rule into sets of rules that are chained together. Rules that are compaosed together reproduce together as a
group. They aso utili se the nation o ‘encapsulating a set of rules with resped to their ‘behaviour’ —i.e.
the oppatunity for rule firing when multiple rules can be gplied at a given time is resolved with reference
to set membership. This work provides the oppatunity for hierarchicd compaositions (implicitly), and the
role of arule is flexible nat predetermined. This embodes many of the mwncepts we ae examining in this

thesis but in the domain of classfier systems rather than straightforward function ogimisation.

Demeur, R, 1995 “Evolution Through Cooperation: The Symbiotic Algorithm”

Demeur presents a very interesting and urconventional style of GA. The method ses a tree of parameter
values, holding the values of problem parameters. The ordering d leaves and sub-leavesin the tree ontrols
the c-occurrence of problem parameters in a candidate solution. ‘ Symbiotic ssciations' are represented
by co-occurrence of parameters on a sub-tree The only application tested is to cover the pegs of a multi-
modal function (a sinusoid) — it is not clea what the moduar structure of this problem is in terms of the
problem variables (i.e. in the binary variables that represent a candidate solution), if any. It may be the cae
that the mechanics of this approac are nat all that different in spirit from thase we develop in Chapter 7,
but the goproadc istoo radicdly different to seethe parallels with this and aher GA work clealy. In the
representation that Demeur usesit is very difficult to make asciations with the BBH, to identify the dass
of problems that it is well-suited for, or to ascertain its ability to maintain diversity of competing schemata,

for example.
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Numaoka, 1995 “ Symbiosis and Coevolution in Animats’

Numaoka provides an ‘animat’ based model in which the sensing ability of an agent is evolved. Evolved
behaviour, controlled by two 8-bit parameters of the sensors, is applied to a foraging task cdled the ‘blind
hunger problem’. There is no explicit partial spedficaion —i.e. spedaisation d different individuals to
different sub-parts of the problem domain — or concatenation o partial solutions into awhale. The genetic
operator is more like horizontal gene transfer (see ‘Microbial GA’ Harvey 1996 also in Watson et al.

20001) than symbiotic encapsulation.

Kvasnicka, 2000 “ An Evolutionary Model of Symbiosis’

This work, (inspired by Watson & Pollack 19999 includes explicit divide aad conquer problem
demmposition (in the style of Bull and Fogarty), and a mncaenation operator that asembles partial
solutions together. However the problem domain is a @ncaenation d several nonoverlapping NK
landscgpes which makes sub-problems that are entirely separable, thus this problem would be anenable to
a Maao Mutation Hill Climber (see4.3.1, 4.6.4). Kvasnicka uses an ad hac method to limit string Hoat
(see 9.3.2) —i.e. only if a cetain fitness threshdd is readed is the compasition operator applied — in
general, there is no means to knowv where this threshold shoud be placed onan unknavn problem. The

roles of independent symbionts are predefined, and tight genetic linkage (see6.4) is asaumed.

Hirasawa, et al., 2001, “ Genetic Symbiosis Algorithm”

The dgorithm presented here is the same & the Simple GA but with the aldition d some ‘symbiosis
parameters’ that modify fitness These parameters for a pair of entities are derived from Euclidean distance
between genatypes and the fitness difference of individuals, and define amatrix of association relations
that control competition, exploitation, and mutual benefit. There is no composition operator, and no
hierarchy in variation a in the problem domain. The method essentialy provides an interesting form of
fitness $aring for diversity maintenance Mao et al., (2001) use similar ideas to handle interadion among

objedives.
Tsujimuraet al., 2001, * Symbiotic Genetic Algorithm’

Thisalgorithm is gedfic to the domain of job shopscheduling. It applies ®ledion based ontwo oljedives

(make span, and idle time) in a manner similar to implicit fitness $aring. A third oljedive, (total job
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waiting time), is applied to promote diversity. The dgorithm has no composition operator, and no

hierarchy.

3.3.7 Summary of existing methods

Table 3-2 summarises the feaures of this existing work that we ae interested in.

C??é)nosr Hierarchy | Modules Roles
Barricdli, 1957 “Symbiogenetic Evolution Processes| Y CYIN Y Y
Redised by Artificial Methods’ (implicit) | (implicit) | (implicit) | (implicit)
Bull & Fogarty, 1995 “Atrtificial Endosymbiosis’ Y N N N
Bull & Fogarty, 1996 “Horizontal Gene Transfer in N N N N
Endoesymbiosis’
Bull, 1999 “On the Evolution of Eukaryotes: Computational Y N N N
Models of Symbiogenesis and Multi cdlularity”
Tomlinson, & Bull, 2001, “Symbiogenesis in Leaning v Y LY v
Classfier Systems” (implicit) | (implicit)
“ H H H ” Y Y Y Y
Demeur, 1995 “ The Symbiotic Algorithm (implicit) | (implicit) | (implicit)
Numaoka, 1995 “Symbiosis and Coevolutionin Animats’ Y N N NA
Kvasnicka, 2000 “An Evolutionary Model of Symbiosis’ Y N Y N
Hirasawa, et al. 2001, “Genetic Symbiosis Algorithm” N N N Y
Tsujimura e al. 2001, “Symbiotic Genetic Algorithm” N N N N
Goldberg et al., 1989 “Mesy GA” Y YIN Y Y
Potter, 1997, “Cooperative Coevolution’ N N Y Y/N
] o Y
Rosca, 1997, “Evolutionary Divide and Conquer” (implicit) N N Y
. “ . . . Y Y N Y
Angeline & Polladk, 1993 “automatic modue agjuisition (implicit)
Juill e, 1999 “Moduar Inductive Leaning’ N N Y Y

Table 3-2: Summary of featuresin existing methods

“Composition” - employs a compaosition operator that encgpsulates gpedali st entiti es together
into a new composite entity. “Hierarchy” - employs composition on multiple hierarchicd
levels (as oppased to ore- or two- level decompasition). “Modularity” - number of modues
in the problem domain is more than 2 “Roles’ - roles of coadapted entities are defined
adaptively (not a priori predefined roles)
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In conclusion, only Rosca, Demur, Barricdli, Tomlinson, and Goldberg apply a mmpaosition ogerator over
multiple levels. None have both a principled means to promote cmplementary spedalists and a means to
join spedalist together into composites - except perhaps, Demur and Tomlinson. Tomlinson's work is in
classfier systems domain. Demur does not show operation ona hierarchicd problem (but perhaps it could
provide this in principle). Thus nore of the existing methods demonstrate dl of the properties we ae

interested in bu many of them provide important parts of the feaure set we will develop.

3.4  Evolutionary difficulty under compositional medanisms

In this subsedion we will outline some of the numerous isaues that arise in the implementation d EAs

using compaositional medchanisms.

3.4.1 Difficultiesof building block processng under recombination

Two pradicd difficulties with BB crossover in GAs come from a ladk of diversity in the popuation and
‘disruption’. That is, when fitness propattionate seledion is applied to a panmictic popuation it tends to
beoome geneticdly converged very quickly and thus sxual recombination hes no effed. And the problem
of disruption d a BB in crossover refers to the fad that the stability of a building Hock, i.e. its likelihood
of being recombined with aher building Hocks appropriately, is dependent on the w-locaion o
congtituent genes on the chromosome —i.e. ‘tight’ genetic linkage. Considerable reseach eff ort to improve
the performance of EAs has been dreded at issues of diversity maintenance and robust representations of

functional sub-comporents that would all ow appropriate manipulation d building Hocks when discovered.

3.4.2 Schemadisruption: genetic linkage, partial spedfication, and competing conventions.

Schema disruption

A long dfining length (see Figure 3-5) increases the probability that a useful schema in a parent will be
disrupted in reproduction with crossover. If disruption d schemata by crosover is high then even if a
schema has a fitnessthat is above-average it may naot receéve an exporentially incressing number of trials
in subsequent generations. Initial disruption analysis by Holland (1975 has been developed further by

many ahers (e.g. De Jong 1975De Jong& Speas1990. The seledion schemes that we use in our models
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are quite diff erent from those where such an analysis is important, and instead we ae more mncerned with
the likelihood d schema aeaion. However, isaues of favourable genetic linkage, which have astrong

effed on schemadisruption, are dso relevant to schema aedion, aswe will discuss (seebelow and 6.4).

Poor genetic linkage

Figure 3-7 shows the posshility of combining two schemata under one-point crosover assuming tight

linkage. However, we dso ill ustrate the difficulty of combining two schematain cases of poar linkage.

tight linkage poa linkage
101010010010100 101010010010100
100101010011110 100101010011110
101010010%11110 ?

Figure 3-7: Building block combination and disruption

Left) Combining two low-order schemata using ore-point crossover is posshle when genetic
linkage is tight, i.e. defining length is dort, (see Figure 3-5). Right) when linkage is poar
because the ordering o epistaticdly related genes is random, one-point crosover cannd
crege an df spring with bah schemata.

In general, in cases with random genetic linkage an arbitrary number of crossover points must be placel at
appropriate positions in order to guaranteethat goodschemata from ead parent can be brough together in
the off spring. Accordingly, we seethat one of the weaknesses of crosover isthat the modues that we wish

to manipulate ae only represented implicitly by virtue of the wllocaion d their genes onthe diromosome.

It shoud be dea at this gage that the notion o what bits ‘shodd’ travel together in crosover events
becaise they are eistatically dependent on ore another and correspond to useful schemata, is quite
different from the nation o which hitsare acualy likely to travel together under regular crossover becaise
they are dose to ead aher on the dromosome. We cdl the former ‘dependency’ or ‘epistatic
dependency’, and we cdl the latter ‘linkage’ or ‘genetic linkage’. So ore way to redify the problem of poar
linkage is to re-order the genes 9 that interdependent genes are dose together - so that genetic linkage
corresponds with epistatic dependency. Accordingly, severa variants of the GA have proposed ‘moving-
locus' schemes, e.g. GA with inversion ogerator, Messy GAs (Goldberg et al. 1989, Linkage Leaning GA
(Harik 1997). Despite the validity of these gproaches, it is important to remember that the need to

rearange genes is a result of using a recombination operator that is ®nstive to gene positions. And it
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shoud also be noted that genetic linkage based on gene ordering onlinea chromosomes cannad in principle

represent epistatic dependenciesthat canna be linearised.

Unfortunately, the nations of epistatic dependency and genetic linkage are sometimes conflated. For
example, the term ‘linkage leaning' is a cae in pdnt. Linkage leaning in some caes (e.g. Harik 1997
refers to the processof discovering and representing the epistatic dependency of variables in a problem by
moving them around so that they are next to ead ather on the chromosome. In ather cases, e.g. Kargupta
1997, linkage learning was used to mean simply the discovery and representation d epistatic dependency
by whatever means, and nd necessarily by the use of rearanging genetic linkage. More recently, explicit

probabili stic models of epistatic dependencies between genes have been based onBayesian nets (see6.4.4).

A different method proposed to overcome the wedaknesses of crosover is the use of ‘ crosover masks' -
additional binary vedors, spedfied along with eat chromosome - that spedfy which hits of the
chromosome shoud travel together in a aossover event (Louis & Rawlins 1997). Other methods use ared-
valued vedor that represents the probability that each hit will be transferred to the off spring. In these
methods there ae various methods required to regulate how the valuesin the mask vedors are updated (e.g.

seeVekaria& Cladk 1999.

Similar to the nation o crossover masks, is the use of ‘ partially spedfied representations’. That is, methods
where eat individual may represent a variable number of genes and may therefore leave some dleles for
some genes unspedfied. The Messy GA combines the use of partial spedficaions with moving-locus
representations (Goldberg 1989. Previous work has discussd the relationship between the use of partial
spedfications and moving-locus representations, and the other properties of the Mesyy GA (Watson &

Pollack 199%).

One useful interpretation o the use of partia spedfication is that wheress under regular crosover it is
problematic to determine which subset of genesin ead parent shoud be inherited in the off spring, when
combining together partialy spedfied individuals the individuals themselves are drealy explicitly

representing the desirable subset of genes.
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01010011 -GA
(21),(6,0),(81) -Mesy GA, movinglocus
-1---0-1 -fixed-locus, partia-spedficaion

Figure 3-8: Representation of genomes/schemata for GA, Mesg/ GA, and ‘partial
spedfication’.

The Mesy GA, (MGA), uses a ‘moving-locus’ representation for genomes. Each gene is
represented by a locudalele pair. The bold genes (some desirable schema) in the GA
representation are transferred to an example MGA representation in the second line of Figure
1. Moving the genes together in thisway all ows the MGA to transfer the schemaintad during
recombination.

Mess/-GA-style recombination is smple amatter of creding an off spring C which is the sum of genes
from both parents. Thisisthe spliceoperation d the Messy GA (Goldberg 1989.

)
H(1,1).8.0), (

A ((2,1), (6,0), (8,1
B: ((1,1), (3.0), (5,0))
C: (2.1), (6,0), (8,1

8
5

0), 8,1), (1,1), 3,0) (5,0))
Figure 3-9: ‘Splice recombination in the Messy GA.

Two parents A and B represent partially spedfied strings using locud/alele pairs. The
offspring, C, is smply the union o spedfied genes from both parents.

It shoud be noted that when the two parentsinvalved in a splice operation are not overlapping in the genes
that they spedfy this operation is in fad insensitive to the ordering d genes in the chromosome and
acordingly may just as well be represented by the fixed-locus but partially spedfied representation shown

in Figure 3-10.

A -1---0-1
B: 1-0-0---
C. 110-00-1

Figure 3-10: An alternate representation of the splice operation in Figure 3-9.

Here we represent unspedfied genes, or doni't cares, by “-” and the off spring is creaed by
taking spedfied genes from either parent where available. This provides a fixed-locus, but
partial-spedficaion representation o individuas that effedively represents shemata
explicitly. We shall shortly addressmethods to handle conflictsin spedfied all eles when they
ocaur.

The representation o individuals and the cmmbination ogeration shown in Figure 3-10, inspired by the

spliceoperation d the Messy GA, isthe basis of the combination operator we will detail i n Chapter 7.
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Competing conventions

Suppase, for the sake of argument, that we arive & some method that can successully evolve different
useful schemata in dfferent individuals, and moreover we have some means to represent where the
schemata ae in ead individual so that they can be transferred as a wherent whale into the off spring. Even
then we till have the issue of how to handle cnflicting schemata. This is known, in general, as the
‘competing conventions' problem. To take ascenario in a different domain, if we were evolving reura
networks to control a roba, and bah networks work reasonably well but by dfferent methods (different
conventions) - then if we take asubset of one network and a subset of another and pu them together we ae
likely to end upwith a network that does not function properly. If onthe other hand, both networks worked
by the same method bu with orly slight variations (same cnvention) - then it might plausibly be valuable

to try a ombination o partial networks.

The intuition that recombination between radicdly dissmilar individuals will likely produce non
functioning dfspring, isin oppgition to the intuition that recombination requires parents to be different in
order to be worth dang at al - that is, to the extent that parents are similar, recombination ketween them
has no effed, and to the extent that parents are dissmilar, recombination ketween them islikely to produce

non-functioning df spring.

However, note that this apparent corflict is alleviated when the parents have the posshility of being
‘complementary’ - representing dff erent roles within the problem as a whaole - for example, by spedfying
for non-overlapping subsets of genes using a partialy spedfied representation. This posshility is explicitly
utili sed in Cooperative Coevolution (Potter 1997). However, when individuals secify for different roles or

tasks, some extramachinery isrequired to evaluate and compare them.

3.4.3 Evaluation of parts

In the Messy GA, individuas are partially spedfied subsets of genes. Accordingly, an ohjedive fitness
function that expeds a mmpletely spedfied subset of genes presents a problem. In some problems,
partialy spedfied individuals may be evaluated naturally, or by filling in urspedfied values with some
kind d default value. In ather cases, espedally in cases where there ae important interdependencies

between genes, thisis nat posshble or does nat give auseful indicaion d the value of a schema.

105



What we redly want to knowv when considering the utility of a particular schemain a cmpositional system
is whether it is useful in creaing larger schemata or fully-spedfied strings. Accordingly, a schema shoud
be evaluated in some cntext or ‘template’ of the remaining values. ‘ Templating' in the Messy GA simply
means duperimposing the schema of interest onto some other fully-spedfied string. In some versions of the
Mesg/ GA, this template was creaed from the assmbly of other individuals in previous ‘rounds’ of
evolution (Goldberg et al. 1993. In cooperative mevolution, an individua fulfilling ore role within the
problem as a whole, is evaluated in a ‘shared world model’ aong with representatives of individuals

fulfilli ng complementary roles.

These scenarios are reminiscent of the ‘rowers analogy in Dawkins (1976 (1989 edition, pp. 38-39)) -
spedficdly, a set of independently replicating entities may thus become madapted by \virtue of evaluation
in a shared damain. In cooperative aevolution this senario is st up explicitly - but Cooperative
Coevolution does nat have any subsequent methodto explicitly combine madapted individuals together. In
the Messy GA where the template has also been evolved, this senario is aso apparent but the oppatunity

for coadaptationislessexplicit.

One interpretation d these scenarios then, is that individuals that cover different parts of the problem
domain may beaome madapted to ore another and complement one another’s unspedfied charaderistics.
This provides explicit oppatunity for divide axd conquer problem decmposition (see &so Rosca 1997)

and pdentialy in some caes, relief from the cmpeting conventions problem.

34.4 Seledion on parts: The credit assgnment problem

The next isale is as follows: if a partia solution must be evaluated in some ntext - for example, an
asembly of other partial solutions (a template or shared world model) - then howv do we gpartion fithess
to the modues invalved? This is known as the ‘credit assgnment problem’. In genetic dgorithms using
crosover, (where the implicit modues are sedions of chromosome and the ntext is the individual), the
credit assgnment problem is manifest as ‘hitch-hiking' (Forrest & Mitchell 1993h). In the Mesy GA,
where the modues are partially spedfied individuals and the context is other ‘spliced-on’ individuals and

the template, the aedit assgnment problem is manifest as ‘parasites (Goldberg et a. 1989. In
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Cooperative Coevolution the aedit assgnment problem is avoided because different individuals are not

joined together and so canna * hitch-hike' onthe aedit of others.

In genera, there is no pincipled solution to hitch-hiking in the GA. In the Mesyy GA, ‘parasites are
handed by the use of a two-phase model. In the first phase, individuals are not recombined (or diced
together) and are not al owed to grow in size- thus eliminating the posshility of parasites. And when thisis

relaxed in the seaond plase, it is asaumed that only goodschemata remain in the popuation.

Thus the aedit assgnment problem for coevolving modues in compositional processesis an isaue that will

demand a more general solutionin ou models.

3.4.5 Coevolution of parts: premature convergence/competitive exclusion and fitness $iaring.

In general then, one way or another, compostiona methods often involve the mevolution of
complementary parts (and their assmbly into wholes). In the Simple GA with crosover the parts are
schemata, and the wholes are individuals. In the Mesgy GA the parts are the size-limited individual s of the
first phase, and the whales are the templates and/or the fully-spedfied individuals formed in the second
phase. And in Cooperative Coevolution, the parts are represented by explicitly segregated spedes, and the

wholes are represented in the shared world model.

In a general framework of coevolving modues, it is necessary that we dlow individuals covering dff erent
parts of the problem domain to coexist - otherwise, we will not be ale to search dff erent combinations of
them. Maintaining dversity in cooperative cevolution of modues presents a problem. If we gply the
usua kind d seledion that we use in competitive evolution then, under repeaed seledion, the type that is
best on average will soorer or later competitively exclude dl other types. In biologicd models, e.g. (Arthur
1987), competitive exclusion of one spedes by anather, and ore dlele by ancther, (pp. 17-48), isin some
cases cournteraded by ‘fr equency dependent fitness effeds (p. 52). That is, in principle, as the frequency of
one type increases this may have cnsequences for the fitnessfunction d the spedesinvaved, andin some
cases, may apply negative feedbadk onthe frequency of that type. Under certain conditi ons this may enable
stable mexistence of more than ore type. In artificial evolutionary algorithms frequency dependent fitness
effeds are known as ‘fithess $aring (e.g. Goldberg & Richardson 1987. Fitness $aring comes in many
varieties (e.g. ‘crowding’, Cavicchio 1970 De Jong 1975 ‘thresholding Goldberg et al. 199Q ‘implicit
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fitness $aring, Smith et al. 1993 ‘niching, Deb & Goldberg 1989 - see Mahfoud (1995 for an
overview) but the basic idea ®mmonto all methods is that the value of being a particular type is depressed
as function o the number of other individuals of the same or similar type. Fitness $aring methods can in
principle then permit different types of entities to coexist which is just what we nedl if we want to seach

combinations of them.

However, the problematic asped of fithess $iaringis that it requires us to define the identity of types or at
least the similarity of types - and it is generally nat clea what metric of similarity (genotypic, phenatypic,
behavioural) is appropriate. In Cooperative Coevolution, the types are predefined and seledionis sparated
so that one type caana exclude ancther. In templating (Goldberg et a. 1989, simil arity is ©smetimes based

on genotypic Hamming dstance

In the general case, where we do nd know the roles of individual a priori, or when we caana assume that
genotypic similarity is a goodindicaion d performing the same functional role, we need a more genera

method d maintaining dversity.

34.6 Themulti-dimensional interpretation of fitnessand ‘ Pareto coevolution’

In previous reseach we have investigated isaues of diversity maintenancein coevolutionin simple dstrad
games (Watson & Polladk 2001h. These investigations have led usto identify several concepts that will be

raised again later in our models:

* In coevolutionary games, it is often useful to consider a game & containing several diff erent ‘aspeds
of play’. For example, in chessplaying there is only ore objedive, ‘play goodchess, but this may
implicitly involve being goodat end games, being goodat controlling the cantre of the board, being

goodat proteding the queen, etc.

* Generdly, an asped of play that is goodin ore context (against one opporent) is not necessarily good

in another context (against ancther opporent).

* Insome ca&es, the gradient of the fitnesslandscagpe lealing to fitter types within an asped of play can
even bereversed depending onthe seledion d opporents. For example, in tennis, afast servicemight

be alvantageous against most opporents, but against some other opporents, serving slowly might
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provide an advantage. This induces a @ndtion d ‘intranstive superiority’, and is one cause of
‘cycling and ‘forgetting (revisiting the same parts of strategy space more than orce) in

coevolutionary dynamics.

« If there ae many aspeds of play, and dfferent aspeds have different importance ajainst different
players, the quality of a strategy in general shoud na be reduced to a single-dimensional value - a
single fitness measure. For example, using the average fitness of a player over many dfferent
opporents loses sgnificant valuable information about what that player is goodat and what they are

not goodat.

 This leads us to consider coevolution as a multi-dimensional optimisation process In this
interpretation, eadr individual has a multi-dimensional fitness measure, ead dmension
correspondng to dfferent aspeds of play. However, we generally do nd know a priori what thaose
different aspeds of play might be. However, loosely, we may imagine the performance of the player

against diff erent opporentsto describe its quality in dff erent aspeds of play.

* Intwo-player competitive games, we can trea ead diff erent opporent as a representative of an asped
of play, and thus ead individual in the popuation cefines a value for one dimension in their multi-
dimensional fitness (see Ficici & Polladk 2000. We use the term ‘Pareto Coevolution' (Watson &
Pollack 200@s, Ficici & Polladk 200]) to refer to the gplicaion d standard multi-objedive
algorithms (e.g. Fonseca & Flemming 1995 to multi-dimensional measures coming from other
coevolving dayers (seebelow). The Pareto Coevolution ideahas been applied and developed further
in subsequent work - (Ficici & Pollack 2001, Noble & Watson 2001 De Jong & Polladk 2002 Bucd

& Pollac 2002.

* In multi-player cooperative games, we may use diff erent groups of coevolving individualsto provide
different contexts - and in principle, ead group/context represents a dimension d play. We develop

this further in Sedion 7.3.

The basic seledion model of normal coevolutionisthat an individual A may replace a individual B if it is
better on average than B against a sample of other players. The basic seledion model of Pareto coevolution

is that an individual A may replace a individual B only if A gets a better or equal score than B does
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against eat and every player in a sample of other players (and ketter against at least one). Thus Pareto
Coevolution is basicdly the ideathat the evolving popuiation shoud approximate the Pareto front of non
dominated strategies and will thereby avoid the conwvergence of the popuation that is inherent in single-
dimensional interpretations of fitness In Chapter 7 we will describe the biologicd analogues of this idea

coming from niching and popuiation subdvision.

3.5 Test problems

In attempting to better understand what kind o adaptation is afforded by dff erent kinds of mechanisms, a

test problem that ill ustrates the distinctions and principlesinvolved isinvaluable.

The Building Block Hypathesis appeds to the naotion d problem decmposition and the assmbly of
solutions from sub-solutions. Accordingly, there have been many varieties of GA test problems with a
structure based on bulding Hocks. Some of these problems use deceptive fitness functions to model
interdependency between the bits within a block. However, very few have any model of interdependency
between bulding Hocks; those that do are not consistent in the type of interadion wsed intra-block and

inter-block.

Before reviewing some of the well known bulding Hock problems let us define some terms. Firstly, we
clarify that a separable problem is a problem which can be divided into sub-problems ead of which hasa
fixed opima solution that is independent of how other sub-problems are solved. We define a
decompaosable problem to be something more general - for now, a problem that can be decomposed into
sub-problems - and, we spedficadly allow that these sub-problems need na be separable - i.e. the optimal
solutionto ore sub-problem may be different acording to the solution o ancther sub-problem. In this case
we say that a sub-problem is dependent on ancther, or in the bi-diredional case, the sub-problems are
interdependent. We will define these terms more exadly later (4.3.1). Included in the term decomposableis
the nation o identifiable comporent parts, i.e. moduarity, so a system of uniformly related variables with
no moduar structure is excluded from the term decomposable. Next we look at the nation d hierarchy. The
Building Hock Hypothesis describes the assembly of bitsinto blocks, blocks into bigger blocks, and so on

to provide a omplete solution - the hierarchicd asped of the processis clea in ou intuitions. Our general
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nations of GAs, building Hocks and the Building Hock Hypothesis al imply that the process continues
over many levels in the same fashion. We define aconsistent hierarchicd problem as one where the nature
of the problem at al levels is the same. In a hierarchicdly consistent problem, the difficulty of solving a
sub-problem given the solutions to the sub-problems of the previous level, shoud be the same & all levels
(seeWatson & Polladk 199%, 1999h. With these mncepts in mind, we review some well-known GA test

problems.

3.5.1  Building block problems

Whitley et al. (1995 and 1995b, provide areview of test-problems from the GA literature and summarize,
“most common test problems used in the past to evaluate genetic dgorithms ladk” the inclusion d “strong
noninea dependencies between state variables.” That is, athough the contribution d asingle variable to
the overall evaluation may be nonlinea, there may be no nonlinea interadions between variables, and

therefore the optimal value for ead parameter can be determined independently of al other parameters.

There ae several building Hock style functions - the Royal Road (RR) functions (Mitchell et al. 1992
Forrest & Mitchell 1993), revised Royal Road functions (Holland 1993, (see #&so, Jones 1995,
concaenated trap functions (Deb & Goldberg 1992, 19921, and ahers - that clealy emphasize agross
scde building Hock structure. But, like the red-valued functions that Whitl ey investigated, these consist of
concaenated blocks, ead of which may be optimized independently in a wmulative fashion. The R1
version d the Royal Road problem (Forrest & Mitchell 19933), for example, can be imagined as a staircase
leading search in a stepwise fashion in the mrred diredion. In concaenated trap functions and the revised
Royal Road functions, the fitnessgradient leads sach away from the solution to ead bock. But, whereas
the bit-wise landscepe is fully deceptive, the ‘block-wise landscape’ is fully nondeceptive. That is, within
a block the bits are not separable but eat bock is dill separable from every other block (i.e. the optimal
setting for a bit remains the same regardless of the setting d bits in ather blocks) and again the sub-
solutions acamulate linealy. To continue the analogy, athough ead tread on the stair is inclined

unfavorably the whole staircase still | eads to the global optima.

The R2 function, (Forrest & Mitchell 1993), and the revised Royal Road functions make hierarchy

explicit. However the interadions between hits within the first level blocks are very different from the

mn



interadions between blocks in subsequent levels. Although the fitness contributions of the base-level
blocks acamulate nontlinealy becaise of 'bonws contributions from higher levels, the blocks are still

separable in that the optimal bit-setting for a block does not change.

3.5.2 Interdependency

Goldberg et al. (1993 acknowledge that they have "temporarily ignared the posshbility of subfunction
crosgalk”. Crosdalk, is defined by Kargupa (1995 as “a property of both the dgorithm and the
landscgpe” and appeds to the ideathat the dgorithm may be misled in identifying bulding Hocks by
changes in fitnesscontribution. Accordingly, Goldberg et al. suggest that noise in the fitnessfunction may
be an appropriate model for crosdak. But thisinterpretation d crosgalk does not provide the same kind o
interdependency between blocks as the interdependency between the variables within a block. We favour a
definition o building Hock dependency that is not reliant on the dgorithm being used - i.e. the observation

that the optimal bit-setting for ablock is different in one mntext than in ancther is algorithm independent.

Whitley et al. (1995 argue for test-problems that have nonseparable comporents, and popcse an
“expansion” method for constructing scde&ble non-separable functions from a nonlinea base function o
two variables. By seleding pairs of variablesin an overlapping fashion and summing the results they creae
anon-separable function ower an arbitrarily large set of variables. They also propose that using all possble
pairs, rather than a minimal set of overlapping peirs, provides a method to vary the amourt of inter-
dependency. This nation has ome simil arities with the NK landscapes of Kauff man (1989 1993. The NK
landscepes certainly do model the interdependency of variables - the ontribution o ead of N variablesis
defined as arandam look-up function o itself and k aher variables. The expanded functions of Whitley are
analogots to NK landscgpes with k=2 (and with a repeaed base-functioninstead of randam lookuptables).
This sans like astep in the right diredion espedally since the value of k, in some sense, defines the

degreeof interdependence.

But thisis gill not whaly satisfying for now we caina identify meaningful building Hocks. In the NK
model (and the expanded function method) the dependencies form a uniform network; there is no

moduarity.
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3.5.3 Othertest problemsfor EAs

Holland (2000 describes ‘hyperplane defined functions'. One of the feaures of these is that high-order
schemata that confer fithesscontributions are built from pairs of lower-order schemata. This asped of the
construction technique is very similar to previous work of our own (Watson et al. 1998 that we develop
here. Holland ndes that the dementary schemata in the problem may overlap and may be @nflicting bu
the importance of this point is not emphasised enough Spedficdly, if the dementary schemata ae not
overlapping and conflicting then they are separable — the solution to a building Hock is independent of
context. In the example that Holland gves, there ae only 3 loci that have ay conflicts — which means the
problem istrivialy solved byasimple hill climber. But more generaly, by bulding theinitial schemata out
of randam subsets of the variables and asggning randam bit configurations we ae unable to ensure that the
problem is difficult, or control how difficult it is. Accordingly, Holland is unable to give atime to solution
for the GA or acaetive mechanisms on this classof problem. Also Holland' snation o buil ding Hocks here
asaumes tight linkage (short defining length) whereas the moduar interdependency concept we will
develop isindependent of gene ordering, and in fad not defined in terms of genetic linkage at all - rather it

is defined in terms of epistatic dependency.

Other building Hock functions explicitly utili se the partial overlap of schematato introduceallittl e building

block interdependency — (e.g. Wiegand et a. 2001).

One other building Hock problem of interest is provided by Louis & Rawlins (1991). They describe a
problem where aglobal optimum at “000...000111..111" can be arived at by crosover from strings that
correspondto locd optima & all-Os and all -1s. Interestingly, they also discussthis problem in the mntext of
multi -objedive optimisation, which will feaure heavily in later models we develop here. The interesting
fedure of this problem is that it rewards drongy competing schemata which are distant from the global
optimum, the global optimum is an isolated needle and therefore difficult to find with an acaetive
mechanism, but crosover of the strings from the two locd optima puts the global optimum within easy
read). The main restriction d this model is that the composition is only useful once— it is a two-modue

problem with noadditional hierarchicd levels.
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3.5.4 Modularity and interdependency: non-separable modules

Some extended NK models include “NKC” models (Kauffman & Johnsen 1989 intended to model two
couped semi-independent landscgpes of two semi-independent spedes, and “NKCS’ models
correspondng to several couped landscagpes/spedes. An NKC landscape is an NKCS with number of
spedes, S=2. Asin NK landscgpes, the fitnesscontribution d ead of N variables is dependent onits own
state and the state of several other variables. But in NKCS models, the problem variables are divided into S
non-overlapping (generally equal sized) groups of variables, and for ead variable, K of the epistaticaly
dependent variables are drawn from the same groupand C are drawn from other groups. In this manner we
may imagine that ead group d variables describes an NK landscepe, but ead landscepe is epistaticaly

couped to anumber of other NK landscgpes.

The ideahere is that we may evolve one spedes on ore landscape, and ancther spedes on anather, but the
movement of the first will i nfluence the landscgpe of the second, and vice versa. For our purpases, we may
also interpret this model as a single problem composed of interdependent modues, and the mevolving
entities are mevolving modues pedalising on dfferent sub-problems. This <enario ill ustrates clealy the
oppatunity to model intra-genomic and inter-genomic dependencies in a unified model (as siggested in

2.5.5), and NKC landscgpes have strong parall els with the model we develop in the next chapter.

However, there ae some inadequades in NKC models. First, al NK models use random epistatic
interadions between variables - but not all types of epistatic interadions are difficult for acaetive methods
(this is explained in the next chapter where we will use a spedfic, and dfficult, kind o epistatic
dependency that enables us to control what the consequences of these dependencies are in terms of locd
optima, and the width of fitnesssaddes - see4.2.1). Second, the interdependency between moduesisnot a
proper scding-up d the interdependency between the original variables. Spedficdly, it is the state of
individual variables that determines the epistatic fitness effeds between variables within a modue, but
unfortunately, it is also the state of individual variables that determines the epistatic fitnesseff eds between
modues. In contrast, to be hierarchicdly consistent, the gistatic fitnesseffeds between modues soud be
a function d the solution states of modues (not some subset of variables within the modues). This will

become deaer as we develop ou model of moduar interdependency in the next chapter. Third, NKC
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models exhibit a singe level of clustered dependencies or a two-level hierarchy. In order to uncerstand

repeaed compasitional operations we require amodel that is sdable over many hierarchicd levels.

We will discuss Simon's (1969 notions of ‘nealy decomposable’ systems at length in later sedions
(Chapter 4, and 9.2.2). We dso mention that the relationship of static evaluation functions (i.e. fithess

functions) to dyramic models of complex systemswill also be discussed later (9.2.1).

3.6 Summary

The accetive view of evolutionary change in Evolutionary Algorithms is common. But nctions of
compositional change based on sexua remmbination a crosover are dso well known though
controversial. The intuition d the Building Block Hypothesis is one of problem decomposition but it has
proved dfficult to demonstrate a GA procedaling in this manner. However, if some form of GA could
behave in this manner, in some dassof problem, then the divide and conquer algorithmic advantage this
provides is sgnificant. This has led to many dfferent varieties of GA utilising moduarity in more or less

explicit manners.

There ae many difficulties that arise in the use of compasitional mechanisms. Well-known problems for
GAs using recombination include poar genetic linkage and gremature convergence of the popuation. More
generally, problematic isaues include the representation, combination, evaluation, and coevolution of

proposed modues.

Finaly, we have reviewed some well-known test problems that have been used in the GA literature and we
suggest that, in large part, the inability to clealy demonstrate aGA performing composition d schematais
due to inadequades in ou understanding d modues, and hence inadequades in the test problems used.
However, there ae many valuable feaures of existing mechanisms and existing test problems that will be

useful to usin formulatinga dea model of compaositional change in the foll owing chapters.
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3.7  Accretion and composition in evolutionary

biology and evolutionary computation

Note that there ae significant parall els between the issues and phenomena discussed in the badground on
evolutionary biology and those discussed here for evolutionary computation. Some cncepts are the same
in bah dsciplines: e.g. fitness landscape, ruggedness smooth paths of adaptation, locd optima,
convergence and dversity. Other concepts have dose analogues in ead discipline. For interest, Table 3-3

outlines some of the analogies and parall els between the amncepts and isaues of acaetion and composition

in EB and EC.
Evolutionary biology concept Evolutionary computation
concept
Terminological analogues
Accretive evolution Greedy/Hill -climbing ogimisation
Compositional evolution Divide and conguer problem decomposition

Common compositional medchanism: meiosis and | Common compositional mechanism: crossover
sexual recombination

Compoaositional mechanisms based onencapsulation: | Compasitional mechanisms based on

e.g. Endosymbiosis encgpsulation: e.g. Automatic modue aguisition
andre-use

Symbiosis as a source of evolutionary innovation Developing methods in coevolution and automatic

modue aguisition

Adaptive surface adaptive pe&s, fitness sddles Fitnesslandscape, locd optima, fitness sddes

Epistatic dependencies between all eles/genes Frustration o variables

Irreducible complexity Problems with  strong and nunerous
interdependencies

Natural hybridisationis often nonviable Competing conventions prevents successul
crossover

Free recombination/no genetic linkage: e.g. genes | Uniform crossover
on dfferent chromosomes

Strong enetic linkage One- or two- point crosover
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Frequency dependent fitnesseffeds

Fitness $aring

Common simplifications/assumptions

Default popuation genetics model is sngle spedes
in single niche

Default EA is one popuation and single fixed
fitnessfunction

Inter and intra genomic dependencies usualy
modelled separately: i.e. epistasis vs gedes
interadion

Likewise, inter and intra genomic dependencies
usually modelled separately: i.e. epistasis vs
coevolution. (NKC model is an exception)

Coevolution related isaues

Organisms live in: i) a genetic, ii) biotic, and
iii ) physicd (abiotic) environment

Schemata reside in: i) individuals in the GA, and
in templates in the Messy GA, ii) and individuals
reside in groups in Cooperative Coevolution, and
iii) al these reside under an oljedive fitness
function

When individuals live in a group containing fit
individuals, parasitic ‘freeloaders may be
promoted

When schemata ae evaluated in an individual
containing aher fit schemata, then less useful,
even detrimental, schemata may be promoted.
(Credit assgnment problem, Hitch-hiker problem)

If organisms reside in the same fixed niche (withou
frequency dependent fitness effeds (e.g. resource
dependence) then repeaed seledion inevitably
results in competitive exclusion

If al individuals are evaluated against the same
objedive fitnessfunction (withou fitness $aring)
then repeaed seledion inevitably results in
popuation convergence

Different organisms are fit in dfferent ways - not fit
in an absolute sense, but they have a‘goodress of
fit’ to a particular balance of environmental feaures

In coevolution, different individuals are fit in
different ways - not fit in an absolute sense, but
they have a ‘goodress of fit' to a particular
distribution o coevolvingindividuals

In an ewmsystem, different organisms may coexist
becaise they have adifferent balance of adaptive
traits from other organisms, and therefore reside in
different ‘niches (often mutually defined by aher
entities in the ewironment). However, A may
competitively exclude B if there is no riche in
which B isfitter than A

In Pareto coevolution, different individuals coexist
becaise they are not dominated by dher
individuals i.e. They have adifferent balance of
abilities with resped to dfferent coevolving
individuals. However, A may replaceB in the cae
that there is no opporent against which B is better
than A (or no goup context in which B is better
than A).

Some of the most controversial isauesin each discipline

Does sxud remmbination

advantage?

dfer adaptive

What is crosover goodfor?
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Shifting Balance Theory: a means to enable the
evolution o ‘interadion systems and their
asembly, rather than depend onthe acamulation
of individually useful mutations

Building Block Hypathesis: a means to enable the
evolution d useful ‘bulding Hocks and their
remmbination, rather than depend on the
acamulation d individually useful mutations

SBT asaimes genetic linkage is wed&, and in
normal circumstances, aleles are seleded for only
their additive dfeds, but Wright notes that if
linkage were strong then co-adapted alleles could
behave @ if they were asinge dlele of a ammpaosite
gene

Building Block Hypothesis assumes that genetic
linkage is tight and therefore schemata can be
transferred from one individual to ancther as a
unit, but Holland ndes that if linkage is poar, then
schemata will be disrupted and pomotion o
schemata will falil

The posshility of more than ore level of seledion:
nucleotide, gene, group d genes, individual, social
group. cf. Selfish Gene model, and Shifting
Balance Theory.

Likewise: hits, schemata/building Hocks/modues,
individuals, cooperative groups. c.f. Building
Block Hypothesis, and Schema Theorem.

Table 3-3: Analogies between accretion and composition in EB termsand EC terms.
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Chapter 4- Defining Modular Interdependency

The purpose of this chapter is to define afitnesslandscgpe that is difficult for acaetive medchanisms and
easy for compositional mechanisms. Defining such a landscgpe will assst us in clarifying the different
adaptive cgadties of these dternate mecdhanisms. The landscgpe we define is built from a high degree of
epistatic interadion between variables that produces sgnificant ruggednessand numerous locd optima—
this prevents the dfedive operation d acaetive medchanisms. However, the gistatic interadions are highly
structured, creaing modues and sub-modues of interdependent variables. This moduar structure makes
the landscepe, in principle, amenable to problem decomposition and the dfedive operation o

compositional mechanisms, aswe will show in subsequent chapters.

We divide our discusdon as follows. First we briefly discuss ®me philosophicd provisos of the
‘problem/solution” metaphar to biologica evolution. In the next subsedionwe distinguish between types of
epistatic interadions that are eay and dfficult for acaetive mechanisms - this analysis considers
interadions between pairs of variables only. The following subsedion addresses how larger networks of
epistatic interadions might be aranged so that they are decompaosable. This follows our intuition that
compositional mechanisms may be &le to manipulate systems of variables with moduar dependency more
effedively than acaetive medhanisms and such a structure shoud therefore exemplify the adaptive
potential of compositional mecdhanisms. The third subsedion in this chapter uses these mnsiderations to
define asystem of interdependent variables that are highly epistatic but also highly structured. Following
subsedions outline a method for constructing problems of this general class and a spedfic instance
Hierarchicd-if-and-only-if that we use for experiments in following chapters. We outline some mntrasts

and simil ariti es of this problem with existing test problems/landscepe in the literature.

General properties of this problem class its amenability to dfferent fithess optimisation medanisms, and

some simple analytic results are given in the following chapter.
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4.1  Philosophical provisos: The ‘problem’ for an evolving entity

We note that the nation o a‘problem’ that an organism must solve, or a predefined landscape on which an
organism may move, can be misealing pemises in some drcumstances. For example, in many cases it
would be incorred to assume that the niche in which an organism ultimately resides existed in a pre-
defined sense before the organism concerned - (Lewontin 200Q Levins & Lewontin 1985. Similarly, in
many cases, the niche to which an organism is fitted is fundamentally affeded (perhaps effeded) by the
biotic context of other evolving aganisms and it would therefore be incorred to assume that the fitness
landscape has a static form that exists independently of the organisms that reside in it (Lewontin 1982

1983.

These provisos are well noted. If, as eams likely the cae, the relevant constraints on an adaptive spedes
are predominantly the result of biotic environment, then the fitnesslandscape presented to an organism at
any oretimeis predominantly plastic and urconstrained in longer time scaes, and das not pre-exist in any
meaningful sense. Accordingly, if every asped of the environment is plastic and somewhat intangible in
this ®nse, then it is difficult to knov how to acommodate the separation d organism and environment or

proceal with adaptive explanations at all (Levins & Lewontin 1985.

We do nd pretend to resolve such phlosophicd questions in this work. However, we offer at the end o
this chapter, some comments on the compatibility of the adaptive landscgoe model that we define here with
these poaints of view. In the meantime, we suggest that the adaptational stance provides one of those useful
for understanding hiologicd systems and prenomena, and we find the problem/solution metaphar to be a

pragmaticaly useful one for progressng the issues we want to address

4.2 Pairwise interactions

421 Pairwiseinteractions and fitness sddles

Sewell Wright (1931]) stated that “the central problem of evolution... is that of atrial and error mechanism
by which the locus of a population may be caried acossa sadde from one peak to another and perhaps

higher one.” This conception of evolutionary difficulty, and the now familiar concept of evolution as a
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combinatoric optimisation process on a rugged landscepe (Wright 1967, are ceatral in isses of
evolvability, and the &ility of adaptation to escgpe or otherwise avoid locd optima—configurations of

feaures where no small change in feaures will produce afitter variant—is of central importance

Ruggednessin a fitnesslandscape is introduced by the frustration of adaptive fedures, or epistasis when
referring to the interdependency of genes — that is, it occurs when the ‘seledive value' of one feaure is
dependent on the @mnfiguration d other fedures. Fitness sddles are aeded between locd optima The
simplest illustration is provided by a model of two feaures, F1 and F2, ead with two possble discrete
states, A/a and B/b respedively, creaing four possble configurations: AB, Ab, aB, ab. Figure 4-1 shows
threekinds of interadion between these two fedures. In ead case we ae interested in the dfed on fitness

of diff erent combinations of feaure values.

Casel Case2 Case3

0
RS

AVARAN

VAR

AN
-t “‘" (.. fitness
: F1
a
B
1
08
| o6 fitness
0.4 | 0.4
// 0.2 L o2
0 0
B b R b R b

Flz=a F1=A =il

Figure 4-1: Different kinds of fitnessinteractions.

Case 1: no epistasis. The crrespondng fitnesslandscape is planar. Arrows overlayed onthe
landscape show the paths of increasing fitnessthat can be foll owed by changing ore fedure &
atime. Case 2: ‘easy’ epistasis; the preference of b over B isreversed depending onthe value
of F1, but A is always preferred over a. There is gill only one optimum in this fitness
landscape, shown by large dot. Case 3: difficult epistasis=’interdependency’. The preference
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relation between b and B is reversed acwrding to F1, and the preference relation between a
and A is also reversed acording to F2. This credes a fitness sddle in the mrrespondng
fitnesslandscgpe and two locd optima - see &so Figure 4-2.

In Case 1 the fitnesseffeds of eadh variable ae independent of the other. Case 2 shows me eistasis, but
the resulting fitnesslandscape has only one locd optimum and therefore no fitness sdde. Case 3 shows
epistasis that creaes two ogimain the fitnesslandscepe. That is, thereis no peth of increasing fitnessfrom
ab to AB for a mechanism that makes small changes to feaure values. Escgping the locd optima & ab
requires a ‘jump’ switching bah feaures at once (see Figure 4-2). Locd optima only occur when the
preferred value of F1 switches acarding to the value of F2, and the preferred value of F2 switches
acording to the value of F1. Other kinds of epistasis are solvable by incremental acawmulation d single
feaure mutations. We define the interdependency of feaures to mean this problematic kind o epistasis,
and adopt this as the basis of our models. Using thiskind d epistasis, rather than randam epistasis, (which
may be ather the eay kind a the difficult kind, in general) allows us to control what the cnsequences of
these dependencies are in terms of locd optima, and the width o fitnesssaddles. Biologicd cases $ow

that interdependency can be exhibited in natural systems (e.g. Lewontin 200Q p84).

rl

0.8

L0 Fitness

r0.4

-0.2

Figure 4-2: A fitness sddle created by interdependency between two variables.

Thisis adifferent view of Case 3 in Figure 4-1. This view shows the two locd optima & AB
and ab and the fitness sddle between them.
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4.2.2 Defining ‘interdependency’

Let us define the ‘ preferencefor a over A inthe mntex of X', for atwo-feaure system as abowve, to be:
pref(a,A.x) = f(ax)-f(A.x)

where f(p,q) isthe fitnessof the two variable system where F1 takes value p, and F2 takes value q.

If the preference for values of F1 are the same for al contextual values provided by F2 then there is no

epistasis between these fedures and the fitnesslandscape is planar. i.e.:
no-epistasis(F1,F2) = (pref(a,A,b)=pref(a,A,B) and pref(b,B,a)=pref(b,B,A)).

In ather words, two feaures F1 and F2, have no epistasis if and orly if the fitnessdiff erence between two

values of F1 isthe same regardlessof the value of F2, and \iceversa.
We now define ‘F1 is dependent on F2' asfollows:
depends(F1,F2) = sign(pref(a,A,b))zsign(pref(a,A,B)).

However, depends(F1,F2) does not imply depends(F2,F1), and, if F1 is dependent on F2, but F2 is not

dependent on F1, then there ae nolocd optimain the system.

However, ‘difficult epistasis’ between F1 and F2 is defined as foll ows:

interdependent(F1,F2) < (depends(F1,F2) and depends(F1,F2)).

If we let the two feaures in the system be represented by Boolean variables then the Boolean function
equdity, or if-and-only-if, IFF, (and its negation, exclusive-or, XOR), define interdependency between two
bodean variables. Other Boolean functions of two variables are not suitable sincethey either have only one
solution, or solutions dependent on orly one variable. We will be using the following function as the basis

of discrete interdependency models in foll owing subsedions:

f(p,a)=(p IFF Q)

where f(<true>)=1 and f(<false>)=0 as shown in the table below.
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p a f(p,a)=(pFFq)
00 1
01 0
10 0
11 1

Table 4-1: Truth tablefor if-and-only-if, I FF

An example interdependent system of two continuows-valued variablesin the range [0,1] is defined by

f(p,a)=pa+(1-p)(1-0).

Thisisthe functionill ustrated in Figure 4-2.

4.3 Large-Scaleinterdependency structure

Having defined the basis for interdependency between a pair of feaures, the next step isto define asystem
of dependencies over more than two variables. A problem becomes more and more difficult for an acaetive
medhanism like ahill-climber to solve & the width of fitness sddes increases. The width of a fitness
saddle is the separation o alocd optimato the nearest paint of equal or higher fitness In multidimensional
discrete spaces, systems of many dscrete variables, this ‘width' is measured in the number of variables
whose state must change. So, if many variables need to change state dl at oncein order to get from agiven

configuration to a higher fitnessconfiguration then thisis difficult for acaetive medchanisms.

We can crede such a system over a large number of variables by overlapping pairwise interacions of the
kind above. For example, let the fitnessof threevariables, p,q,r, be the sum of fitness contributions from
two pairwise interadions as follows f(p,q,r)= f1(p,q)+f2(q,r) where eat of f1 and f2 have the difficult
dependency structure defined above. In this gructure, p has a dired dependency with g and, indiredly
through q also has a dependency with r. Accordingly, the pairwise fithess contributions can be arranged

such that in some cases a fitnessincrease in the overall system requires changing al threevariables at once.
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For example, if p, g, and r are binary variables we may define f1 andf2 in atable & foll ows.

Xy fi(xy) f2(xy)
00 0.7 0.8
01 0.1 0.3
10 0.4 0.2
11 0.9 05

We then enumerate the configurations for the threevariable system.

pqr f(p,a.r) H
000 0.7+0.8=15 nore
001 0.7+0.3=1.0 1
010 0.1+0.2=0.3 1
011 0.1+0.5=0.6 1
100 0.4+0.8=1.2 1
101 0.4+0.3=0.7 1
110 0.9+0.2=1.1 1
111 0.9+0.5=1.4 3

Thus, in thisexample: f(010) <f(011) < (101 < f(001) < (110 < f(111< f(000)

and the hamming dstance to the dosest configuration with higher fitnessis given in the clumn healed
“H”. The point of interest is that, in this example, the only configuration with a higher fitnessthan 111is
the @mnfiguration 000and the width of this fithess sddle is three- i.e. the state of threevariables must be

changed at al at onceto jump aaossthisfitness sddle.

Let us extend this a littl e further. Equation 1 describes a system of N variables where every variable has
pairwise dependencies with every other variable. In this g/stem, for convenience, we define the interadions

between all pairsto have the same pairwise fitnessfunctioni.e.

f<sl,sz,...,sN>:iif<s,sj>

Equation 1: Sum of pairwiseinteractions

where S,S,,...,S, are the variables of the system, and f(p,q) is the pairwise interadion d

variables with states p and g For illustration, let us define f(p,g)=(p IFF q), for binary
variables p and g sing ou canonicd base function IFF as sdhown in Table 4-1 previously.

125



With a little mnsideration, it is easy to seethat when the number of variables with state=0 is greaer than
the number of variables with state=1, the change of any variable to state=0 will i ncrease fitness and \ice
versa. That is, the optimal state for any variable isto be in agreement with the majority, and any changein
state that increases the size of the majority will i ncrease the fitnessof the system as awhole. Therefore the
system has only two ogtima — i.e. al Os and all 1s. The width of the fitness sddle between these two
pointsis N, i.e. to jump from one to the other requires changing all variables at once If we make the fitness
of 1s, say, dightly higher than that of Osin the f(p,q) function, then the dl-0Os optimais alocd optima and

escagping from this point to the global optima & all-1s requires changing all variables at once

From arandam starting configuration, a hill climber isamost equally likely to arrive & the locd optima &
the global optima, i.e. the size of their basins of attradion are in the ratio of f(0,0):f(1,1), so onaverage a

hill -climber will beame stuck at the locd optimain almost half of the cases.

So, a @wnstruction d thiskind, using many pairwise interadions, is sufficient to creae broad fitness sddles
and locd optima that are abitrarily difficult (depending onthe number of variables in the system) for an
accaetive mechanism to escape from. But we have not yet discussed what properties of a system might

make it easy for compositional mechanisms whil st still being dfficult for acaetive mecdhanisms.

431  Separability and decomposability to modular interdependency

The basic idea of compasitional medhanisms is that they might be ale to ogimise and manipulate semi-
independent subsystemsin parallel and subsequently combine them together. Thusit is necessary for usto

define exadly what form thiskind d decomposable moduarity might take.

The naive gproac to defining a moduar structure is to make subsets of variables independent of one
another (e.g. Royal Roads and Concatenated trap functions, see sedion 3.5). In this case, the fitnessof a
system of variables can be described as the sum of fitness contributions coming from two or more non

overlapping  (digoint)  subsets of the variables in the system. For example,

(S, S)=F,(S1S,0- - 1Su) T (Sur 1 Suear -+ SV
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However, using separable™ modues that can be solved independently of one another in this manner is a
mistake when trying to define scdable problems that distinguish the &ility of acaetive and compositional
medhanisms. This is becaise when ead modue isindependent of the others there isno reed to manipulate
modues as wholes sncethere ae no dependencies between modues that need to be resolved. In fag, if an
adaptive medhanism is capable of discovering fit configurations for modues of sufficient size then fit
configurations for al modues may be acceted serially. The inadequacy of separable modues for our
purpaoses will beaome dearer when we have defined an aternative for comparison. For now, sufficeto say
that only when there is sme form of inter-modue dependency is there aneed to manipulate modues as
units and a crrespondng advantage to compasitional mechanisms. However, it is not at first obvious how
amodue might be identifiable and wsefully manipulated as a whole if it has nortrivial dependencies with

variablesin other modues.

What forms might dependencies between two modues take?If the modues are separable then, regardless
of the interadions within a modue, the optimal configuration for one of the modues as a whale is
independent of the anfiguration d the other modue. If we do nd want the moduesto be separable then it
shoud be the cae that the optimal configuration for one modue shoud depend onthe wnfiguration o the
other modue and viceversa. But if every configuration d one modue defines a diff erent preferencefor the
configuration d the other modue then the modueswould have no ressonable meaning—there would be no
progressthat could be made in identifying fit configurations of a modue that is independent of context.
Thisis, we suggest, a paradox that has prevented the prior formulation d clea problem structures that are
amenable to compasitional mechanisms and hard for accretive mecdhanisms, and the ladk of clarity here has

caused considerable mnfusionin the isaues aroundthe utility of operators like aosover.

However, there is plenty of midde ground letween the nation d a system that is not decompaosable in any
sense and ore which has sparable modues. In the discusson d pairwise interadions abowe, it is clea that
adifficult interdependency is creaed when the preferred state for one variable is dependent on the state of
the other and vice versa. When two variables are eat separable from one ancther the preferred state for

ead variable is independent of the state of the other. When we ae discussng orly a pair of variables the

21

We will define separability more rigoroudly shortly.
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posshle interadions between them are eaily enumerated, seeFigure 4-1, and the types of dependency that
may be present are basicdly all-or-nothing; i.e. a pair of variables either exhibits the difficult kind o
dependency, or they are eay. But when considering the interadion d two multi-variable moduesthere ae

more possbiliti esto be cnsidered.

Consider the following. Let C,={a,,a,,...,a} be the set of possble wnfigurations that modue A may take
and similarly, C,={b,,b,,...,b,} be the set of possble configurations that modue B may take, where p=| C,|
and ofF| C,|. We want to knaw the anfigurations that have maximum fitnessfor ead modue. If there ae
no dependencies between modues then there is only one such configuration for eacn modue regardlessof
the configuration d the other modue. But if there ae dependencies between modues then the maximum
fitnessconfiguration d A depends onthe mnfiguration d B and viceversa. So, let us define anew set, M,
to be the set of configurations of A that have some wnfiguration d B for which they are maximal, and M,

similarly with resped to A. i.e.

M,={m,...m}: (Om(mOM,): mOC,) *(Ox(xOC,) Cm(mOM,) Oy((yOC,)Zzm): f(m,x) = f(y,x))

A

Equation 2: Set of maximal configurations

Where {} :q is snallest set for which q is true, and f(s;t) is the fitness of the system when
modue A isin configuration sand modue B isin configurationt.

Now, if |M,|=|C,|, i.e. every configuration o A is best for some cnfiguration d B, then we have adieved
nothing by popasing A asamodue. But if |M,| < |C,| then the possble mnfigurations of A that might be
maximal depending onthe context provided by B is lessthan the total number of possble configurations
for A, and we ould conceivably reduce the number of possbilities we neal to maintain in seach
independently of B. Put anather way, regardlessof the cnfiguration d B, the members of C, that are not
members of M, cannat be optimal and may be discarded from further consideration. Thus, whenever |M, | <
IC.| there is ome utility in considering A as a modue separate from B even though there may be

dependencies between A and B.

Naturally, the smaller the size of M, the better (for optimisation puposes), i.e. the lessconfigurations need
to be maintained and considered. Indeal the spedal case where |M,|=1 is highly desirable in general

becaise it means that the optimal configuration for A can be found independently of B and thus the
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problem can be demmposed into two separate sub-problems (see Figure 3-6). We use |M,|=1 as our
definition o a separable sub-modue. Note however that this definition is more strict than the simple notion
that the fitnessof the system can be descried as the sum of fitnesscontributions from A and B. Spedficdly,
it is posdble that the fitnesscontribution of A changes with changes in the mntext provided by B (thus the
fitness of the system canna be described by a linea sum of that from A and B) yet the maximal fithess
configuration of A may norethelessbe the same under all configurations of B.” It shoud be dea that it is
changes in the maximally fit configuration that make optimisation dfficult. Other types of nonlinea
contributions are relatively unimportant in general. Accordingly, note that our definition o a separable
modue does not require that there be no epistatic interadions between it and the rest of the system, just
nore of the ‘difficult kind' (i.e. nore like Case 3 in Figure 4-1 also Figure 4-2). Also, note that A may be
separable from B and at the same time B may naot be separable from A, i.e. [M,|=1 dces not imply that
[M.|=1. But, like the contrast of Case 2 in Figure 4-1 it is only when bah A and B canna be solved

independently that locd optima and fitness sddles are aeaed between modues.

Demomposable but not separable = modular interdependency

So, the more general case, 1<|M,|<|C,|, is the cae of interest for our purposes. When 1<|M,|<|C,| the
number of configurations of A that might be optimal given al possble anfigurations of B is greaer than 1
but lessthan the total number of configurations that A might take. When thisisthe cae, we ca reducethe
number of configurations of A that need to be mnsidered (thoughwe caana reduce this number to ore),
and when 1<|M,|<|C,| and 1<|M,|<|C,| we will say that A and B are decompaosable from ead ather, but not

separable - or dternatively, that the system has interdependent modues.

Additionally, the distance between configurations in M, from one aother, controls the width of fitness

saddlesin the landscape.”

% Thisisthe caein the second wversion o the Royal Roads problems, RR2, for example - i.e. even though

there ae eistatic interadions between blocks in this problem, the blocks are noretheless gparable by
our definition. The utility of this charaderisation is apparent in the observation that the inter-block
epistasisin RR2 creaes nolocd optimain the fitnesslandscepe.

% Where distance and width are measured in the same metric - e.g. Hamming dstance
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4.3.2  An example non-separable but decomposable system of four variables

Toiill ustrate, consider the following system of four variables organised into two pairs (1,2) and (3,4):
N N
g(S_USZ!13N) = Z ZVVU f (S,SJ)
1= =

Equation 3: The weighted sum of pairwise interactions over N=4 variables
where, as before, f(p,g)=(p IFF g), and Wis asymmetric weight matrix indexed byi andj (1<i<4,1<j<

4) asfollows:

Ny 1 2 3 4

Table 4-2: A weight matrix defining (with Equation 3) a system of two interdependent
modules.
For the purpases of this illustration, we enumerate the possble cnfigurations of the system and their

fitnesesin Table 4-3.
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C,sem f(system) H*
0000 24 4
0001 12 1
0010 12 1
0011 16 2
0100 12 1
0101 4 1
0110 4 1
0111 12 1
1000 12 1
1001 4 1
1010 4 1
1011 12 1
1100 16 2
1101 12 1
1110 12 1
1111 24 4

Table 4-3: Configurationsfor a 4-variable system with their fitness.

Now let us cdculate M,.
C,={00,011011
C,={00,01,10,11}
When B=00, the configuration A=00is maximal.
When B=01, the configuration A=00 a A=11 are (equally) maximal.
When B=10, the configuration A=00 a A=11 are (equally) maximal.
When B=11, the configuration A=11ismaximal.

Thus, M,={00,11}.

Note that therefore the mnfigurations A=01 and A=10 are never maximal, regardlessof the configuration

of B, and may be discarded from further consideration. Thus, since |M,[<|C,|, A is decmposable from B.

* Wewill discussthis column of the table later in the text.
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But note dso that A and B are not separable because different configurations of B require different
configurations of A, i.e. |[M,|>1. In this example, the modues A and B are symmetric and therefore M, also

equals{00,11}.

Thus Equation 3 defines a system of four variables that, by ou definition, is decomposable into two
subsystems of two variables ead, but these modues are interdependent and nd separable. Inspedion o the
matrix W reveds why this is . A coupe of things are dea from this matrix: All variables have
interadions with all variables, and; Each pair of variables has dronger interadions per variable within its
own pair than it does acosspairs. This foll ows the same structure as that proposed by Simon (p. 197-199)

for what he terms a “nealy decomposable system”.

Figure 4-3: A dependency graph illustrating the dependencies of the four variablesin
Equation 3.

Nodes of the graph represent the four variables of the system, edges indicae a
interdependency between twp variables, multiple lines indicae the strength of the
interdependency, as per Table 4-2. The dotted line indicates a decomposition of the system
into two interdependent modues A and B.

We will discussbriefly later whether thiskind d interadion isfeasible or natural in red world systems, but
thisisnat our purpose in this chapter, nor are the daims of the thesis dependent on this. Here we ae smply
pursuing the definition d any system that is eassy for compasitional medhanisms whilst being herd for

acaetive medhanisms.

Our next isaue then is to examine the properties of this example system with resped to the cgadties of
accaetive medhanisms guch as a mutation hill-climber. For this purpose we included the mlumn healed
“H”, as previoudly, indicating the Hamming dstance of ead configuration to the nearest configuration

with higher (or equal) fitness Note that the fitnesslandscape has 4 ogima for a single-bit mutation Hil -
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climber: i.e. the points 0011, 1100 0000 and 1111 lave no pants of higher fitnessthat may be readed by
changing orly ore state variable. More predsely, 0011and 1100are locd optima, and 0000and 1111 are
global optima. Note further that the two dobal optima ae maximally distant from one another in Hamming
space and the two locd optima ae maximally distant from these and ead ather. In fad, thislandscepe has

the most locd optimathat afour-variable system can have. SeeFigure 4-4.

00 11n

1100
fitness

1000 1110

all-0s #lealing 1s all-1s

Figure 4-4: A particular cross £dion through the fitnesslandscape of Equation 3.
This particular crosssedion though the fitness landscape is useful in indicaing the
relationship of locd optimain the system. This ®dionis aone-point mutation walk from one
global optimum to the other, moving to (one of) the highest fithess Hamming-distance-one
configurations available & ead step, and withou revisiting any padnt (see Sedion 5.1).
Spedficdly, this passs through the points (0000, (1000, (1100, (1110, (1111. This
sedion is useful indicaing the width of fitness sddles in the landscepe - i.e. the Hamming
distance from a locd optima to the neaest point of higher (or equal) fitness The global
optima crrespondto configurations where the two modues are in ‘agreeanent’ - the locd
optimum in the middeis creaed by either configuration where the two modues are internally
in agreement but incompatible with ead ather -i.e. (0011) or (1100.

Note dso that the members of M, in this example, (00, 11), are distant from one another in Hamming space
and therefore, despite the fad that this problem is decomposable (and we will show, easy for compositional
medhanisms), it is difficult for acaetive mechanisms to ogimise ether modue since small changes will
not allow amodue to switch between the solution that is compatible with ore mntext to the solution that is
compatible with another (seeSedion 4.6.6). After generalising this model we will analyse its difficulty for

acaetive mechanisms more formally.
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4.4 Generalised models

441 Aggregate dfedsof modules: dimensional reduction

In this £dion we dm to better understand what it is abou the system abowve that gives it the properties it
has, better understand its gructure, and to define it over alarger set of variables. We will find that thereisa
more cmpad description for systems of this type that uses an explicit abstradion o hierarchicd

moduarity.

Simon (1969 suggests two properties for a “nealy decompaosable system” that provide auseful starting

point (p.198):

1. “the short-run kehaviour of ead of the comporent subsystems is approximately independent of

the short run behaviour of the other comporents”

2. “inthelongrunthe behaviour of any ore of the mmponrents dependsin ony an aggregate way on

the behaviour of the other comporents”.

This is a dynamic description d properties that can also be understood by a static analysis of the
dependency matrix W above (see 9.2.1). The first property is implemented in the dependency matrix by
virtue of the fad that intraamodue weights are greder than inter-modue weights. The second is more
subtle but equally important, and relates diredly to ou nation d decomposability that we defined above.

Spedficdly, this property relates to the mndtionthat |[M,|<|C,|.

Conversely, when [M,| = |C,|, eve'y configuration o A has nsitive dependencies with B. If thisisthe cae
then the modue has no wseful identity at the aygregate level. However, when M, |<|C,|, we can describe the
state of A asthe state of anew ‘aggregate’ variable related to the aumulative state of the ‘primitive’ (i.e. the
original, non-aggregate) variables in A. This new aggregate variable is sufficient to exadly describe the

dependencies of A with therest of the system. Let usill ustrate.
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Figure 4-5: Abstracting the interaction between modules.

i) The four variables of the system have intra-group (bi-diredional and symmetric)
interdependencies of strength 4 (shown by multiple lines) and inter-group interdependencies
of strength 1 (single lines). ii) The inter-group dependencies can be astraded into a single
dependency of strength 4 ading between the ‘aggregate states' of the two modues. iii)
Alternatively, we may depict the aggregate state & a new higher-level variable, shown by
grey nodks, and wse the braces to depict the fad that these aygregate variables take their state
from the gygregate dfed of their respedive subsets over the original variables. The bladk
noce indicaes that, as we will seelater, the state of this 4-variable system may contribute, in
an aggregate way, to alarger system not shown. iv) Equivaently, we may depict the original
variables as ‘fedaling in’ to the state of the aygregate variables using arrows, to arrive & the
style of figure used in the introductory chapter (seeFigure 1-6), interpreting the grey nodes as
phenatypic dfedsthat are epistaticadly dependent on several genes. The bladk nocdeisthen a
higher-level phenotypic &fed dependent on the state of both subsystems.

Figure 4-5 we indicae how the inter-modue interadion can be astraded into the interadion o the
‘aggregate states of the respedive modues. The astradion can be implemented as follows. For every
inter-modue dependency, if the states of the variables invalved in this interdependency agree with ead
other then the fitness of the system is increased, if they disagreethen this dependency has no effed. Thus
the inter-modue interadion can be cdculated from courting the number of agreements between the
variables in A and the variables in B. This in turn can be cdculated as (#0sin A)(#0sin B) + (#1sin
A)(#1s in B). And in fad, since, with two-state variables, the number of 1sin a group is <group size>
minus #0s, and vice versa, we can cdculate the interadion between groups given orly the propartion o 1s

in the groupand a scding fador.

Let us write the propartion d 1sin a group as onesA=(#1s/<group_size>), then the fitnesscontribution o
the system coming from inter-group interacion may be written as Wf'(onesA, onesB) where f'(p,q) =
pa+(1-p)(1-g), and W is a weighting fador. Additionally, the original pairwise fitness function d two

primitive variables, f(p,q )= (p IFFq) = f'(p,q) when pand gare binary variables.
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Then we may re-write exadly the system described in Equation 3 as foll ows:
9(S,5,5,5,) =W T (S,S)+W ' (S;,S,) +W, ' (ones{3,S, }ones{3,S, })

Equation 4: Re-writing Equation 3 using aggegate variables.

where, f'(p,q) = pa+(1-p)(1-q), ones{p,q} isthe propation o 1sinthe set {p,q}, andto match
the weight matrix described in Table 4-2, W,=W =8,

This formulation d the function makes it very obvious that the interadion between modues can be
described as a simple function over aggregate properties of eadh modue. Thus, since the aygregate
properties ‘lose information’” abou the modue (i.e. the number of possble values that onesA can take is
lessthan |C,]) it canna be the case that every state of B requires a different configuration d A, and thus it
canna be the cae that |M,|=|C,|. This makesit clea that Simon’'s nation, i.e. that the long-term behaviour
(or in this case longrange or inter-modue dependency) of the system depends only in an aggregate way on
other comporents, is closely analogows to ou notion o decomposability based on the number of

configurations that induce diff erent maximal-fitnessconfigurationsin ore another.

From these mnsiderations, we find it useful to summarise the properties of a system with decomposable
modues by nding that, althoughthe modues are not independent, the ‘interfacebetween the modues has
alow dimension’. By this we mean that the number of diff erent interadions between modues (* diff erent’
with resped to their effed on maximum fitness configurations) is at most [M,|x|M,| < |C,[X|C,|. And we
note that the description d the system using orly the aygregate terms effeds a dimensiond reduction” It is
our intuition that compasitional mechanisms will be ale to exploit this dimensional reduction d a system,
when avail able, by exploring combinations of modues instead of exploring combinations of the original

basic variables, aswe shall ill ustrate later.

25

This nation o dimensional reduction, the ideathat the system can be re-described more simply at a
higher level of abstradion, is analogows to the methods of renormalization goups (Wilson 1979.
Renormalizaion goups are integra in the analysis of complex physicd systems, such as gin-glass
systems, exhibiting complex dependencies andlocd optimain their energy functions.
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442 Hierarchy and scaling-up

The a&owve astradion d the inter-modue interadion into aggregate terms provides a mnvenient toadl for
abstrading and generalising ou model system. Thus far we have developed from a system of two
interdependent variables to a system of four interdependent variables (in two pairs). One way we can
extend this model for incressing numbers of variables is by adding additional groups at the same
hierarchicd level, or increasing the number of variables within eacy modue (in Simon'’s terms, we may
increase the “span” at either hierarchicd level of the system). Ancther way we may extend the system is by
adding succesgve hierarchicd levels. Systems of thistype ae eaily extensible in either manner. We will
extend the model with a focus on the latter, but the final form we arive d is also extensible in the former

manner.

To add a successve hierarchicd level of moduarity we define asystem of 8 variables composed of two
interading subsystems of 4 variables. This can be adieved appropriately with the following weight matrix.
For clarity we have dso utili sed the diagonal symmetry of the matrix and modified Equation 3 dightly to

give Equation 5 acoordingly.

08,880 Y TWI(SS)

[ >

Equation 5: The symmetric weighted sum of pairwise interactions over N variables

where f(p,q)=(p IFFg) and W isthe matrix below.
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Using the same method as described for the 4-variable system above, we can re-write Equation 5 as

follows:

W(TF(S,5)+ T (S,5)+ ' (S,5)+ F(S.S)+
9(S.,S,,-8 )= W,(F'(onegS,,S, }oness;,S, 1) + ' (onegs; .S }oness, .S, 1)) +
W;f'(oneg S .S,,S,,S, }oness; . §.S,.5 1)

Equation 6: 5 rewritten

where, for the weight valuesin this gpedfic matrix W =W,= W =16.
A note about the scaling of weight values

Note that althoughthe strength of inter-modue dependencies per variable is much lessthan that of intra-
modue dependencies per variable, the weighting d the aggegate inter-modu e dependency is the product
of the per variable weight and the number of links between modues. The number of links between modues
is the product of the numbers of variables in ead modue. The per-variable weight values in the matrix
above ae dhosen to scde-down as the square roct of the per-variable strength at the previous level as we
ascend levels of the hierarchy. This is convenient as it makes the weights for inter-modue dependencies

turn out to be equal at al levels.
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However, it shoud be noted that the choice of strength valuesisnot in general arbitrary. It isimportant that
the strength of inter-modue dependencies is low enough that intraamodue dependencies crede locd
optima. That is, if aggregate inter-modue dependencies are higher than a single intraamodue dependency
then a dhange in a single variable may increase the fitness of the system by placding its inter-modue
dependencies despite disrupting intraamodu e dependencies. If thisis the cae, then the ‘allegiance of the
variables to the modue is ‘over-ruled’ (see Sedion 5.1). On the other hand, if the ratio of inter-modue
dependency strength to intraamodue dependency strength is too low then, in the limit, inter-modue
dependencies are simply insignificant and we may just as well trea the modues as independent. Choasing
a scding fador such that the aygregate inter-modue dependency is abou the same strength as ead intra-
modue dependency at the level below, as we have, makes inter-modue dependencies sgnificant but not

overpowering.

This isale is only a problem when inter-modue dependencies are defined in terms of aggregate pairwise
interadions, as they are here. When inter-modue interadions are defined explicitly using Hgher-order
schemata (as in Equation 11, later) inter-modue dependencies may be made abitrarily strong withou

‘overpowering' the effed of the intra-modu e dependencies.

Given ou choice for this sding fador for the weights in this example system, i.e. W =W,= W,, these
weights may be omitted, as below. This produces only a constant scding dfferencein the fitnessof eadh

configuration o the system.

443 General recursiveform

Equation 6 can be further smplified into areaursive function that systematicdly divides the set of variables

into subsets until we arive & the a@omic variables.

0 f(s.S,) i N=2
S-S = Ef'(onessl,...,sw},onesSN,m,...,SN N+9(S,-Su) + 9(Suzas--Sy) otherwise

Equation 7: Reaursive form of pairwise modular interdependency

where onesS is the propation o 1sin the set s, and, as before, f'(p,q) = pa+(1-p)(1-q). In this
equation, the mnstant weighting for all terms has been dropped (prodwcing orly a mnstant
scding dfferencein the fitnessof ead configuration for the system with resped to Equation
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5 / Equation 6). N=2" where HOZ" is the number of hierarchicd levels in the system or
subsystem.

It is also pasdble that the digoint subsets be defined in a manner that is lessrestricted than exadly equal
halves. Equation 8 shows a more general form of Equation 7 where the number of sub-modues per modue
is unrestricted.

0 f(S,S) if N =k

k

[
9(SS) = s (ones',...oneS )+ Y g(S) otherwise
: 2

Equation 8: Reaursive form of ‘k-wise’ modular interdependency

where S is the i" variable of the cnfiguration, S is the i" digoint sub-partition o the
variables, and onesS, f' are defined as per Equation 7. N=k" where HOZ" is the number of
hierarchicd levels in the system or subsystem, and k is the number of sub-modues per
modue.

444 Hierarchical consistency

We define ahierarchicdly consistent moduar problem as one where the nature of the problem of finding
modues at level h, given the solutions to modues at level h-1, isthe same for al hierarchicd levelsh. An
easy way to suppat hierarchicd consistency isto construct a problem using general reaursive functions for
both fitness contributions and aggregations™ - see F and T, below. Then we may define base fitness
functions and bese aggregation functions, f and t, that provide different variations for this general

hierarchicdly decomposable form.

Bf(B) if |Bl=1,
F(B)=1 k
Ur (T(B)+a Z F(B') otherwise

]

Equation 9: General Fitnessfunction for Hierarchically Consistent Modular Interdependency

Where B is a block of variables, |BJ=k" is the size (number of variables) in B, B' is the i"
disoint sub-partition o the variablesin B, o is a scding fador, and N=k" where HOZ" is the

*  An aggregation function transforms ablock of variablesinto asingle variable.
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number of hierarchicd levelsin the system or subsystem, and kis the number of sub-modues
per modue, and T is the general aggregation function cefined below, and f and t are base
fitnessand aggregation functions.

1(B) if | Bl=k,

T(B):%(T(Bl),...,'l'(B")) otherwise

General Aggregation function

The spedfic function defined in Equation 8, can then be defined using Equation 9, with k=2, a=1, f(p,q) =
pa+(1-p)(1-q), and t(p,q)=(p+q)/2. Note that even if the primitive variables are binary, this aggregation
function, t, will approximately doube the number of possble values that aggregate €feds may take & eath

hierarchicd level.

This genera reaursive form of F and T is useful in several respeds: a) it makes it very clea that the
resultant problem definitionis hierarchicaly consistent; b) it conceptually separates the fithesscontribution
of a block from the agregation function; c) it allows us to describe a broader class of systems with

hierarchicd moduar interdependency by substituting alternate base functionsf and .

445 Alternate base functions

It is important that f and t have (at least) the following properties in order to define gpropriate

interdependent moduar structure;

a) f must incorporate interdependency between at least some of its variables (see4.2.1) if the overall

problem isto have any locd optima/ fitness sddles, and ke difficult for acaetive medchanisms.

b) Itisalso important that t be afunction that reduces the dimensionality of the aguments it ads on
(see4.4.1) in order that inter-modue interadion can be described via aygregate dfeds. That is,
the number of possble values that tS may take must be lessthan the number of configurations that
S may take if configurations are discrete. In the @bove example, the number of values that tS can
take is k+1 where k is the number of variables in S, but the number of configurations that S can

take is 2. Alternatively, if the variables are mntinuous, it may be sufficient to reduce more than
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onevariableinto orevariable: i.e. t: R = R, or t: Z“= Z.* The last stipulation for the properties of t
isthat, it shoud (approximately) re-scdeits outputs to be the same & ead o its arguments (if f is
sensitive to scding), or else a may be aljusted to compensate. This will ensure that aggregate

inter-modu e dependencies will be significant but not over-powering (seenctein sedion 4.4.2).

c) There ae aditiona constraints between f and t that must be satisfied in order that the resultant
landscape is amenable to compositional medhanisms. For example, it must be the cae that the
high-fitness configurations within a modue mrrespondto aggregate values that are involved in
high-fitness values of inter-modue interadion. As a ournter-example, if we defined t(p,q)=(p
XOR q) and f (p,q)=(p IFF q) then these functions would satisfy the properties listed above, and
MJ < |CJ, but the highfitness snglemodue nfigurations would lead seach to favour

configurations that aggregate into low-fitnessmulti-modue @nfigurations.”

The &ove method d constructing a hierarchicdly decomposable can be further relaxed to encompass a

gtill broader range of systems with moduar interdependency. For example, it is not necessary that the

number of sub-modues per modue be regular throughot the system. Similarly, it is not necessary that f

and t be defined unformly over al modues at al |evels as they are in Equation 9, but it not so easy to

determine what the overall effed will be when dfferent functions are combined. Pelikan and Goldberg

(2000 give aproblem definition including these relaxations.

The reaursive @nstruction d Equation 9, and the @ove guidelines for relaxing f and t, indicae abroad

classof hierarchicdly decompaosable systems that, as we will clarify, are difficult for acaetive mechanisms

27

28

A simple way to ensure gpropriate reductionisto use afunctiont that isinsensitive to the ordering o
its arguments (like murting the number of 1s, or summing)—this ensures that |[M | < |C, since some
configurations for swill be indistinguishable & the aygregate level.

One means to seled appropriate functionsis to use functions where low-fitnessconfigurations within a
modue ae those where the variables in the modue ‘cancd out’ ead aher’'s inter-modue dfed. In
other words they correspond to aggregate values that have no inter-modue dfed on fitness More
formally, we can state that F becomes separable, i.e. F(T(B1),T(B2)) approadchesf,(B1)+f,(B2), as either
F(B1) or F(B2) approaches alow fitnessvalue. For example, in f(p,q) = pa+(1-p)(1-q), aswe use ove,
alow fitnessconfiguration for (p,q), such as (0,1), corresponds to an aggregate value of 0.5. The value
0.5, when passd upto inter-modue interadions, resultsin f(x,0.5) = 0.5, thus 0.5 can be seen asakind
of ‘null’ aggregate value that is insensitive to inter-modue configurations. This ensures that our
aggregation function kehaves aiitably with ou fitness function, i.e. eliminating low-fitness modues
from consideration will nat eli minate high-fitnessmulti-modue cnfigurations.
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and easy for compositional mechanisms. The particular instances of f(p,q)=pa+(1-p)(1-g) and
t(p,q)=(p+q)/2 provide auseful example system. With some cae, lessrestricted systems may be dso be
defined in the style of Equation 3. The verificaion that a proposed system is in the dass of systems

exhibiting moduar interdependency is givenin 4.3.1.

4.5 Hierarchical-Equality and Hierarchical-if-and-only-if (HIFF)

In this sdion we define asimple instance from the general classof functions described above that ads on
discrete variables and will be eay for us to analyse. This function utili ses the hierarchicd construction o

Equation 9 andis based onf andt below:

f(p,.a)=(p IFF Q).
t(p,)=0 if p=g=0, and 1if p=g=1, and ‘null’ otherwise.

More generaly, we can define f andt over k variables using configurations where dl variables have equal

values, as follows:

f(p,,...p)=1if (O;: p=9), and 0 atherwise, where sis any value from a discrete set of valid values

(e.g. 0 or 1 for binary variables).

t(p,,...p)=sif (O: p=9), and ‘null’ otherwise, where s is any value from a discrete set of valid

values (e.g. 0 or 1 for binary variables), and ‘null’ isaspedal invalid symbal.

Notice that, following the guideline (c) above, configurations of a block that are not high-fitnessaggregate
into ‘null” values that therefore caana be involved in high-fitness meta-blocks. This ensures that finding
goad solutions to a block is useful in finding fit solutions to a meta-block. Configurations involving any
null value confer no fitnesscontribution undr f above. One of the main dff erences between this function
and the ones defined previoudly is that the aggregation function returns one of {0,1,'null’} for all modues
at all levels - i.e. the number of values that an aggregate variable may take is the same & all hierarchicd
levels. Moreover, the only way to attain any inter-modue fitnesscontribution in this functionis to have dl

variables within eady modue greein their states. In contrast the previous definitions of f and t responced
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to a degree of agreement. (This contrast is indicaed in Figure 5-4). This has the dfed of introducing

explicit high-order interdependencies into the function, aswe will briefly discuss $ortly.

This particular instantiation o f andt allows us, with alittl e manipulation, to embed t within f and dspense

with any explicit description d t atogether, as sown in Equation 10 below.

N 1 Jf N=1

] k
9(31---5N):Df(sl,___sK)+ g(S) otherwis
SR

Equation 10: Hierarchical-Equality no-scaling

where S is the i" variable of the cnfiguration, S is the i" digoint sub-partition o the
variables, f is the base fitness function, defined below. N=k" where HOZ" is the number of
hierarchicd levels in the system or subsystem, and k is the number of sub-modues per
modue.

f (py...p)=1 if ((Bi: p=s), and O dherwise, where s is a member of a discrete set of
allowable values for the problem.

In this smplified function, f is intrinsicdly discontinuows. Spedficdly, a modue does not confer any
fitnesscontribution urlessall variables are in agreement. This means that the resultant function canna be
described in terms of the sum of pairwise interadions, as in Equation 3/Equation 5, and fitness
contributions of higher-order schemata ae necessary to define the function acairately. This aso has the
consequence that we can, if we wish, change the relative importance of intra- and inter-modue
interdependencies withou the risk of intraamodue dependencies being ‘overpowered’. These differences
do nd affed the number of locd optima, the relative position o locd optima or therefore the width of
fitness sddles, or the decomposability of the system. But these diff erences do make it easier to analyse the
resultant fitness landscape (because the relative fitness of different configurations is more regular (see

Sedionb5.1).

In ou own previous work (Watson et al. 1998 Watson 2001 Watson & Polladk 199%, 199%, 2000h
2001a, 2002, and consequently, in the previous work of others (Knowles et al. 2001, Oates & Corne 2001,

Van Hoyweghen et al. 20013, Van Hoyweghen & Naudts, 2001, Jansen & Wegener 2001 Wiles et a.
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2001, a dightly different variant of this function was used that has a different scding for the fitness
contribution  modues. Spedficdly, in this variant, the fitness contribution o a modue is equal to the
number of variables in the modue. This functionis known as “Hierarchicd-if-and-only-if”, HIFF. We will

continue to use H-IFFin order to align with the existing literature.

H-1FF, and also amore general form, “Hierarchicd-Equality”, (H-Equal), and bah are defined by Equation
11. H-IFF is the particular case for binary variables, i.e. s{J{0,1} and where k=2; H-Equal is the genera
case dlowing any number of sub-modues per modue and any base for the mnstituent variables. The only
difference in Equation 11 when compared to Equation 10 is that the fitness contribution for a block is
multi plied bythe size of the block, i.e. N. HIFF and H-Equal also assume, by default, that the sub-partitions

of the variables correspondng the sub-modues are ejual-sized conseautive blocks, as below.
[ 1 Jf N=1
(8--8)=0] s
SIS A _a\lf(sl,..ﬁ(ﬁZg(S') otherwis

Equation 11: Hierarchical-if-and-only-if (HIFF) and Hierarchical-Equality (H-Equal)

where S is the i" variable of the configuration, S is the i" digoint sub-partition o the
variables, i.e. for ‘unshuffled’* HIFF with equal sized sub-modues, S=(s,,,.---.S,), fisthe
fitnesscontribution function, defined below. N=k" where HOZ" is the number of hierarchicad
levelsin the system or subsystem, and kis the number of sub-modues per modue.

f(p,,...p)=1 if (CBi: p=s), and O dherwise, where s is a member of a discrete set of
allowable values for the problem, by default sC1{ 0,1} .

HIFF can aso be defined using HIFHB)=N.g(B), using gB) from Equation 9 with f and t as defined at the
beginning o this subsedion, k=2, s={0,1}, a=1/k, and equal-sized sub-partitions of the variables at eat

level.

#  Wewill also consider randam linkage or ‘shuffled’ versions of HIFFin later experiments.
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4.6 Discusdon

4.6.1 Symmetriesand variations

The HIFF function will be used in the Chapters 5, 6 and 7in ou simulation experiments. HIFF has a very
regular and symmetric structure but in some respeds this regularity is immaterial to the experiments that
follow. For example, nore of the dgorithms we ill ustrate depend ontrans-locaional symmetries - that is, it
is never assumed that the cnfiguration that optimises one modue will be related to the configuration that
optimises ancther, and that therefore, a schema discovered at one partition can be relocaed to another
partition. Accordingly, we may put candidate wnfigurations througha random map, e.g. an XOR with a
pre-determined randam string, effedively randamising the asolute locaions of the optima, withou
affeding the results. For some results, it is aso na important that the global optima, (or the sub-strings

they contain), are cmplementary strings (seeWatson 200).

Feaures such as whether the sub-modues are equal-sized (same ‘span’ in eaty modue), and whether the
hierarchicd interdependency structure is ‘balanced’ (same hierarchicd depth of sub-modues in eat
modue), are dso nd the fedures of interest. What shoud be retained is the property of moduar

interdependency as defined in 4.3.1.

4.6.2 TheHIFF landscape and natural hierarchy

HIFF is used in ou experiments to exemplify the dassof adaptive landscgpe in which the evolvahility of
composition can be mntrasted with the evolvability of acaetive evolution. We do nd claim that HIFF is
representative of the structure of adaptive landscgpes in general. However, the problem of defining
appropriate models for adaptive landscapesis an open ore and, in passng, we note that HIFF exhibits ome
interesting landscape charaderistics with resped to hierarchy in natural systems (Simon 1969, (see9.2.2).
In particular, dynamicd systems exhibiting an interdependency structure that is Smilar at many scdes
might be anatural product of self-organized dyremicd systems—as evidenced by ‘power law’ signatures
in their dynamics (e.g. Bak 1996. Then, to the extent that natural adaptive landscapes are the result of such
systems, scde-invariant fitness landscapes, such as that which HIFF defines, might not be eitirely

hypaheticd.
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4.6.3 Other hierarchical modular interdependency functions

Pelikan & Goldberg (2000 defined afunction based ona hierarchicdly nested trap function with k=6.
Spedficdly, f(s,S,...,S)=

1.0 if ones(s,s,...,s)=0/6,
0.0 if ones(s,s,,...,s,)=1/6,
0.8 if ones(s,s,...,S,)=2/6,
0.9 if ones(s,s,...,s,)=3/6,
0.8 if ones(s,;s,...,s,)=4/6,
0.0 if ones(s,s,,...,s,)=5/6,
1.0 if ones(s,s,...,s)=6/6.

Like ealy work of our own (Watson et a. 1998, they also defined aggregation (“interpretation”)

reaursively, i.e. t(s,S,,...,5,)= t(t(S),((S),....t(S)).

Unfortunately, in this paper the aithors mistakenly™ define the aygregation function as the majority of its

arguments- i.e. t(s,;s,....,5)=0if ones(s,,s,....,5,)<0.5, 1 atherwise.

In this form, any configuration d variables in a sub-modue of any sizewill be ather 0 or 1 (there ae no
“nulls”). This means that even randam seach can find either the 0 or 1 solution for amodue of any sizein
a oupe of guesses, and the ‘deceotive’ aspeds of the trap function would acually lead a hill -climber to a
point where it would be &le to switch between the 0 and 1 solution bychanging orly ore bit. This property
makes the problems hierarchicd structure degenerate in the sense that it is not necessary to seach
combinations of smal modues to find large modues. However, an dternative definition, eg.
t(s,S,-.-,S)=p if (CpOi: s=p), and “null” otherwise, (see Watson et al. 1998 as used abowve) appropriately
maps the aguments of t onto an aggregate value. In this revised form, highfitness (non-null)
configurations are exporentialy rare in the size of the modue. When defined this way (see Pelikan &

Goldberg 2001 the problem is an interesting dfficult variety of hierarchicad moduar interdependency.

4.6.4 Comparison with Royal Roads, concatenated trap functions, and NK C landscapes

Both versions of the Royal Road functions have separable building Hocks. Similarly, the blocks in

concaenated trap functions are dso separable. In ead case, the difficulty of solving ablock is sgnificant,

30

Goldberg, personal communication, July 200Q
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but sincethereis only one best-solution for eat block (regardlessof the antext of other blocks, i.e. [M|=1,
seed.3.1), there is no real to search combinations of blocks to find the solution to the whole problem. In
contrast, the blocks in HIFF have significant inter-modue dependencies credaing a problem that is
hierarchicdly consistent (Watson & Polladk 199%). Thus, having foundthe solution to the first level of
blocks, an algorithm must subsequently search combinations of blocks at the next level, and so on In HIFF,
an algorithm that can manipulate and recombine building Hocks is valuable, but in the previous buil ding
block problems this cgpadty is not required (hence Royal Roads and concaenated trap functions can be

solved by a‘maao-mutation hill climber’, Jones 1995.

Asindicaed ealier, the main dff erences between NKC landscapes are thredold:

1. All NK models use randam epistatic interadions between variables - but not al types of epistatic

interadions are difficult for acaetive methodks.

HIFF uses a spedfic, and dfficult, kind d epistatic dependency that enables usto control what the
consequences of these dependencies are in terms of locd optima, and the width of fitnesssaddles

(seed.2.1).

2. The interdependency between moduesin NKC is nat a proper scding-up of the interdependency
between the primitive variables. Both are implemented in terms of pairwise interadions between
the primitive variables, and since the gistatic dependencies are randam, there is no means to
regulate whether the aygregate dfed of many inter-modue dependencies ad in urison to crede

large fitness sddles, or ‘average-out’ and degenerate into a randam landscape.

In contrast, HIFF is hierarchicdly consistent; the epistatic fitness effeds between modues are a

function d the solution states of modues.

3. NKC models exhibit a singe-level of clustered dependencies, or equivaently, a two-level

hierarchy.

In HIFF, we can test the effed of repeaed compositional operations snce HIFF is cdable over

many hierarchicd levels.
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We outline these diff erences, not to criticise NKC models, but to enable us to understand what the aiticd
differences are between HIFF and existing models. Moreover, a particular interpretation d NKC modelsis
very useful in interpreting the nature of the HIFF landscape, and is useful for addresing some apeds of
the philosophicd provisos we mentioned at the beginning d this chapter, spedficdly, the notion d couped

fitnesslandscapes - discussd shortly.

46,5 Modular interdependency asa hierarchical cooperation problem

An dternative interpretation d the two-fedure eistasis model in Sedion 4.2.2 is obtained by iewing the
two dfferent feaures as two dfferent players in a symmetric two-player game, and the feaure values as
their possble strategies. In this view, the fithess contributions bemme the values of a pay-off matrix and
the salient charaderistic of Case 3, interdependency, isthat the optimal strategy for player one is dependent
on the behaviour of player two, and vice versa. The eistasis model we arive & using (p IFF q) is
analogots to the ‘mutual benefit’ matrix from (Maynard Smith and Szathmary 1995 p.262), but here there
is not yet any dstinction between the two attradors of the system i.e. which of (11) or (00) is the ‘defed’

andwhich isthe ‘cooperate’ strategy, because we assgn them equal value.

Aswe reaursively re-apply the two-feaure model we gply the two-player matrix in areaursive fashion to
define afour-player game. Note that now, in the mntext of (00), (11) isa'defed/defed’ result for the other
modue, because it is in their selfish interest for ead player not to change from this grategy, but if they
both changed to (00), this would provide ahigher payoff. Conversely, in the context of (11), (00) is
‘defed/defed’ and (11) is ‘cooperate/cooperate’. In other words, whether a strategy provides mutual

benefit or not depends onthe cntext in which the game is played.

Thus HIFF describes a hierarchicd cooperate/defed game. The nature of the pay-off values is such that
maximising the payoff for al (e.g. 128 players is achieved when two-subgoups (of 64) players are
compatible. Other attradors in the evolutionary game occur when particular subsets of players are
compatible intra-group bu nat inter-group. Accordingly, optimising HIFF requires the induction o
hierarchica cooperation. The pay-off values at every level of resolution help to identify goodcombinations
of strategies—but, which of the two optima & every level is best does not become dea urtil the context of

other players is gabilised. HIFF deliberately disolves the distinction between epistasis (the
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interdependency of genes within an individual) and multi-player evolutionary games (the interdependency
of feaures of one entity with those of ancther) as is required from a model incorporating compasition and

the resultant changesin the unit of seledion.

46.6 How changesin Module A affed the fithesslandscape for Module B

Let us consider the adaptation d the system with two modues, A and B, in Sedion 4.3.2, as thoughead
modue were being evolved semi-independently on separate but couped fitnesslandscepes. The fitness of

the system for different configurations of A, in the mntext of different configurations of B is down in

Figure 4-6
Fitness
of A
| o | |
00 #1sin A 11 00 #1sin A 1100 #1sin A 11
a) average b) B=0C c) B=11

Figure 4-6: Thefitnesslandscape for A, for different configurations of B.

Each figure shows the fitness for modue A when in dfferent configurations, spedficdly
(00), (01)/(10), (11). a) Thefitnessof A averaged over al configurations of B. b) The fitness
of A when B=(00) is iown in the solid curve, and the optimal configuration o A=(00) is
indicated by the dat. ¢) The fitnessof A when B=(11) is $hown in the solid curve - note that
the optimal configuration d A has moved to (11).

This figure shows that the fitness landscape of A changes radicdly in some respeds as B changes
configuration - spedficdly, the optimal configuration d A when B=00 is the mmplete oppaite of the
optimal configuration d A when B=11. So, an entity evolving the values of A would find itself in a
landscepe that is radicdly dependent on the evolution o B. However, note that in ather respeds, A’s
fitnesslandscape is insensitive to the configuration of B - spedficdly, in resped of the wnfigurations of A

that are naot optimal, i.e. 01 and 1Q are the same regardless of B. This is the property of moduar
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interdependency that makes it amenable to dmensional reduction and thereby easy for a medchanism that

can manipulation modues yet difficult for acaetive mechanisms.™

4.6.7 Relation to philosophical provisos

Notice that from the &ove observations, the fitnesslandscape resulting from moduar interdependency is
not whally incompatible with the notion that an organism’ s fitnesslandscape is radicdly dependent on the
gtate of its environment. In Sedion 3.4.3 we introduced the perspedive of compositional mechanisms as
the cevolution of modues, and this is a view that we will be developing further in the compaositional
models that follow. In this perspedive the particular adaptive landscape presented to an arganism at any
one point in time is ome subspace of the landscgpe, and athoughthe landscape as a whale is fixed, the
subspaceoccupied by a particular entity isradicadly dependent on the state of other evolving entities at that
time. Moreover, we will not predefine what roles or niches an entity is alocaed - i.e. we do nd
predetermine what subspaceof the landscgpe an entity will reside in. Thus within the fixed constraints that
the fitness function defines, niches are aeaed and destroyed dyramicdly, and the shape and therefore

properties of the niche for a given organism are not predefined.

4.7  Summary

Our mativationin this chapter has been to identify the properties of a system that make it hard for acaetive
medhanisms and yet amenable to compasitional mechanisms. To this end we identified a dassof system
that has drongand dfficult epistasis between variables, but also a highly moduar structure that makes it

amenable to decomposition.

First we examined charaderistics that are difficult for acaetion in pairwise interadions (systems of two

variables). We defined the difficult type of epistasis as interdependency.

** The notion d removing inferior configurations from further consideration is allied to the notion o

focussng on‘noninferior’ configurations (Van Hoyweghen et al. 2001a). But adually, as we seehere,
it is not the fad that (01) and (10) are not one of the equally good configurations that make them
undesirable, it is the fad that there is no context in which either (01) or (10) are the best configuration
that makes them undesirable. Indedd, it is not necessary that (00) and (11) be assgned equal fitness
contributions - see‘Biased HIFF (Watson & Polladk 199%).
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We distinguished the term separable from decompasable, and importantly, showed that the latter does not
imply the former. Accordingly we ae ale to give an example system of 4 variables that is decompaosable

in to two modues that are strondy interdependent and therefore not separable.

We then scde up this gructure, in a hierarchicdly consistent fashion, to arbitrarily large systems of

variables that form hierarchicd moduar interdependency.

We defined ore form of such a system several different ways © that we muld see what was important
abou it from an adaptational point of view, what feaures creaed dfficulty for acaetion, and its
relationship to concepts like nealy-decmposable systems of Simon, like aggregate dfeds. We discussed

the feaures that can be relaxed/generali sed.

Finaly, we defined a simple example of the dass Hierarchicd-if-and-only-if, HIFF, that will suffice for
ill ustrating the dassin the coming simulations. Moreover, this form is hierarchicdly consistent, the nature
of the problem of finding solutions to modues at a given level, given solutions to modues at the previous
level, is the same & all levels. This property of scde-invariance will be useful in simplifying formal

analyses.
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Chapter 5- Mutation on
Modular Interdependency

In this chapter we will briefly overview some properties of systems with hierarchicd moduar
interdependency, in particular, systems of the spedfic form we will use for the main experiments of
subsequent chapters, namely, HIFF. In particular we will | ook at charaderistics of fitnesslandscgpes that
are generaly deemed problematic for (acaetive) evolution: the number of locd optima, the separation o
locd optima or ‘width’ of fitness sddes, and the irreducibility of high-fitness configurations. We then

show results for smulations of mutation onHIFF.

5.1 Crosssedionsthrough thefitnesslandscape

In al of the following base fitnessfunctions (as used above) the maximum fitness configurations for the

system, and for every modue it contains, are those where dl states are equal:
f1(p,q) = (p IFFQ) - asused in HIFF
f2(p,a) = pa+(1-p)(1-q) - continuows aggregation version d HIFF
f3(p,,...p) = 1if (B0Oi: p=9), and O dherwise - asused in H-Equal

i.e. for binary variables, the mnfigurations with all Osand all 1s give maximal fithess The next best fitness
configurations are those where dl the biggest modues of the system are ‘corred’ (i.e. either all Os and all
1s) but where one of them does nat agreewith the others. For systems where the span, the number of sub-
modues per modue, is 2 these second-best configurations are half Os followed by half 1s, or conversely,
half 1sfollowed by Helf Os. Similarly, lower-fitnessconfigurations occur when sub-sub-modues are orred

but one of the sub-modues has s1b-sub-modues of the incompatible type, and so on
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A system having a large number of variables creaes afithesslandscgpe that is multi dimensional—thusit is
difficult to represent it pictorially. However, the systems that we have defined above ae highly regular and
symmetric so asingle aosssedion throughthe landscape, interpreted with some cae, can adually give us

areasonable intuition abou its properties in some respeds.

The particular sedion that we find most informative is one that focuses on the high-fitnessconfigurations.

So, given ou ohservations abowve, an appropriate sedion runs throughthe following pants:

(000...000)
(100...000)
(110...000)
(111...000)

(111..100
(111..110)
(111..111)

That is, the k" point in the doss ®dion, for 0<k<N, hask leading 1s and the remainder of states are 0s.
i.e. the kth pdnt in the doss gdion, for 0<k<N, isthe onfiguration

(s,8,---,8) Wheres,_,=1ands,,=0.

Conseautive points in this sries are separated by Hamming dstance 1, i.e. one point-mutations, and thus
may be imagined as a particular one-point-mutation ‘walk’ aaossthe fitness landscape from one global

optimato the other. This particular series stisfies amutation walk of the following form:
1. Start at one global optimum,

2. Of al one-point mutations that do nd ‘undd a previous mutation d the walk, move to ore (of

those) that has highest fitness(even if its lower in fitnessthan the airrent paint).

3. Goto2
Figure 5-1: ‘ Ridge mutation walker’
Thus there ae exadly N+1 pants in this walk. This walk crosses N+1 best-fitness points, althoughfor

many o the pointsthere ae many athers with equal fitness for example, f(000... 111)=f(111...000).

A sedionthrougha64-variable system defined with HIFF (Equation 11) is given in Figure 5-2.
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fitness

Conseautive points of ridge mutation walker

Figure 5-2: A particular crosssedion throughthe HIFF fitnesslandscape.
The frada nature of the fitness landscgpe, resulting from the reaursive definition d modues and sub-

modues, isclealy visiblein this sdion.

One very useful charaderistic of this crosssedion is that it appropriately portrays the Hamming dstance
from ead pant to the nearest points with equal or higher fitness That is the distance of one pea to the
neaest equal or higher peak corresponds acairately with the values we cdculated in the “H” column of
Table 4-3, for example. Thus this ®dion gves us a dea intuition abou the width of fitness sddlesin the
landscgpe and some ideas abou its ruggedness and the number of locd optima. In particular, as is clea
from the @nstruction d the functions, at ead hierarchicd level of modues the hamming dstance to the
next best configuration doulbes. i.e. the number of state variables that must fli p-state in ore gois equal to
the size of the modue which doubes at eat hierarchicd level. Thisis exadly the intent of the functions—
to describe large systems of variables that are difficult for acaetive mechanisms acaimulating small

changes.
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fitness

conseautive points of ridge mutation walker

Figure 5-3: A sedion through the hierarchical modular interdependency system built on f2.

This ®dion passes throughthe same point as those shown in Figure 5-2 (but with ore less
hierarchicd level). SeeEquation 7. Note that the points like the one indicated with the arow
above ae locd optima with the weight values we defined in Equation 7, but with dfferent
weight scding, if intraamodue dependencies are not significantly stronger than inter-modue
dependencies, then this point will not be aloca optima and the basin of attradion for the
global optimum will grow larger. In the discrete HIFF this is not an isaue, since it is built
explicitly from high-order fitness contributions rather than a matrix of pairwise fithess
interagions of different weights. Presumably, in a system of randan weighted
interdependencies like NK-landscgpes, sometimes the awmulative dfed of a number of
interadions produwces a locd optima aad sometimes it does nat. In HIFF we ae ale to
control these interadions explicitly and focus our model on the difficult interdependencies of
epistatic efeds.

For interest, Figure 5-3 shows a sedion throughthe continuows version o HIFF as defined in Equation 7.
This landscape, has the same number of locd optimain HIFF at the same @nfigurations as those in HIFF,
and therefore the separation d locd optima is also the same & HIFF. (However, the fithess values of
different configurations are diff erent). An intuition for thislandscape, and HIFF, is provided by considering
the superposition d their base fitnessfunctions at diff erent scdes. That is, the sedion throughHIFF can be
built from the sum of many appropriately scded copies of the aurrvein Figure 5-4 (left), and the continuows

version can be built from the sum of many appropriately scded copies of the aurvein Figure 5-4 (right).
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f1(p,q) f2(p,g)

0,0 0,1 11 0,0 0.5,0.5 11
(p,9) (p,a)

Figure 5-4: Base fitnessfunctions

Cross dions throughthe base fitnessfunctions of HIFF (left) and continuows HIFF (right).
HIFF is based onfl(p,q) = (p IFF ), and the mntinuous versionis based onf2(p,q) = pa+(1-
p)(1-q), (see &so Figure 4-2) Following the mnvention we have been usingin figures auch as
Figure 5-2 and Figure 5-3, these sedions $how the two gobal optima & 00 and 11at oppcsite

extremes of the aurve, and the intermediate points readable by a walk of small changes in
between.

The adosssedionsin Figure 5-2 and Figure 5-3 are useful in gaining an intuition for why these landscgpes

are difficult for acaetive mechanisms.

5.2  Difficulty of modular interdependency for accretive medchanisms
The charaderistics of difficulty, common in ou intuitions of evolutionary difficulty (2.1.2), that we will
discussare:

Ruggedness—the number of locd optima.

Width of fitness sddles—the Hamming dstance between a onfiguration and the neaest

configuration with equal or higher fitness
Irreducibilit y—whether the system ‘ceasesto function’” under any small change.

These dharaderistics together tell us abou whether there exists a path of monaonicdly increasing fithess

from al points to the global optima, and more generally, the likelihood d finding such a path between a

randam configuration and a high-fitness configuration.

521 Ruggedness

The number of locd optimain alandscgpe isintimately related to the number of variables that an algorithm
can change ‘in ore go', asit were. To a single-bit mutation hll -climber for example, HIFF will have more
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optima than for a two-bit mutation Hll-climber. In HIFF, a single-bit mutation hill-climber (or any

N/2

algorithm that can change & most one variable & atime) has 2™ locd optima (where N is the size of the

problem in hits), only two of which are globally optimal.

More generally, any string made by concatenating h-sized corred blocks requires a thange of at least h hits
to find a fitter configuration. Such a string therefore caana be improved by a k-bit mutation algorithm

where h>k. There ae 2" possble strings of such concaenations. Thus a k-bit mutation hill -climber will be

faced with 2" loca optima, where h is the small est integer power of 2 which is greder than k, i.e. h=2">k.

In short, HIFF has a number of locd optima that is exporentia in the size of the problem for any gven

mutation radius.

5.2.2  Width of fitness sddles

Since HIFF has many locd optima it also has many fitness sddes (by definition), but to properly
uncerstand the difficulty of the problem we dso need to know the width of these fitness sddles. From our
examination d locd optima above we seethat HIFF has 2'* saddles of width-2, and 2" fitness sddles of
width k. That is, there ae 2" configurations of the system for which the nearest configuration with equal or
higher fitness differs in the setting o k variables. Put another way, there ae 2" configurations of the
system for which all other configurations with equal or higher fitnessdiffers in the setting o at least k

variables.

Ancther charaderistic we may be interested in is the size of the ‘basin’ for an otima. For example, for ak-
bit mutation hll-climber, how many dfferent (starting) configurations are there from which this hill -
climber will be ale to read ore of the global optima?For a 1-hit hill -climber, the propartion o the space
from which ore of the global optima can be readed is P,=2N/2" (there ae N configurations 1-bit away
from ead gobal optimum, 2" points in total in the space and 2 dobal optima). In general, for increasing
mutation rates, as the width of saddle that can be jumped increases the size of the basin of the optima
increases exporentially. However, note that for mutation, the expeded time to make aspedfic jump of a

given size adso increases exporentially with the size of the jump.
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These restrictions apply nat just to mutation but to any method d undreded, randam change (see2.5.1).
For example, genetic drift (Wright 1977), or neutral drift introduced by the aldition o arbitrary neutral
networks in the landscape. See(Shadleton et al. 2000, (Shipman et al. 2000, and (Ebner et a. 20017), for
experiments on the adition d neutral mappings to functions including HIFF, and see(Knowles & Watson
2002, for experiments showing that algorithmicdly this performanceis no better than increased mutation.
See 4so (Knowles et al. 2001 for experiments using simulated anneding on HIFF. In previous work
(Watson et al. 1998, we dso showed that HIFF is not amenable to maao-mutation and pesss the
‘Headlesschicken test’ (Jones 1995 i.e. using crosover but crossng ore parent with arandom string daes

not solve large HIFF problems efficiently.

Of course, a method that has ome a priori bias, for example, one that tends to explore the mmplement of
fit strings, may perform very well on HIFF (in faa, this particular bias is useful in later discusgon 6.6.3).
But, any method d increasing the exploration ability of an algorithm arbitrarily does nat help in solving
HIFF - i.e. any method wsing single inheritance plus randam variation is incgpable of exploiting the

decomposability of the landscape.

5.23 Irreducibility - HIFF appears to beirre ducibly complex (but isnot)

Acoording to Behe, a system isirreducibly complex if any small change in the @mnfiguration d the system
causes it to ‘cease functioning'. In ouw model problem, each modue is ‘corred’ only when all of the
variables it contains are in mutual agreement (al Os or al 1s). If we take a onfiguration at one of the
global optima in HIFF and change one the state of one variable, then we ‘bre&’ the fithess contribution
conferred by the ayreement of the two largest modues, and the fitnhess contribution conferred by the
agreament of the two largest modues within the half we thanged, and within the quarter, and so on In
other words, we lose the fitness contribution from one modue of eat size d ead level in the hierarchy.
Arguably, this ressonably constitutes a‘ ceasing to function’ of the system as awhale. Certainly, the system

does not ‘ degrade gracdully’ under small perturbations.

Quantifiably, this oud berelated to adeaeasein fithess The exad deaease in fithesswill depend onthe
scding d the weighted contributions from one level of modue to ancther. In HIFF, ead corred modue

has a fitnesscontribution equal to its $ze (the number of variablesit contains) so a one-bit mutation from a
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global optimum results in a deaease in fitness of N+N/2+N/4+N/8+...+4+2=2N-2. Let us look at this
deaease in fithessin comparison to the range of fitnesses in HIFF, and then compare the change in fitness

to the size of the genetic change that produced it.
The minimum fitnessvaluein HIFFis: N - e.g. coming from the string 010101..

The maximum fitnessvaluein HIFFis: N(logN+1) - e.g. the fitnessof the string 00000.. which
has all moduesat all | evels corred is
N+2(N/2)+4(N/4)+...+N(N/N)=

N(log,N+1).
Thusthe range of fitnessvaluesin HIFFis: N(log,N+1)-N= Nlog,N.

The ratio of the change in fitness from any (or the best) single-point mutation from a global
optimum in HIFF is therefore: (2N-2)/ NlogN = 2/logN.* We will cal this the ‘relative dhange

in fitness.

The ratio of the dhange in genotype from a single-point mutation to the size of the genotype is:

1/N. Wewill cdl thisthe ‘relative changein genotype'.

So, the relative dhange in fitnesscaused by a one-point mutation from a global optimum (or any
fully-corred modue), 2/log,N, is very much larger than the relative change in genotype, I/N, for

large N.

So, a small change from a high fitnesspoint in HIFF ‘bress’ at least one modue of all sizes, and bythe
above aiteria, is sgnificantly deleterious. Thus we might conclude that by Behe's criteria, a high-fithess
point in HIFF is irreducibly complex. However, as we indicaed in 2.4.1, a system that ceases to function
under any small change is not necessarily unevolvable. And undr a more general nation d reducibility,
HIFF isreducible - i.e. dthoughit is not into small parts, it is reducible into large parts. That is, thereisa
large change we can make to the system that does not bresk a modue & every level and causes only half
the fitness deaease. Spedficdly, substituting ore N/2 sized block for another might bre&k the top-level

fitnesscontributions of the system, but it is gill composed of two independently viable halves. More to the

2 Thisisonthe order of 1/H, where H is the number of hierarchicad levelsin the system.
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point, since a orred and compatible N/2 sized modue car be evolved in some other individua and
swapped-in by compasitional medianisms, HIFF as a whole will be easily evolvable for compasitional

medhanisms.

5.24  HIFF appears to have low epistasis (but does not)

Althoughepistatic dependencies are observed in some biologicd systems, it is also observed that most of
the fitness effeds from allelic changes in biologicd systems can be acourted for by their independent,
non-epistatic, comporents. Thus, it might seen that the enphasis on strong epistatic dependencies shown
by the HIFF landscepe is biologicdly urredistic but, in fad, HIFF is compatible with these observations.
When a set of genesiswell optimised in HIFF, any single dlelic change is caastrophicdly deleterious, as
we analysed above. Moreover, no pair-wise interadions, no secnd single-point mutation, can recover any
significant positive benefit relative to the deleterious effed of the first mutation. So, it might appea from
these observations that HIFF has we&k epistatic interadions because most of the dhange in fitnesscan be

acourted for by the independent fithesseffeds of alleles.

However, this is not the cae. In fad, the independent effeds of genes acmurt for nore of the fithess
changes—when averaged ower all possble genetic contexts, every allele (at every locus) isequally valuable
in HIFF (Os confer the same fitness contributions as 1s). The gparent weaknessof epistatic dependencies
results from measuring orly pair-wise (or small group) interadions on a configuration d genes that have
been optimised to a high level. At thislevel, pair-wise interadions are not sufficient to exhibit large fitness

effeds—but such epistatic &f eds are avail able throughthe interadion d large modues.

So, awell-optimised configuration d feauresin HIFF appeasto be irreducibly complexbecause any small
genetic change is caastrophic, causing the system to ‘f all-off’ its nealle in the fitnesslandscgpe. However,
althoughthe aaptive problem canna be reduced into the alditive dfeds of individual genes, it can be

demmposed into the large moduar sub-systems of which it is compaosed.
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5.3 Expeded timeto solution for accretive mechanisms

The previous ®dion indicates that HIFF has all the properties we listed that are usualy associated with
evolutionary difficulty under acaetive ssaumptions. In this sdion, we aldress the expeded time to

solution for acaetive mecdhanisms.

Using the nation o a path to solution and the expeded time for steps on this path, we may reasonably say

that an algorithm is nat reliably successul onaproblem if any of the foll owing conditions are true:
» thereisno guaranteed path to solution,
« if the path may be exporentialy long, or
« if any step onthe path takes exporential time.

For a single-bit mutation Hill -climber there is no guaranteed path on H-IFF. H-IFF has 2" locd optima
under single-bit mutation (where N is the size of the problem in hits), only two of which are globally
optimal. More generally, a k-bit mutation hll-climber will be faced with 2" locd optima, where h is the
smallest integer power of 2 which is greaer than k, i.e. h=2">k. A random mutation Hll climber (RMHC)
(Forrest & Mitchell 1993) mutates every bit with a given probability Pmut. In principle no problem can
have locd optima under this operator since the probability of moving from any pant to any aher paint is
non-zero. However, consider the cae where the aurrent string is N/2 zeros foll owed by N/2 ores. The next
best string is the global optima & all ones or all zeros. To achieve this jJump, mutation must flip N/2 hits
whilst keeping N/2 undsrupted. The best mutation rate to achieve this is Pmut=0.5 and this gives an
expeded time for the step which is 2" — so search with RMHC is no better than random guessng at this
mutation rate. A maao-mutation hill -climber, MMHC (Jones 1995, has the best chance of success
MMHC choases two delimiting loci and randomises the loci between them, thus concentrating mutations
on a particular sub-string whil st leaving the remainder untouched.” But still, to escape from the next-best
optima to either global optimum it must choose the right delimiting loci which has probability 1/N(N-1)

(this all ows maao-mutations both ‘inside’ and 'outside’ the chosen pdnts), and assgn al ones (or al zeros)

*  This agorithm has an advantage over other mechanisms because it explicitly uses the assumption o

tight genetic linkage (3.4.2).
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to N/2 hits — this occurs in expeded time O(N2"?). Thus we seethat by these aiteria, all these mutation-
based hill -climbers either have no guaranteed peth to the optimum, or canna be guaranteed to take astep

onthe path in time lessthan exporential in N.

53.1 Preliminary Comparison with compositional mecanisms

We will not attempt a detailed analysis of the expeded time to solution for a cmpositional mechanism
until after we have detail ed a spedfic compaositional mechanism. But for now, it is worth emphasising that
athoughHIFF is very difficult for acaetive mechanisms, it is decomposable into small number of more
manageé&ble problems and is thereby easily solvable if this decompasition is known or can be discovered,

and if the search mechanism can manipulate modues as wholes.

Spedficdly, in HIFF, for any modue A, M, (the maximal configurations of A - see4.3.1) will only contain
corfigurations that are some combination d a wnfiguration from M, and a cnfiguration from M. the
maximal configurations for its sib-modues, B and C. And thusfindingM,, only requires saching at most
M| x [M| corfigurations if M, and M are known and we have amedanism that can *swap in and ou’
different members of M, and M. as whale units. In HIFF, |[M|=2 for any modue & any level in the
hierarchy, so finding M, given M, and M_only requires testing 4 corfigurations regardlessof the sizeof the

" modues

modue. At the h" level in the hierarchy (primitive variables level is indexed 0), there ae 2
where H=log,N and O<h<H. The total number of modues to be found owr all levels is thus 2(N-1), and
ead of these can be foundin 4 combinations of the modues from the previous level. The total number of
combinations of sub modues that need to be seached to find the solutions to all moduesin the problem is

thus 8(N-1), and is therefore the maximum number of configurations that need to tested to find a global

optima.

In summary, if the decompasition of the problem is known and we have amechanism that can identify the

set M for a modue and manipulate modues as units, then the number of configurations that needs to be
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seached islessthan 8N. In contrast, as we have seen above, acaetive mechanisms require the testing o a

number of configurations exporential in N.**

This ill ustrates the broad margin of difference that might be posdble between acaetive and compasitional
mechanisms. But in order to vindicate the alaptive cgadty of compasitional mecdhanisms we will need to
show that a cmpositional mechanism can discover the problem structure axd manipulate modues

effedively.

54 Simulation resultsfor mutation

Randam Mutation Hill -Climbing, (RMHC), repeaedly applies mutation to the feaures of a single binary
string (a fully spedfied fedure set) and accepts a variant if it is fitter (Forrest & Mitchell 1993). We
conducted experiments with various mutation rates (probability of assgning a new random state {0,1} to
eadt feaure)—spedficdly, mut = 1/128 2/128, 4/128 6/128 8/128 12/128 16/128 24/128 32/128 and
40/128 In the summary figure later we show the performance of RMHC with mut=16/128=0.125 which
gives the best maximum average maximum fitnessover al these values. (See Oates & Corne 2001, for an

investigation d the mutation landscgpe for HIFF, and the behaviour of the GA with small popuations).

34

Even if an acaetive mechanism ‘knew’ the decomposition of the system and could ‘f ocus' mutations on
modues that were sub-optimal, an acaetive mechanism would still require 2" guesss to find the
solution to the largest sub-modues, since progress on sub-sub-modues canna be used to inform
mutational changes.

164



1000 S
900 - i
800 &
700 - Eil
T o s e T
% %‘é% %ééééééfééég ..... é Eé
& Py LR e T S |
=
- ey e e e e e T
3007 o RMHC mut=0.0156 [
—p— RMHC mut=0.0313
—&— RMHC mut=0.0469
200 - »- RMHC mut=0.0625 =
+- RMHC mut=0.0938
#* - RMHC mut=0.125
100 - e RMHC mut=0.188 u
- & RMHC mut=0.25
- RMHC mut=0.316
0 1 1 I 1 I
0 0.5 1 1.5 2 2.5 3
evaluations (svelutionary time) x10°

Figure 5-5: Results of RMHC on a 128variable decomposable system.

HIFF (Equation 11) defines the fitness landscape. Curves ow the average fitness of all
individuals measured in the last 2000 evaluations (of newly creaed individuals). Several
curves are shown for different mutation rates. The maximum fitness value posgble in this
fitnesslandscape is 1024 The maximum number of evaluations permitted (duration) is 3-10.
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Figure 5-6: Resultsof RMHC on a 128variable decomposable system.

Detail s as per Figure 5-5 but curves show size of largest modue fully-optimised in the past
2000evaluations.

55 Summary

In this chapter we asessd the difficulty of HIFF for acaetive medhanisms sich as mutation. We examined
the properties of the landscgpe that are normally considered difficult for (acaetive) evolution. We find that

it has the following properties:

e The number of locd optima (for mutation based algorithms) is exporential in N

(N = # variablesin system).
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e Thewidth dof fitness sddlesisafunction d N, i.e. fitness sddles of al sizesupto N/2 exist
in the landscgpe. Therefore, no constant mutation radius is ufficient to solve HIFF in

general.

« Highfitness configurations of the system appea to be irreducibly complex - i.e. any small

change is catastrophicdly deleterious.

e There is no path of smal changes conferring monaonicdly increasing fitness that

approaches the optima in the landscape.
Accordingly, HIFF satisfies all these aiteria of evolutionary difficulty.

A simple analytic examination shows that a mutation based algorithm canna be guaranteed to succeal in
time less than exporential in N. This also hdds for any algorithm using undreded exploration such as
genetic drift (from stochastic sampling error), or neutral walks in redundant encodings. In ather words,
algorithms of single inheritance and arbitrary exploration canna, by reasonable definitions, solve HIFF in

lessthan exporential time.

Simulations of a simple mutational algorithm, RMHC, ill ustrate the performance of mutational mecdhanisms
on HIFF. In the next 2 chapters we will i nvestigate the operation o sexual recombination and symbiotic

encgpsulation on HIFF.
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Chapter 6- Sexual Recombination on Modular
| nterdependency

In this chapter we examine the alaptive capabiliti es of an evolving popuation with sexual recombination
on the dass of moduar interdependency systems defined previoudly. In particular, we will use the
Hierarchicd-if-and-only-if function, Equation 11, to define the epistatic dependencies of genes and the
correspondng adaptive landscagpe. From the prior analysis we know that this problem is difficult for
mutation bu we dso know that it is, in principle, amenable to hierarchicd decompasition. The question o
this chapter then, is whether there ae drcumstances where an evolving popuation using variation by
sexual recombination is able to exploit this decomposable structure by dscovering and manipulating

modues and sub-modues appropriately to asemble together a high-fitnessconfiguration for the system.

We will use asimple computational simulation, the Genetic Algorithm, GA, to investigate this question.
The GA models a popuation o individuals. Each individual is represented by a single haploid
chromosome™ and this chromosome is smply a binary string o ‘genes’ - i.e. there ae two aleles for eah
locus. Each gene represents the state of one variable in the HIFF problem. Thus ead individual represents
a omplete state spedficaion for the whole interdependent system of variables, or in engineeging terms a

‘cendidate solution’ for the ‘problem’. The fitnessof ead individua is given bythe HIFF function.

Our intuition, following that of notable GA pionees and praditioners (see Building Block Hypothesis,
3.3.2) is that different members of the popuation will discover different modues, and that recombination

between individuals will be &le to seach combinations of modues to find larger modules, and so on We

* A haploid representation is chosen for simplicity. Equivalently, we may imagine adiploid chromosome

where fitness is, for some reason, a function d only one haploid part, e.g. we may imagine that
seledionis applied oy onthe haploid part of the lifecycle. It isalso perhaps equivalent to suppcse that
the same model for multi-loci epistatic interadions also models sngle-locus dominance interadions.
That is, every single locus in the diploid representation corresponds to a pair of variables in the first
level of the dependency hierarchy of the system. Under HIFF, the heterozygote loci would then have no
fitness dependencies at the next level in the hierarchy and orly the homozygote loci (00,11) would be
important - effedively returning usto a haploid representation.
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will find that with the use of HIFF we can clealy ill ustrate when this processis possble and when it will
fail. In particular, we will find that appropriate diversity and appropriate gene ordering and strong genetic

linkage are required for eff edive reambination.

We will explore some different varieties of the GA that vary in the respeds of the seledion scheme andthe
variation operators. These diff erent seledion schemes will affed the diversity of the population: the basic
form models a single panmictic (fredy mixed) popuation; the more sophisticated form models a particular
kind d popuation sub-division based on removing competition between disimilar types. The variation
mechanism of interest in this chapter is sexual remmbination. Different asuumptions abou the
recombination mechanism have different effeds on genetic linkage. In particular, if we asume that linkage
iswegk (crosver paints are numerous) then subsets of genes cannat be exchanged between individuals as
whales, i.e. no particular subsets of genes from a parent are more likely to appea in the off spring than any
other subset. And even if linkage is drong, the appropriateness of exchanging gene subsets between
individual depends on the mrrespondence between gene ordering (proximity on the chromosome) and
epistatic dependency. In other words, wed linkage and/or poaly organised linkage ae problematic for

Crossover.

We find that a popuation with appropriate mecdhanisms to suppat diversity, and appropriate asumptions
abou genetic linkage, is able to solve HIFF easily. This demonstrates that under these drcumstances, an
evolving popuiation with sexual recmbination can compaose together modues to find successvely larger
subsystems of genes, and eventually find the globally optimal configurations for the genes, in thiscase. It is
thus our first example of a compasitional mechanism. We provide some analysis, based on simplified

condtions, that shows an expeded time to solution that is polynomial in the size of the system.

However, these experiments equally show that there ae cndtions under which sexual recombination
performs no Letter than mutation onthis problem class We can seethat a single fredy mixed popuation,
or a reambination mechanism with we&k linkage, or a linkage arangement that does not correspondwith
epistatic dependencies, will eat cause the cmpasitional processto fail. In these cases the alaptation o
individuals in the popuation is acaetive—at best, only able to discover more fit configurations when they
are available via small incremental changes. Accordingly, we seethat the dfed of sexua recmbination

can be d@ther acaetive or compositional depending oncircumstances and assumptions.
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6.1 Overview of models

In the following subsedions we will briefly describe the simulation models and the crrespondng

experimental results for diff erent assumptions.

e« Basic model: single fredy-mixed popuation, one-point crosover: GA with

fitnesspropartionate seledion.

e Subdivided population model: GA with ore-point crosover and deterministic

crowding.
e Geneticlinkage models:
0 No genetic linkage: uniform crossover

0 Unfavourable genetic linkage: HIFF with randomly reordered gene

positions - ‘ Shuffled HIFF .

This chapter uses the GA and variants of the GA throughou because the issues of modue discovery and
manipulation undr crosover are eaily demonstrated with asimple linea bit-string representation and hit-
string recombination. However, the issuues of modue discovery and manipulation undr compositional
medhanisms are relevant in ather types of EAs also - the GA merely provides a simple ill ustration. The
discusson ongenetic linkage however is gedfic to the linea representation d chromosomes used in GAs
- in Chapter 7 we move outside the normal GA framework into a novel form of EA that is not dependent on

the linea order of genes, and could be gplied in ather substrates.

6.2 Basic Modd: Single panmictic population—Simple GA

In this ®dion we investigate the alaptive caabiliti es of a popuation with sexual recombination wsing a
simple model. Our basic model will be the Simple Genetic Algorithm (3.1.2). The SGA assumes a single
fredy-mixed or unstructured (panmictic) popuation o individuals. In the foll owing experiments we will

use a‘generationa’ algorithm meaning that the reproductive gycles of the individuals in the popuation are
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synchronised (Syswerda 1990. The dgorithm is described in Figure 6-1. This model uses gandard fithess

propartionate seledion.

1) Initidise popuationwith randam individuals, i.e. randam bit strings.

2) Repea until stopping criterion (duration complete').
i) Evauatethefitnessof al individualsin popuation (using HIFF).
i) Reped <popsize>times

(1) With seledion probability of ead individual propationate to their fithess seled
(with replacament) two individuals from popuationto be ‘parents’.

(2) Generate an ‘offspring’ individual by:
(a) Creae anew string by ore-point crosover of parent strings (see3.3.1)
(b) Apply pant-mutation with low per-locus probabilit y.

(3) Colled offspringin new_popuation.

iii) Replacepopuationwith new_popuation

Figure 6-1: A procedural outlinefor a simple‘panmictic’ GA.

This GA has no dversity maintenance and the popuation is unstructured or ‘panmictic’ - as
is normal for a simple generational GA with fitnesspropartionate seledion. "'The duration o
the experiment will be measured in evaluations of individuals (correspondng to lifetimes).*

6.2.1 Simulation results

Figure 6-2 shows the simulation results for this model.

36

This method, rather than courting generations, helps to avoid urfair comparisons of adaptive operators
arising from diff erent popuation sizes. For example, in principle, any variation operator (or no variation
operator) can find the globally optimal configuration for the fitnesslandscape in ore generation if the
initial popuationislarge enough
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Figure 6-2: Results of simple panmictic GA with one-point crossover on a 128variable HIFF.

HIFF (Equation 11) defines the fitnesslandscape. The popuation size is 2000individuals.”’
Results measure the average fitnessof all individuals measured in the last 2000 evaluations
(new individuals). Several curves are shown for different mutation rates. Each curve is the
average of 30 independent runs. The maximum fitnessvalue passble in this fithesslandscgpe
is 1024 The maximum number of evaluations permitted (duration) is 3-10°.

We seethat the popuationis not able to read very high fitnessvalues in this landscgpe Figure 6-2. Figure
6-3 shows that the maximum-size sub-modue discovered in these runsis around 32 lits on average, only a

littl e better than the results shown for a mutation hill -cli mber.

* Preliminary investigations indicated that the reliability of the results in Sedion 6.3 were improved with
alarge popuation size such as that used here. We use the same popuation sizein all other experiments
in this chapter to be sure that the result in Sedion 6.3 is nat merely the dfed of alarge popuationsize
Some indicaion d the dfed of different popuationsizesisgivenin Sedion6.7.2.
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Figure 6-3: Results of simple GA with one-point crossover on a 128variable HIFF.

Detail s as per Figure 6-2 but showing size of largest al-ones modue in popuation (rather
than average fithessof popuation).

6.2.2 Discusson

The Simple GA with crossover did na do much better than the mutation hill climber of the previous
chapter - crosover appeas to make negligible difference in this problem. However, if we look at the
evolved popuations in detail we find that in this model the popuation very quickly becmes geneticaly
converged (not shown). Thisisto be expeded—when there is no gresaure to do dherwise, the popuation
will quickly converge to the best-fitnessindividual thus far discovered. If this happens before modues can
be recombined between individuals then the string the popuation converges to will not be very fit (see
“mixing”’ and trade-off with seledionin Thierens & Goldberg 1993. To the extent that the popuation hes

converged, crosover between individuals results in little change between parents and dfspring. Thus the
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only new variation in the popdation is supdied by mutation, and acrdingly the results are not much

better than previous mutation-only results.

6.3  Diversity: Subdivided/niched population—GA with crowding

Following from the previous experiment we modify the seledion scheme to model a process that may
better preserve the initial diversity of the popuation. Spedficdly, we will use a GA with a diversity
maintenance technique known as ‘ Deterministic Crowding (Mahfoud 199%. Crowding methodsin general
can be understood as a mechanism to focus competition in such a way that similar things compete but
dissmilar things do nd. In deterministic aowding, DC, this is achieved in two ways. First, individuals
only compete with their own immediate ancestors (their parents); Second, individuals of a‘brood (i.e. with
same parents) compete with the parent to whom they are most closely related. Pseudacode for asimple GA

based onDeterministic Crowdingisgiven in Figure 6-4.
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1) Initidise popuationwith randam individuals, i.e. randam bit strings.
2) Evaluate the fitnessof all individualsin popdation (using HIFF).
3) Repea until stoppng criterion.
i) Seled two individuals from popuation at random to be ‘ parents’, p1 & p2.

(@ With probability 0.7, generate a ©mplementary pair' of ‘offspring
individuals, c1 & c2 by ore-point crosover of parent strings (see 3.3.1).

Otherwise off spring equal parents.
(b) Apply pant-mutation with low per-locus probability to off spring.
(c) Evaluate new individuals (using HIFF).
i) Pair-upead parent with ore off spring acording to the pairing rule below.

iii) For ead parent/offspring peir, if the off spring is fitter than parent then replacethe

parent with the off spring (otherwise discard off spring).

Pairing rule: if H(pl,c1)+H(p2,c2) <H(pl,c2)+H(p2,cl) then pair p1 with c1, and p2
with c2, else pair pl with ¢2, and p2 with c1, where H gives the genotypic Hamming
distance between two individuals.

Figure 6-4: A procedural outlinefor a smple steady-state GA with Deterministic Crowding.

A complementary pair of offspring,® c1, c2, is creaed from two parents, p1, p2, by using the
same qosver point such that c1=p1Xp2 and c2=p2Xplwhere aXb isthe result of crossover
where genes are taken from parent-a on the left of the aosver point and from parent-b on
the right of the aosover point (or vice versa). In ather words, ead gene of ead parent will
ocaur in either one offspring a the other.*

The important charaderistic of this diversity maintenance methodis that competitionis restricted to similar

individuals but breeding is not. This model maintains diversity in the following manner. First note that

individuals are seleded to be parents at randan not acording to their fitness If fitness effeds are

38
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The dgorithm also performs well withou the stipulation that both off spring are aeaed with the same
crosover paint, but this feaure makes analysis easier (see6.6).

This agorithm is wasteful of evaluations when the mutation probability is zero: spedficdly, the
off spring creaed withou crosover remain identicd to parents, and canna produce a tange in the
state of the popuation. However, previous work suggested that 70% crosover performs better than
100% for some mutation rates - so we used 70% crosover throughod.
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introduced to seled the parents then this applies a global (popuation-wide) presaure to promote the better
individuals found so far regardless of their similarity/diversity. This would cause the popuation to
converge on the best adaptive pe&k foundthus far. Insteal, seledionis applied at replacement (3-iii) where
it is restricted to parent/offspring peirs. This isolated competition allows different subdvisions of the
popuationto coexist temporally on dff erent adaptive peaksin the landscape even if they are quite diff erent
in fitness This effeds an efficient form of niching where sub-popuations climb locd peaks but individuals
on dfferent pesks do nd compete. However, if crosover shoud result in an individual that is fit in bah
subdamains it can take over both peaks. For example, if the genes of p2 are caried by cl, and cl is fitter
than p1 bu c2 is nat fitter than p2 then the genes of p2 remain in p2 and replacethose of pl Thusif a
colledion d genes are fit in more than ore mntext they can replicate and take over more than ore pe&.

This all ows an appropriate balance of diversity maintenance and competitive exclusion.

Deterministic Crowding was devised for pragmatic optimisation puposes, and at first glance seams quite

‘unratural’. However, there ae several ways to interpret this model. For example:

» Deterministic crowding and population subdivision. In sub-divided popudations individuals compete
strondy with aher individuals in the same deme but not with individuals in dfferent demes.
Moreover, when migration ketween demesis low, individuals within a deme ae generally geneticdly
related. Accordingly, individuals compete most strondy with their own ancestors. When migration

does occur, the resultant off spring also need to compete with the residents of the new niche.”

» Deterministic crowding and niching. The general notion d alowing similar things to compete and
dissmilar things to coexist is quite anormal interpretation d a multi-spedes easystem. The DC
method can be interpreted as a spedfic interpretation d this general model. In particular, if a given
individual is assuumed to compete most strondy with the other individual in the whole popuation to

which they are most similar then this is likely to be one of their parents (see‘preseledion’ Cavicchio

40

In this interpretation, instead of interpreting ead DC-individual as a literal individual, we may
aternatively interpret eadcy DC-individual as a highly converged sub-popuation. In this case, the
particular configuration d feaures in the DC-individual can represent the sub-popuation ‘ consensus
string. Then the reproduction of one DC-individual with another isamodel of inter-deme migration and
Crossover.
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197Q Mahfoud 1995 p129). In this resped, DC is merely an implementational approximation to a

model where individuals compete only with that other individual with whom they are most similar.

So, with some open-mindedness there ae perhaps biologicdly plausible interpretations of this particular
model. And more general biologicd models of popuation subdvision may have an equally advantageous
affed on popliation dversity. However, the biologicd plausibility of deterministic aowding and the
particulars of the deterministic aowding algorithm are nat important for our purposes. We merely want to
show that if appropriate diversity is maintained in the popuation, by whatever means, then crossover is

able to asemble together modues effedively.

A completely different diversity maintenance method, based on competition over shared resources, is also
able to maintain diversity appropriately (Watson et al. 1998 - but the resource model uses more domain
knowledge than the DC method wed here." Previous work in other domains indicated that, under certain
condtions, competitive resource mnsumption in a ontinuos face of resources can result in

diversification and cooperative displacement into complementary roles (Ebner et al. 2000.”*

The results of the deterministic cowding model (Figure 6-4 abowve), are shown below in Figure 6-5/Figure

6-6.

“ The resource-based fitnesssharing model uses aresourcefor ead moduein the problem and depresses

the value of solvingamoduein propartion to the number of individuals that already solve that modue.
See (Horn et a. 19949 for an example of resource-based fitnesssharing where eabt resource
corresponds to adimension in a multi-dimensional optimisation problem.

" This model turns out to be very similar to the idea of “resource utili sation functions’ in a ntinuots

spaceof resources (MacArthur 1968. Whereas, our previous work on fitness $aring in HIFF is more
closely allied to a‘niche a hypervolume' model (Hutchinson 1965.
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| am particularly grateful to Martin Oates for investigating many different ‘restricted mating' types of
diversity maintenance for GAs on HIFF, and to Christopher Ronnewinkel who krough Deterministic
Crowding to ou attentionin this eff ort.
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Figure 6-5: Results of deterministic crowding GA with one-paoint crossover on 128variable
HIFF.

HIFF (Equation 11) defines the fitness landscape. The popuation size is 2000 individuals.
Results measure the average fitnessof all individuals measured in the last 2000 evaluations
(new individuals). Several curves are shown for different mutation rates. The maximum
fitnessvalue possble in this fitnesslandscgpe is 1024 The maximum number of evaluations
permitted (duration) is 3-10°.
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Figure 6-6: Results of deterministic crowding GA with one-point crosover on
128variable HIFF.

Detail s as per Figure 6-5 but showing size of largest all-ones modue in popuation (rather
than average fitnessof popuation).

We seethat with the dd of the cowding mechanism the popuationis able to read very highfithessvalues
in this landscape, in all cases except when using very high mutation rates. In fad, with a mutation rate of
0.0310(2/N) it finds both globally optimal configurations for the system, modues of 128variables, in 28

30runs, in abou 500,000 evaluations.

The DC modd is an ‘off-the-shelf’ diversity maintenance technique for GAs - so for the experiments on
genetic linkage in the remainder of this chapter we use the model as is.* However, the exad form of the

DC model can be relaxed in dfferent ways. For example, the parent/off spring pairing in the pairingrule is

“ " In the foll owing chapter on symbiotic encapsulation we do nd use the DC model.
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not that important - the simulation results look similar thougha littl e inferior withou it (Figure 6-7, left).
However, restricting the competition to similar individualsis required - if we pair-up the off spring with two

randam individuals insteal of the two parents then diversity is quickly lost and the dgorithm fail s (Figure

6-7, right).
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Figure 6-7: Variationson crowding agorithm

Left) Deterministic cowding works fairly well on this problem withou using the pairing rule
that makes off spring compete with the most similar parent. Right) But it does not work well
when off spring compete with two randamly seleded individuals (instead of the parents).

6.3.1 Mutation isnot es®ntial

We dso seethat with nomutation the GA is dill successul (one of two gobal optimaisfoundin 23 d 30
runs). This means that randam acaetive variation is adually nat necessary uncer these ondtions. Thisis
because the popuation d diverse individuals, optimising dfferent moduesin dfferent individuals, is able
to suppy all the required variation to discover larger modues. Moreover, when individuals are drealy
well-adapted, randam mutational variation, is © much more likely to disrupt a large modue than it is to
discover a new one that it is better not to use it in this stuation. (Alternatively, we may imagine aossover
events between dfferent individuals that introduce small numbers of genes as being effedively equivalent

to small mutations—thus additional mutationis not required.)

It is noted that the randam initialisation d the popuationis required to cover all of the dleles at al of the
loci. Thisis not so dfficult when the number of aleles is small compared to the popuation size But in

other domains, for example where the variables of the system are mntinuous or take avery large number of
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possble values, it may nat be plausible that the initial popuation covers the required alleles. In this case, a
low mutation rate will presumably be valuable. Thus we do nd suppcse that this observation abou
mutation is general, however it does ill ustrate that there ae anditions under which sexual recombination

can provide dl of the necessary variation, in principle.

6.3.2  Gradualism isneither sufficient nor required

It shoud be noted then, that in the experiments of the previous chapter we showed that, under certain
condtions on this class of problem, acaetive dhange is not sufficient to find fit configurations of the
system. The simulations above now aso show that mutation is not required to find fit configurations of the

system. Thus under these condtions onthis classof problem, gradualism is neither sufficient nor required.

We ae quick to clarify however, that we do nd intend to imply that graduali st models of change ae not an
acarrate model of some, amost certainly most, evolutionary change. We make these observations just to
show that there ae dternate scenarios for evolutionary change that are fundamentally different from, and
independent of, gradualist models. (These daims are validated more strondy in the next chapter where we

gain 100% succesdul runs with noexpli cit mutation.)

6.4 Geneticlinkage

In this model, it might look like sexual recombination has unequivocaly provided robust adaptation in this
class of adaptive landscgpes. However, we have nat yet discussed ou assumptions abou genetic linkage

andthese ae, in fad, criticd.

The experiments in the previous dion used two important assumptions abou genetic linkage coming

from the tendency of gene subsetsto occur together during crossover events:

1) That genetic linkage is sgnificant in strength: i.e. some subsets of genes are more likely to travel

together during crossover events than athers by virtue of their proximity onthe chromosome.

2) That genetic linkage is arranged o ordered favourably: For our purpases this means that epistaticaly

dependent genes are dose to ead ather on the chromosome so that those subsets that are likely to
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travel together during crosover correspond well with those subsets that form modues in the

interdependency network of the genes.

These ae strongasumptions it isimportant that we examine what happens when they are relaxed.

6.4.1 No geneticlinkage: ‘Free reaombination’ or ‘uniform crosover’

In the previous experiments we used ore-point crosover. Clealy, whether two genes travel together from
parent to dffspring in a aosover event depends on whether they are on the same side of the aossover
point. One paoint crosover can be understood as an approximation to a aossover probability of 1/N per-
locus, where N is the number of genes. In multi-point crossover, the probability of two genes travelling
together isinversely related to the probability that an even number of crossover paints (possbly nore) falls
between their loci. This approaches 1 as the distance between genes approaches 0. But in general, as
crossover probabiliti es increase, the distance between a pair of genes onthe diromosome has progressvely
less affed in determining whether they appea together in the off spring with more than randam chance

(3.4.2).

In the foll owing experiment we use uniform crossover (3.3.1). This can be understood as an approximation
to very high crosover probabiliti es where the proximity of genesto ead ather on the chromosome has no
effed on their probability of co-occurring in the off spring. That is, it models sxual recombination with no

genetic linkage. In natural systems, situations with nolinkage, or very we&k linkage, include:

« All genes correspondng to variables in the system of interest reside in diff erent chromosomes. In this

case there is freerecombination between the genes when an off spring is produced.

* Many crosover points per reammbination (A recombination in Drosophila, for example, may have

many chiasma (Figure 2-6).)

e If an evolutionary system has one-paint crosover, but seledion presaure is low or applied orly after
several successve remmbinations, then ofspring equivalent to dofspring creaed from many

crossover points may be produced.
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Figure 6-8: Results of DC GA with uniform crosover on a 128variable HIFF.

HIFF (Equation 11) defines the fitness landscape. The popuation size is 2000 individuals.
Results measure the average fitnessof all individuals measured in the last 2000 evaluations
(births). Several curves are shown for different mutation rates. The maximum fitness value
possble in this fitness landscape is 1024 The maximum number of evaluations permitted
(duration) is 3-10".
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Figure 6-9: Results of DC GA with uniform crossover on a 128variable HIFF

Detail s as per Figure 6-9 but showing size of largest all-ones modue in popuation (rather
than average fitnessof popuation). (No mutationis best - seeSedion 6.4.3).

It isclea from these results that the asence of genetic linkage between the variables of the system in these
circumstances prevents the popuation from finding fit adaptations. Most runs do nd find modues greaer
than 32hits, no runs find modues of 128 hts. This failure can be understood byconsidering Figure 6-10

below.
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one-point crossover uniform crossover

parent 1 | 1010100100000000 | 1010100100000000

parent 2 | 0000000010011110 | 0000000010011110

offspring 1 10101001|10011110 1|0|1|00|0|0|1|10|000|110

offspring 2| 0000000000000000 0|0|0|01|0|0|0|00|011|000
T

Figure 6-10: Crosover operationson bit-string individuals.

Here the genes for complementary all-Os modules are shown underlined in ead parent. A
particular seledion o passhle aosver paints are indicaed by the short verticd tick marks:
only ore for one-point crosover, N/2, on average, for uniform crosover. We show that there
isa choiceof single aosver point that will get both (underlined) moduesinto an doff spring
together. However, when there ae many crosover poaints, the desirable modues will
probably be broken-up in crossover.

In Figure 6-10 we illustrate aossover between two individuals that happen to be well adapted to ore
modue eat bu to dfferent modues (left and right halves of the chromosome, shown unckrlined). Under
one-point crosover thereisa 1/N chancethat the single aossover point may land in the corred paositionto
enable these two modues to come together in ore of the offspring. But, under uniform crossover thisis
much lesslikely. In fad, to get the two al-0s modues into an off spring from the more extreme example
strings, 00001111and 11110000has probability exaaly equal to randamly guessng the string 00000000

“fr om scratch’ i.e. 2™.

In general, the probability of getting two moduesinto an off spring together isrelated to the number of per-
locus ‘disagreements’ that the parents exhibit over the loci of the modues. For example in Figure 6-10
above, parent 1 disagrees with parent 2 onthe dlele values for 4 loci onthe left-half modue, and 5loci on
the right-half modue (in this example, the two modues cover the entire chromosome, but they need na in

general). All loci where the parents agreg or loci that are outside the modues, have no effed on this

45

This also appliesto ‘ parameterised uriform crosover’ (Spea & De Jong 199) where the probability of
taking a gene from parent-1 may be diff erent from the probability of taking a gene from parent-2. In the
example &owe, any advantage an imbalanced transmisson probability might have throughincreasing
the likelihood d transferring ore of the modues to the offspring is lost through the deaeased
likelihood d transferring the other modue to the off spring.
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probability. But for al loci where the parents disagree the dlele that appeas in the offspring must come
from the @rred parent. This probability is independently 0.5 for ead locus under uniform crosover.
Therefore the probability of both modues appeaing together corredly in the offspring is 1/2° where d is

the number of disagreaments, in this case 1/2°.

So, it shodd be dea from these cnsiderations that regardless of the arangement of genes, sexua
recombination without genetic linkage (e.g. uniform crosover) canna recmbine cnflicting modues with
probability better than random mutation. From this we suggest that the compositional advantage of sexual
recombination is dependent at least on there being significant genetic linkage. However, the advantage of
sexual recombination with strong genetic linkage (e.g. one-point crosover) is further dependent on the

arrangement of genes.

6.4.2 Re-ordered linkage: Shuffled gene positions

In the example of Figure 6-10, the succesdul transference of both modues to ore of the off spring under
one-point crosover is Smply nat posdsble unlessthe aosover paint can be positioned such that all of the
loci for one modue ae on ore side of the aosover point, and all of the loci for the other modue ae on
the other side of the cossver paint. If the positions of genes within ore modue extended over the range of

genes containing the other modu e then thiswould na be possble.
Figure 6-11 below ill ustrates areordering d the genes for the individualsin Figure 6-10.

random genetic linkage

parent 1 | 0010001100001000

parent 2 | 0100100001100100

offspring | 0??0?0??07?0??00

Figure 6-11: Crossover operationswith random genetic linkage - i.e. random gene ordering.

Here the genes for complementary al-0s modues are shown uncerlined in ead parent. The
guestion is, how to chose aosver points 0 asto get both these moduesinto an off spring.
(See dso Figure 6-12)
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In Figure 6-11 weill ustrate cosover between two individuals that ead have one well -adapted modue but
the genes from these modues are distributed along the chromosome making their combination dfficult.
Concdvably, uniform crossover, or in this case 8-paint crosver, could place cosver pointsin the exad
positions that allow both modues to be transferred to ore off spring. But in general, we need to alow an
arbitrary number of crosover points and we drealy know (from Figure 6-10) that recombination withou
genetic linkage canna combine two modues together with probability higher than randamly guessng the

resolution o al disagreeéngalleles.

Acocordingly, effedive recombination d modues even in the presence of strong linkage dso requires that
genetic linkage correspond well with epistatic dependencies - i.e. epistaticaly dependent genes must be
close together on the diromosome. We can test this reasoning by randamly re-ordering a shuffling the
position d genes on the diromosome and repeding the previous experiments. There is no reel to repea
the uniform crosover experiments gnceit isin al respeds insensitive to the ordering d genes—so we just

reped the one-point crosover experiments.

For the following experiments we use “Shuffled HIFF'. That is, for ead run, a diff erent randam ordering
of the genes is chasen. The modues in the problem therefore do nd, in general, have awy structura
correlation with the position d genes on the chromosome (see Figure 6-12). Figure 6-13 and Figure 6-14
show results for a GA with deterministic aowding, (as per Figure 6-4), but applied to “ Shuffled HIFF’

rather than HIFF.
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‘Tight' genetic linkage Randam genetic linkage

Figure 6-12: Alternate genetic linkage posshbilities.

A number of genes, large drcles, eat contribute interdependently (solid arrows) to a number
of aggregate dfeds, grey circles, and these mntribute to higher-level feaures, dark circles,
and so on This hierarchy pictorially represents the moduar interdependency structure of the
variablesin HIFF. This g/stem of genes must be mapped to pasitions on a diromosome. L eft)
Tight genetic linkage: Idedly, genes which are epistatically related, i.e. which contribute to
the same feaures (solid arrows), will be next to eat ather on the dhromosome. In this case,
as in regular HIFF, sexua recombination with low crossover rates (strong genetic linkage)
will be &le to recombine subsystems effedively. Right) Random genetic linkage: But
withou such a favourable situation, epistaticadly dependent subsets of genes may be
arbitrarily positioned on the cdromosome. In this case, as in “Shuffled HIFF', sexua
recombination is unable to recombine subsystems effedively (regardiess of the aossover
rate).
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Figure 6-13: Results of DC GA with one-point crossover on a 128variable Shuffled HIFF.

HIFF (Equation 11) with arandom re-ordering d the genes defines the fitnesslandscgpe. The
popuation size is 2000 individuals. Results measure the average fitness of al individuals
measured in the last 2000 evaluations of new individuals. Several curves are shown for
different mutation rates. The maximum fitness value possble in this fitness landscgpe is
1024 The maximum number of evaluations permitted is 3-10".

189



120 - GA DC, one—point mut=0 -
GA DC, one-point mut=0.0078
GA DC, one-point mut=0.0156
GA DC, one-point mut=0.031

GA DC, one-point mut=0.0625

GA DC, one-point mut=0.125

*txhyo

100 -

80 B

60 - &

size of largest correct module
X
X

p  pee il I e M
0 | | | | 1
0 0.5 1 1.5 2 25 3
evaluations (evolutionary time) « 10°

Figure 6-14: Results of DC GA with one-point crossover on a 128variable Shuffled HIFF.

Detail s as per Figure 6-9 but showing size of largest all-ones modue in popuation (rather
than average fithessof popuation).

These results, in comparison to Figure 6-5, and Figure 6-6, suppat our reasoning that successul
composition d modues via sexua recmbination requires that epistaticaly dependent genes be geneticdly

linked throughtheir proximity onthe diromosome.

6.4.3 Convergence ontrolled variation

Interestingly, uniform crossover does appea to do dightly better than mutation on HIFF (shuffled o
otherwise). This can be understood kecause dthoughthe dchances of transferring two different modues
from different parents into an off spring are minimal, the chances of nat disrupting d¢her modues that
appea in bah parents is better for uniform crosover (or one-point crossover) than it is for mutation. For

example, consider two parent strings A and B that ‘agre€ with ore anather on, say, 2 ou of 4 modues, but
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do nd agreeon the other 2 - e.g. 00001100and 00000011 Then the probability of getting from this pair of
strings to either global optima by uriform crossover is 1/2°, where d=4 in this case is the # disagreements
between parents. However, the mutation probability is much lower becaise it requires that the good
modues of all-0s are not changed whilst the incorred modues are mutated as is necessary. Spedficdly,
the best mutation rate to change half the bits and nd change the other half is 100% mutation (assgnment of
anew randam allele per locus). Thus, we seethat the variation applied by uriform crosover then is much
like that of 100% mutation oy for the modues that disagree but no mutation at all on modues where the
parents already agree In other words, variation from uniform crosover is focussed on modues where the
popuation hes not yet converged (making an interesting form of ‘convergence ontrolled variation' -
Eshelman et al. 1996. Since, in some drcumstances, this is a reasonable heuristic for focusing mutation

(Chen 1999 it may perform better than ordinary ‘un-focussed’ mutation.

However, previous work has dhown that the fad that all types of crossover preserve those parts of the
chromosome where the parents agreeis not sufficient to explain the success of one-paint crosover on
HIFF. It isin fad posdble to use a cosover operator that deliberately disrupts all 1oci where the parents
agree ad applies one-paint crosover on the parts that disagree Since this gill succeals (Watson &
Pollack 2000h, preserving similarity is not a required fedure of a aosover operator in these
circumstances. This also serves to ill ustrate that our seledion schemes make traditional disruption analysis

quiteineffedive & predicting GA successunder these ondtions.

Interestingly, this operator, does not require the use of deterministic aowding or other diversity
maintenance techniques snce the operator itself prevents the popuation from converging. It shoud be
noted however, that this result, thoughit proves the desired padnt that preserving the ayreeng loci of the
parents is not required, is dependent on the properties of HIFF (spedficdly the fad that competing
solutions to modues are the exad complement of one ancther). It therefore does not offer a general

problem solving mecdhanism, and reither doesit have abiologicd analogue.

It shoud aso be noted that although uiform crossover does better than regular mutation, the dhances of
innowation (i.e. the aquisition o a new modue) by uriform crosover deaease exporentialy as fithess

saddles become wider, and jumps require changing more loci at once In ather words, uniform crossover is
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not able to exploit the decompasition avail able in the problem and compose together sub-modues to find

new modues.

Also, one-point crossover performs better than uriform crosover - perhaps because for small schemata that

happen to have short defining length, there islessdisruption than there is with uriform crossover.

6.4.4 Linkagelearning

In biologicd systems, the position d genes might be alaptively re-ordered by variation mechanisms, such
as inversion and trandocdion, that re-order the position d genes on the diromosome. In engineeing
domains, favourable linkage caana generally be asaumed. Accordingly, many “movinglocus’ (e.g. Mess/
GA, Goldberg et a. 1989 and “linkage leaning’ schemes have been proposed (see 3.4.2). The Shuffled
HIFF problem provides a good test problem for these methods and for biologicdly plausible models of

gene re-ordering.

However, gene re-ordering medchanisms ultimately rely on a linea ordering representation d the
dependencies of genes. This works well in HIFF, where there is a natura lineaisation d the treelike
dependency structure (like the flattening o a hierarchica document structure into the linea order of pages
in abook). But thisis an approximation to the ided linkage structure. For example, under HIFF, it shoud
not be the cae that the 4" and 5" genesin this gring “00001111 are any more likely to travel together than
the 1* and last, but of course they are when their linkage is dependent purely onlinea separation. Similarly,
if the span of the hierarchy is wider (the number of sub-modues per modue is greaer) this problem is
more aaite, sincefor example we caina arrange threemodues on a string so that all modues are equally
close to ead other. Moreover, it is not necessrily the cae that al dependency structures can be
appropriately lineaised even approximately. This may mean that compasition via sexual recombination hes

limitations even when combined with the adion d re-ordering mechanisms.

Other “linkage leaning’ methods do not rely on gene re-ordering™ e.g. Distribution estimation algorithms,

like the Bayesian Optimisation Algorithm, BOA, (Pelikan et al. 1999. dBOA, a variety of BOA, adually

46

In the EC literature, the generic term ‘linkage’ is used to refer to bah genetic linkage (coming from the
proximity of genes on the chromosome), and ‘epistatic linkage' meaning what we have cdled epistatic
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works extremely well on Shuffled HIFF” (Pelikan & Goldberg 200Q. Interestingly, the operation o the
BOA algorithm can be seen to be analogouws to an incremental assembly of small dependency structures
into larger dependency structures (as condtional probabiliti es are incrementally added to an initially empty
Bayesian network) and is, in this resped, a statisticd method for implementing a form of compasitional
variation. This makes it quite different in operation from regular genetic dgorithms (with or without

crosover) and avery interesting dredion for future modelli ng.

6.5 Summary of simulation results

Figure 6-15 and Figure 6-16, showing results on HIFF, clealy show that, as expeded, the GA with
appropriate diversity maintenance and tight genetic linkage succeals easily (finds a maximally fit
configuration in 2830 runs), and all other algorithms examined so far fall (do nd find either global
optimum in any runs), on this problem under these wndtions. Figure 6-17 and Figure 6-18, showing
results on Shuffled HIFF, clealy show that, al the methods we have seen so far are unable to dscover and

manipulate modues effedively onthis problem under these mndtions.

dependency. These two concepts are often conflated in the EC literature since it is assumed that ‘good
linkage' means a tight correspondence between gene positions and epistatic dependency. In fad, the
structure of epistatic dependency is quite adifferent isuue from genetic linkage—as is clea from the
fad that in Shuffled HIFF we retain the same hierarchicdly moduar structure of epistatic dependencies
whil st randamly re-ordering the positions of genes. (see3.4.2 and Figure 6-12).

‘" dBOA performs very well in terms of fitness evaluations but it does introduce alarge cwmputational

overhea in systematicdly analysing the fitness correlations of co-occurring gene subsets over al the
strings in the popuation. Additionally, dBOA also requires a diversity maintenance method kased on
Hamming dstance which happens to be very appropriate in HIFF - in the next chapter we will show a
method that solves Shuffled HIFF withou using the asumption that genetic dissmilarity (Hamming
distance) isagoodindicaor of functional dissmil arity.
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Figure 6-15: Summary of simulation experiments 1a- RMHC and GA methodson HIFF.

Simulation results for various algorithms on 128variable HIFF. Best mutation rates (of those
sampled ealier) are used for eathh method RMHC - Random Mutation Hill -Climber
(mut=0.0938), ‘ GA panmictic’ - Genetic Algorithm withou any diversity maintenance, using
fitness proparttionate seledion, and ore-point crosover (mut=0.00798. ‘GA DC uniform’ -
GA with Deterministic Crowding diversity maintenance method, and no gnetic linkage (i.e.
uniform crosover) (mut=0). ‘GA DC one-point (TIGHT)' - GA with DC, and strong and
favourably ordered genetic linkage (i.e. one-point crossover with tight linkage) (mut=0.031).
Error bars srow plus and minus one standard deviation.
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Figure 6-16: Summary of simulation experiments 1a - sizeof largest module discovered.

Experiments as per Figure 6-15 but showing the size of the largest modu e discovered.
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Figure 6-17: Summary of simulation experiments 1b - RMHC and GA methods on
Shuffled HIFF.

Simulation results for various algorithms on 128variable HIFF. Best mutation rates (of thase
sampled ealier) are used for eahh method RMHC - Random Mutation Hill -Climber
(mut=0.0938), ‘ GA panmictic’ - Genetic Algorithm withou any diversity maintenance, using
fitness propartionate seledion, and ore-point crosover (mut=0.00798. ‘GA DC uniform’ -
GA with Deterministic Crowding diversity maintenance method, and no gnetic linkage (i.e.
uniform crosover) (mut=0). ‘GA DC one-point (RAN)' - GA with DC, and ore-point
crosover, and randam genetic linkage (mut=0.031). Error bars show plus and minus one
standard deviation.
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Figure 6-18 Summary of simulation experiments 1b - size of lar gest module discovered.

Experiments as per Figure 6-17 but showing the size of the largest modu e discovered.

6.6  Analysisof sexual recombination on HIFF

In this sdion we provide some analytic results for various recombinative dgorithms applied to HIFF. For
these purposes we will not attend to biologicd plausibility of ead model becaise our intent is only to

uncerstand the mmbinatorics invalved in principle.

A nonseparable building Hock problem such as H-IFF is not amenable to some analytic goproaches
usualy adopted in the literature. Firstly, it is not possble to apply any anaysis that assumes that the
popuation as a whole @nverges incrementally on particular hyperplanes. In H-IFF the operation o
recombination may be defeaed if the popuation is all owed to converge & even ore locus. Secondy, most

analyses assume separable problems, and, surprisingly often, focus on the extreme cae where every hit is
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separable — the max-ones problem. However, Wright and Zhao (1999 provide an approach to analysis that,
although dreded at separable building Hock problems, can be adapted for our purposes. Their approach is
to prove that there is always away to improve fitness and then to give asolution time based onthe product
of the length of the path to the solution, and the time for ead step onthe path. Here we extend thiswork to

use the same gproach for a non-separable problem.

It can be quite straightforward to cdculate an expeded time to solution when there ae nolocd optimain a
problem — that is, when there is a path of monaonicdly increasing fithessfrom any pdnt in the seach
spaceto the solution. In this case, the expeded timeis Smply the product of the length of this path and the
expeded time for eat step onthe path. This is the gproach that we will take in the following analyses.
The interesting part will be to prove the existence of such a path uncer recombination despite the fad that
there is no such path for a mutation based algorithm. Ordinarily, such a straightforward approach would be
defeded because both the existence of a path, and the time for a step, are dependent on the state of the
popuation when using recmbination. However, to cdculate an upper bound onthe expeded time it is
sufficient to know certain properties, or invariants, of the popuation rather than its exad state. For
example, Wright and Zhao (1999 provide an analysis of arecombinative dgorithm on a separable building
block problem by using the property of the dgorithm that prevents aleles from being lost. Under these
condtions (that we will detail shortly) there is always ssme recombination operation that will i mprove the

fitnessof the best individual in the popuation.

Here we etend this idea to a nonseparable building Hock problem i.e. HIFF. First, we analyse a
‘recombinative hill-climber’ that applies crosover repededly to just two strings. This smplificaion
provides appropriate invariants that enable us to prove that there is dways ome choice of crosover points
that will i mprove fitness and to give an expeded time to find such an improvement. Accordingly, we ae
able to gve an analyticd time to solution onthis problem. These analyses are posshble because of particular
regularities in the standard form of the problem; when these regularities are removed the recombinative
hill -climber fails. Nevertheless the principle of an algorithm that foll ows the recombination landscepe is
useful to us in lessrestricted cases. We show that a variant of the problem that is not solvable by the

recombinative hill-climber is olvable by atrue GA —that is, a GA using a popuation. Though ou analysis
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does not transfer diredly to the true GA, a solution time based onthe asaumption that the GA is exploiting

the recombination landscape agrees with empiricd results.

6.6.1 Analysison separable problems

The analysis provided by Wright & Zhao (1999, and the analyses that foll ow, feaure the Gene Invariant
GA (GIGA) (Culberson 1992. The variant of GIGA that best suits our purposes is described in Figure

6-19.

e Choose aninitial popuation (seetext)

¢  Repea until satisfied:
e Pick two parents at random from the popuation.
e Produce apair of off spring from these parents using crosover only.
e If thefittest off springisfitter than the fittest parent then

replacethe two parents with the pair of off spring.

Figure 6-19: A simpleform of the Genelnvariant GA.
There ae several feaures to nde dou this algorithm. Competition is restricted to parents versus their
offspring. The two dfspring are aeaed from the parents using the same aosver point(s) and so eat
gene dorated by the parents will be aguired by exadly one of the offspring. Given this and the fad that
either bath doffspring are retained o both parents are retained (and there is no mutation) it follows that
alleles are never lost from the popuation — hence, ‘Gene Invariant’ GA. Finally, note that the dgorithm is

eliti st — the fittest member of the popuation canna be replaced by an inferior individual.

Wright & Zhao add several other assumptions to this model: the problem is sparable; a set of crossover
masks is used that restrict crossover to operations that move exadly ore block from one parent to the other;
finaly, the popuation is gstematicdly initialised such that every passble bit combination within eat
block is present. This initialisation gves a popuation size of ¢, where ¢ is the size of the dphabet and k is

the number of bitsin ablock.

These simplifying assumptions enable auseful property to foll ow: given the geneinvariance property of the

algorithm and that crossover paints are not permitted to move partial blocks, it is guaranteed that building
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blocks are never lost from the popuation; since d possble caxdidates for a block are present in the initial
popuation and they can never be logt, there will always be some individual in the popuation that has any
block that shoud be required. Thus, if the best individual in the popuation is not yet optimal then it must
have some sub-optimal block, and this block can be obtained from some member of the popuation wsing
some aosover mask. This is the invariant property of the popuation that is required for the analysis.
Althoughthe exaad structure of the popuation is not known, this property ensures that there is always me

way to improve fithessusing recombination.

To cdculate an upper bound onthe expeded time, T, required for the popuation to find an individual that
has readed the global optimum® Wright & Zhao focus attention onthe fittest individual in the popuation.
Their version d the dgorithm asserts that one of the parents is the fittest individual (and the other parent is
seleded at randam). The possble states that the dgorithm may passthroughin the @murse of seach, i.e. the
possble popuations, are then categorized into equivalence sets based onthe fitnessof the fittest individual.
T isthen given by the maximum posdgble number of fithessincreases of this fittest individual, and the time
expeded for ead increase. Thisyields T=Br(D/d), where B is the number of blocksin the problem (equals
the number of crossover masks), r is the size of the popuation, D is the difference in fitness between the
global optimum and the worst possble string, and d is the diff erencein fitnessbetween the global optimum

and the next best string (i.e. the minimum fitnessincrease for finding a wrred block).

In Theorem 1 below we modify the proof provided by Wright & Zhao and wse the same assumptions abou
the problem, crosover masks, and initialisation. However, Wright & Zhao caegorize the state of the
algorithm using the fitnessof the fittest individual in the popuation and always use this individual as one
of the parents. But, we will categorizethe state of the dgorithm using the number of fully optimised blocks
in a particular individual, which we will always use & one of the parents. But, this individual may nat be
the fittest individual in the popuation. Indeed, althoughthe fittest individual possble (the global optimum)
must have dl blocks fully optimised, the fittest individual in the popuation at a given time does not

necessarily have any blocks fully optimised.

48

In Wright & Zhao (1999, time, T, is measured in steps of the dgorithm in Figure 1, but eat step
requires two evaluations.
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In order to transform the theorem to work on the number of optimised bocks we need to be sure that we
never reduce the number of optimised blocks when we accet an df spring. We caand diredly measure the
number of fully optimised bHocks in an individual; neither can we infer the number of fully optimised
blocks from a fithessmeasure. However, we can use the following olservation: a fithessincrease aeded
by changing ore block in an individual canna reduce the number of fully optimised blocks in that

individual. Figure 2 describes a modified algorithm that ensures this condtionis applied.

e Choose aninitial popuation (as before)
e Pick one parent at randam from the popuation, p1.
*  Repea until stisfied:
e Pick one parent at randam from the popuation, p2.
e Produce apair of off spring from pl & p2 using crossover only.
Let cl be the off spring that results from p1l plus one block from p2; let ¢c2 result
from p2 plus one block from p1.

e If clisfitter than pl then replacepl with c1, and p2 with c2.

Figure 6-20: A modified Gene Invariant GA.
This algorithm is amost the same & the dgorithm in Figure 6-19, but the replacanent is more spedfic
abou which dff spring is compared to which parent. Note that the dgorithm only seleds one new parent in
ead iteration, and orly evaluates one of the new off spring. This means that maybe the second df spring,
c2, was fitter than the one evaluated — and maybe we missd an oppatunity to increase fitness But for our
purpases, it is more important that we know that p1 does not deaease in the number of optimised blocks.
Although the dgorithm in Figure 2 explicitly makes reference to the fad that the partitions of blocks are
known, and that the aosover masks only swap ore block at a time, we ae not adding any new
asumptions to those used by Wright and Zhao. Importantly, note that the modified algorithm maintains the

geneinvariant property, and the property that buil ding Hocks are never lost from the popuation.

Theorem 1: An upper bound onthe expeded time for some individual in the popuation to find

the globally optimal string, using the dgorithm in Figure 2, is given by T<B’r, where B is the
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number of blocks in the separable problem and, r is the size of the popuation (r=c', where cisthe

alphabet size and k is the number of symbadsin ablock).

Proof:* Partition the set of possble dgorithm states into caegories based on the number of
optimal blocksin pl. Category, j, for j=0,1,...,B, isthe set of states where p1 has exadly j blocks
fully optimised. Let § be the randam variable which denctes the number of evaluations that the
algorithm spendsin category j. If the GA isin caegory j with j<B, then p1 has ome block which
isnot at optimum, and there isa aosver operation that will swap in the optimal configuration o
bits for that block from some other member of the popuation. This operation moves the dgorithm
State to a new caegory and hes a probability of at least 1/(Br) since there ae B crosover masks
and r possble choices for the seaond parent. An upper boundfor the expeded time to leave any
dtate is the inverse of alower bound onthe probability of leaving that state. Thus, the expeded
value of §, at j<B, is a most Br. The expeded time to reat a popuation that contains the

globally optimum string is at most the time it takes for the dgorithm to reat category B, i.e.

B
T< Zg <Br [end).
e

The intuition behind this analysisis now very simple. T is given by the product of the number of blocksto

be found and the time to find a block in ancther individual and move it in by crossover. The number of

blocksis B, and getting a block into the best individual requires finding the right crossover mask (of which

there ae B), and picking the right dona individual (of which there aer) —henceB’r, or B(c).

This expeded time has the desirable property that it is not dependent on any measurement of fitnessvalues

in the problem. And the resultant upper boundfor T is lower than that which Wright & Zhao provide, at

least whenever B<(D/d). Both analytic times asaume that ead crosover mask corresponds to exadly one

block. However, Wright and Zhao's analysis could be modified to a more general set of masks, giving T <

Mr(D/d), where M is the number of crosover masks used. This st of masks may include masks that match

with more than ore block so long as they only match with whole blocks, and it must include the set of

“ Thisproof isadired adaptation o that provided by Wright & Zhao (1999.
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masks that correspondto the single fitnessblocks, as before. In any case, an approach based on courting

optimised bocks, rather than fitnessimprovements, is better suited to our needs in the foll owing sedions.

So far we have an upper bound onthe expeded time to solution for a recmbinative dgorithm on a
separable building Hock problem. However, we have to ask whether the simplified problems and
algorithms involved in these analyses have catured the interesting properties of a GA. We have permitted
modificaions to the dgorithm that do nd violate the asumptions made éou the problem — but we notice
that we ae getting gadually closer to something much simpler than a GA. In fad, natice that using orly
the same asumptions abou a problem as those used abowe (i.e. that the partitions of building Hocks are
known), a smple systematic hill -climbing technique would suffice That is, in a separable problem with
known partitions, ead subset of interdependent parameters may be searched exhaustively —i.e. ead block
may be processed systematicdly by testing every possble bit combination within that block and seleding
the highest fitness configuration. Whilst one block is being processd, we hold the setting o bitsin ather
blocks constant to some abitrary configuration. The particular configuration o bits used in ather blocks
does not matter since we know that the blocks are separable. Since systematic seach within a block
requires testing ¢ bit configurations, and there ae B blocks to be processed, this smple systematic seach

takesonly T < Bc".

Further, for their analysis using GIGA, Wright & Zhao suggest that if the partitioning o blocks is not
known then their analytic time can be multiplied by the number of posdble partitionings. Sincethis can be
applied to our simple systematic hill -climber too, by this analysis, the simple methodis dill superior even if
the partitioning is not known. We make this observation nd to criticize the gproach of Wright and Zhao,
rather we present it as an ill ustration that separable problems smply do nd justify the use of a popuation-
based recmbinative technique. Nonetheless the @ove version d Wright & Zhao's analysis provides a
good starting pant for an analysis of GIGA on H-IFF which is not separable and, we shall argue, does

require arecombinative dgorithm.

6.6.2 Analyseson HIFF

The gproach of Wright and Zhao provides an appropriate tod for analysing the adion d sexual

recombination on HIFF. Their approadh is quite intuitive: their algorithm (GIGA detailed shortly) and
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asumptions guaranteethat there is aways sme coice of parents for which some aosver operation can
produce an off spring that is the next step in a progresson o individuals which increase in fithess In other
words, their approach isto prove that separable building Hock problems have no locd optima using their
algorithm. We follow the same gproach bu for non-separable building Hock problems, and whereas the
proof of Wright and Zhao is based onthe fitnessof an individual, our approac, as used in Theorem 1, is

based onthe number of blocksthat are fully optimised in an individual.

Condition 1: There is always ome doice of parents for which some aosver operation can
prodwce an offspring that is the next step in a progresson d individuals which increase in the
number of fully-optimised bulding Hocks. (Except when the progresson hes alrealy arrived at a

global optimum.)

This condtionis central to ou approach in this sdion. It refersto the aility of an algorithm to utili zethe
building Hock structure of a problem. Or alternatively, to an invariant property of a popuation that enables
an algorithm to utili ze the building Hock structure. Any agorithm that satisfies Condtion 1 and follows
such a progresson will take time T<BS, where B is the number of blocksto be foundin a globally optimal
string (equals the maximum number of steps in the progresson), and Sis the maximum expeded time for
ead step in the progresson. For arecombinative dgorithm where Condtion 1 hads, S<PM, where P isthe

number of diff erent ways of choasing parents, and M is the number of crossover masks, thus

T<BPM.

Equation 12: Expeded timeto solution in terms of steps on path to ogptimum
Equation 12 will hald for any problem that can be described in terms of blocks in some way such that
Condtion 1hdds. Proving that Condtion 1 hdds (and that an algorithm foll ows this progresson) will be
more or less difficult depending onthe ssaumptions made @ou the dgorithm and the problem. In the
separable problem addressed in Theorem 1, Condtion 1 hdds because dl possble mnfigurations for ead
block are given by initialisation and canna be lost by the variation operators that the dgorithm uses. In
Theorem 1, M=B, and P=r, the size of the popuation. We caina exped to prove Condtion 1 for a

standard recombinative dgorithm on a general nonseparable problem. However, H-IFF is ecificdly
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designed to be eay for a recombinative dgorithm and, GIGA is idedly suited for adaptation to our

purposes.

6.6.3 Analysesfor arecombinative hill -climber

For Theorems 2 and 3we will reduce GIGA to aform of hill -climber — by which we mean that we will not
use apopuation to speek of — just two strings. However, this will be arecombinative hill -climber not a

mutation-based hill -climber, Figure 6-21.

e Initialise apopuation d two randam, but complementary, strings.
¢  Repea until satisfied:
e Usingthetwo strings as parents creae apair
of off spring bycrossover only.
e If thefittest off springisfitter than the fittest parent then

replacethe parents with the pair of off spring.

Figure 6-21: Recombinative hill -climber based on GIGA.
Hoehn and Reeves (1996 cdl recmbination like that above “complementary crossover”. Alternatively,
one might cdl it a maao-mutation hill -climber (MMHC) from (Jones 1995 that uses bit-flip mutation
(instead of assgnment of a new randam value). Arguably, this is a degenerate form of recmbination.
Hoehn and Reeves point out that a second parent is redundbnt. And we ncede that the doice of
complementary parents is idedly suited to the complementary schemata rewarded in H-IFF. Nonetheless
we maintain that it is more informative to regard the &owve dgorithm as recmbining two strings (that
happen to be complementary) rather than hit-flipping. Hoehn and Reeves agreethat there isa dose relation
between this operator and crossover, and suggest that the fitnesslandscgpe under this operator “reasonably
approximates the aosover landscape”. The purpose of using this algorithm here isto ill ustrate the cncept
of the adosover landscape as it isfoundin H-1FF, and to provide abasis for understanding hav atrue GA

might operate on this classof problems by avoiding the locd optima inherent in the mutation landscape.

The following theorems do not assume that the dgorithm is provided with a set of crosover masks

correspondng to blocks in the problem. Ordinary crosover may be used with no restriction onwhere
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crosover points may fall.* Theorem 2 is based ontwo-point crossover, Theorem 3 is based on ore-paint

crosover - in the latter case it is a little more difficult to show that Condtion 1 hdds. Note that these

analyses are not restricted to just the one problem instance defined in Equation 11. H-1FF has regular block

sizes within a level, regular fitness contributions for blocks within a level, exadly two sub-blocks per

block, and dobal optima that happen to be dl-ones and all-zeros. The analyses hald for the dass of

problems with any o these particulars relaxed, but for these analyses, the global optima must be

complementary, and the fitnesscontribution d competing schemata in the same partition must be the same.

We will discuss in Sedion 0 an extension to the dass where building Hocks are not necessarily

complementary.

Theorem 2: T<¥N’, where T is an upper bound onexpeded time to find a global optimum in H-

IFF using the dgorithm in Figure 6-21 with 2-point crossover, and N is the problem sizein hits.

Proof: From Equation 12, T<BPM if Condtion 1 hdds. For H-IFF, B, the maximum number of

blocks that need to be discovered in aglobally optimal stringis

(lgN)-1

> 2P =N-1,
p=0

thus B<N (Here, and henceforth, we use “Ig” to mean logarithm base 2). For two-point crossover,
M, the number of possble pairs of crosover paintsis ¥sN(N-1)<¥%N’. And for the dgorithm given
in Figure 6-21, the number of different ways to choose parents, P, is just 1. Thus, T<¥aN’ if
Condtion 1 hods. Now prove that Condtion 1 hdds: The two strings are complementary at
initi ali sation and since the gene invariance property of the dgorithm halds the strings must always
be cmplementary. This means that if a block is discovered in ore individual the complementary
block must necessarily be discovered in the other individual. Therefore any bock nat present in
one individual can be swapped in from the other individual given the right crossover mask. Two-

point crosover is a superset of the aosover masks required for this crosover to occur. The
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Toughin this sdionwe ae asumingtight linkage.
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algorithm will deted such a succesdul crossover and follow this progresdon since it will always

result in afitter individual. So Condtion 1 hadds. [end]

Theorem 3: T<N’, where T isan upper bound orexpeded time to find aglobal optimum in H-IFF

using the dgorithm in Figure 6-21with 1-point crosover, and N isthe problem size

Proof: Following the proof of Theorem 2, the number of crosver masks for one-point crossover
<N, and thus, T<N’ if Condtion 1 hdds under one-point crosover. Now prove that Condtion 1
hads: If an individual is non-optimal then it contains me block that either has both of its sub-
blocks corred (but not matching) or has sme sub-block incorred. This applies reaursively.
Consider the small est incorred block that has both of its sub-blocks corred (passbly just a pair of
bits) and consider the aosover point between them. Since no fitnesscontribution can occur for a
block that spans the aossover point (because it would include mismatched sub-blocks), the fitness
of thisindividual is the sum of fitnesss of the sub-strings to the left and right of this point. The
other individual used in the dgorithm has the same fitnessas the first, and its fitnessis the same
sum of fitnesses from the left and right sub-strings defined by the aosover point. Thus, if this
crosover point is used, the fitness of the resulting dfspring will have & least the same
contribuwtions from the two sub-strings and in addition, since the two individuals are
complementary, the aosover will necessarily introduce matching sub-blocks that creae anew
corred block spanning the aosoover point. Thus there is aways me one-point crosover
operation that will i ncrease the number of corred blocks in the best individual, i.e. Condtion 1

hads. [end]

Figure 6-22ill ustrates the reasoning for Condtion 1 und@r one point crosover.
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11010001

1101----

--01----

110| 10001

001 01110

110| 01110

--0]/0----

Consider an arhitrary string as an example. This $ze-8 string is sub-optimal.
It is compaosed of two incorred size-4 blocks. So we reaurse on either of the

two incorred size-4 blocks, for example, the left block.

This dze 4 block is composed of a mrred size-2 block (left), and an

incorred size-2 block (right). So we reaurse onthe incorred block i.e. right.

This sze 2 bock is sub-optimal. But, it is composed of two corred size-1l

blocks, that are incompatible.

So, we placethe aosver point between the two size-1 blocks (bits) at this
point. The fitness of the eitire string can be epressed as the sum of
F left=f(110--- - - - ) onthe left hand side of the aossover point, and
F_right=f(- - - 10001) ontheright of the paint.

The other string wsed in the dgorithm is the exad compliment. And the left
and right sides of the dosver paint have the same fitnesses, i.e. F_left and
F_right.

The string creaed by combining the left of the first string and the right of the
seoondstring, still has at least the fitnessof F_left + F_right.

But in addition, it now has an additional corred block here, creaed aadoss

the aosver paint.

Figure 6-22: Illustrating that Condition 1 holds.

llustrating that Condtion 1 hads using recombinative hill -climber on H-IFF with ore-point
crosover. Since there is adways ome aosver point that comes between corred but
incompatible blocks, it is aways possible to use this point to creae astring that has higher
fitnessby using ore-point crossover.

Thus far we have proved that Condtion 1 hadds on H-1FF for the dgorithm in Figure 6-21 using bah 1-
point and 2point crosover. This dows that althougha mutation Hill-climber finds a number of locd
optima that is exporential in N, H-IFF has no locd optima & all under recombination — there is always
some way to increase the number of corred blocks, as Condtion 1 states. In this sense, H-IFF exemplifies
the transformation d a fithesslandscape under different operators from a problem that is very hard under

mutation into a problem that is as easy as it could be under crosover. Having shown that there is always a

path to an opimum, we now focus onimproving ou estimate of the time to traverse this path.
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We may improve on the upper bounds given in theorems 2 and 3 byreturning to ou original reasoning,
T<BS where B is the number of blocks to be found (i.e. steps on the path to the optimum) and Sis the
expeded time to find ablock (i.e. timeto take astep). In the ébove theoremswe prove Condtion 1to asert
that there is at least one aosover operation that will find ablock given some choice of parents. So we have
used S<PM, and acordingly, T<BPM. But it shoud be dea that for this algorithm on H-1FF there will be
many oppatunities to increase the number of corred blocks. For example, at the beginning o seach there

are many size-two blocksto be foundand many pcessble aossoversthat may find ore.

So, we can use an estimate of time to progressalong the path to the optimum that takes acourt of the fad
that the expeded time for a step changes with ead step, as the number of posshble ways to find a block
changes. The timeto find ore of q avail able blocks is PM/q, thus;

S PM

T2,

Equation 13: 12 more accur ately

where B is the maximum number of steps in the path to the optimum, P is the number of
choices of parents, M is the number of possble acosvers, and g, is the number of ways that
an additional block can be swapped-in at the b" step.

Thus, we may write:

T<PMu,

Equation 14: 13 simplified
where u isthe sum of 1/q for al steps in the path to the optimum. Theorem 4 uses an upger bound onu to

give a improved time to solution onH-IFF.

Theorem 4: T<¥MIg’N, where T isan upper bound orthe expeded time to find aglobal optimum
in H-IFF using the dgorithm in Figure 4, M is the number of crossover masks (i.e. M=N-1<N for

1-paint crossover, M=%2N(N-1) for two-paint), and N is the problem sizein hits (for N>20).

Proof: To use T<PMu we must find u which isthe sum of 1/q over al stepsin the path, where q is
the number of blocks that may be discovered at that step. At the first hierarchicd level in H-IFF

there ae N/2 size-2 blocks to be discovered (in the worst case, we may asaume that the initial
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strings have nore of their size-2 blocks corred). By the reasoning o Theorems 2 or 3, any ore of
these blocks may be discovered by ore or two-point crosover. Thus g,=(N/2). There ae now N/2-
1 blocks remaining to be foundat the first level, so g,=(N/2-1). For the entire first level we require
the sum of 1/q, through 1q,=1+1/2+1/3+...+1/(N/2) < In(N/2)+1. The sum of 1/q for the pth

level is< In(N/2°)+1. The overal sum of 1/q for al levels, u, is

IgN
=S (InN-pln2+12)
p=1
=IgN(2 +1)-2 (gN(gN +1)

=1n2|g? N+(1-122)IgN.

For the dgorithm in Figure 4, P=1. So,
T<Mu=M(12Ig? N+{1-12)igN)

Thus Tis O(MIg’N), and numericaly, T< ¥MIg°N, for N>20. [end]
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Summary of analysisfor recombinative hill climber

one-point two-point
crosover crosover
theorem 2 N?
theorem 3 15 N®
theorem 4 Y% NIg’N Y%NIg'N

In summary, Theorem 4 reduces the upper bound onthe expeded time for the recombinative hill -climber

by at least afador of N to Ig°N in ead case.

6.6.4  From arecombinative hill -climber to arecombinative population

Theorems 2 through 4 e the recombinative hill -climber of Figure 6-21, and in fad, demonstrate that a
popuation gedaer than this degenerate cae of two is not strictly necessary to solve the canoricd form of
H-IFF. However, thisis only the cae becaise of biases in the dgorithm that match particular properties of
H-1FF. Spedficdly, GIGA is biased toward finding complementary individuals (a bias which becomes ‘the
rule’ when the popuationis of size 2), and H-1FF has competing schemata that are exadly complementary.
It is quite eay to bred this nonpopuation besed version d GIGA by making the global optimain H-IFF
non-complementary. We can dothis by choosing two random strings as the global optima and rewarding
left and right sub-strings reaursively. Alternatively, and withou lossof generality, we can keep ore of the
optima & all ones and randamise the other. Either way, the bitsin the two gobal optimawill agreein some
loci and be complementary in athers. This prevents the dgorithm given in Figure 6-21 from succeealing
sincethe mmplement of a good bock is nolonger (necessarily) a good Bock. Equation 4 dfines a variant
of H-IFF based onthisidea that we will refer to as H-IFF2. F(A) runs throughthe string twiceusing f and
sums results; before the first passthe string is XORed with ore global optimum, and before the seaondit is
XORed with the seaond dobal optimum. f(A) now simply chedks for blocks of al zeros. The fitnessof a

string, A, under H-1IFRF2 is given by:

F(A)=g(AUg1)+g(ALg2),
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1 Jf N=1

g
g(Sl,...,SN) = %\lfl(sl"'WS() + g(<Sl >) + .+ g(<Sk >) ,otherwisi

Equation 15: HIFF2 = HIFF with arbitrary global optima.

where pllq isthe bit-wise exclusive OR of p with g, gl andg2 are thetwo dobal optima, and
the other variables are @ per Equation 11: i.e. S isthei" variable of the configuration, <S> is
the i disjoint sub-partition o the variables, i.e. for ‘unshuffled ™ HIFF, <S>=(s,,,.....S,), T
is the base fitness function, defined below. N=k" where HOZ" is the number of hierarchica
levelsin the system or subsystem, and kis the number of sub-modues per modue.

f'(p,...p)=1if ((BLi: p=0), and O aherwise.

Note that f* is modified to accent only blocks of zeros as high fitnessconfigurations. Competing schemata
are introduwced by the faa that the two global optima ae not identicd. Note dso that HIFF and H-Equal are

the spedal case where the two global optima aethe string o al zeros and the string d all ones.

In the experiments that follow we will use the dl-ones gring as g1, and g2= “010101..” (i.e. loci with an
oddindex take the value O, and the even loci take the value 1). Thus the two optima have exadly 50% of
bits in agreement and 53% complementary. The proofs of Theorems 2 through 4are naot valid for the
function in Equation 4 — it shoud be dea that the recombinative hill -climber canna succea on this
problem. However, if we re-introduce an adequate popuation we can recover a successul algorithm.
Unfortunately, we ae nat able to prove atimeto solution onthis problem using a popuation. However, we
will seethat an estimate based onassumed invariants of the popuation gvesreasonable times. Spedficdly,
we use the rather heavy-handed assumption below. This assuumption states explicitly that diversity is being
maintained appropriately for recombination to work effedively. It suppases a level-wise discovery of

blocks and that all members of the popuation progresstogether.

Asaumption 1: When looking for a block at level p, all individuas in the popuation consist of
complete blocks from level p-1, and these blocks will be asub-string d either global optimum, g1

or g2, with equal probability.

** Wewill also consider randam linkage or ‘shuffled’ versions of HIFFin later experiments.
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Theorem 5: T<¥NIg’N, where T is an upper bound orexpeded time to find a global optimum in
H-1FF or H-IFF2 using a GA with two-point crosover, where Asamption 1 hdds, and N>20 is

the problem size

Proof: Using T<Pmu, (Equation 14). Withou the mndtion that every pair of parents are the exad
compliment of one another we caxna apply the reasoning o one-point crosover from Theorem 3.
But the reasoning for two-point crosover from Theorem 2 applies with a dight modificaion.
Since we do not assume that the parents are necessarily complementary but rather they consist of
corred sub-blocks of either type with equal probability, half of the blocks svapped-in will make
no improvement. The sum of 1/g, where q is the number of ways to make an improvement at ead
step, is therefore twice the value of u cdculated in Theorem 4. Given that Asaumption 1refersto
al individualsin the popuation, the same oppartunity for improvement is avail able for any choice
of parents, so P=1. The expeded time to solution is therefore twice that of Theorem 4, with

M=%N(N-1)<¥5N’for two-point crossover. [end]

This estimate of the expeded time for a GA on H-IFF takes no acmurt of the popuation size, seledion
presaire, or any aher asped of the dgorithm — all of these ae ambedded in Assumption 1 Nonetheless
our empiricd results given in the next sedion gve times to solution that are under this upper bound on
expeded time and, as we will discuss(6.7.3) suppat the validity of the ssaumption for our experimental

set-up.

6.7 Empirical ill ustration of analytic results

6.7.1  Simulation for Theorem 4: Recombinative Hill -climber with one-point crossover on H-IFF.

To validate Theorem 4 we implemented the dgorithm of Figure 6-21 with ore-paint crossover. Figure 6-23
shows the results of 30 runs on ead problem size N=32 douling to N=4096 All 30runswere successul at
every size We show the fastest, the slowest and the mean time to find the solution from ead N. The
analytica time, T<¥NIg’N, provides a good upgr bound It appeasto betoo Hgh byafador lessthan IgN

(see¥2NIgN curve for comparison). Figure 6b) shows the same dataonaloglog scade.
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Figure 6-23: Performance of recombinative hill -climber on H-1FF.

6.7.2  Simulation for Theorem 5: GA with two-point crosover applied to H-1FF2

Theorem 5 is not based onany perticular GA and empiricdly, we find that the dgorithm in Figure 6-4,
deterministic cowding, works faster and more reliably than GIGA on this problem. This is possbly
becaise deterministic cowding allows ome convergence whil st also segregating competition and thereby

maintaining dversity.

Figure 6-24 shows the solution times for the dgorithm in Figure 6-4 for N=32 doulting to N=256 and for
popuation sizes from 32 doulting to 4096 Average solution times over 30 runs are shown orly for those
popuation sizes that succealed onat least 90% of runs (in an evaluation limit of 200times the popuation
size). For example, only the popuation size 4096 succealed reliably on N=256. We seethat the time to
solutionis approximately linea with popuation sizefor those sizes that succeal. We dso naethat for eath
douling d N, the minimum popuation sizethat succeals reliably quadruples (Seelog log scde in Figure

6-24b).
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Figure 6-24: Performanceof GA on H-1FF2, various problem sizes & population sizes.
Since we ae interested in whether there is any configuration for the GA such that time to solution is
reliably better than ou upper bound we now focus on the smallest popuation size that succeals reliably.
We extrad the average time to solution for ead N using this popuation size, i.e. the first point on eadh
curve. These points are compared with analytic time, from Theorem 5 in Figure 6-25. This expeded time,

T<¥NIg°N, provides an owerestimate of the experimental time.
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Figure 6-25: Performanceof GA on H-IFF2 using smallest reliable population.
The fad that the empiricd time is better than ou analytic time does not necessarily mean that Assumption
1 was corred. However, we can make some statements about the operation d the dgorithm from this
result. Note that the dgorithm uses elitist replaceanent; an individua can orly be replaced by a new
offspring if the new individual is fitter. An algorithm incorporating such a replaceament strategy canna
succeal urlessits variation operators succesully manipulate the search spaceso as to ensure that there is
always at least one way in which afitter individual can be aeaed from the arrent popuation. Note dso,
that in H-IFF, since dl blocks within a level are the same fithess and Hgher level blocks must contain
corred lower-level blocks, superior fitnesscan orly arise from a greaer number of corred blocks. Thus we
know that sincethis algorithm succeels then there must be aprogresson d individuals with monaonicaly
increasing number of corred blocks, i.e. Condtion 1 must be true. Further, we may say that an algorithm
that performs better than ou analytic time, as this algorithm does, either has more oppatunities to find a
next step on a path to the optimum, or has a shorter path than we than we though. These observations
sugeest that the GA is able to properly exploit the decomposable structure of H-IFF by following the

crosover landscgpe.
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6.7.3 Summary of analysis ®dion

This dion hes provided an analytic time to solution for a recombinative dgorithm on a particular non
separable building Hock problem. The upper bound onexpeded time is based on proving a path to the
optimum and the time for ead step onthe path. In the limited case of a popuation d two we have proved
that the expeded time to solution is at most O(NIg°N), where N is the size of the problem in hits. This is
ill ustrated empiricaly. For the more general popuation case we provide atime O(N’Ig’N) based on the
asumption that, at any time, the state of the popuation is duch that the dgorithm is able to provide
recombination steps that foll ow the path we have described. We seethat thereisa popuation sizefor which

the GA succealsreliably and ou analytic timeto solutionis an owverestimate.

6.8 Summary of sexual recombination on hierarchically modular problems

We have seen that there ae some drcumstances where sexual recmbination is able to compase together
modues to find larger modues. And we have seen previously that this processis not avail able to acaetive
mechanisms sich as mutation in this class of adaptive system. The mndtions for this siccessul

manipulation d moduesinclude:

e Appropriate moduar interdependency structure (e.g. a decomposable structure like that of HIFF).
Reasoning in the previous chapter suggests that the structure of HIFF exemplifies the differencein
adaptive cagadties of acaetive and compositional mechanisms. We previously discussed that
HIFF is amenable to a divide and conquer problem decompaosition in principle, and the operation

of sexual recombinationin these experimentsill ustrates exadly this processin operation.

» Popuation dversity. If different members of the popuation are not able to maintain competing
solutions to modues (different members of M, for a modue A, see4.3.1), at least as long as is
required to test diff erent combinations of modues and resolve their interdependencies (i.e. to test
M, xM,, for two moduesA and B), then the performance of sexual recombination will degrade to
approach that of mutation. Thus appropriate diversity in the popuation is required. We have
demonstrated that the diversity provided by the deterministic aowding model of popuation

subdvisionis sufficient.
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» Strong Genetic Linkage. If genetic linkage is wegk or absent, as modelled by unform crosover,
then the genes of a modue cana be transferred to an offspring as a whale to find new
combinations of modues. Thus grong genetic linkage is required, and we have demonstrated that

one-point or two-point crossover is sufficient.

» Tight genetic linkage. Even if genetic linkage is grong, if genetic linkage between genes does not
correspondwell with the epistatic dependency between genes then modues canna be recombined
effedively. More generally, the recombination d modues as wholes through sexua
recombination is effective only to the extent that gene ordering happens to correspond with the

structure of thaose modues. We demonstrated that such an arrangement is possble for HIFF.

It shoud be dea that althoughthe GA with deterministic cowding and ore-paint crossover successully
exploited the hierarchicd dependency structure of the HIFF problem in Figure 6-5, the GA did na
‘discover’ this moduar structure in any sense. It is only able to utili se the structure when the structure is
given to it via the gpropriate ordering d genes on the dromosome. Thus it can ony exploit the
dependency structure of the problem if it happens to coincide with the genetic linkage structure that is
given. It can discover the solution to modues and recombine them if the biased way in which strong
linkage aossover samples the space of possble recombinations is siitable to exploit the structure of
modues in the problem, but it canna discover this dructure in the problem for itself. In an engineaing
domain with dfficult dependencies between variables where we do nd have a priori knowledge of the
dependency structure, we ae not able to order genes appropriately on the diromosome and thus sexual

recombinationis not likely to provide the dgorithmic advantage of compasitional evolution.

In the foll owing chapter we investigate amechanism of compaosition that is nat sensitive to the ordering o
genes in the problem as given, or put another way, a mecdianism that is able to dyremicaly discover and
explicitly use the leaned dependency structure of the genes, so as to recombine modues effedively

throughsuccessve hierarchicd levels.
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Chapter 7- Symbiotic Encapsulation on M odular
| nterdependency

In this chapter we investigate a @mpasitional mechanism based on symbiotic encgpsulation—the joining
of entities from different reprodictive lineages into a new reproductive whole. This model is based on
compositional change in the major evolutionary transitions whereby “entities that were caable of
independent replication before the transition can replicae only as part of alarger whole dter it” (Maynard
Smith & Szahmary 1995. And more spedficdly, the model abstradly represents a medchanism of

“symbiosis followed by compartmentation and synchronised replicaion”’, (ibid.).

Our purpose in this chapter is to show that the alaptive cgpadty of composition is not dependent on a
priori knowledge of which genes are dependent of which other genes, or the asumption that this is
implicitly provided by favourable gene ordering. In the process we gain some understanding o the

differencesin the adaptive cgadty of sexual recombination and symbiotic encapsulation.

In the following subsedion we ouitline the basic framework of the symbiotic encapsulation model. In the
subsequent subsedions we detail the components of the encgpsulation model and ill ustrate its adaptive
cgpadties using simulations on HIFF. Following this we give abrief analysis of the expeded time to
discover complex adaptations on HIFF. In the subsequent discusson chapters (Chapters 8 & 9) we discuss

related work and theoriesin EC and EB.

7.1  Overview of symbiotic encapsulation model

The mposition model that we introduce in this chapter is cdled the “Symbiogenic Evolutionary

Adaptation Model”, or “SEAM”, to invoke the nation d symbiotic union a joining.

This model includes the idea of integrating the feaures adapted in dfferent lineages into a new whaole

simply by encapsulating extant entities into new higher-level entity - i.e. ‘symbiotic encapsulation’ - and
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thisis the fundamental distinction from the model of sexual recombination. But this new integration model
has implications for our seledion model too. As a mnsequence SEAM begins to look guite diff erent from
the model of sexual recombination in the previous chapter. But, in later discusdon we will outline the
similarities and analogies between the two models and show that in many respeds they are not that
different. Spedficdly, we will seethat both can be seen as amodel of evolution that ads at more than ore
level of seledion: crudely, on modues and onassemblies of modues. In sexual recombination the modues
are represented by tightly-linked schemata and the assemblies are individuals. In SEAM, the modues are
meantime, by introducing SEAM in the manner that we do below, we provide astepping stone to a more

general understanding that all ows us to seethe sexual recombination model in a new light.

The threemain feaures of SEAM that we will i ntroducein the foll owing subsedions are:
* Variable-sized entities and a mechanism of creaing rew entities by joining extant entities.
» Evaluating entitiesin transient groups of other entiti es.

A sdledion scheme based on testing the ‘stability’ of a proposed join in many environmental

contexts.

In owerview, SEAM develops as follows. The emsystem is initialised with many different small entities.
Pairs of entities are then picked at randam to seeif they might form a stable symbiotic join. If the overall
fitnessof either entity alone could be, dependent on environmental contexts, greaer than the fitnessof the
entity with the propased symbiotic partner then the compasition is deeamed unstable and the original entities
are returned to the emsystem. Otherwise the compaosition is deened stable and the two entiti es alway's co-
occur together in future. The process of building and seleding compositions of entities is repeaed,

eventualy building larger and larger compasite antities.

Three main feaures of SEAM are depicted in Figure 7-1. Frames (@) through (c) in the figure loosely
correspondto variation, evaluation, and seledion, respedively. These processs, outlined in the figure, are

detail ed in the subsequent subsedions.
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a) New entitiesare aeaed byjoining b) Thefitnessof an entity is

two existing entiti es together.

context.

dependent on its environmental

c) Anentity isplacel in many
contexts to test the stability of a
new join.

Figure 7-1: A caricature of processsin SEAM.

a) New entities are aeaed from the cmposition a joining o two randamly seleded extant
entities (Sedion 7.2.2, Figure 7-3). b) The fitness of any entity (posdbly the result of a
previous join) has dependencies with its environmental context, i.e. a randam seledion o
other entities from the e@system (Sedion 7.3.3, Figure 7-4 & Figure 7-5). ¢) The new pairing
is subjed to many such contexts. If thereis ome environment of other entitiesin which either
comporent of the join is fitter individually than when it is with its proposed partner, then the
join is deamed urstable and is dismantled. This follows the assumption that the partnership
must be in the ‘selfish’ interest of the partnersinvaved. In our implementation, the stability
of a propcsed join is tested in many contexts and is immediately undore if foundto be
unstable. This models the asumption that competition between joined and nonjoined
variants of an entity occurs rapidly such that only reliably successul joins persist longenough
to beinvolved in a subsequent join (Sedion 7.3, Equation 18). A join that persists through(c)
is treded as a new entity that may participate in further joins as the g/cle of the model

repeds.

7.2

721

I ntegration model: Entities and their encapsulation

Mutually exclusive charactersand the ‘overlap’ of feature sets

In Sedion 2.2.1 we listed a spedrum of compasitional mechanisms with sexual recombination at one end,

and symbiotic encapsulation (e.g. endosymbiosis and symbiogenesis) at the other. Whereas the previous

chapter modelled sexual recombination, this chapter is concerned with a model of composition based on

symbiotic encgpsulation at the other extreme of this pedrum.

The ordering d mechanisms in the spedrum that we emphasised in Sedion 2.2.1 was based on the

similarity or disgmilarity of the entities being composed: spedficdly, the antities involved in sexual
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recombination are of the same spedes, whereas compasition can occur between individuals aaoss pedes.
A seaond dstinction is found in the relationship between the genetic material provided by the ‘dona’
entiti es and that appeaing in the compasite. Spedficdly, whereas sxual recmbination involves alignment
and crosver exchanging correspondng subparts of the diromosome and taking onaverage haf of the
genetic material from ead parent, the result of endasymbiosis approaches the union o genetic material

from the donasJ taking al the genetic material from both partiesinvolved.

The dignment of these two trends in the spedrum of compositional mechanisms simil arity/dissmil arity
of entities, and ‘half-&-half /union o genetic material 0 may nat be abitrary. We ill ustrate with a toy
example. Consider a set of charaderistics that can be subdvided into subsets where members within ead
subset are mutually exclusive but members aadoss sibsets are not. For example, the charaders { TALL,
ROUGH, SMOOTH, SHORT} can be subdvided into { TALL, SHORT} and {ROUGH, SMOOTH} by
these aiteria. For convenience let us cdl ead subset of mutually exclusive charaders a feature: for
example, the feaure HIEGHT has two passble (but mutually exclusive) charaders, namely TALL and
SHORT. The fedures then are adimensiondisation d the possible dharader combinations. Now consider
the result of combining an entity speafying for { SHORT} with an entity spedfyingfor { TALL}; the result,

by ou charaderisation, cannat be both tall and short[] it must be one or the other.*
i.e. {TALL} + {SHORT} - {TALL XOR SHORT}

Wheress, the result of combining an entity spedfying for { short} with an entity speafying for { smoath},

by ou charaderisation, could be an entity that is both short and smoath.
i.e. {SHORT} + {SMOQOTH} - {SHORT AND SMOOQOTH}

A natural interpretation d mutualy exclusive charaders is that they reside on the same loci and are

mutually exclusive in the haploid chromosome: i.e. genes are features, and the dleles of a gene ae

2 Biologicdly, a blending, resulting in medium height for example, is ancther reasonable possbility in

some caes. But till thereis no pessbility that the result can be both fully-tall and fully-short, and on
average, the charaderistics of the dona entities can orly be ‘half inherited' in the off spring. Similarly,
amixture, resulting in some of the stalks within a plant being tall and the remainder being short is also
neither fully-tall nor fully-short, and onaverage, the charaderistic of the dona entities can orly be
expressed in half the off spring.
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mutually exclusive characters of the feaure. But thisis a particular instantiation d charaders and feaures
which presupposes a mechanism of meiosis which is not grictly necessary. That is, if by some
circumstance, alignment and crossover failed and entire dudi cae diromosomes resulted in the off spring, as
in pdyploidy events, then the anclusions abou some charaders being mutually exclusive and some being
compatible would still hold even thoughall alleles of both the parents were geneticdly represented in the

offspring.*

In this <enario then, entities resulting from the combination d entities pedfying variations of the same
fedure set will spedfy the same feaure set themselves and will on average spedfy half the charaders of
ead parent (asuming unhased daminance dfeds, etc.). Wheress, entiti es resulting from the combination
of entities gedfying variations of different (nonoverlapping, i.e. not mutualy exclusive) feaure sets
could conceivably spedfy the union d feaures from the dona entities. If we define entities pedfying for
the same (or largely overlapping) fedure sets as similar (regardless of the values of these feaures) and
entities gedfying dgoint (or largely nonoverlapping) feaure sets as dissmilar then a
similarity/disgmil arity trend will coincide with a half& half/union trend in resulting entities, as ®e in the

spedrum of compasition mechanisms we li sted.

From this point of view we seethe mechanisms of sexual recombination and symbiotic encgpsulation as
spedfic types of alarger classof integrative mechanisms. That is, both mechanisms take the charaders of
two dona individuals and form a new entity from the mmbination o their charaders. But in sexual
recombination, the dona individuals are similar in the sense that their spedfied fedure sets are largely
overlapping, whereas in symbiotic encgpsulation the dona entities may be dissmilar in the sense that their
fedure sets are largely nonoverlapping. This has the mnsequence that the result of sexual recombination
events will express on average gproximately half the charaders of either dona, whereas the result of
symbiotic encapsulation will express approximately the full union d charaders from both donas. This
expedation follows logicdly from the definition d feaures as ts of mutually exclusive tharaders, and
the ssumptions abou the similarity of donas in resped to overlap in the set of fedures they posess

rather than from the nature of the genetic mechanismsinvolved.

* Similarly, if two aleles of a gene ae not intrinsicaly mutually exclusive then gene duplication could

conceivably result in an entity with bah all eles.
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Similarly, this general perspedive is useful in understanding the expeded results of other mecdhanisms in
the compaositional spedrum(] See Figure 7-2. For our purposes, it is not the genetic mecdanisms

themselves that are important in these diff erent phenomena, so much as the expeded owerlap of feaures

coming from the simil arity or dissmilarity of the dona individuals.

Asexual

Symbiotic
encgpsulation

Horizontal
gene
transfer

100%

reproductn.

Asexual

+ mutation.

N
o
S
e
o
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5 _ medhanisms with
g Horizontal H
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Asexual [\ Asexual inherently
0% _ acaetive
+ mutation\ feproductn. medanisms

0% % charaders from P1 100%

Figure 7-2: Medhanisms of integration from two donor individuals, P1 and P2.

The aes are the percentage of charaders from ead dona entity that is likely to be echibited
by the result of integration. The arow indicates the spedrum of compasitional mechanismsin
discusson. Our assumptions here ae @ follows: a) Asexual reproduction maintains the
charaders of the parent, and daes not involve caraders of a second parent; b) Mutation
reduces the heritability of charaders from a parent; ¢) sexual reprodiction results in an
off spring exhibiting onaverage half the daraders of parent one and helf from parent 2; d)
horizontal gene transfer, introduces ©me of the dharaders from one ‘parent’ into the other
‘parent’ but, depending on hev simil ar the parents are, some dharaders may also conflict and
reduce the heritability of charaders from the redpient individual; €) Polyploidy, in a manner
similar to sexua recombination, will exhibit approximately half the daraders from either
parent on average, despite the fad that the off spring may contain the union o genetic material
from either parent. But, this depends on hov similar/diverse the feaure sets of the donas are.
f) As the feaure sets become more diff erent, involving chromosomes from diff erent spedes
(i.e. alopdyploidy), the charaders of the parents will be lessconflicting and ‘ off spring may
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involve on average more than half of the daraders from both dona individuds; g)
Symbiotic encapsulation, when occurring ketween whally urnrelated entiti es, may result in the
union d charaders from the dona entities. In summary, mechanisms that take dcaraders
from only one dona individual are inherently acaetive, those that that take charaders from
two dona individuals are potentially compaositional.

Following this framework, the symbiotic encgpsulation mechanism we detail in this chapter is much like
that of the sexual recombination mechanism detailed previously but we have diff erent assumptions abou
the nature of the entitiesinvaved. Spedficdly, in the sexual recmbination model we ssumed (asis quite
normal) that the sets of feaures exhibited by the dona individuals were fully overlapping. Accordingly,
recmbination d entities produced conflicts in charaders (assuming the popuation was not fully
converged) that needed to be resolved to crede anew entity.™ In contrast, in the symbiotic encapsulation
model we detail shortly, we asume that the entities are disimilar from one another and generally non
overlapping in the sets of feaures they spedfy. We detail our representation d entities and their

encgpsulation in the next sedion.

7.2.2 A mode of entitiesand their encapsulation

The focus of the mode in this chapter is the nation d a medhanism that compaoses together dissmilar
entities; entities that are mostly non-overlapping in the feaures they spedfy, producing resultant entities
with the union of their charaderistics. These entities may be interpreted as genes, baderial cdls, more
complex cdls, or any ather higher level of organizaion—the intent is to mode transitions between these
levels in an integrated model of ‘entities'. We will use the word ‘spedes’ to refer to types of entity at any
level. Entities are represented orly by their features values, and for now, spedes are simply the set of
entities with identica feaure values. These feaures may be interpreted as genes, as phenatypic feaures
correspondng to genes, or as higher level feaures of an organism such as resource usage or a behavioural
strategy. In general, they are the set of charaderistics that affed the fitness of an entity and the fitness
sensitive interadions of the entity with its environment and aher entities. Our model abstrads away all

popuation dyramics within a spedes and therefore the emsystem will only incorporate one representative

54

Spedficdly, which of the mutually exclusive parental-all eles was to be inherited by the off spring was
resolved randamly under uniform recombination, and acording to genetic linkage under one-point
Crosover.
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entity of ead spedes. An appropriate level of metaphar isthat the set of entiti es represented in the model is

an easystem of spedes (rather than a popuation d individuals).

The basis of our compasition model will be that a ammposite is creaed from the joining d feaures from
two dfferent spedes of entity. Accordingly, it is necessry that different entities will spedfy different
subsets of fedures (not just different values of the same set of fedures). To provide asimple example: let
ead feaure take one of two values, “0” or “1", and let the fegures be identified by an index, F,. Then ore
entity might spedfy feaures F,=0, F.=0, F ,=1, and a second spedes might spedfy F=1, F,=0, F, =1, F,=0.
Then their join may crede the new entity with feaures F.=1, F,=0, F,=0, F=0, F, =1, F =1, F,=0. (See

Mess/ GA ‘splice operation, Figure 3-9).

We will use alarge finite set of possble feaures for smplicity in the implementation o the model,” but
the maximum number of feaures could be flexible in aternate implementations. The number of feaures
spedfied by any ore entity may be anything from one to the full set. In this way it is smple to write the
spedfication d an entity using a fixed length string. For example, working in a 16-feaure space we may
write the two entities given in the example &owve a A and B in the left of Figure 7-3 below, and their

composition may be written as A+B.

The ‘null fedures, “-”, in this representation are ‘placéholders for fedures that are not (currently)
spedfied by an entity. We will refer to the ‘size of an entity to mean the number of non-null feaures—for
example, the entities used above have sizes 3, 4 and 7, respedively. Figure 7-3 also ill ustrates how we will

ded with conflicting spedficaions when they arise.

A --0---0----1---- A ----1----00-1--
B 1------- 01----0- B: --1-0---0-1----
A+B: 1-0---0-01-1--0- A+B: --1-1---000-1--

Figure 7-3: Symbiotic encapsulation
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Note that in the GA individuals also generaly use afinite set of binary feaures, ‘genes’, but unlike the
entities in SEAM, individuals in the GA must generally spedfy a value for every posdble gene. Thisis
natural for a model of evolution within a single lineage where every individual has basicdly the same
fedures but varies in the values of these feaures. The ‘null’ value used in the implementation o
SEAM, detailed shortly, canna reasonably be charaderised as a third alele sinceit is nat heritable in
the same way as non-null values (seeFigure 2).
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(an abstradion d Figure 7-1:a8). Left) Composition d two variable size entities, A and B,
prodwces a compasite, C, that is twice the size of the dona entities with the union d their
feaures. Here we represent unspedfied feaures by “- ”. The composite is creaed by taking
spedfied (i.e. nonnull) feaures from either dona where avail able. Right) Where conflictsin
spedfied feaures occur we resolve dl corflictsin favour of one dona, e.g. the first.

Algebraicdly, we define the cmmposition d two entities A and B, as the superposition d A on B, below.
A=(AA,,...A), isthe atity where fedure F, takes value A,. S(A,B) is the superposition d entity A on

entity B, and s(a,b) is the superposition of two individual feaure values, as foll ows:
S(AB)= S(ALA,--A)(B,,B,,....B)) = (S(A,,B,).S(A,B)....S(A,B,),

a,if az nul,
where, s(a, b) = b, otherwise. Equation 16: Composition of two entities

This compasition will be the only mechanism of variation in ou model. The intent is that the model will
start from ‘primtive’, i.e. single-fedure, entities and compose them together into larger compasites, and
compose these together, and so on When small entities are composed with relatively large antities, their
effed is like single-feaure mutations, but as entities beaome larger, their compasition enables variations

that scde-up with their size

Note that the way we use spedes in this model has no implicaion o restricting passble unions based on
type—in principle, new entities may be aeded by the cmmpostion d any two existing entiti es regardless

of their spedes, i.e. regardlessof the feaures they speafy.

7.23 Consequencesfor adaptation

Our agorithmic intuition is that different small entities (with a small number of spedfied feaures) will
adapt to dfferent ssimple sub-parts of the alaptive domain and that complex adaptations may subsequently
be formed by compasing them together. In this resped, the dgorithmic intuitionis largely the same & that
for sexual recmbination. However, since sexual recombination between entities with overlapping feaures
sets must involve ahalf&half combination operator, sexual recombination has the problematic asped that
the extradion d appropriate subsets of charaders from ead parent is dependent on strong genetic linkage

and the favourable ordering d genes on the diromosome (i.e. ‘tight’ linkage). That is, the cmbination
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operator neals to be biased to take subsets of feaures that correspond to coherent modues, because

otherwise modues cannd be seleded for and manipulated as wholes.

In contrast, our intuition is that a mechanism of compaosition wsing entiti es with nonoverlapping charaders
will enable the entities themselves to represent modues, (as distinct from the ideathat a modue may be
represented by a subset of genes within an individual). If awhole entity represents a modue, and entities
can be mmbined together to provide larger modues, then it is not necessary to extrad subsets of genetic
material from within a given entity. In other words, the gpropriate subsets of genes are ‘linked’ by virtue
of being spedfied within some entity, rather than by \rtue of being poximal to each ather on the

chromosome, and thus the paosition d genes alongthe chiromosome within an entity becomes irrelevant.

7.3 Evaluation and seledion model

Having defined avariation operator that defines ajoin of two entities, we need to determine whether such a
join would be seleded for. Our basic assumption is that the symbiotic relationship must be in the ‘selfish’
interest of bath the cmporent entities involved. That is, if the fitnessof either comporent entity is greaer
withou the proposed partner than it iswith the proposed partner then the compasite will not be seleaed for.
If, on the other hand, the fitness of both comporent entities is greaer when they co-occur then the

relationship is deemed stable and will persist.

However, in the model we ae using, entities are only partial spedfications of feaure sets and we ae
assuming that the feaures of one entity have interdependencies with the feaures of ancather. In ather words,
the fitnessof any entity is dependent on its environmental context; possbly, in one eavironment an entity
may be fitter when co-occurring with the proposed symbiont, and in ancther context the symbiosis may
depredate its fitness Thus whether a symbiotic relationship is preferred o not depends on what
environmental contexts are available. (i.e. the preference for a cmposite is interdependent with context -

seeSedion 4.6.6).
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7.3.1 Evaluating an entity in different contexts

For our purpases, the set of possble environmental contexts is well defined: an environmental context is a

complete set of feaures (in which some partially spedfied entity, which may be the result of many joins,

can be asesxd). SeeFigure 7-4.

---0-11---110--- x, an entity spedfies a partial set of feaure values.
0110101100010011 4, an ‘environmental context’ is a cmplete set of feaure
values.

0110111100110011 S(x,6), the entity x superimposed on the context 6.

Figure 7-4: A partially spedfied entity must be assessd in a context.

We aaume that the overall fitnessof the entity will be asum of its fitness over different environmental
contexts weighted by the frequency with which ead environment is encourtered. But, we would na
generally suppcse that the frequencies with which dfferent environments are encourtered by ore type of
entity would be the same & the frequencies relevant to a different type of entity. That is, we imagine that

diff erent species have different distributions over possble environments.

Let us assume that we have ameasure of the ‘ context sensitive fitness,” csf(x,6), of an entity, x, in any
given environmental context, 6, and that the overall fithessof the entity x, will be F(x) which isthe sum of

its fitnessover al environments weighted by the frequency of that environment for that spedes, as below.

F(e)= Ao, STPOF

Equation 17: Weighted sum of context-sensitive-fitnesses

where /\(9, p) = 0istheweighting d the environmental context 6, for entity p.
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We will dispense with the need for thisin Equation 17.
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Now, whether a symbiotic relationship is preferred or not depends on the relative weighting d ead context
to ead entity involved, and many fadors could influence this. For example, a biased distribution ower
environmental contexts may be ‘inherited’ by virtue of the mllocaion d parents and dfspring in a
subdvided popuation (or emsystem subdvided into spedes), or affeded by the behavioural migration o
organisms during their lifetime, or the seledive displacanent of one spedes by another in short term
popuation dyramics. We did na wish to introduce such fadors and accompanying assumptions into our
model. However, neither did we wish to assume an equal weighting d environmental contexts. In fad, it
turns out to be aiticdly important that we take acourt of the context sensitivity of a moduar solutionin

order to maintain diverse complementary modues (as anticipated in 3.4.6).

7.3.2 Pareto dominance

The oncept of Pareto daminarnce is pedficdly designed for applicaion in cases where the relative
importance of a number of fadorsis unknawn (e.g. seeFonseca& Flemming 1995for recent discusson o
the use of Pareto daminancein EAS). Put simply, this concept states intuiti vely that, even when the relative
weighting d fadors (or ‘dimensions) isnot known, the overall superiority of one candidate with resped to
another can be mnfirmed in the case that it is nonworse in al dimensions and ketter in at least one. More

exadly, ‘x Pareto daminatesy’ iswritten ‘x >>y’, and:
X>>y = (00: csf(x,68) = csf(y,0) AND [8: csf(x,8) > csf(y,0).

or equivalently, given that x andy are different in at least one dimension:

x>>y < f] 0: csf(y,0) > csf(x,6).
In cases where there is ome 6 such that csf(x,6) > csf(y,6) and some other 8 such that csf(x,6) < csf(y,6),
we say that x andy are nonsorted. Andin cases where [X: x >>y we say that y isdominated, elsey isnon
dominated. For our emlogicd domain, these smple rules are eaily interpreted. In the cae where x is
better in some environments than y, and y is better in some environments than x, then we do nd know
which isfitter overall unlesswe know the relative weighting o the environments for ead entity. But, if x is

always fitter (or at least asfit as) y, then regardiessof the weightings of the environments for ead entity,
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we know that the overall fitnessof x is greaer than that of y (assuming x andy are different in at least one
dimension).

This pair-wise mmparison d two entities over a number of contexts will be used to determine whether a
symbiotic join prodices a stable composite. If we write the cmposition o entities a and b as a+b, then,

using the nation d Pareto daminance a+b is gable iff a+b >> a, and a+b >> b. In ather words, a+b is

unstable if there is any context in which either a or b isfitter than a+b.
i.e. stable(ath, a, b) = atb >>aAND atb >> b,
i.e. unstable(atb, a, b) = 80Contexts: (csf(a,8) > csf(a+b,d) OR csf(b,8))> csf(a+b,6))
where Contextsis a set of complete feaure spedfications.

We shoud nde that there is a subtle distinction between ‘the fitnessof an entity in an environment’ and
‘the fitnessof the entity and environment together’ i.e. csf(x,6) # f(S(x,8)). However, our method pedudes
the need to separate the former from the latter because the pair-wise cmparison d two entities in the same

environmental context implicitly * diff erences away’ the cntribution o the environment.” That is,

csf(x,6) > csf(y.6) ~ f(S(x,0) >(S(y.0)),

where f(w) is the objedive fitness of the mmplete feaure set w as given by the fitness function. This
asaumes that athoughwe can orly measure the fithess of a mmplete feaure spedficaion (organism and
environment together) we can determine the information we need by dfferencing away the fitness

contributions coming from the environment by including them in bah sides of the inequality.

Thus our condtion o instability becmes:
unstable(atb, a, b) = O80Contexts: (f(S(a,0)) > f(S(atb,8)) OR f(S(b,6))> f(S(atb,d)))

Equation 18: Stability of a+b.

Equation 18 becomes our abstradion for Figure 7-1 (c).

°" It is plausible that the non-epistatic contributions of an environment are dso ‘differenced away’ in

biologicd scenarios.
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In ou simulation we will test the stability of a proposed join andimmediately ‘undd it if it is‘unstable’ by
these aiteria. This eans alittl e like we ae explicitly testing whether a variation is good lefore we make
it. However, this is not the intent of the model. Rather, we ae asming that new asciations are made
randamly, but, if and ory if the new entity is reliably fitter than bah of the parties involved will the new
entity survive in the eosystem. In ather words, if there is sme niche where one of the two symbionts will
out-compete the compaosite then the ammposite is competitively excluded. We éstrad the process of
randam joining and competition into the stability test. This models the aaumption that competition
between joined and nonjoined variants of an entity occurs rapidly such that only reliably succesgul joins
(by these aiteria) persist longenoughto be involved in a subsequent join. A join that persists throughthe
‘stability test’ is treated as a new entity that may participate in further joins as the ¢ycle of the model

repeds.

7.3.3  Building environmental contexts: Group evaluation

In ou moddl, the environmental contexts, used in determining Pareto daminance and the stability of a
proposed compasition, will be formed entirely from other members of the eosystem. The intent here isthat
the asesanent of a new compasition involves ®leding between being in permanent association with some
particular member of the e@system or being in transient association with members of the e@system. If we
were to employ the naive dternative, i.e. seleding between being in permanent association with some
particular member of the e@system or remaining in entirely random environmental contexts, then it would
be likely that many more proposed associations would be preferred. This would result in many sub-optimal
asciations. Additionally, if entities are evaluated in transient groups of other entities then there is the
potential that they may become m-adapted to ore-ancther, and thereby ‘primed’ to make succesdul
permanent joins by composition. Figure 7-5 ill ustrates how to buld a ontext from arandamly seleded set

of entities.
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a: --0---1-
b: 01------
c: -0---0--
d ----1-0-
e ------ 10
f: ---0-00-

Resul tant context 01001010
Figure 7-5: Building acontext from other entities.

(an abstradion for Figure 7-1 (b)). In this example, six entities a throughf, are nealed to
complete afully-spedfied feaure set of eight feaures. Where spedfied feaures conflict, the
spedfications of the topmost entity take precelence, asin Figure 7-3.

Algebraicdly, we define a ontext, using the reaursive function S*, from an ordered set of n=2 entities X,

X,,... X,, asfollows:

S(X, S*(X,,... X)), ifn>2,
SH(X, X,,... X)) =
S(X,, X)), otherwise.
Equation 19: Building acontext

where (X, X,) isthe superposition d two entities as per Equation 16 above.

Some ntexts may require more or fewer entities to provide afully-spedfied feaure set. In principle, we
may use dl entities of the emsystem, in randam order, to buld a mntext—but, after the cntext is fully-
spedfied, additional entities will have no effed. This alows us to write a ontext as S*(E), where E is all
members of the emsystem in randam order. Implementationally, we may simply add entities urtil a fully-

spedfied set is obtained.

7.4  The Symbiogenic Evolutionary Adaptation Model (SEAM)

We may now put together the comporents we have introduced above to provide a @mplete model. To
summarise, the model includes the foll owing feaures:

» Variablesize ettitiesand avariation operator based oncompasition.

» Building environmental contexts from other co-adapting entities in the e@system.
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e Tedting (in)stability of compasitions by testing for Pareto daminance of the cmposition ower the

componrent entities.

Althoughead of these feauresis conceptually somewhat involved, the overall simulation model is not that
complicated. Figure 7-6 overviews the operation o SEAM.

. Initialise eosystem, E, to randam, single-feaure, entities.”

. Repea until stoppng condition:
- Remove two entities at randaom from the e@system - a & b.
- Produwcea+b=S(a,b), using composition (seeEquation 16).

- If unstable(a+b, a, b) return a and b to emsystem, else ald a+b to ecosystem.

where unstable(a+b, a, b) =
0P0Contexts: (f(S(a,0)) > f(S(a+b,6)) OR f(S(b,8))> f(S(a+b,H)))
where Contextsis arandam set of contexts ead bult by composing together
other members of the aurrent ecosystem, E, using S*(E)

(seeEquation 18 & Equation 19).

@ |nitidlisation reeds to completely cover the set of single-feaure ‘primitives so that al values for

al feaures are available in the eosystem.

Figure 7-6: Pseudocode for a simple implementation of SEAM.

7.5 Simulation results

In this £dion we give simulation results of SEAM applied to a 128-bit Shuffled HIFF. Our intent is to
ill ustrate the qualitative difference in the way that compasition operates in this landscgpe @& compared to
the operation d acaetive evolutionary change and compositional change under sexual recombination
demonstrated in the previous chapters. Accordingly, we cntrast the operation d SEAM with the results of
a mutation orly algorithm, Randam Mutation Hill -Climbing, (RMHC), shown in 5.3.1, and a GA using

sexual recombination (seesummary of simulations 6.5).
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The pseudocode for SEAM is given in Figure 7-6. The parameters we use for these experiments are:
number of feaures, N=128 alphabet of fedures, S={0,1}, initial popuation size 256 ore-fedure entities
covering al alleles at all 1 oci®®, maximum number of contexts used for dominancetest, t=200, (empiricaly,
on average lessthan 20 d these ae required onaverage to reved the instability of a proposed join). The
stopping condtion is that 3-10° cdls to the fitness function have been used. f, the fitness function, is

provided by Shuffled HIFF with 128 binary feaures.

The popuation sizein SEAM is determined by N - in fad, popuation_size=2N. SEAM uses ho mutation.
There is no sexua crosover in SEAM, but the encapsulation operator is applied in al matings. Thus there
are dmost no parameters to the SEAM model and there is only one airve to be plotted. The remaining
parameter, the number of trials, (humber of contexts ssmpled), to determine whether ajoin is dableis %t to
t=200in these experiments - this value was found by peliminary experimentation. The dfed of alow t-
value isthat incorred joins are passed as corred (see7.7.2, for related analysis), and an unrecessarily high

t-value results in wasted evaluations.”

751 Control experiments

Recdl that the threemain conceptual feaures of SEAM are: the use of variable size entities and a variation
operator based-on composition; testing (in)stability of compositions by testing for Pareto daminance of
composition ower the comporent entities; and, building environmental contexts from other co-adapting

entitiesin the eosystem.

58

This may be dore systematicdly for pradicd purposes, but may in principle be dorne withou
knowledge of the encoding dmensions by ‘over-generating the initial popuation and then removing
dupicaes—more spedficdly, by removing entities that behave the same (produce identicd fitness
changes) over a sample of randam contexts (seeWatson & Polladk 20018.

* A coupe of implementational details: The implementation wsed in these experiments chedks for

A+B>>A using a separate set of contexts from the chedk for A+B>>B. This is wasteful of evaluations
since it evaluates A+B in twice @& many contexts as necessary. Also, this implementation dces not test
whether A+B==A or A+B==B - if such atest is posdble, which it is using a binary representation as we
do, then this could be used to avoid 200 wasted evaluations every time this occurs. The following
results therefore provide an upper limit on the number of evaluations necessary.
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Variable-sized entitiesand composition vsfull-sized entities and crossover

RMHC and the GA provide a ontrol experiment for the use of partially-spedfied individuals. That is, they
use afully-spedfied feaure set for ead entity/individual, and use mutation for variation. The GA with
sexual recombination provides a wntrol for the use of symbiotic encgpsulation. We dready know that these

methods fail on Shuffled HIFF.

Pareto dominance of composite over componentsvs better on average

We dso tested the operation d an algorithm that is the same & SEAM except that instead of using the
Pareto daminance test, the second feaure of SEAM, it simply replaces a comporent (parent) with the
composite (off spring) if the average fitnessof composite, over the set of equally weighted environmental
contexts, is greder than the average fitnessof that comporent. This provides a mntrol experiment for the

semndasped of SEAM.

Co-adapted templates (group evaluation) vsrandom templates

We dso tested a control for the third feaure of SEAM by using an algorithm that is the same & SEAM
except that it uses randam feaure sets for the mntexts instead of contexts built from other members of the

ecosystem.

7.5.2  Simulation resultsfor SEAM and control experiments

Performance is measured by the fitness of the best string evaluated (in the preceding 2000evaluations)
averaged over 30 runs for ead algorithm. The strings evaluated are the groups of entities (i.e. an entity
with its contextual environment), forming a complete fegure spedficaion. The problem size of 128 hts

gives amaximum fitnessof 1024
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Figure 7-7: Simulation resultsfor SEAM and control experiments.
Figure 7-7 and Figure 7-8 show the performance of SEAM and the two control experiments described

above. SEAM finds bath global optimain all 30runs.

We seethat the performance SEAM using replacanent when off spring are better on average than the parent
is not succesgul. Performance is much like that of the GA DC with randam replaces (Figure 6-7 right). In
this experiment, many sub-optimal associations are made and the entities ‘fill-up’, or ‘bloat’,” with sub-
optimal feaure values—thus defeaing the mmposition operator (Watson & Polladk 199%). The ‘greedy’
seledion for whatever configurations appea to be best on average caises the popuation to quickly

converge on Hoated sub-optimal generalists, rather than properly exploring ogimal spedalists that cover

® Thisisawell-known problem in ather variable-sized EA representations sich as LISP Sexpressonsin
Genetic Programming. We have addressed the use of MOO techniques for reducing Hoat in GP in (De
Jonget al. 2001) - but we have not yet used the full SEAM method onGP.
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the problem together. Although as we can seein the figure, this is advantageous in the short term, the

popuationisunable to find ogimal configurationsin the longterm.

We dso seethat the other control using randam templates/contexts to test the stability of a join is aso
unsuccesdul. In this experiment, joins between small individuals are not made unless they are crred
becaise randan templates are sufficient to dstinguish sub-optimal associations. However, as modues
beome larger, random templates are insufficient to identify inter-modue interdependencies corredly and
sub-optimal asociations result. Once aain the individuals fill -up with sub-optimal associations, and the

algorithm fail s to find Hgh-fitnessconfigurations.
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Figure 7-8: Simulation resultsfor SEAM and control experiments. Size of modules discovered.

75.3 Summary of main simulation experimentsusing SEAM and GA.

As Figure 7-9 shows, the results for SEAM are very successul as were the results for sexual recombination
with tight linkage. However, SEAM (since it is not able to exploit the assumption o favourable gene
ordering) takes about four times longer for this sze problem, N=128* But both methods are dealy
different from the other algorithms. SEAM and the GA with deterministic crowding (given the asumption
of tight linkage) find both global optimain at least 2830 runs. None of the other methods find either global

optimum in any of the 30 runs.

Progress in the noncompositional mechanisms (i.e. mutation oy methods and panmictic GA), and

scenarios where composition is disrupted (e.g. GA with randam linkage), becomes increasingly more

61

It appeasthat SEAM takes about twice @& longas GA DC to find complete solutions when N=64.
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difficult in HIFF as the width of the fitness sdde to the next higher-fitness point becomes further away
with ead fithessincrease. But in scenarios where cmmposition is working effedively, i.e. the GA DC with

tight linkage, andin SEAM, progressis not impeded in this landscgpe.

fitness

—&— RMHC

—1r— GA panmictic (fitness prop.)
—— GA DC uniform -
—— GA DC one-point (RAN)
—4— SEAM

| | I I

0 0.5 1 1.5 2 25

evaluations « 10°

100

Figure 7-9: Summary of simulation experiments 2 - SEAM and GA.

Simulation results for various algorithms on 128variable Shuffled HIFF. Best mutation rates
(of those sampled ealier) are used for ead method that uses mutation. RMHC - Randam
Mutation Hill-Climber (mut=0.0938, ‘GA panmictic’ - Genetic Algorithm withou any
diversity maintenance, using fithess propationate seledion, and ore-point crosover
(mut=0.0078. ‘GA DC uniform’ - GA with Deterministic Crowding diversity maintenance
method, and no gnetic linkage (i.e. uniform crossover) (mut=0). ‘GA DC one-point RAN’ -
GA with DC, and ore-paint crosver, and randam genetic linkage (mut=0.031). ‘SEAM’ -
Symbiogenic Evolutionary Adaptation Model (mut=0).
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Figure 7-10: Summary of simulation experiments 2: SEAM and GA - sizeof largest
correct module.

Shows szeof largest corred modue discovered for same dgorithms as Figure 7-9.

7.6 Discusdon

7.6.1 Coevolution and SEAM

In evolutionary computation terms, SEAM describes an evolutionary algorithm where schemata of all sizes
coevolve with ore another, as if in a multi-player game, and cooperative groups are foundincrementally
from individual fedures through larger and larger schemata. With resped to the biologicd analogues,
SEAM describes an ecsystem of entities that coevolve with ore ancther, finding stable symbiotic

relationships that satisfy their fitness dependencies with ore another, and progress through successve
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evolutionary transitions, eat occurring via the cmposition d simpler extant entities into more mmplex

organisations.

7.6.2  Canalisation of succesgul groups

There is an interesting analogy between SEAM, the Baldwin effed (Baldwin 1896, and ‘ Symbiotic
Scéfolding (Watson & Polladk 1999d Watson et al. 2000h). That is, these scenarios have in common the
fedure that rapid norrheritable variation (lifetime leaning a the temporary groups formed for contexts)
guides a mechanism of relatively slow heritable variation (genetic mutation a composition, respedively).
In other words, evaluation d entities in contextual groups ‘primes them for subsequent joins, or
equivalently, solutions foundfirst by groups are later candised (Waddington 1942 by composite entities
(see &so Bull 1999. In Figure 7-11, the ‘indiv.” curve shows how the discovery of corred building Hocks

by individuals foll ows behind the discovery of corred building Hocks by groups.

We show the size of the largest correa sub-block discovered. The ‘groupg curve for SEAM is the size of
the largest corred modue in any group d entities when they are evaluated together as a cntextual
environment, (this corresponds to the aurve shown for SEAM in Figure 7-8). The ‘indiv.’ curve for SEAM
isthe size of the largest corred modue in any stable individual entity. We use alog scde onthe size ais—
thus, if the incresse in sizeis propartional to extant sizethe aurve would appea as a straight line. We can
see dealy in this figure that unlike the cmnventional evolutionary algorithms, innovation by composition
continues gedily in this problem, approaching a scde-invariant increase in size of corred modues in

individual entities.
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Figure 7-11: Sizeof modulesin individualsand in groupsin SEAM. (log scale)

SEAM (group) shown with circle point-markers. SEAM (indiv.) shown with da point-
markers.

7.6.3 Scale-invariant evolutionary processes

The main feaures of an evolutionary algorithm are: variation, evaluation, and seledion. In the RMHC,
variation ads at the scde of the primitive problem variables, and evaluation and seledion ad on complete
strings. In the GA with crosover, variation (by crossover) manipulates shemata of all sizesat all stages of
seach, and evaluation and seledion are (at least on the faceof it) applied to complete strings. In neither
method daes the scde of these processes increase progressvely as ach continues. Thus, even in an
adaptive landscape that is scde invariant, like HIFF, it canna be the case that these medhanisms properly
‘escgpe’ the primitive variables of the problem domain. Spedficdly, both of these methods cortinue to
explore variationsin the primitive variables throughou the process For example, even when all individuals
contain orly large fully-optimised corred modues, crosover is gill just as likely to exchange an order-1

schema asit wasin the first generation o the run.

In contrast, in SEAM all three of these feaures sde-up as ®ach progresss (if the problem domain

alows):
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Variation: Variationis performed by the assmbly of extant entities. As extent entitiesincrease in
complexity, the variations that are explored are of the same scde. The size of jumps that can be
made (with resped to the origina mutation-based landscgpe) scdes with extant complexity of
entities. Thisfrees the variation operator from the original primiti ve-spaceof variations and all ows
seach to move eplicitly from the mmbinations of primitive variables to the combination d
schemata of succesgvely higher orders. (Notice that the aldition d any explicit mutation kresks
the scde-invariant quality of the variation in the dgorithm. That is, mutation is inherently tied to

the original primitive variables.)

Evaluation: SEAM progreses by the identificaion d good modues rather than the dired
identification d good complete solutions. The identification d good modues requires that we
have good aseemblies in which to test the value of a modue. In SEAM the asemblies that are
used to test a modue ae built from extant modues. Therefore, the quality of contexts used to

evaluate moduesimprovesin step with the quality of modues.

Seledion: In SEAM, when new entities are defined they encgpsulate the pair of entities involved
so that they always travel together as a whde in future. Accordingly, the unit of seledion is
explicitly scded-up. And since new units are aeaed from the assmbly of extant units, the unit of

seledion are scde-freet0o.”

These observations sow that all these major feaures of SEAM are scde free When applied to a scde-free

moduar interdependency problem, such as HIFF, the moduarity at al scdesis equaly utili sable by the

algorithm.
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A join that is deamed stable is not re-tested for stability in future, thus SEAM explicitly scdes-up the
unit of seledion. However, if we @ntinued to apply seledion for composites at lower levels,
individuals would re-choose the same a&<ociations becaise the same join was in their selfish interest in
the first instance and remains in their selfish interest. Thus we culd implement the dgorithm using
only primitive-unit seledion. However, thiswould missthe paint that the seledion d the primitives can
be acarately abstraded into the seledion o the compasitesin this classof problem.
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7.7  Analysisof SEAM on Shuffled HIFF

This dion provides an analytic treament of SEAM, and in so dang helps to explain hov SEAM works

on HIFF and under what condtions it would fail .

Our analytic treament of SEAM on HIFF foll ows that developed for sexual recombination onHIFF given
in Sedion 6.6. Spedficdly, we cdculate the expeded time to solution from the product of the number of

blocksto be foundin a mmplete solution and the expected time to find ead block.

771 ldealised-SEAM

Let us define ajoin to be ‘corred’ when two compatible entities, that are themselves fully-optimised
modues, are brough together to creae anew higher-level fully-optimised modue of twice the size e.g.

“00--"+"--00" - “0000 isa mrred join.

We start by proving that SEAM only makes corred joinsif the stability of a proposed join is made is tested
in al posshle mntexts. It is not adually the cae that all possble mntexts are tested in SEAMO a sample
of contexts, built from other coevolving individuals, is used to test the stability of a joind but this proof

provides an appropriate stepping stone in coming to amore complete analysis of SEAM.

Lemma 1
Only ‘corred’ joins are made in SEAM if al posshle contexts are used for testing
‘stahility’, where @rred means that the new entity creaed is a fully-optimised modue,
and ‘al posshle mntexts is the set of al strings colledively covering al posshle

configurations of feaures.

proof: The set of all possble mntexts includes the two gobal optima, i.e. the strings of
all-1s and all-0s, which we will cdl the ‘ided contexts for reasons which will becme
clea. An entity, A, enteringinto ajoin, isfully-optimised internaly, say, all-0s. Thus the
fitnessthe string creded by superimposing entity A on ore of the ided contexts will be
the maximum fitnesspossble (since the superposition d Oson Gs, for example, will have

no effed). Clealy, there is no pairing with any ather entity, B, which could yield greaer
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fitness Moreover, any pairing with any ‘compatible’ entity, i.e. an entity of the same type
(al-0s), will not depredate the fitness of entity A in this context. That is,
f(A+B+ided_context)=f(A+ided_context) when A, B, andthe ided context are dl all-Os.
However, any join of A with some other entity B that isincompatible (of the wrongtype,
i.e. al-1s, or internally incorred) will deaease the fithessof A in the ided context. The
same reasoning applies for entities of all-1s. Thus, any compatible join will be deemed
stable, and any incompatible join will be deemed urstable. Then, since SEAM is
initiali sed with corred one-variable modues, all modues in the popuation at all times

will be orred. [end].

It is clea from this reasoning that using orly the two ‘ided contexts' to test the stability of a proposed join
is aifficient to ensure than orly corred joins are made.* Intuitively, any join that could in some cntex be
detrimental, will be detrimental in ore of the ided contexts. We can easily implement an ‘idedised’ version
of SEAM that we can useto ill ustrate this. The pseudacode is given below - Figure 7-12. Clealy idedi sed-
SEAM is not agorithmicdly pradicd becaise it uses the two dgobally optima strings as part of the
algorithm. However, it is informative theoreticadly to consider the operation o idedised-SEAM first.
Following this, we will consider the expeded time for (the original) SEAM method to cover a sufficient

number of contextsto reved an incorred join.

* We can view this as the decomposition of the single-objedive HIFF problem into a two-objedive

problem - spedficdly, the ‘find modues of zeros' dimension, and the ‘find modues of ones’ dimension
(seeKnowles et al. 2001 for an explicit multi-objedive treament of HIFF). These two dmensions can
be seen asthe ‘ided trainers’ (Juille & Polladk 1998 for the two underlying dmensions inherent in the
HIFF problem (credit goes to Edwin De Jongfor this observation).
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. Initialise eosystem, E, to randam, single-feaure, entities.”

. Repea until stoppng condtion:
- Remove two entities at random from the e@system - a & b.
- Produwcea+b=S(a,b), using composition (seeEquation 16).

- If unstable(a+b, a, b) return a and b to emsystem, else ald a+b to ecosystem.

where unstable(a+b, a, b) =

DB0Contexts: (f(S(a,d)) > f(S(a+b,8)) OR f(S(b,))> f(S(a+b,H)))
where Contextsis a set of exadly two strings, all-Osand all - 1s.

(seeEquation 18).

@ nitialisation reeds to completely cover the set of single-feaure ‘atoms’ so that al values for all

feaures are avail able in the eosystem.

Figure 7-12: Pseudocode for ‘idealised-SEAM’ i.e. SEAM using ‘ideal contexts'.

This algorithm is the same & that in Figure 7-6 except that Contexts is the set of two gobally
optimal strings, rather than a sample set of contexts built from other coevolving entiti es.

Note dso that any join that ‘overwrites' an entity at some loci with allele values that disagreewill not be
allowed. If an entity A is joined with an entity B, and B is nat fully compatible with A, then B will
depredate the fitnessof A in ore or other of the ided contexts and the join will not be dlowed. Thusit is
never possble for a join to make afully-optimised block beame sub-optimal when ided contexts are
available. This, together with the knowledge that the initial popuation consists only of correa blocks,
means that the popuation always consists of corred blocks only, and the number of correa blocks in the

best individual in the popuation can never deaease.

Note that, since the only variation ogerator in SEAM is encgpsulation, and in idedised-SEAM an entity is
never replacad by ancther entity unless it forms a crrect join, this ensures that there can orly be a
monaonic incresse in number of corred modues in the popuation. Moreover, it is clea that since al

primitive modues are available by initialisation and all higher-level modues can be formed by some
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asembly of them, there is always a means to increase the number of corred modues given an appropriate

seledion d existing entiti es.

We now cdculate an upper bound onthe expeded time to solution for idedised-SEAM on HIFF using
similar assumptions as we did in Sedion 6.6. Spedficdly, given the use of idedised contexts and the
ressoning above, we know that at all times the entities in the popuation provide the necessary comporents
for blocks at the next level in the hierarchy. This means that there is necessarily a dhange available in the
popuation (a compasition) that will i ncrease the number of corred modues in the individua that has the
gredest number of corred modues - up urtil the point that this individual is one of the globally optimal

strings. (Thisisanalogowsto proving Condtion 1in Sedion 6.6.2.)

In Sedion 6.6.2 we used T<BS, where B is the number of blocks to be found(i.e. steps on the path to the
optimum) and Sis the expeded time to find a block (i.e. time to take astep). In idedised SEAM we know
that there is at least one encgpsulation operation that will find a new modue given some choice of dona
entities from the aurrent popdation. Unlike the condtions for sexual recombination we do nd need to
fador in the number of possble aossover masks, since given the @rred dona individuals there is only
one way to compose them together® and this will necessarily produce the desired modue @ aresult. So we
could smply use S=3CP, and ac@rdingly, T<3CBP, where P, is the number of choices of parentsdona
individuals, and C=2 for idedised-SEAM is the number of contexts that need to be tested for ead choice
of parents (correspondng to the two ided contexts in idedised-SEAM), the fador of 3 comes from the
need to do 3evaluations (A inc, Binc, and A+B in ¢), for ead context c in C. However, as before, we can
improve on this estimate by ndicing that there is generally more than ore encapsulation ogeration that will
find anew modue - at agiven level (other than the top level) of the hierarchy there ae many blocks to be
foundand many oppatuniti es to increase the number of corred blocks (make a @rred join). For example,
at the beginning d seach there ae many size-two blocks to be foundand many passble encgpsulations

that may find asize-two modue given the initial popuation.

So, in a manner analogots to that in Sedion 6.6.3, we cax use a1 estimate of time to progressalong the

path to the optimum that takes acount of the fad that the expeded time for a step changes with ead step,

64

corred dona entities are nat overlapping - so, S(A,B)=S(B,A).
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as the number of possble waysto find a block changes. The expeded time to find ore of g avail able blocks

isP/q, thus;

® 3CPR,
& O,

T<

Equation 20: Expeded timeto solution for SEAM

where B is the maximum number of steps in the path to the optimum, P, is the number of
choices of parents at the bth step, C=2 is the number of contexts that need to be tested for
ead choice of parents, and g, is the number of ways that a new block can be swapped-in at
the b" step.

Thus, we may write T < 3Cr, where r is the sum of P/q for all stepsin the path to the optimum. Theorem

7-1 uses an upper bound orr to give atimeto solution for idedi sed-SEAM on H-IFF.

Theorem 7-1
T=O(N’InN), where T is an upper bound onthe expeded time to find a global optimum in H-IFF

using the idedised-SEAM algorithm in Figure 7-12, and N isthe problem sizein hits.

Proof: To use T < 3Cr we must find r=r +r,...+r, wherer,=P/g,, where g, is the number of blocks
that may be discovered at the b" step, and P, is the number of choices of parents(/dona entities) at
the b" step. We will court a step for ead corred join the dgorithm makes, which equals twicethe
total number of blocks in either globally optimal solution - i.e. the total number of steps, B=2(N-
1). At the first hierarchicd level in H-IFF there ae N/2 size-2 blocks of ead type (0 and 1) to be
discovered (in the worst case, we may asaume that the initial strings have nore of their size-2
blocks corred). By the ressoning d Lemma 1, any ore of these blocks may be discovered by
encgpsulation of a particular pair of existing entities. So, g,=2N (because the order of seleded
parents does not matter so there ae two ways to creade eat bock). In the initial popuation in
idedised-SEAM there ae 2N entities and thus P=4N* (assuming we do nd bother to ched that
dona entities are different). Thusr,=4N/2N=2N. There ae now N-1 blocks remainingto be found
at the first level, and the since the encgpsulation d two entities into ore reduces the popuation
size by ore P=(2N-1)>. So r,=(2N-1)* /2(N-1). More generaly, let the hierarchicd levels in the
problem be indexed with j from IgN to 1, and let the blocks that need to be discovered in that level
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be indexed with k from 2 to 1, then for the k" block at the " level p=(2+k)? and g=2k. The overall

sum of p/q for all blocksat all levels, r, is

r_lgN HJ+kH
22

EZ : 2J k
i ' E
lg N

< Z @2 t(n2i +1) +22 +22(2) +1))

1=

IgN 2!

rso 22IgN—1|n 2IgN)

r<O (N InN )
For the dgorithm in Figure 7-12, C=2. So, from T < 3Cr,
T<ér,
Thus T = O(N’InN)
[end]

7.7.2 From idealised-SEAM to SEAM

Idedised-SEAM uses exadly the two ided contexts for testing the stability of a join and is thereby able to
ensure that only corred joins are made. In (ordinary, not-idedised) SEAM, arandaom sample of contextsis

used where eat context is built from an assembly of other entities in the popuation.

To expand ou proof for idedi sed-SEAM to SEAM we nedd to estimate the number of contexts required to
corredly identify the mrrednessof a proposed join. Thus SEAM will only make join stable if they are
corred, as did idedised-SEAM, but SEAM will require more evaluations to determine the @rredness of
joins. The basic observation is that athoughidedised-SEAM uses the global optima & contexts, it is not
necessry that the contexts be globally optimal - only that they contain ogtimal sub-modues of abou the

same order as the individuals being tested, and since the @ntexts are built from other individuals of abou
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the same order as the individuals being tested this condtion is feasible for any size modue & sach

progresss.

Lemma 2 provides the number of contexts we exped to nedl to test to determine the crredness or
incorreanessof a propased join. In SEAM a propaosed join is tested in a number of contexts until the first
occurrence of a context that reveds it to beincorred. But when ajoin is corred, no such context occurs - in
this case we must place aimit on the number of contexts we will test before being satisfied that the join is
corred (i.e. t ). Thislimit shoud be based onthe dlowable risk of acadentally accepting an incorred join

as gable.

Lemma 2

__GInP__ (1-G)
In(1-p) p

where C is the expeded number of contexts required to determine the

stability a proposed join, G is the probability that the proposed join is a @rred join, P is the
acceptable risk (allowable probability) that an incorred join is passed as dable/corred, and pis

the probability that a single context will reved an incorred join to be unstable/incorred.

Proof. C=Ga+(1-G)b where a is the expeded number of contexts required to determine that a
corred join is corred, and b is the expeded number of contexts required to determine that an
incorred join isincorred. If the probability that a single cmntext will reved an incorred join isp,
then the expeded number of contextsrequired to reved anincorred join is, b=1/p. The probability
that an incorred join will not be reveded to beincorred in asingle cntext is 1-p. The probability

that an incorrec join will not be reveded to be incorred in k contexts is (1-p)". We want this

probability to be P, thus P=(1-p)“. So, k=log, ,P, thus k=__INP__where k=a is the number of
In(1-p)

trials required to make the probability of an incorred join passng as corred to be P. Thus C=

GInP__ (1-G)
In(1-p) p

Our intent in this analysis is to show that, with ressonable assumptions, there is a cnstant upper bound on

C with resped to N, the size of the problem. This, in turn, will alow usto show a polynomial upper bound
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on the SEAM adgorithm. Accordingy we need to bound G, P, and p appropriately.

We adressead term individually.

G, the probability of a propaosed join being corred, changes as the dgorithm progresss. In general, G isthe
ratio of ‘the number of new blocks that could be aeaed from a pair of existing Hocks' to ‘the number of
possble pairs of existing Hocks'. This ratio, and therefore G, canna be greder than ore. P, the accetable
risk (allowable probability) that an incorred join is passed as table/corred shoud be low. RougHy, we
want to make O(N) joins without making any incorred joins. In any case, In(P), where P is a probabilit y<1,

will have amaximum which is negative.

Thus, given these bounds on G and P, if we can show that p, the probability that a single context will reved
an incorred join to be incorred, is constant, then we can show that C has a @mnstant upper boundShowing

p to be constant is more cmplicated.

The probability that a single context will reveal an incorrect join to beincorrect

In SEAM, ajoin between two individuals A and B is incorred if f(A+c)>f(A+B+c), or f(B+c)>f(A+B+c)
for any c tested, where f is the fitness function and c is a ontext. To start with, let us consider only
f(A+c)>f(A+B+c). It is easily seen that the join will be regjeded if there is any context tested where the

presenceof B causes adeaease in the fitnessof the string.”

Note that any alleles provided by B that are overlapped by A can play no part in these fitnessevaluations.
Thus any context that might possbly show f(A+c)>f(A+B+c) would also show f(A+c)>f(A+B’+c) where
B’ is the subpart of B that is not overlapping with A. Let D be the subpart of context c that is exadly
covered by B’ —i.e. D islocaed in the same partition o the variables as B'. Let us also consider E, which
is defined as the partition o variables that form the complementary part of B’ (and therefore dso form the
complementary subpart of D), makingamodue & the next hierarchicd level in the problem structure—i.e.
in HIFF this will be the block neighbouing B’ defined in the hierarchicd block structure, in Shuffled

HIFF, thiswill be the new randamised pasition d these same variables. Thusif B’ and E are both internally

*  Note that when A and B form a crred join there caana be any context in which the superposition B

causes adeaease in fithessthat has nat alrealy been caused by the presenceof A.
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corred and compatible (i.e. both Os blocks, or bath 1s blocks) then B'+E forms a crred join. Similarly,

sinceD isin the same partition as B’, D+E may or may nat form a arred join.

As gated, we ae interested in the probability of finding a cntext where the presence of B causes a
deaeese in fitness In HIFF, a change in fitnessresulting from the superposition d a modue on a mntext
can occur either because of the independent fitness contribution d that modue (if it is a @rred block or
contains corred blocks), or from the fitness dependencies between that modue and aher modues in the
context. If B is a crred block then its independent fitness contribution canna be lower than that of D.
However, if B isincompatible with E, but D is compatible with E, then B will cause afithessdeaease. In
other words, if D+E is a orred block, and B’ # D, then f(A+c)>f(A+B+c). Thus the probability of
reveding an incorred join to be incorred from a given context, ¢, isp > q where q is the probability that ¢
contains a rred block twice the size of B’ and located at the partition covered by B’ and its
‘neighbouing block, E. In this case, D+E makes a crred block, and the superposition d B ‘bre&s' this
block causing a fitnessdeaease. (Note that when A and B form a mrred join, E is the same partition as A
and thus D+E can orly be a orred block when D=B’, thus D+E does nat confer greder fitnessthan D+B’

and there can be no context where f(A+c)>f(A+B+c).)

Note that when using randam contexts, p is inversely related to the exporent of the size of the modue B.
But in SEAM contexts are built from other coevolving individuals. If al individuals in the popuation,
including B, are corred modues of size k, and if the Os kind  modue and the 1s kind d modue is
equally represented in ead partition, then the probability that a context built from this popuation will
reved an incorred join to beincorred is just the probability that the context will contain a corred modue
of size 2k in the B’ +E partition that is incompatible with B’. This probability is independent of blocks in
other partitions snce the partitions of corred modues are non-overlapping. Thus p=1/4 in this case: i.e.
there ae four possble block combinations of size k that make candidate blocks of size 2k, only one of

which isa @rred size-2k bocks and incompatible with B’.

Sincethetest is ymmetric, i.e. we aelooking for a mntext where f(A+c)>f(A+B+c), or f(B+c)>f(A+B+c),
the number of contexts that need to be tested is limited by the size of whichever modue is the smaller out
of A or B. In general, the probability of a context assembled from other individuals reveding an incorred

join to be incorred is p=1/2*", where K is the size of the smaller of the two blocks in the proposed join,

253



and kis the average size of blocks in the popuation in the partition d that block (assuming 0s and 1s are

equally represented).

In pradice we caina ensure that al members of the popuation are of abou the same size because it may
be the cae that different partitions and dfferent types of block within a partition are progressng at
different rates. Let us asuume that in general, different modues/blocks in the problem may be m
hierarchicd levels apart in size i.e. when the smallest block of A and B is of size K, the arerage size of
other entities pedfying Hocks in the partition d that block and its neighbouing pertition is no lessthan
k=K/2". This assumption asserts that different solutions to a modue never get more than m hierarchica

levels ahead of one anather.

If some members of the popuation are of sizek=K/2", then 2K/k=2K/(K/2™)=2"", and the probability of a
context reveding an incorred join to beincorred is, p=2*™"?, for ajoin between modues of any sizein the
operation & SEAM.* Thus, p is congtant if the ratio of sizes of different solutions to a modue in the
popuation is constant. This is not an urreasonable asaumption in HIFF and Shuffled HIFF since the
discovery of different solutions to a modue ae equally likely. Thus, given a mnstant upper boundfor p,
we arive & a onstant upper boundfor C, the expeded number of contexts required to determine the
stability a proposed join. Finaly, a boundfor C, alows usto gve an upger bound onthe expeded time to

find agloba optimum in H-IFF using SEAM.

Theorem 7-2
T < O(N’InN), where T is an upper bound onthe expeded time to find a global optimum in

Shuffled H-IFF using the SEAM agorithm in Figure 7-12 given a onstant bound onthe ratio of

different sized entitiesin the popuation as described above, and N isthe problem sizein hits.

Proof: Using O(N’InN) from Theorem 7-1, which was based on T<3Cr, we seefrom the éove
argument that in SEAM (as well as idedised-SEAM) C=0(1), and r is the same for SEAM as

idedi sed-SEAM, thus T=O(N’InN). [end].

66

Note that this contextual testing scades-up appropriately as the size of the modues being tested scdes
up - but testing joins in randam contexts canna do this, as een in our control experiments.
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7.7.3 Summary of analytic results

The gist of the dove analysisis that by testing an appropriate number of contextual groups we ca ensure
that only corred joins are made. This number of contexts is limited, regardlessof the size of the modues
being pocessed, simply becaise mntexts are built from individuals of abou the same order as the
individuals being joined. Thus the operation o SEAM continues unhindered through successve
hierarchicd levels. Given this invariant property of the SEAM popuation, the expeded time to solutionin
HIFF or Shuffled HIFF is therefore, paynomial in N, the size of the problem, despite there being dfficult

interdependencies between modues of size N/2.

Note that in general, analyticd results for complex popuation-based algorithms sich as those we have
analysed are very difficult because the way in which new individuals are aeaed is dependent on the
current state of the popuation. However, this dependency on the state of the popuation canna be ignared
sinceit is exadly this that all ows compositional algorithms to change the way in which they move in the
seach space & evolution progresses. However, bath here and in the proof for the GA on HIFF (see6.6.4),
we have been able to provide an analyticd time by making assumptions abou certain properties of the
popuation rather than the exad compaosition o the popuation. In the GA we neeaded to asaume that
appropriate diversity was maintained and gven this invariant property of the popuation we can prove a
polynomial solution time. In SEAM, the necessary invariant property of the popuation islessvague - we
need orly asaume that the discovery of different solutions to a modue do nd get too far ahead of one

ancther. If thisholds, then apolynomial bound héds.

Of course this result is dependent on the problem class HIFF. The property of HIFF that is criticd hereis
that the dependencies of a modue with its context are limited, and thereby it is not necessry to test a
propcsed modue in all posshle ontexts but merely a sample of contexts. Nonetheless the
interdependencies that do exist between a modue and its context are high-order and must be resolved to

find oggimal solutions.

The important point to nae is that the result given above for SEAM is true for Shuffled HIFF as well as

HIFF and thus the dgorithmic advantage avail able from compositional mechanisms in this classof moduar
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interdependency systems is not dependent on knawing in advance which genes are dependent on which

other genes  asto order them appropriately onthe chromosome.

The important point to nae is that the result given in the previous chapter for compaosition based onsexual
recombination showed the potential for compaositional medchanisms to provide adivide and conquer style
problem decomposition in this class of moduar interdependency systems, but that result was condtioned
on having a priori knowledge of which genes are dependent on which ather genes © as to order them
appropriately onthe diromosome. The result above for SEAM is true for Shuffled HIFF as well as HIFF
and thus ows that the dgorithmic advantage avail able from compositional mecdhanismsisnat, in general,

dependent on knawving this information in advance

7.8 Summary

In the previous chapter we saw that under some drcumstances sxua recmbination is able to provide
compositional change gpropriate for adaptation onlandscapes built from moduar interdependency like
HIFF. However, we dso saw that one of the provisos for this was that the ordering d genes on the

chromosome must correspondwell with the epistatic dependency structure of the adaptive domain.

Results of the previous chapters siowed that mutation and sexual recombination are unable to exploit the
decmposable structure of HIFF or otherwise overcome the large-scde fitness sddles in the landscgpe
except when tight linkage is assumed for sexual recmbination. The provisos for the successul adion o
sexual recombination were: Appropriate moduar interdependency structure, popuation dversity, strong

genetic linkage, and favourable gene ordering onthe chromosome (tight linkage).

In contrast, the variable-sized entities in SEAM are ale to ead identify and represent a corred asembly
of compatible feaures forming a useful modue for the next hierarchicd level, regardiessof gene ordering.
Also the use of Pareto daminance in the seledion scheme provides an appropriate tod for maintaining
diversity that does not depend in any way on genotypic similarity measures. Thus only the first proviso

remains for the successul operation d SEAM: Appropriate moduar interdependency structure.

Since SEAM has no gene-pasition-sensitive feaures, there is no dfference in the operation & SEAM on
HIFF or Shuffled HIFF. Other variants of HIFF, such as Biased HIFF (where Os and 1s confer different
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fitnesscontributions), and H-XOR (based onexclusive-OR rather than IFF), (seeWatson & Pollack 199%,

1999H, are dso solved by SEAM.

These results using symbiotic encgpsulation provide a seoond set of sufficient condtions under which
complex systems of this kind are eaily evolvable under compasitional medhanisms. In particular, SEAM
shows that a mechanism from the other end d the spedrum of compasitional mecdhanisms given in Figure
2-5 is not dependent gene ordering in the way we saw for sexual remmbination, or on any a priori

knowledge of which genes are dependent on which others.
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Chapter 8- Implicationsfor Evolutionary
Biology

In this chapter we discuss the impad of the previous chapters with resped to ou understanding o

biologicd evolution, and dscussongdng and future reseach onrelated isaues.

8.1 Impact for evolutionary biology

This subsedion dscusss the impad of the models in the previous chapters with resped to ou
uncerstanding o EB concepts. We discusshow our common assumptions and intuiti ons about evolutionary

processes and evolutionary difficulty are dfeaed.

8.1.1 Evolutionary difficulty and gradualism

We have agued that common concepts associated with evolutionary difficulty such as the ruggednessof a
landscape, the existence of broad fitness sddes, the number of locd optima, and ndions of irreducible
complexity are dl based onan underlying assumption d acaetive mechanisms. The model landscape and
compositional medchanisms that we have discussed, ill ustrated, and analysed, show that acaetive change is
not the only nonteleologicd passhility for evolutionary medhanisms. Compositional mechanisms can,

under certain condtions, enable dficient evolutionin landscapes that exhibit al these charaderistics.

In this manner we have shown a dass of systems, normally considered urevolvable, that are eaily
evolvable under compositional mechanisms. One @nclusion from this, showing general contradiction with
the above nations of evolutionary difficulty, is that certain kinds of complex adaptations may be eaily
evolvable despite the fad that there isno path of small changes conferring monaonicdly increasing fitness
approaching these systems. Our experiments have included scenarios where gradualism is neither sufficient
nor esential to explain the evolution o a mmplex adaptation. The insistence on a path of small changes

approaching a mmplex adaptationis therefore not essential in evolutionary explanation.
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Note that although in generadl, it is clea that eat kind d adaptive medanism is well-suited to diff erent
classes of adaptive landscgpes (Wolpert & Maaeady 1997, we have dore more than simply show that
accaetive and compositional mecdhanisms are diff erent. For example, we have leaned a lot abou the dass
of landscgpes that discriminate the adaptive cgadties of these mecdhanisms and why the different
mechanisms behave differently in this class abou the properties of complex systems that creae such
landscepes, and abou the mndtions under which the alaptive alvantage of compositional medanismsis

shown.

8.1.2 Symbiosisas urce of evolutionary innovation

The intuition that symbiotic compasition might aff ord large, relatively sudden, changes in the dharaders of
an entity is not new (e.g. Margulis 1993, Margulis & Fester 1991, MehreZovsky 1909 Wallin 1927.
And many authors accept that symbiosis is a medchanism avail able for increasing complexity (e.g. Maynard
Smith and Szathmary 1995 Ridley 1985. However, as we have discussd (2.2.5), there has been an
underlying assumption that gradual mechanisms are, in some sense, ‘primary’ - in that they provide the
comporents that are later asseembled. However, our models ill ustrate that this adherence to the primacy of
gradual change is naot required. Firgt, the fad shoud na be overlooked that althoughthe comporents may
have been evolved gradually, the entity that they were assembled into, was not evolved gradually, and we
have shown that in principle there ae condtions, where mmplex adaptations could na have been evolved
gradually. Moreover, it is not necessary that the comporents that are assembled were provided by gadual
change; they may themselves have been aseembled from sub-comporents. This kind o ‘symbiosis all the
way down’ (or perhaps ‘up’) is reminiscent of Serial Endosymbiosis Theory (Margulis 1993). Using the
notion d hierarchicd encgpsulation, we have provided a dea model of a dassof systems that typify those
that canna be evolved acaetively but can be evolved compositionally, and we have operationalised the

intuiti ons of compositional change.

In acoord with the intuitions of Margulis, Walli n and the ealier Rusdan Biologists, our models sippat the
possbility that symbiosis may be afundamentally different source of evolutionary innovation from the

acceted nams of evolutionary change. We reinforce the conclusion that symbiotic encapsulation does
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present a challenge to Darwinian gradudism - thoughit does not present a dhallenge to Darwinism in

general, sinceit is perfedly reasonable for natural seledionto ad onlarge changes (Maynard Smith 1991.

Moreover, it is therefore not true that the Darwinian “must” reject a system of large changes (Ridley,
notwithstanding) and it is not the cae that al systems must have evolved only through the gradual
acamulation d small changes. Finally, it is not esential that there be paths of small changes approaching
a omplex adaptation (Behe, notwithstanding), nor that we find a posit the existence of such paths (e.g.

Dawkins 1976 nawithstanding).

8.1.3  Multiple-inheritanceall ows large non-random genetic changes

Compositional mechanisms afford adaptive cgadty that is not available under acaetive mecdhanisms
becaise they employ multiple inheritance That is, under acaetive dhange, charaders are inherited from
one parent only (or very similar parents), and undr compasitional mechanisms, charaders are inherited
from more than ore parent (two, in al the models we have looked at). In addition to stochastic mutation,
there ae several posdble genetic mechanisms that may produce highly nonrandam genetic variations from
a singe parent, such as inversion, translocaion, or gene dugication. However, when nonrandam genetic
material is introduced acosslineages it may be whaly unrelated to the genetic material in the redpient
lineage, not arearangement of existing genetic material. Thismay be good @ bad - it may be bad becaise
new genetic material, seleded for in a diff erent genetic context, may be whally uselessor detrimental in the
genetic context of the recipient lineage. On the other hand, it provides an oppatunity for innovation that is

not avail able throughmutational change or the rearrangement of genetic material within alineage.”

The important point is that the oppatunity for innovation throughthe introduction o genetic material that
has been pre-adapted in a parallel lineage is likely to be higher than it is throughany system of stochastic

variation within the lineage if there is limited context dependency for the genetic material involved. In

" As an aside: this dichotomy between a deaease in the probable fitness of resulting aganisms and an

incresse in oppatunity for innowation, highlights the distinction ketween medhanisms that are
beneficia to the interests of the individual, and mechanisms that are beneficial for the alaptation o the
spedes. Thisin turn begs the question d how a medhanism that might be beneficial to the spedes might
arise if it is detrimental to the individual. However, such questions are outside the scope of this thesis.
Thus far, we know that sexual recombination and symbiotic encgpsulation mecdhanisms are present in
natural systems, and in this thesis we have aldressed the adaptive consequences afforded by dff erent
adaptive mechanisms when present.
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cases where epistatic dependencies do nd restrict the fitnesscontribution d a sequenceto aunique cntext,
that sequence may confer paositive fithesscontribution in some other context, and more to the point, may be

more likely to confer a paositi ve fithesscontribution than arandam change in genetic material.

8.1.4  Asamptionsconcerning genetic systems

Our models suggest that the following charaderistics of genetic systems may benefit from careful

consideration:

» Condderation of non-additive dfeds. When mechanisms of genetic variation ory provide small
genetic dhanges it canna be the cae that seledion ads on anything aher than additive dfeds of
aleles (or small combinations of alleles). However, when mechanisms of genetic variation aff ord
large genetic changes (such as sxua recmbination d tightly linked genes, or symbiotic
encgpsulation) seledion may well ad on nonadditive dfeds of allele combinations. Accordingly,

multi-locus norlinea epistatic dependencies shoud beincluded in ou considerations.

* Intra-genomic dependencies and inter-genomic dependencies. When medhanisms of genetic
variation ad only amongthe individuals of asingle lineageit isreasonable to trea the genetic makeup
of other lineages as merely providing a seledive mntext for the lineage of interest. However, when
genetic mechanisms permit the transference of genetic material among lineages we must consider the
genetic dependencies among lineages not just within them. This requires that we aldress intra-

genomic and inter-genomic dependenciesin a unified fashion.

8.2 Related results

8.2.1 Hierarchical encapsulation, the Baldwin effed, and symbiotic scaffolding

We mentioned ealier (7.6) that there is an interesting analogy between the operation d SEAM and the
Baldwin effed (Baldwin 189§. Let us elaborate. In the Baldwin effed, lifetime plasticity guides genetic
variation, and genetic variation canalises aqyuired traits. In SEAM, the evaluation d transient groups
guides the genetic encgpsulation of new entities, and the genetic encapsulation o new entities canali ses
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feaures of the more succesul groups. In bah cases, there is a medchanism of rapid nonheritable variation

guiding arelatively dow, heritable variation mechanism.

We know that one of the condtions for the Baldwin effed is that the spaceof variations avail able to these
two mechanisms are in some sense mrrelated (Mayley 1996. If they are nat, then the fad that the
mechanism of non-heritable variation might discover afit configuration daes not provide agradient that the
mechanism of heritable variation can follow. It neads to be the cae that the slow variation medanism can
incrementally reduce the anourt of rapid variation that is required in the lifetime of an organism (and
thereby reduce the mst of lifetime leaning) - and if the spaceof variations in the two mechanisms is not

correlated, then it isnot posgble for the heritable variation to canali se the non-heritable variation.

In Hinton and Nowlan’s model (1987 of the Baldwin effed, lifetime variation is modelled by randam
completion d the partialy spedfied string, and genetic variation is modelled by randam variation in the
spedfied feaures. Both medchanisms produce variants that are neighbous in the mutation reighbouhood

metric. Accordingly, genetic variation is able to canalise aqjuired charaderistics effedively.

In adifferent model in our previous work, we began investigating the posshility of ‘ symbiotic scaffolding’
(Watson & Pollack 19994, (see &so Wiles et a. 2001, which uses HIFF and symbiotic scafolding), a
symbiotic analogue of the Baldwin effed. The ideais that, instead of augmenting innate ailiti es with
lifetime leaning, symbiotic scafolding might augment the innate abiliti es of one organism with lifetime
interadion with ather organisms in its vicinity. Under symbiotic scaffolding an organism may come to
exhibit the caraderistics of a symbiont withou dired genetic transfer in a manner analogots to the
Baldwin effed where an organism may come to exhibit acuired charaderistics withou Lamarckian
inheritance. The basic model demonstrated a symbiotic sceaffolding effed, and subsequent investigations
ill ustrated some interesting prenomenon (Watson et al. 20008). This mode ill ustrates that it isin principle
posdble for a complex adaptation to be discovered first by a symbiotic group, and subsequently be
canalised by the heritable feaures of a member of that group. The bivalve Solemya reidi may be anatural

example (Watson et al. 2000k Powell & Somero 1984.

However, this work did na addressthe need for the rapid and slow variation mecdhanisms to move in

correlated spaces. Fortunately, in the ‘needle in the haystad’ adaptive landscgpe that we used, following
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Hinton and Nowlan, there ae no locd optima, and the dfed was robust. But, in general, it shodd na be
expeded that the variations in feaure combinationsthat can be produced by composing together symbiotic

groups can be canalised by acaetive cthange within the entity of interest.

In SEAM, this limitation is aleviated. The mechanism of rapid variation is the asembly of transient
groups, and the mechanism of dow heritable variation is the pairwise asmbly of some of those same
entities. Accordingly, the two spaces of variations are gpropriately correlated and the caalisation of
successul groups is robust. The diff erence then between the Baldwin effed and the symbiotic scaffolding
implicit in SEAM is that whereas the former canali ses acaetive variation with heritable acceetive dhanges,
the latter canali ses compasitional variation with heritable compasitional changes. That is the Baldwin effed

operates in the spaceof acaetive variations, and SEAM operates in the spaceof compaositional variations.

More than providing an interesting analogy - there ae important adaptive consequences of this dift from
canalisation of acaetive variation to canalisation d compaositional variation. Spedficdly, the latter enables
a form of adaptation that uses the results of prior seledion to inform subsequent seledion. That is, in the
Baldwin effed, the medhanism of explorationis fixed, whereas in SEAM, the mecdhanism of explorationis
shaped by pior seledion by \rtue of the fad that the groups are formed from other coevolved individuals.

(See'stochastic lookahead’ in 9.3.6.)

8.3 Future research

The models that we have introduced and the issues that we have touched uponin the subjed of this thesis
raise many questions and have arich interfacewith other areas of study. In this sibsedion we briefly list
some of subjeds that deserve further attention. We do nd intend to be comprehensive in sharing these

ideas - we provide them for the purpose of encouraging further discusson and investigation.

8.3.1 Therelationship of accretive and compositional mechanisms

In the models of previous chapters we have provided an operationalised model of compasitional
medhanisms. However, there is much to be done to properly integrate the findings of these models with

existing frameworks of evolutionary change, nat least acaetive medchanisms. For example:
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Integrating macro and micro evolutionary change. A general model of evolutionary change might
provide aframework that incorporates both acaetive and compositiona medchanisms, perhaps ading
on dfferent time scdes or acossdiff erent ecsystem scaes. The role of compositional mecdhanismsin
the magjor evolutionary transitions suggests that acaetive and compaositional mechanisms might
correspondto intra- and inter-transitional mecdhanisms of change respedively. In such a framework,
acaetive mechanisms and competitive seledion between noncomplementary entities, might provide
the common pgdcture of micro-evolutionary change; wheress compaositional mechanisms and
coexistence of complementary entities, might provide amore maao-scde framework into which the

former can be fitted.

The diversification and integration of lineages. In the SEAM model we have presented thus far, we
have illustrated medhanisms to maintain coevolving complementary lineages and their genetic
integration into composites. However, a full model of evolutionary proceses $oud also include
mechanisms of spedation that al ow both the usual ‘ diff erentiation from a @mmmon ancestor’ and also

the compositional ‘integrationinto a new whole'.

Integrating sexual recombination and symbiotic encapsulation. Margulis (1993) suggests we
may view sexual recombination and symbiotic encapsulation as analogous medchanisms - the main
difference being that the dona entities that creae an dff spring undr sexual recombination share a
closer common ancestor than the dona entities that creae a new individual under symbiotic
encgpsulation. In SEAM we suggested that ancther important is een (therefore) in the expeded
overlap of charaders. More work is necessary to properly integrate our understanding d the two

mechanisms and provide ageneral model of compositional change.

Hierarchical seledion. In 7.6.3 we briefly discussed the scde invariant properties of SEAM. Intrinsic
to these ideas are the ideas of scding-up the unit of variation and scding-up the unit of seledion.
Obvioudly, hierarchicd seledionis ahighly controversia topic in evolutionary biology. Our findings
here do nd intend to address the many isaies underlying such dscusson — we have focused on
understanding what difference it would make to the alaptive caadty of evolutionary processs if

changes in these units were available through compasitional mechanisms. We have shown that the
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difference is sgnificant in some drcumstances and we have mme some way in identifying thaose

circumstances.

Integrating multi-spedes models and population genetic models. Often community models
incorporate the interadion o numerous gedes but do nd model evolutionary changes in the
interadion coefficients of the underlying ‘community matrix’ (e.g. Arthur 1987 — that is, the
competitive (or otherwise) relationship of spedesto ore ancther is generally fixed, whil st the stability
(or otherwise) of popuation dyramics are examined. In contrast, popuation genetics models do
include changes in the genetic composition d a spedes but generally do nd model the interadion o
multiple spedes. In order to properly understand the balance of diversity and competitive exclusion
necessry to properly model the diversification and integration d spedes under compositional
mechanisms, it is necessary to integrate models of inter-spedes interadion and intra-spedes genetic
change. In the models we have presented, some of the necessry madinery has been embedded in
mechanisms auch as deterministic aowding and seledion based on Pareto daminance A proper
integration d the mpositional mechanisms presented in this work with more @nventiona
popuation genetics aib-division models on the one hand, and community stability models on the

other isrequired.

Pareto seledion, Nash equilibria, and evolutionary stable strategies. The multi-dimensional
treament of fitness used in SEAM has me potential to asdst in modelling the balance of
competitive exclusion and stable existence that is required in a general model of evolutionary
change incorporating compasitional and acaetive mechanisms. The relationship between the Pareto-
dominance-based seledion in SEAM, Nash equilibria, and mixed strategies (e.g. see Ficici in

preparation), and evolutionary stable strategies (Maynard Smith 1982 warrants attention.

Towards a general model of subdivision and integration. The genera idea of subdvision and
integration is well established in EB concepts through Shifting Balance Theory. However, in the GA
models we have used the subdvision model is based on dterministic cowding. In SEAM the
subdvision model is also largely the result of restricting competition to off spring and parents. In bah

cases the diversity of demesis largely the result of randam initialisation. A more mnventional model
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of gpatial subdvision and dversificaion via genetic drift would properly relate the potential of
compositional mechanisms with existing models of subdvision and integration. This would allow us
to trandate what we have leaned abou the adaptive caadty of sexual recombination and symbiotic
encgpsulation, and the dass of adaptive landscapes to which they are well suited, into more
conventional models. Meanwhil e, the models we have presented suggest that Shifting Balance Theory
and Serial Endosymbiosis Theory are similar in the sense that both are mncerned with evolution o
interadion systems in dfferent lineages and their subsequent integration. The difference between
them at this level of abstradion is that the former addresses sibdvision (usually spatial subdvision)
within a popuation d a single spedes and their integration via sexual recmbination, whereas the
latter addresses the alaptation d multiple spedes and their integration via symbiotic encgpsulation.
There is a lot of work to doto develop a better understanding o the differences and similarities in

these mechanisms.

8.3.2 Theopen-endednessof evolutionary processes

The separation of a locd optimum from the next best configuration d feaures is a fundamental li miting
charaderistic of adaptive landscapes, and saddle-crossng is a useful way to conceptuali se the aility of an
adaptive mechanism in some drcumstances. But, what scde of fitnesssaddle shoud we exped in a natural
adaptive landscape? Intuitively, we might susped that as one scde of ruggednessis overcome, a larger
scde of ruggednessbemmes the limiting charaderistic of the alaptive landscgpe. If thisis ©, then thereis
no fixed scde of saddle-crosing ability that is sufficient for open-ended evolvahility. In contrast, an
adaptive mechanism that scdes-up as evolution continues, enabling larger and larger ‘jumps’ in feaure

spaceby the compasition o extant entities, is not necessarily limited in the same way.

In our experiments using a scde-invariant fitnesslandscepe, we find that, as expeded, acaetive mechanism
have alimit to the size of fithess sddle that they can cross More exadly, as adaptation continues and the
distanceto the next-best optimum increases, adaptation bythese methods becmesincreasingly difficult. In
contrast, SEAM s able to discover the euistasis structure in the problem, use mlledions of fedures in
different entities to represent it explicitly, and by seaching combinations of these antities is able to

continue to find succesful combinations of features through many hierarchicd levels. Accordingly, these
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experiments how that onthis classof adaptive landscape, evolvability under acaetive modes of adaptation
isinherently limited, whereas innovetion by composition dfers the posshbility of inherently scdable, open-

ended evolvability. Future reseach will seek to understand the generality of this result.

8.3.3 Theinherent tension of innovation and reproductive fidelity (change and non-change)

Heritable variation is one of the fundamental axioms of evolutionary theory. However, it is afamiliar irony
that randam variation is the source of new innowation but also inherently oppased to the maintenance of
extant complexity. We might refer to this as the inherent tension o innovation and reproductive fidelity - or
the tension d change aad nonchange. Evolution has creaed mechanisms, such as enzymatic repair, that
reduce the error rate (Nowak & Schuster 1989 and increase reproductive fidelity, but till, the question
remains; How can it be the case that variation may be suppressed (by whatever mecdhanism) without also
suppressng the oppatunity for innovation? Diff erential reproductionisalso na such asimple oncept as it
might first appea. Spedficdly, it requires us to delinede the entities involved—to identify the entities
whose reproduwction could be differentiated. There ae many hiologicd cases where the relevant

reproductive units are not so obvious—andit may bein principle inacairate to draw distinct boundries.

Symbiotic encapsulation offers an intriguing perspedive on these isaues. It is perfedly reasonable that a
number of entities may ead be individually stable and yet, via the discovery of succesful compasitions of
these antities, there is dill oppatunity for innovation at a higher-level of organisation. Thus, composition
presents no oppaition between the stability or reproductive fidelity of the cmporent entities, and the
oppatunity for innowetion in entities at the next level of organisation. And significantly, this view is
enabled by a willi ngness to repeaedly re-define the boundxry of the entities involved in processs of

differential reproduction.

Thetension between reproductive fidelity and oppatunity for innovetion perhaps siggests an inherent limit
to the complexity that can be evolved by acaetive medchanisms — these notions being alied to the
complexity ceiling coming from reproduction fidelity (Eigen & Schuster 1979. In contrast, it seans from
the &ove observations that compositional mechanisms are not necessarily subjed to the same limitations
and may be better able to provide mntinued increases in complexity. Indeed, the solution provided by

Eigen and Schuster for the reproduction fidelity problem isthe formation o hypercycles from the assembly

267



of formerly independent self-replicating moleaules which is a cmpasitional event. A formal treament of

closed-endednessand open-endednessin acaetive and compasitional medhanisms would be valuable.

8.34  Sdfish genesand the esolution of cooperation

In the seledion scheme of SEAM, all entities enter into associations for selfish motives (see7.3). So, from
this perspedive, entities do nd cooperate ‘out of the kindressof their heats' - i.e. they are not behaving
altruisticdly. So, when entities discover a succesful mutually beneficial group, they remain in it because it
isin their own best interest (no single point mutation, or equivalently, no change in strategy for a primitive
player) provides a fithess improvement. To this extent, we ae in acord with the selfish gene model

(Dawkins 1976).

However, we have dso suggested that we can seethe formation d high fitness configurations through
compasition as the formation d hierarchicd cooperative groups (see4.6.5). This is because it shoud be
noted that a naive model of individua seledion would na discover highfitness configurations.
Spedficdly, a model based on the (appropriately named) ‘greedy’ seledion strategy, seleding for an
asociation whenever it is better on average than na having the asociation, fails to find hgh fitness

configurationsin HIFF (7.5.2).

The point then is nat whether entities remain in an association for altruistic or selfish motives — the point is
how the ‘immediate’ fitnesslandscgpe of the individual is modified such that the selfish fithesschoices it
makes now leal it to dscover the mutualy beneficial configurations rather than the mutual defed
configurations. In SEAM this is achieved by the medianism of group evaluation which gudes the
formation o asociations towards those which are optimal rather than just immediately satisfying. We
discussthe guiding effed of group evaluation in ather sedions (8.2.1, 9.3.5) but its exad relationship to

nations of selfish genes and the evolution d cooperationisthusfar at the intuitive level.

Related isales here include the posshbility of evolutionary seledionfor diff erent evolutionary mechanisms -
asubjed we have not addressd in this dissertation. The tension between medchanismsthat provide dfedive

adaptation for the popuation, and those that provide immediate benefits to the individual, are relevant here.
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8.3.5 Modular interdependency in natural systems

In Chapter 4 we defined a system exhibiting moduar interdependency predsely becaise that was the dass
of system that would distinguish the adaptive cgadty of acaetive and compositional mechanisms. It isnot

part of our claim that natural adaptive landscgpes may exhibit these charaderistics.

However, there ae some observations to make that may be of interest on this topic. For many, (e.g.
Holland 200Q Hartwell et a. 1999 the moduar nature of biologicd systems, and aher systems (Simon
1969, is ubiquitous and obvous. For others, different assimptions are normal - for example, we might
suppcee that gene networks are largely randam, (as in the NK model of Kaufmann 1989 1993. In Figure

8-1 below, we sketch some diff erent passhiliti es.

o
Sy

Figure 8-1: Posgble interdependency structures

a) C)

Nodes represent genes, edges represent dependencies between genes (see Figure 1, Case 3).
a) randam dstructure (as in N-K landscapes), b) separable sub-groups with orly internal
interdependencies (as in Royal Roads, concaenated trap functions), c) clustered dependency
structure (as in ‘hdf's, Holland 2000 and NKC landscapes), d) moduar interdependency
structure asin HIFF.

An important question to be aked is. When might the dependencies between variables in a biologica
system be dustered and aganised in such away that the interadion between clusters (something like ¢ can

be abstraded into theinteradion d higher level aggregate feaures (asin d)? We list some posshiliti es:

1. One posshility is that in a system of interdependencies (like that described in Sedion 4.3), the
strength and structure of interadions between genes might itself be the result of adaptation. In this
case amoduar substructure might, for example, be the result of indirea presaures for ontogenic

stability or robustness(Wagner 1995.
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2. Ancther posshility isthat moduar epistatic interadions might be the natural result of expresson
in physicd substrates. For example, consider two groups of nucleotides coding for two proteins
that interad. The epistatic interdependency of many nicleotides is thereby ‘implemented through
the interadion d the two proteins they code for. If the manner by which proteins interad is
dependent on high-level or aggregate tharaderistics, such as their 3D shape or particular binding
sites on the periphery of that folded shape, then the interdependencies of the two groups of
nucleotides can be described by the relatively low-dimensiona interadion o their aggregate
effeds. Such a hierarchicd understanding o interdependencies is natural in ou everyday

understanding d biologicd systems (e.g. Holland 2000 Hartwell et al. 1999.

3. A third possbility is that moduar interdependency structure in adaptive domains might be an
indired result of the moduar structure of natural physicd systems. Spedficdly, to the extent that
the natural environment of an organism is neither an undfferentiated ‘soup nor a mlledion d
whally urrelated oljeds, but rather is a system of more-or-less differentiated bu interading
objeds, the problem of adapting to, interading with, controlling, or modifying ratural

environmentsis also moduar in structure. (See éso Bak 1996 Gordon 1993.

Some other observations concerning moduarity in natural systems include the fad that scde-invariance
and fradal structures are often associated with biologicd systems (e.g. Mandelbrot 1982 and the self-
organisation d dynamicd systems (Kauffman 1993. ‘Small world networks (Watts 1999 have scde-
invariant properties, occur in many diff erent types of systems, biologicd and man-made, and seem to result
from simple properties of incremental network construction (Slanina & Kotrola 2000. Lastly, it is
interesting to nae that spatialy distributed dyremicd systems with gute simple properties exhibit moduar
interdependency: For example, a hierarchicdly clustered dstribution o communicaing agents with a
tendency to synchronise is aufficient. Consider a two-party voting system in humans with a tendency to
shift alegiance toward the aurrent mgjority and who communicae through locd, state, and retional
eledions. This defines a system where the stability of voting petterns has a moduar interdependency

structure.

These ae only intuitions. But now, armed with a working definition d moduar systems, and freed from

naive nations of ‘nealy separable’ systems for example, we ae better equipped to seach for and measure
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moduar interdependency in natural systems. This may help formali se the intuitive ideas abou the sources

of modularity in natural systemslisted above.

8.3.6  Theubiquity of compositional mechanisms

Althoughthe symbiogenic origin of eukaryotes, including all plants and animals, is now accepted wisdom.
The impad of symbiogenic events on evolutionary processes as a whole might seam minimal since such
events appea to be rare. However, we have agued that symbiogenesis may be viewed as a particular kind
of more general compasitional medhanisms common to several of the major evolutionary transitions.
Evidence for the involvement of compasitional mechanisms is available for many o the transitions

summarised by Michod (1999, for example (See2.2.3).

So, composition is implicated in many of the most fundamental events in evolutionary history, but still,
what abou the complex adaptations that occur within a transitional level - the alaptation o metazan
fedures, for example, the gye or the wing? Maynard Smith and Szathmary 1995clealy exclude this type of
adaptation from the list of ‘fundamental’ evolutionary events predsely becaise they do nd invave
compartmentation a a dcange in the mechanism of information exchange (the units of inheritance).
However, when we include mechanisms sich as sxual recombination ketween dverse lineagges, and
allopdyploidy, in ou list of compasitional mechanisms we seethat compositional medianisms may ad,
albeit in a more subtle manner, on adaptations in between transitions as well as at the transitions

themselves.

We dso suggest that the notion d acqquiring symbiont charaders withou dired genetic transfer, as in the
model of ‘symbiotic scaffolding (Watson and Pollack 1999d and Sedion 8.2.1), patentially broadens the
influence of compaositional processes to situations where there ae no mechanisms of dired genetic transfer

avail able.

Lastly on this topic, it is worth mentioning that the influence of compasitional mechanisms shoud na
necessrily be restricted to scenarios that ultimately result in full genetic integration. We have grown very
acaistomed to defining aganisms by the cmmon centre of genetic material, but more general notions
perhaps based onreproductive interdependence might be sufficient — consider the acmplex siphonophoes

(e.g. Gould 1985 p82), not to mention mitochondia.
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Chapter 9- Implicationsfor
Evolutionary Computation

9.1 Impact for Evolutionary Computation

This subsedion lists the main areas of EC where the results of the previous chapters make ax impad on

existing understanding and theory.

9.1.1  Building Block Hypothesis

Given that the BBH is abou the Simple GA, and is suppased to describe when it will work well in general,
we caina suppat the general form of the BBH. However, we have shown that a form of GA on a
particular classof problem can asemble together moduesin a manner similar to the intuition o the BBH.

(see @s09.1.9)

9.1.2  Building blocks and modules - genetic linkage vs. interdependency

We have shown that the intuition d building Hocks, and the ideathat a problem can be reduced in
dimensionality from the combination o primitive variables to the combination d building Hocks of
higher-order, does have some value. However, we have shown that the naive interpretation d a building
block as a separable partition d the variables (e.g. the Royal Road problems and Concaenated Trap
functions) is inappropriate. Jones (1995 has arealy shown that a maao mutation hll climber, MMHC,

can solve this classof problem.

Other methods in the literature defea the MMHC by using randam gene ordering (e.g. Harik 1997.
Certainly, this makes the problem hard for MM HCs but it also makes the problem hard for the GA and

crosover. Spedficdly, random genetic linkage prevents £hemarecmmbination ungr crossover.

In this thesis we have shown that a different and logicd way to make aproblem hard for the MMHC but

not for the GA is to introduce higher-order interdependencies between modues. We have shown that this
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does not make the problem hard for crosover if diversity can be maintained and linkage is tight. Thus,
when modues are short, and low-order (and identifiable via their fitness contributions as we have shown),

then thereisaform of GA that can optimise them and recombine them as the BBH suggests.

Having properly defined the concepts of moduarity and dfficult epistasis, and conceptually separated the
concepts of decompasability and separability, we can show the alaptive cgadty of ordinary crossover
(using HIFF). We ae then able to re-introduce difficult gene ordering (in Shuffled HIFF) to seeif thereis
some (other) kind o EA that can optimise and manipulate this more general (gene-order independent)
concept of a modue (as distinct from the tight-linkage concept of a building Hock described by, for
example, Holland and Goldberg). The resulting SEAM algorithm shows clealy that the mncept of a

modueis not dependent on gene ordering but onthe structure of epistatic dependencies.

9.1.3 GA-easiness

There is no goodreason to suppcse that a problem nealsto have an upper bound orthe highest-order non
lineaity it exhibits in order to be solvable by a GA. Furthermore, problems in the literature often equate
order-k delineaion with order-k separability (e.g. the Royal Road problems and Concaenated Trap
functions),” and there is certainly no goodreason to suppose that a problem needs to have separable sub-
moduesin order to be solvable by a GA. Spedficdly, HIFFis nat order-k delineable nor order-k separable
- it involves interdependent modues and ader N fitness contributions. Thus the order-k delineable and

order-k separable mncepts of GA easinessare not required for GA success

Moreover, we have shown that the use of hierarchicd moduar interdependency exemplifies the distinction
between the alaptive caadties of acaetive mecdhanisms like mutation and compositional mechanisms like
crosover. Accordingly, we suggest that moduar interdependency is a useful concept of GA-easiness snce

it is, at the same time, provably difficult for acaetive medanisms.

68

To seethe distinction, note that Equation 5 defines a version  moduar interdependency defined on
order-2 dependencies and is therefore ‘order 2 delineable’ - however, this problem is not separable into
order-2 blocks because fitnesscontributions come from overlapping peirs of variables.
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9.14 Interdependency and NK landscapes

Equation 5 defines a version  moduar interdependency defined on ory pairwise dependencies and it is
therefore ‘order-2 delineable’ (Equation 7 and Equation 8 could similarly be described using oy order-2
dependencies in the style of Equation 5). However the family of NK landscapes with k=1 (where eat
variable is dependent onitself and ore other) does not include this function. However, Equation 5is built
only from Pairwise interadions @ it could be defined with something like aa NK formalism with k=1 bu
where the fitnesscontribution o ead variable is the sum of N fitness contributions dependent on k aher
variables and itself, (rather than just one fitnesscontribution dependent on k dher variables and itself). Still
Equation 5 defines avery particular instance of this classof landscgpes. We know that most NK landscapes
with k=1 are nat very difficult for acaetive mechanisms (Kauffman 1993. Similarly we exped that most
order-2 delineable functions may also be eay. Thus we see that the particular structure of
interdependencies, nat just the number or order of dependencies, is esential in understanding problem

difficulty.

Moreover, it has been naed that as K increases in NK landscapes the average height of optima deceases.
Also the expeded time for randam seach to find a (relatively) high-fitnesspoint also deaeases becaise
many pdnts are dose to the optimum fitnessvalue dthoughthey may be genotypicdly distant from the
globally optimal configuration. In Equation 5 the globaly optimal configurations are only fitness
contribution=1 higher than the next best points, and so on davn throughthe hierarchicd levels. In faa, all
locd optima for even a bit-flip hill -climber have afitnessof at least half the fitnessof the global optimain
this landscape. If, in an attempt to increase the fitness diff erence between the global optima axd aher
optima, we were to make the fitnesscontributions for larger modues larger then inter-modue dependencies
then these would ‘over-power’ intra modue dependencies (see Figure 5-3). This helps us understand the
low likelihood d broad fitness sddles in NK landscgpes with low k where fitness contributions between

al variables are drawn from auniform distribution.

In contrast, in HIFF we use eplicit higher-order dependencies between variables. This all ows us to make

the fitnessvalue of optima abitrarily higher than the fitnessvalues of sub-optima.
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9.1.5 Moduleacquisition and linkage learning

In SEAM, we have shown an equivalence between concepts of linkage leaning and modue aquisition. In
other words, by solving Shuffled HIFF with randam linkage we discover where the modues are in the
problem. We represent these explicitly as modues that can be composed together. This overcomes the in
principle limitations of representing dependencies in linea form (i.e. by their arrangement on the
chromosome - e.g. Harik 1997 See &so 6.4.4). By explicitly representing the interdependent variables as

modueswe ae both ‘leaning the linkage’ in the problem and performing automatic modue aguisition.

9.1.6 Crosver isnot just macro-mutation

It shoud be dea from our experiments that crosover canna and shoud na be gproximated as a source
of randam variation. The multiple inheritance feaure of crosover (2.5.1) and the asembly of higher-order
building Hocks from low-order building Hocks (as Holland aiginally suggested) is intrinsicaly
unavailable in single-inheritance methods like hill -climbing, the GA withou crossover, or the GA with

strondy converged popudations (i.e. the GA withou a diversity maintenance mechanism).

This puts GAs using crosover and appropriate diversity maintenance in a fundamentally different classof

algorithms from mutation orly algorithms (Culberson 1995.

9.1.7 Competing conventions problem

We have shown that the mmpeting conventions problem is not necessrily a problematic isaue for
crosover. HIFF has grondy competing (mutually exclusive) solutionsto ead moduein every partition o
the variables, but a GA with tight linkage can overcome the disruption caused by the recombination o
incompatible sub-solutions of different ‘conventions' if it has an effedive means of seleding against poar
offspring and for identifying valuable new schemata. We have shown that the GA using deterministic

crowdingis sufficient for this purpasein this classof problem.

9.1.8 Credit assgnment

We have shown that there ae principled methods for determining the value of a schema for the purpases of

asembling schemata together. The method we use is nat based on schema fitness- the average fitness of
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stringsincluded in that schema - instead it is based onthe influencethat that schema has on groups of other
schemata in group evaluation. A schemais sleded becaise it is non-dominated rather than becaise it is

good onaverage. (see9.1.9, and 9.3.5).

9.1.9  Separation of the Building Block Hypothesis from the Schema Theorem

It shoud be dea that since we do nd use fitnesspropartionate seledion a any other method that all ows
inferior schema to be propagated - we ae therefore not interested in schema disruption except in so much
asit suggests alower rate of schema aedion. Similarly, we do nd require useful schematato be dugicaed
in the popuation. Thus, we ae not interested in generating multiple cpies of fit schemata, or in assessng
the average value of a schema (seeprevious point). Therefore the Schema Theorem is Smply nat relevant
to the kind d GA that we ae examining. And thus the validity of the Schema Theorem is nat required for

the supgy of building Hocks for recombination in this type of algorithm.

Acocordingly, we have separated the validity of the Schema Theorem for GAs in general, from the intuition

of building Hock aseembly in the BBH.

9.1.10 Evolution and coevolution in the GA with crossover

SEAM transforms a single objedive optimisation problem into an explicit coevolutionary game anongst
schemata. It is not so obvious that the regular GA is aso exploiting a similar idea - but in fag, it is.
Spedficdly, in the GA, we ae mevolving schemata in groups (i.e. many schemata reside in ead
individual), and exchanging schemata between one individual and ancther to, implicitly, try and find a

locdion for that schemata where they are more stable (confer higher fitnessand are lesslikely to change
again).

Acknowledging that even the regular GA with crosover is inherently a cevolutionary system, and reeds
to be treded as a @evolutionary system, helps explain why in the past the GA with crosover has often
failed to perform better than the GA withou crosover. Spedficdly, if the praditioner does naot redi se that
the GA with crosover is a mevolutionary system then they will probably nat resped the need for the

diversification d lineages that colledively cover the spaceof interesting schemata. Accordingly GAs with
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crosover are often used withou any dversity maintenance mechanisms, and even when dversity

maintenance schemes are used they are often seen as a secondary ‘add-on’ to the GA.

Treding the GA with crosver as a wevolutionary system, it beaomes obvious that we require asystem of
diversity maintenance to make the recombination d schemata valuable. Purely competitive seledion
presarres do nd alow diversity. Thus fitness $iaring methods or some kind d diversity method is
required. Methods sich as these resped the need for complementary individuals (too many similar

individualsis undesirable) - and thisis therefore not purely competitive.

However, there is a subtle diff erence between remgrising that things sioud na be dl the same (implying
that even arbitrary diversity is desirable), and recognising that we neal things to cooperatively cover
complementary parts of the problem domain (which is more spedfic in the kind o diversity required). We
sugeest that a moperative mevolution approach to diversity maintenance is valuable. For example, the
Pareto Coevolution idea eplicitly recognises that the value of an individual is related to its ability to fill a
gap in the problem domain and that seledion shoud be mmpetitive within a niche and cooperative acoss
niches. The nation d the popuation as the Pareto front, and the multi-dimensional treament of fitness

explicitly represent this.

9.1.11 Optimisation at several scalesvs. optimisation at any one scale

One way to understand the operation of the GA and SEAM isin terms of building Hock assembly through
many hierarchicd levels of organisation - a view that we have emphasised repeaedly. Another way to
understand the operation d these dgorithms is as mechanisms that incrementally increase the scde of

optimisation, asfollows.

Let us cdl optimisation based on seledion for fully-spedfied strings ‘large-scde optimisation’, and in

contrast, let us cdl optimisation based onseledion for individual aleles individual fedure values ‘ small-
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scde optimisation’. > These ordinarily correspondto seledion onthe organismic scde and seledion onthe

genetic scde respedively.

We have seen that in a problem with ahighly rugged landscepe such as HIFF, small-scde optimisation fail s
to find optimal configurations. For example, uniform crosover in the GA allows individual alelesto be
exchanged between individuals and fails to find ogimal configurations in HIFF. This is as would be
expeded for a landscape with significant epistasis between alleles. " (See Potter & De Jong 1994 for an
explicit implementation d small-scde optimisation wsing seledion onthe individual variables of afunction

optimisation problem.)

We have dso seen that large-scde optimisation fails in problems over a large number of variables aich as
the HIFF problems that we have used. For example, Random Mutation Hill Climbingis based onseledion
for fully-spedfied strings, and repeaed runs of RMHC fail to find optimal configurations of variablesin
HIFF. Again, this is not surprising gven the high epistasis in HIFF and the large search spaceof large
HIFF problems. Note that in principle, optimisation o fully-spedfied strings explicitly allows for seledion
on coadapted sets of aleles (similarly, the GA withou crosver), and thus decetive dlelic fithess
contributions can in principle be overcome - i.e. sincethe individual is reproduced as a whale, the selfish
interests of the genes can be overruled by seledion onthe individual. However, the combinatorics of multi-
variable problem spaces with interdependency make optimal solutionsin large-scde optimisationinfeasible

inall but small problems.

* These ae not the same & the terms ‘loca optimisation’ and ‘global optimisation’ — both small scae

and large scde optimisation may follow locd gradients and become stuck at locad optima depending on
theinteradion d variation and seledion.
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Note that the dl eles that are promoted in small-scde seledion are seleded for because of their fitnessin
the mntext of the other aleles in individuals ‘built from’ other aleles in the popuation (see the
‘rowers analogy d Dawkins 1976. Accordingly, the (sub-optimal) strings that are evolved uncer
small-scde seledion may include dleles that are significantly coadapted to ore another. For example,
in HIFF, eat dlele at every locusis of equal value on average over all contexts, thusastring bult from
a distribution d alleles biased only by the independent average fitness contributions of individual
alleles will be a randam string. However, in the strings that result from small-scde optimisation, the
particular aleles that the popuation converges to will be better adapted than a randam string. For
example, a sub-optimal string consisting d sub-blocks of ones and zeros might result from small-scade
optimisation (depending on the mutation rate, popuation size, how many evaluations are used in
seach); and such a string will confer higher fithessthan would arandam string onaverage —i.e. such a
string will show fitnesscontributions coming from the madaptation o all eles.
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In summary, neither small-scae nor large-scde optimisation is siccessul in a problem with high epistasis
like HIFF. Spedficdly, the particular configuration d alleles that small-scde optimisation settles on will
include dleles that are madapted to the distribution o aleles in the popuation bu, if variables have
difficult interdependency then this will generaly be sub-optimal. In large-scde optimisation, an optimal
configuration could be seleded for if it occurred even in cases where the distribution o aleles in the
popuation as a whole @nflicted with the configuration o alelesin such an individual (because mmplete
spedfications are promoted as a whole) but the dances of finding such a cnfiguration in large seach

spacesisvery small.

Now, in SEAM and the GA with tight linkage, there ae many dfferent scdes of optimisation that are
employed. In the GA with crosver this occurs smply becaise aossver allows the transference of
building Hocks of different defining lengths at any time. In SEAM this occurs becaise the dgorithm
explicitly seaches combination d extant entiti es and thus proceeds from seaching combinations of all eles,
to combinations of low-order schemata, to combinations of high-order schemata, and so on This utili sation
of both small-scde optimisation and large-scde optimisation allows these dgorithms to extrad the
advantages of optimisation at many scdes. Spedficdly, to the extent that candidate solutions to low-order
modues can be identified independently of context, small-scde optimisation uili ses divide and conquer
algorithmic advantage. Thisis not sufficient to find dobally optimal solutions, but it can reduce the number
of posgbiliti es that nead to be mnsidered in subsequent search (4.3.1). Then continued adaptation at the
next scde of optimisation can enable seledion oninternally interdependent modues at the next scde, and

SO on

Thus we seethat at one extreme, seaching for solutions by seleding for the individual fithesscontributions
of alleles exploits the decompasability of the problem where avail able, but is sib-optimal on its own. And
at the other extreme, searching for solutions by seleding for the fitnessvalues of complete sets of aleles
can be optima in principle, but is combinatorially prohibitive. However, a process that moves
incrementally from small scde to large scde can gain the benefit of problem decmposition where
avail able to reduce the dimensionality of seach at the next scde of optimisation and so on- thus providing
optimal solutions in this classof moduar interdependency problems where neither small-scde nor large-

scde optimisation can aone.
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The ideas of optimisation at several scdes are dealy apparent in the intuition d the BBH, in the ideas of
automatic modue aquisition, in approades to hierarchicd clasdfier systems, and such like. In SEAM we
have defined a principled mechanism for progressng between levels, for using the entities of previous
levels in subsequent levels, and continuing the process over many hierarchicd levels in an explicit and

consistent fashion.

9.2  Understanding modularity

This ®dion Lriefly overviews the relationship of moduar interdependency to work in complex dynamica
systems, Herb Simon’swork on structured systems, and concepts of problem difficulty developed in the EC

literature.

9.21 Modular interdependency, Ising models, and renor malisation groups

In Chapter 4 we introduced the nation o a fitness dependency between genes as a static measure of their
dependencies. A complementary nation d dependency may be formulated as a dynamic interpretation o
state-updates in a dynamicd system. In this view, instead o interpreting an edge of the graphs like those
depicted in (Figure 4-3), as adired representation o a fitnessdependencies, we may for example, interpret
an edge & a gene expresson interaction where one gene up-regulates or down-regulates the expresson o
ancther. This exadly parallels the relationship between the dynamics of Random Boolean Networks

(Kauffman 1993 and the statics of NK landscapes (ibid.).

In the dynamic model, we ae interested in the atradors of the system (expresson petterns that will be
common in the lifetime of the cdl) and properties of the system such as the number of attracors in the
system, the nature of the dtracors (such as fixed pant or cyclic), the stability of the dtradors (stable or
unstable), and the sensitivity of the dtradors within the system to the external condtions of the cdl’s
environment. In this analogy we can draw asociation between the dynamic properties of the network and
the static properties of a fitnesslandscgpe built from a similar structure of interdependencies. For example,
if the stability of a configuration in the dynamicd system is related to high fitness then the atradors of a

dynamicd system are optimain the mrrespondng fitnesslandscape.
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A guestion that follows from this interpretationis: What are the properties of a dynamicd system built ona
moduar interdependency structure, and hav does this relate to the fitnesslandscape defined onthe same

moduar interdependency structure?

If we trandate eab edge in the dependency graphs to a state update rule (e.g. (0,0-0,0), (1,1-1,1),
(0,1-0,0 or 1,1) and (1,0~ 0,0 or 1,1))" then the corfigurations with high fitness contributions are the
stable mnfigurations in the dynamica system, and vice versa. This particular state-update table is that used
in Ising models (see eg. Van Hoyweghen et al. 20018. And the ‘energy’ of a configuration, (measuring
the number of edges in the graph that conned nodes with urequal states) is a dired measurement of the
likelihood d change, andisinversely related to the system’s dability. Thus, the energy function d an Ising
model with the conredivity structure of HIFF, is dructurally equivaent to the HIFF fitnessfunction.” (see

Van Hoyweghen & Naudts 2001for adiscusson o HIFF and Ising models.)

So, to answer the &owve question, there ae strong associations between the dynamics of 1sing models built
on scde-invariant lattices, and the fitness landscape of systems with moduar interdependency like that
defined by HIFF. In particular, such a dynamic model has attradors correspondng to the same
configurations of states as locd optima in HIFF, and the size of the perturbation required to move the
system to a more stable mnfiguration is the same & the width of the fithess ssddles for that configuration
in HIFF. Thus the lowest energy, most stable, configuration d the dynamicd model, and the highest fitness
configurations of the static model are wincident - i.e. al ones and al zeroes. Configurations of
intermediate stability, such aswhere dl | arge sub-domains are internally in agreament but not in agreement
aaoss sib-domains, correspond dredly to configurations in HIFF where large modues are full y-optimised

internally, but inter-modue dependencies are nat resolved.
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where (s1,s2 - s3,54) conreded by an edge and taking values sl and s2 will have tendency to changeto
the values 8 and 4 in the next time step. The adua new state of a variable in the system can be taken
to follow the majority of these tendencies coming from all conredions. (s1,s2 - s3,54 or s5,6) means
that two variables will change to either the values 8 and s4 o the values $ and s6 with equal
probability.
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Ising models are usually defined with a regular 1, 2, or 3D lattice onredivity structure. But Ising
models on scde-invariant lattices, such as on agraph described bythe elgesin a Sierpinski triangle, are
an item of studyin and d themselves.
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Remgrising this equivalence between what started as a hierarchicd building Hock function and a
particular class of Ising models is interesting in itself, but importantly, it also provides access to an
extensive repertoire of mathematicd treaments and analysis, not least the renormali zaion goup developed
by Wilson (1979. The renormalizaion goup is an analyticd tod that explicitly abstrads the
interdependency of low-level variables into the interdependency of higher-level variables. In scde-
invariant lattices, this renormali zation results in a higher-level system over aggregate states that is the same
asthat which described the interadtion d the primitive states. Andin fad this can be gplied reaursively. In
regular lattices, the high-level model is only acarate when the ‘temperature’ of the system (controlli ng the
likelihood d state dhanges) is at a particular value - the aiticd temperature. At this temperature, even

regular lattices exhibit interesting scde-invariant phenomena.

Renormalization goups have been enormously successul at describing many types of dynamicd systems.
The onredions between moduar interdependency of the type used in HIFF, the dynamics of simple
dynamicd systems like Ising models, and the ubiquity of systems that are anenable to renormalization
group analysis, suggests, loosely, that the type of dynamicd systems occurring in many physical systems
may, under certain circumstances, exhibit charaderistics in common with functions of moduar

interdependency like those we have defined here. This hypahesis deserves further investigation.

9.22  Simon and nearly decomposable systems

Herb Simon (1986 presented some important ideas on moduarity, hierarchy and the general structure of
many dfferent types of system. It may be valuable to clarify the distinctions between Simon's ideas and
those presented in this dissertation. Simon's basic ideas abou hierarchicd moduarity, interadions based
on aggregate dfeds, and representing interdependency with an almost-diagonisable matrix, are dealy
present in the modular interdependency framework we presented in Chapter 4. Taking a dynamicd
interpretation d HIFF (see9.2.1) Simon's description d the properties of ‘nealy decomposable systems
givenin 4.4.1 are true of HIFF. However, we have dso bult-uponand clarified some isaues that were not

0 clea in Simon’' swork as described below.
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Thedifficult and the easy kind of interdependency

The only concrete example of a nealy decomposable system that Simon provides in (Simon 1969 with
more than qualitative description is a system of hea exchange in a building containing a number of rooms
ead containing a number of cubicles. Unfortunately, this gystem has only ore atrador — eventualy all the
variables in the system approach the mean temperature of the initial condtion. Let us ewhat this would
mean if we interpret this s/stem as a problem to be optimised. For example, let a candidate solution ke a
configuration d temperatures, and let the fitness of a wnfiguration ke its ‘stability’ or the inverse of its
internal hea disequili brium — spedficdly, the fitness of a temperature configuration will be the sum of
inverse esolute temperature differences between all areas. We may describe this g/stem using the general
form of moduar interdependency described in Equation 9, with t(p,q)=(p+q)/2 and f(p,q)=1/|p-q|. A simple
hill climber or anneder following the locd gradients in this function will follow approximately the same
trajedories through configuration spacethat the temperatures would in the physicd system. However, the
important property to nae is that this function has no locd optima — there is no configuration o
temperatures for which there is no small change in temperature that reduces the energy of the system
(increases the fitnessof the system). In short, Simon has not described his classof systemsin such away as

to dstingush between systems that have eay and dfficult interdependencies (See4.2).

Thedistinction between decomposable and separable

Although Simon describes the interadion between modues as interadion which “depends in orly an
aggregate way on the behaviour of the other” modues— which isfine —he isnat careful to clarify that this
interadion may be strong and highly significant. Simon repeaedly refers to the ideathat “interadions
among the subsystems are weak but not negligible”. For example, he refers to “a set of stable subsystems,
eat operating realy independently of the detailed proceses going on within the other subsystems”
(p-193) and “Intracomporent linkages are generally stronger than intercomporent linkages.” (p.204). This
interpretation d ‘decompaosability’, approaching what we have termed ‘ separability’, is unrecessary. In
HIFF the interdependency between moduesis grondy nonlinea and highly significant — the modues are
not separable — yet they are still easily decompaosable. When decomposability is interpreted as nealy-
separable (which is what Simon means by the term nealy decomposable) it mistakenly confuses the

strength of interadions for the structure of interadions.
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In summary, we seethat Simon contributed a significant number of valuable mncepts to the ideas we have
developed in this thesis, but we have developed Simon's nations in terms of evolutionary difficulty — in
particular, the notion o demmposable but not separable systems and concepts like ‘moduar
interdependency’ (4.3.1) replacethe ideaof ‘nealy decomposable’ systems based on systems with wegk

sub-system interadion.

9.23 Decqtion

‘Deceotion’ has been proposed as a amncept of evolutionary difficulty (e.g. Deb & Goldberg 1992, 19921,
and hes been used extensively in bulding Hock functions sich as the ancatenated trap functions. As Deb
and Goldberg indicate, there ae many dff erent definitions of deception but the basic ideais that high-order
schemata of high fitness(e.g. the global optimum) are not contained in low-order schemata of high fitness-
in other words, if seach focuses on high-fithesslow-order schemata (as one suppases it will in the GA)
then it will not by this means be led to discover high-fitness high-order schemata. We have drealy
indicated that the concaenated trap functions lad building Hock interdependency and that the fad that the
building Hocks in this function are separable makes them an inappropriate test of building Hock
recombination for crosover in the GA. But let us look at the ideaof deception that is used to make eat

independent buil ding Hock in the problem difficult for the hill -climber.

One way to understand deceotion is as follows. In a deceptive problem there ae different competing
schemata in a partition — generally, the Os kind and the 1s kind. Asembling together one kind d schemata
leads to the global optimum, but assembling together the other kind daes nat (see &so 9.1.7). Now if, the
kind d low-order schemata that does not lead to the global optima adually has a higher schema-fitness
than the kind that does lead to the global optima, then we can uncerstand why this would creae aproblem

for an algorithm that uses the heuristic of asembling together high-fitnesslow-order schemata.

Often the misleading schemata in deceptive problems are semanticdly associated with the idea of an
arbitrary ‘aberration’ in the fitnesscontributions. Indeed, it seems unreasonable to suppaose that the fitness
contributions of low order schemata will always be reliably informative of their patentia to provide high
fitness high ader schemata. However, it would nad make sense to abandon the idea that the fithess

contribution o schemata ae genuinely informative — thisis the necessary heuristic of fitnessguided seach
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techniques. Accordingly, there must be some limit on the occurrence of arbitrarily misleading schematain
the problem; this leals to the idea of ‘boundd difficulty’ where schemata up to a cetain order k are

decetive but schemata ébove order k are not; and thus we arive & the concaenated trap functions.

Theideas of problem difficulty in HIFF are related to these ideas of deception but are diff erent in important
respeds. First note that HIFF does include the idea of different competing schemata in a partition —
spedficdly, the Os kind and the 1s kind. However, in HIFF eat kind d low-order schemata has the same
fitness contribution and assembling together either kind d schemata leads to ore of the global optima. In
Biased-HIFF (Watson & Polladk 199%), the fithess contribution o schemata built from 1s are higher
fitness than those built from Os and the problem therefore has only global optimum at all 1s. In Biased-
HIFF we might term the Os shemata & deceptive. However, even in biased-HIFF the ‘midealingness of
low-order schemata is nonarbitrary in the sense that the fithess of low-order schemata acarately refleds
the value of the high-order schemata that they contain. More spedficdly, the ratio of fitnesscontributions
coming from low-order schemata of the two types is the same & the fitnessof the size-N complete strings
of those types. Thisfollows diredly from the hierarchicd consistency of the constructions functions used in
HIFF (Equation 9). The ideaof hierarchicd consistency is intrinsicdly oppased to the ideaof low-order
fitness contributions being arbitrarily over-ruled by Hgh-order fithess contributions as ®en in ‘fully-

deceptive’ problems (Deb & Goldberg 1992).

However, there is a more informative way to look at the mideadingress of low-order schemata in HIFF.
Spedficdly, note that athough modues built from 0s and modues built from 1s both confer fitness
contributions and these dways acaurately refled their potential for involvement in high fitnesshigher-order
schemata, the difficulty arises from the need to search for the mrred combination d these modues. Thus,
althoughfor example, --00---- and 1%----- both confer independent fitness contributions and bah include
one of the two dobal optima, the 1100--- schema does not include ether of the global optima
Acocordingly, we seethat the difficulty coming from competing schemata in HIFF does not come from the
fad that onekind d schemais‘corred’ and the other kind o schemais‘mideading — rather the difficulty
comes from the incompatibility of some types of schemata with ather types of schematain the asembly of

a oomplete solution.
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We gyreethat the notion d arbitrarily deceptive fitnesscontributions, seen in fully deceptive trap functions
for example, is a passble source of problem difficulty in applied damains. In this view a problem is made
up d amixture of corred and incorred fitnesscontributions. However, the ideaof schema ampetition in
HIFF is more acarrately understood as a mixture of types of schemata ead of which are mrred in some

sense, and we suggest thisis a useful aternative interpretation o problem difficulty.

9.24  Réationship of HIFF to some related concepts of problem difficulty

Figure 9-1 shows the relationship of various pieces of existing work to the HIFF function and problem

definition we have developed in thisthesis.
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Figure 9-1: Relationship of HIFF to ather test problems

Shows relationships of problem comporents; previous work, | key concepts| and | new
lreseach |. This map shows one way to interpret the mmbination o feaures developed in
HIFF and the derivation d those feaures from existing problems.

Understanding composition

In this sdion we briefly outline some of the preliminary work that was involved in the development of

SEAM detailed in Chapter 7. This is provided to familiarise the reader with some of the underlying

concepts, and their derivations in pre-existing work in evolutionary algorithms. In aduality, the basic idea

of symbiotic encgpsulation (Watson 1996 pre-dates this badkgroundwork. However, this work provides a

series

of intermediate results and investigations that help pasition SEAM in the broader context of existing

EC methods.
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9.3.1 Reommbining versus combining

We saw in Chapter 6 that when gene ordering is randamised, crossover is unable to exchange meaningful
subsets of variables and reammbine them in an off spring. As we have mentioned there ae various diff erent
approaches that may be employed to owercome this problem, such as crossover masks, moving-locus
representations, and aher linkage leaning methods. The basic problem is the problem of determining
which part of an individual constitutes a modue - which part of an individual is a good frt to transfer to
the off spring. When gene ordering is randam, the parts taken by ore-point crosover, for example, do nd

correspondto meaningful modues.

The Mesyy GA uses a @mmbination d (at least) two feaures to addressthis problem. One is the use of
partially spedfied individuals, the other is the use of a moving-locus representation (See Sedion 3.4.2). In
previous work (Watson & Polladk 199%) we showed that the moving-locus aspeds of the Messyy GA are
perhaps less important, (at least, not essential), to enable succesdul recombination in a moduar
interdependency problem like HIFF. By using just the partial-spedfication feaures of the Messy GA it is,
in principle, possble to alow ead individual to represent exadly one modue explicitly (SeeFigure 3-10).
(This is in contrast to the regular GA where an individual is a fully-spedfied fedure set and therefore
represents a wlledion o modues.) Using pertially spedfied individuals in this manner thereisno problem
in extrading the gppropriate parts from a parent in crossover becaise aparent is a part.” In this ense, we
see ashift from re-combination, where modues are moved from one asmbly to ancther asembly, to

combination where modues are put into an assembly explicitly for the first time.

9.3.2 Problemswith partial evaluation, bloat, and diversity

However, the dgorithm presented in previous work (Watson & Pollack 199%) had some serious
limitations. First, we needed to evaluate partialy spedfied individuals, Second we nealed a way to
prevent sub-optimal assciations from being made; Third, we needed an appropriate way to maintain

diversity. These isaues were handed in that work, but only in alimited manner.

” “From square one, we would like to be @le to evaluate the fitness of a part without possessng a

whole.” (Goldberg et al. 1989.
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It so happensthat in HIFF, there is a natural interpretation o a partialy spedfied string - we can simply fill
in the unspedfied loci with “nulls’. But this may nat be an avail able strategy in more redi stic domains that
require fully-spedfied strings in order to perform an evaluation. With regard to the second limitation, we
used a size penalty that prevented a premature increase in the size of strings until optimal joins had been
formed. However, this penalty function required explicit knowledge of how the fitnessof strings may grow
with size We have such knawledge in HIFF, of course, but again, in general, such knowledge will be
unavailable. With resped to the third limitation, we used the resource-based fitness $aring method as in
ealier work (Watson et al. 1998. This works very well, but again uses explicit knowledge of the modues
in the problem that is usually unavailable. It is not clea how the deterministic aowding method that we
used to maintain diversity in Chapter 6 shoud be aljusted to work on partialy spedfied individuals (e.g.
what is the distance between two individuals that are nonoverlapping in the feaures they spedfy?), and

moreover, the deterministic aowding method asaumes a genotypic simil arity metric.

At this gage, our three problems were: evaluation d partially spedfied individuals, limiting exporential
growth of strings (and premature commitment of unspedfied variables to sub-optimal values), and dversity

maintenance.

Note that these limitations are nat trivially solved in the Messy GA or other methods either. In the Messy
GA, the growth of stringsislimited to order k in the first phase of the dgorithm - which assumes that there
is a small k equal to the highest order nonlineaity in the problem (which there is nat in HIFF), and it
asaumes that have knowledge of this value. Goldberg et al. (1989 suggest the use of ‘threshdding as a
diversity maintenance technique (where individuals that are too dssmilar are not alowed to breed
together). This method d diversity asaumes that a distance metric is available to discern how similar two
parents are. And genotypic Hamming dstance is not aways an appropriate measure of functiona
dissmil arity.

However, there ae some valuable dues available in previous work also. Goldberg et al. (1989 suggest the
use of ‘templates’ to permit partially spedfied individuals to be evaluated. These ae fully-spedfied strings
used to fill-in urspedfied fedures of the individual being evaluated. In later versions of the Mess/ GA,
Goldberg et a. (1990 1993 suggest that templates for one round d evaluation could be built from strings

generated in previous rounds, hencere-using evolved blocks to make templates for subsequent evolution.
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Meawhile, in Cooperative Coevolution, Potter (1997, suggests the use of a shared damnain model that
enablesthe evaluation d an individual, fulfilling ore particular rolein a mlledive solution, to be evaluated
in the mntext of other individuals coadapted to fill-in ather roles in the mlledive solution. Thisis not so
different from the ideaof templates in the Messy GA. Both use the ideaof using coevolved individuals to
build templates to evaluate subsequent individuals. However, Cooperative Coevolution dces not use ajoin
operator to explicitly make higher-level composites - it is a singe-level decomposition of the problem
domain. Since Cooperative Coevolution daes not use ajoin operator, there is no problem of individuals
growing in size However, a single level of problem decomposition also means that the problem can only
be optimised to the extent that the individual fitness interests of individuals in the different roles do nd

conflict with the optimal configuration for the groupas awhole.

So, these methods uggest medhanisms that evaluate individuals in the mntext of other coevolving
individuals. SEAM develops this idea that is, it evaluates individuals in templates built from other
coevolved individuals. SEAM evaluates partialy spedfied individuals in groups that colledively cover the
problem variables. Thus, we only evauate fully-spedfied fedure sets and do no require the dired
evaluation o partially spedfied individuals. However, we use the information from these group evaluations

to evaluate the merit of a proposed individual in the group.

However, Goldberg et a. (1989 caution that the use of templating introduces the problem of ‘low signal to
noise ratio’ in the evaluation d individuals (i.e. noise in the evaluation coming from the fitness
contribution d the templates is high relative to the signal coming from the fitness contribution o the
individual being evaluated), and also that an arbitrary template may nat reved the necessary dependencies

that a schema has with its genetic context.

9.3.3 Templatedifferencing

Our solution to the problem of low signa to ndse ratio in SEAM involves mething we might cdl

‘template differencing’ that is alli ed to the method d evaluation in Cooperative Coevolution.

Naively, we might use group evaluation proposed above and simply share-out the fitnessof the groupto the
members of the group. However, this necessarily suffers from the problem of bloat where sub-optimal

fedure spedficaion acaumulate or ‘hitch-hike' alongwith fit spedficaions. An alternative, is to examine

290



the fitnessdiff erence that an individual makes to agroupwhen it is added or removed to/from the group, as

in the shared damain model of Cooperative Coevolution.

So, the ideaof template differencing is that we will measure the fitness of a group with and withou the
individual of interest and dfference the two. This will give us an indicaion d how much the individual
contributed to the group. However, because there ae fitness dependencies between the individual and the
group, using just one group will not give us a proper sample of an individua’s possble contribution.

Acocordingly, we must test an individual in many grougs.

However, this does nat solve the problem of how to prevent exporential string gowth (see the aedit
assgnment problem/* hitch-hiking problem 3.4.4): i.e. a sub-optimal join is usually better than a randam
join so individuals fill -up with sub-optimal feaure spedficaions (even when we use template diff erencing

to reducenoise).

9.34  Thepresare tofill-in mising features

In (Watson et al. 20008 we observed that when the misdng fedures a partially spedfied individual are
‘scafolded’ by the feaures of other coadapted individuals there is in some drcumstances a tendency for
individuals to be, we might say, ‘complacent’ abou whether or not they fill-in for the missng abiliti es
themselves. Briefly, if symbionts are reliably available in the eosystem then there is no presaure for
individuals to aaquire the missng feaures for themselves (seeHarvey 1993for the equivalent phenomenon
in the Baldwin effed). In amodel of genetic assmilation d aajuired charaderistics thisis a problem. But
for our purposes, it offers an oppatunity to aleviate the presaure for partially spedfied individualsto fill -in

with sub-optimal feaures.

However, preliminary work using goup evaluation (with or withou template differencing) failed. If we
took the average fitness an individual in many groups, or the maximum, (or seleded for minimising
detrimental effeds to a group), individuals either never alowed additional feaures to be spedfied, or
allowed too many additional feauresto be spedfied as before. At this gage we neeled a principled way to
determine when ajoin redly creded a good hgher-level modue rather than merely a mlledion d better-
than-average modues. The solutionin SEAM can be understood bytwo shiftsin perspedive. First, we use

a more principled definition d what makes of a‘goodmodue’ - What does it mean to be agoodmodue
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and hov would we find ore? Second, rather than develop an evolutionary processthat moves from poa
solutions to goodsolutions, we will develop an evolutionary method that moves from spedali sed solutions
to general solutions. The ideas of * stochastic lookahead’ and Pareto Coevolution, respedively, were aiticd

in addresgng these isaues.

9.3.5 TheBaldwin effed and ‘ stochastic lookahead’

In adifferent pieceof work (Watson & Polladk 1999, Watson et al. 20000, we were investigating the role
of symbiosis in an effed dlied to the Baldwin effed (Baldwin 1896, which we cdled ‘symbiotic
scafolding . The ideawas that if we evaluate partially spedfied individuals in groups then this lifetime
interacion would gude the evolution d fit individuals to indiredly aaquire the dharaderistics of the group
(see8.3.1). The general ideais that a mechanism of rapid nontheritable variation may guide amechanism
of relatively slow heritable variation. In the Baldwin effed, lifetime leaning gudes genetic variation. In

symbiotic scaffolding, lifetime interadion with symbionts guides genetic variation.

We cdl the general ideaof alowing a fast non-heritable variation mechanism to gude aslow heritable
variation mechanism ‘stochastic lookaheal’. This unds ‘unevolutionary’ for the same reason as the
Baldwin effed sounds unevolutionary at first, but it is not, for the same reason that the Baldwin effed is

not. (SeeWatson et al. 20008.
SEAM uses the ideaof stochastic lookaheal to enable usto identify goodmodues, as foll ows:

We want to seled for ‘good modues. But, what makes a ‘good modue'? A good modue is

predsely the thing that, when used in asembliesin future, will produce goodasemblies.

So, how do we find such an entity? - By trying it in a number of assemblies and seéng haw it

does.

Clealy, if we try a proposed modue in a number of aseemblies and it ‘does well’ then it is predsely what
we want from a modue. But this raises two questions: 1) How can we exped to make agood assembly,
with which to find goodmodues, before we have good modues? If we make poa asemblies then they
will not reved the potential utility of the proposed modue. 2) If we dready made agoodassembly, then we

are‘dore’ - why shoud we be interested in the modue?Why do we not just keep the goodasembly?
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These questions and their answers are interrelated. First, the smple aaswer to the first question is that we
do nd know how to make goodassmblies, but we can make many assemblies from the modu es we have
so far, and hogfully some will be sufficient to reved the utility of a proposed new modue. Note that the
better are our modues D far, the better assemblies we can make. Seaond, the answer to the second question
is that the best assembly we find initially will be poar. To keep the best assembly we have foundso far is
the ‘greedy’ method that finds sub-optimal configurations. We shoud na suppase that the assemblies we
make ae perfed, just that they are good enoughto reved good modues. Then when we have better
modues, we can use these to buld still better assemblies, which in turn are used to find larger modues,

and so on

These idess are very similar to the ideas of SAGE (Juill e 1999 p. 50-51). SAGE uses a partial solution as
the beginning d a complete solution that is filled-in at randam or by using an incremental construction
heuristic. The complete solutions built in the ealy stages are not very good but they are good enoughto

determine the next incremental step for the partial solution.

These nations are useful for our partial evaluation problem. Spedficdly, in SEAM, we see that the
transient formation d many nonpermanent groups guides the evolution d relatively rare permanent

symbiotic asociations - i.e. non-permanent joins guide permanent joins.

9.3.6 Stochastic lookahead avoids ned for ‘backtracking’ in greedy optimisation

Following the andlogy d seach in the space of aswciations developed in 9.3.5 we can contrast the
operation d stochastic lookahead and gealy approacdes to finding goodassciations. Spedficdly, if we
creaed new asociations by seleding for any asociation that was better than no association (simple hill -
climbing), or even by seleding for associations that were the best on average (steepest ascent), then this
gready approach would lea to sub-optimal associations. For example, the modue ----1111might provide a
large fitnessincrease to the modue --00----, perhaps the largest we can find at a given pdnt in the seach
process but it is not a crred join and making this join will prevent future joins that would have been

higher fitness

The dasdcd Al approach to overcome this problem isto ‘badtrad’ and try a diff erent path in the seach

space- in this case adifferent asociation. Evolution, of course, cannat badktradk - if it finds itself at a
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subopgimal configuration that it canna escegpe from then that is the end d the story. However, we can see
the operation o stochastic lookahead as providing a means to lookahead to avoid the need to badktradk.
That is, by evaluating the fitnessof both a propaosed join and the non-joined comporents in many groups of
individuals we aeimplicitly providing fitnessfealbad abou the future mnsequences of the propased join.
We ae not redly making joins and badtradking, we ae just evaluating a proposed join in many transient
contexts. It just so happens that since these contexts are built using the same join operator over the same
individuals, they provide an acaurate refledion o the future consequences for ajoin. This has the dfed of
discourting the immediate/short-term benefit of a propaosed join with the future/longterm consequences of
ajoin. And thisin turn means that a grealy ogtimisation in this modified fithesslandscape mincides with
an optimal optimisation. That is, the future-discourted fitness the fitness coming from many group
evaluations, modifies the fitness function for the individuals concerned such that they do nd form the
asociation that maximises their immediate selfish interest, but instead they maximise their long-term
selfish interests. Since the asociation that is to their long term selfish interest is the moperate/cooperate
strategy the individuals make what appeas to be moperative associations but only because their selfish

interests under the modified fitnesscoincide with the aoperative behaviour.

This use of ‘f uture discourted’ fitnessis analogots to the use of lookahead in traditional game playing. In a
board game, for example, heuristic search for a best move involves the use of a static evaluation function
that asseesses the value of static properties of the players pieces and their positions. A common techniquein
game strategiesisto look ahead in the spaceof possble moves following after a proposed move to arrive &
many passhble future board states and apply the evaluation function to these board states insteal of the
immediate board state. Such lookahead is then used to asessthe value of ead proposed move. In SEAM,
we do nd explicitly assessthe value of ead possble asciation to find the best one — which would be
unevolutionary — insteal for eat proposed join we stochasticdly asesswhether there is any ather join that
would be better than this one and rgjed it if there is. This models the competition between a proposed
composite and its freeliving variants. But algorithmicdly, this is probably wasteful of evaluations and

sugeests a deterministic dgorithm that may perform better.

When ‘alittl e lookahead plus the fitnessfunction' is better than ‘the fitnessfunction applied right now’ (as

it often is in game playing scenarios) then SEAM is better than greedy ogimisation under the same
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representation and variation operators. The HIFF function shows exadly when this will be the cae. Of
course, this will not always be the cae. Like any heurigtic, filling-in the unspedfied bits of a partial
solution with ather individuals and evaluating the full string is an imperfed heuristic for determining the
value of a modue, with o withou lookahead. However, Lemma 1 (in Sedion 7.7.1), shows that, in
principle, lookahead that covers all possble future joins is guaranteed to prevent sub-optimal joinsin this
class of problem. The question then beaomes — how much lookaheal dces a given problem require to
prevent sub-optimal joins? In separable problems, any join between corred modues makes a ‘corred’ join
becaise there ae nointer-modu e dependenciesto be resolved. Thus nolookaheal isrequired and asimple
greedy method povides optimal solutions. In a problem containing arbitrarily high-order deceptive
schemata, an arbitrarily large anourt of lookahead is required to prevent sub-optimal joins. But in
problems with moduar interdependency, where the mntext sensitivity of a modue is sgnificant but

limited, a small amourt of lookaheal is sufficient (See7.7.2).

9.3.7 Pareto Coevolution

We mentioned briefly ealier that coevolution can be regarded as a multi-objedive optimisation problem
where eat individua in a popuation represents a dimension to be optimised. Thus, desirable individuals
are nat those that do well on average against the other individualsin the popuation, but thase that are non
dominated. Spedficdly, if A can bed everybodythat B can bed (and at least one more) then A dominates
B, and B may be discarded. But if A beas ome opporentsthat B canna bed, and B beas osme opporents
that A canna bed, then A does not dominate B, and reither B (nor A) shoud be discarded onthe basis of
these comparisons. (SeeFicici & Polladk 200Q Watson & Polladk 200Q Ficici & Pollack 2001 Noble &

Watson 2001 De Jong & Polladk 2002 Bucd & Polladk 2002).

The ideahere is that a @mevolving entity shoud be retained because it is ‘goodfor something rather than
merely ‘good onaverage'. The intuition is that a seledion scheme based on daninance will allow
individuals to survive because they cover some part of the problem domain that other individuals do nad. In
contrast, seleding for individuals that are good onaverage is the ‘greedy’ approacd that will cause the
popuation to converge on the best solution foundso far. Such a seledion scheme is conceptually similar to

fitness $aring methods, but here we astrad away al of the popuation dyramics inherent in fitness
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sharing. That is, rather than adjust the fitnessof individuals acording to hov many other individuals are
similar and then allow everybodyto reproduce acording to their adjusted fitness we essentially transform
fitnessvalues into either 1 or O - either an individual is non-dominated, and it survives, or it is dominated,
and it is discarded.” In this resped, our methodis ssomewhat similar to implicit fitnesssharing (Smith et al.
1993, except that in implicit fitness $aring it assumed that the problem sub-domains are given and in
SEAM the problem sub-domains are defined by aher coevolving individuals. Further, Parteo Coevolution
and (genatypic) fithess $iaring methods are different in that the latter often require asimilarity metric in
order to ascertain whois $milar and with whom fitnessmust be shared. In Pareto Coevolution individuals

areimplicitly deemed similar if they perform similarly against different opporents.

The Pareto Coevolution ideais useful for explicitly adversarial coevolutionary scenarios (Ficici & Polladk
2001 Noble & Watson 2003, but in SEAM we ae omncerned with something that, on the faceof it, isnot
a mevolutionary problem. We ae merely trying to optimise asingle function, HIFF. However, viathe use
of partially spedfied individuals that represent partial feaure spedficaions, and templates built from other
coevolving individuals that build a mmplete feaure spedficaion, we have transformed an evolutionary
problem into a mevolutionary problem. Moreover, by the use of Pareto Coevolution, we have transformed

asingle objedive optimisation problem into a multi-objedive optimisation problem.

If we goply the Pareto Coevolution ideato the problem of finding goodmodues then the ‘dimensions’ of
the problem are eab represented by a different group - i.e. an individual is retained becaise thereis me
groupit isgoodfor. More exadly, ajoin between two individuals will be dlowed if it creaes a mmposite
that dominates both parents. The SEAM model detail s the operation d this mecdhanism. This will work to
find modues that cover the problem domain appropriately, and we will not have to spedfy where the
modues are in the problem a priori, rather, the mevolution of modues will alow them to be discovered.
Further, this means of promoting dversity does not rely of a genotypic similarity metric like Hamming

distance In esence, diverse modues are identified by \irtue of having dfferent performance profil es over

™ See the Pareto hill-climber (Knowles & Corne 1999 200Q Knowles et a. 2001), and the Multi-
objedive Messyy GA (Van Veldhuizen & Lamont 2000.
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a sample of groups. Thisisapurely ‘behavioural’ metric of similarity that does nat depend on knaving an

a priori measure of similarity, nor does it assume any aacessto the properties of the genotype diredly.”

9.3.8 Relationship of SEAM to some other algorithmic methods

In summary, the partial evaluation problem is dedt with by the use of group evaluation, (in a manner
sharing some properties with Messy GA templating, the Cooperative Coevolution shared damain model,
and symbiotic scafolding). The problem of maintaining dversity is dedt with by wing Pareto
Coevolution. And finally, the problem of string gowth or bloat is redly the problem of preventing
seledion for asciations that appea immediately advantageous but are sub-optimal in the long-term, and

thisisdedt with by wsing stochastic lookahead.

75

Thisisan interesting pant that shoud be enphasised. In a‘purist’ frame of mind, the only information
we have dou a candidate solution is its fitness However, many methods used in EAs also asaume
access to genatypic information for the purposes of fitness faring/diversity maintenance, restricted
brealing etc. This ®ans like anecessary evil perhaps - we would rather that we did na have to
examine the genctype diredly, but how else culd we modify the fitnessof an entity appropriately? In
SEAM we present an dternative. We do nd examine the genotype of any individuals diredly, and the
only measure of a combination d feaures that we will use will be the objedive fitnessfunction. But
noretheless we ae &le to ascertain important additiona information abou an individual and its
charaderistics. This is dore nat by examination o the genotype but by examining its effed on fitness
measures in a sample of diff erent contexts.
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Figure 9-2: Relationship of SEAM to ather EA methods

Shows relationships of algorithmic comporents — both  existing work | and | new reseach |.
SEAM combines the use of partially spedfied individuals, with co-adapted templates and
stochastic look-ahead, with Pareto coevolution.

9.4 Future research

94.1 Theoretical

There ae anumber of other theoreticd works comparing mutation and crossover landscapes, for example

(Culberson 1995 Speas 1992 Aizawa 1997 and Gitchoff & Wagner 1996. Now armed with the aoncept

of moduar interdependency and the proofs we have developed for compositional medcanisms on HIFF, it

would be beneficial to return to these works and make athorough examination d the relationships and

implicaions. It seems likely that it would also be possble to doaformal comparison d the cmpositional
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mechanisms we have described with traditiona divide aad conquer methods sich as dynamic

programming.

Another avenue for future work is to continue to formalise adescription d the dassof problems for which
compositional medchanisms are well-suited. To date we have focussed ona particular instance of this class
and a more general way to generate similar hierarchicdly decomposable problems in the same sub-class
but we could continue to elucidate the defining feaures of the dassthat are esential for the success of

compositional mecdanisms.

We would also like to develop and clarify the many relationships to ather work we have outlined in the

previous discussgon. Not least:

e Therelationship to renormali sation groups, Ising models and complex dynamicd systems.

e Other nations of problem difficulty such as deception.

e The multi-dimensional treament of fitness

» Pareto coevolution as a genera coevolutionary tool, as a seledion scheme for cooperative

coevolution, and as a diversity maintenance method

e Formal analysis of ‘ stochastic lookahead’ and its aff ordances.

9.4.2 Possble applications of SEAM

Ancther natural avenue of future work is to take the theoretic and principled ill ustrations given in this work
and apply them to engineaing problem domains (as well as biologicd ones). Preliminary investigations
suggest that an algorithm like SEAM may work well on a particular sub-class of traditional hard
combinatorial problems. For example, the subclass of Travelling Salesperson Problems where the
distribution o delivery pantsis clustered at several scdesinto regions, districts, cities, for example. In this
class if the inter-cluster distance is large with resped to the intra duster distance, then the number of
possble sub-tours within a duster that may be optimal (depending on hev the remainder of the tour is

completed) may be quite low but greaer than ore (see4.3.1).
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In general, SEAM can in principle be gplied to any substrate that is amenable to a compasitional
construction d solutions. There is nathing in the dgorithm that is dependent on, or makes use of the fad
that, individuals are represented in bit strings. Neither is SEAM restricted to fixed length representations —
comporents can be tested in many groups withou the idea that the group povides a fully-spedfied
template. Accordingly, future work may in principle exploit aspeds of moduarity and interdependency in
any number of different substrates. For example:

e Graph partitioning (seeKarypis & Kumar 1995 Karypis 1999 Toulouse et al. 1999.

* Neura networks (seePotter & De Jong 1995.

e Genetic Programming (SeeRosca 1997, Juill es & Polladk 1996 O’ Reilly 1997).

e Sorting retworks (Juille 1999.

e Eledronic drcuit design (seeThompson 1998§.

* Roba controllers and morphdogies (seeSims 1994 Lipson & Polladk 2000.

« 3D sketch interpretation (Lipson 2002°).

Applying SEAM to these domains potentially provides the oppatunity to identify functional modues in

the domain as well asthe optimisation o the given oljedive function.

9.4.3 Extensionsof SEAM

There ae anumber of algorithmic aspeds to SEAM that may need attention in order to be gplied as an

engineeing opimisation method

» Relaxed stability criteria. It may be the cae that there is no join between a pair of comporents
that is always in the interest of the two partiesinvolved. In which case it may be necessary to relax
the Pareto daminance criterion and alow joins which are ‘nealy aways good or ‘preferred in

nealy all contexts to become stable.

76

SEAM has adready been implemented with some modifications and applied to this domain (personal
communicaion 2003. Further investigation is required.
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Initialisation. In the aurrent version d SEAM, initialisation covers al the primitive cmporents
of the problem domain. It shoud be noted that the equality of comporents shoud be based on
comparing the fitness effeds they have on dfferent groups of comporents, rather than on
genotypic similarity, but noretheless in some domains, espedally continuows substrates, it is not
likely to be feasible to cover all primitive cmpoents by intialisation. Accordingly, it may be
necessry to allow the aedion d new primitive dements, perhaps acaetively derived from
existing elements. (See‘ The diversification andintegration d lineages' in 8.3.1). Alternatively, it
may be possble to define ‘sub-primitives’ that can be used to compose primitives — e.g. using
aritmetic operators with orly the values 1 and 0to make red-valued constants (as in some genetic

programming work).

Component re-use. In the airrent version d SEAM, a primitive comporent is used orly once. It
seams likely that in general we will want to kegp a comporent for re-use several times. If * parent’
comporents are retained in the popuation after ajoin in SEAM then it is gill able to solve HIFF
effedively, but not so quickly. It will be seen from 7.7.2 that retaining small individuals in the
popuation dsrupts the scde-invariant property of the dgorithm. However, it may be useful
pragmaticaly in some domains. An aternative might be to use afinite number of copies of eah

primitivein the initial popuation.

Discovering modules and dynamic landscapes. In the arrent version o SEAM, structural
information abou comporent modues within a mmposite individual are not maintained in the
individuals after a jopin is made. However, this information could easily be stored and ouput so
that SEAM could be used as a method to provide information abou the moduar structure of a
problem domain, rather than just optimise it. Additionally, SEAM’s ability to maintain competing
solutions to sub-problems using Pareto daminance seledion, perhaps together with mechanisms to
maintain internal modue information, may be useful in providing adaptation in dyremic problem
domains, and in exchanging information between ore problem instance and ancther within a

problem class
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Soft joins. SEAM evaluates many groups of individuals in assessng the stability of a proposed
join. If the join is eventually deemed urstable, then all the information from these evaluations is
discarded. We know that it is not appropriate to kegp a groupjust because it appeasto give high
fitness(this defeds the possbility of future compasitions that may have founda higher fitnesg but
perhaps it may be posdble to compromise in some drcumstances — to use some of this
information to hias future joins withou excluding future exploration d aternatives. Spedficdly,
it seams likely that a probabili stic form of asciation, or a ‘strength’ of association, might be
better able to utili se the feedbadk from evaluations than the discrete dl-or-nothing kind o joins
used in the aurrent version d SEAM. Interestingly, this begins to converge with algorithms such

as BOA (Pelikan et al. 1999.
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Chapter 10- Summary and Conclusions

The intuitions that motivated this thesis work are quite straightforward. It has been observed by many that
symbiosis is involved in some of the most important transitions in evolutionary history (Maynard Smith
and Szahmary 1995 Buss 1987, Michod 1999 Sapp 1994. However, symbiosis is not generaly
incorporated in models of adaptation, and it is not properly understood hav changes like the evolutionary
trangitions $odd be integrated with our common undrstanding d evolutionary change. The basic
intuition is that if two coadapted symbionts are joined together into a new entity then this may be ameans
toward increases in complexity (e.g. Margulis 1993). But it has not been at all clea whether there ae any
circumstances where entities evolved in this manner could na have been evolved aherwise, and what

differencethis might make to ou understanding d evolutionary difficulty.

Meawhile, in artificial evolution techniques, most implementations ignare the possbility of coadaptation
altogether. Those that do uilise mevolution are generally concerned with explicitly adversarial scenarios
and wse purely competitive seledive presares (e.g. Hillis 1992. Some methods employ fitness $aring
techniques to aleviate mmpetitive exclusion but only a few models incorporate explicitly cooperative
coevolution (e.g. Cooperative Coevolution, Potter 1997 where madapted entities colledively cover a
problem domain. However, there has been considerable interest in the ideaof combining together partial
solutions into more complete solutions via sexua recombination (e.g. Building Block Hypathesis, Holland
1975 200Q Goldberg 1989. However, it has proved dfficult to demonstrate the assembly of partial
solutions into complete solutions in the Simple GA (e.g. Forrest and Mitchell 1993h. Alternative methods
using more explicit representations of partial solutions have been developed (e.g. The Messy GA, Goldberg
et a. 1989 but these generally asaume that sub-problems are separable and have been ureble to show a

principled method d hierarchicd assembly.

Cooperative Coevolution and the Messy GA exemplify two diff erent complementary parts of the picture. In

Cooperative Coevolution the emphasis is on the separation d roles to enable divide and conquer problem
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deaomposition by explicit coadaptation to complementary parts of the problem domain. In the Messyy GA
the anphasis is on the asembly of partial solutions into whole solutions. Cooperative @evolution is
misgng the ideaof assembling partial solutions into whales reaursively, and the Messy GA is missng the
explicit nations of cooperative madaptation that are required to prevent competitive exclusion of one type
of spedalist by a different type aspedalist when roles are not predefined. Each provides esential parts of
the model we develop in this thesis but neither of these gproades has a principled way to balance
cooperative and competitive presaures to alow complementary spedalists to coexist and at the same time

also all ow goodcomposites to exclude sub-optimal composites.

A number of other techniques in evolutionary computation provide other important pieces of the puzze.
For example: In many evolutionary scenarios praditioners employ some kind d fitness aring or
crowding methodto promote and maintain diversity; Multi-objedive optimisation techniques provide tools
for promoting a set of solutions ead with a different balance of charaderistics; And, mechanisms of
automatic modue aquisition introduce important ideas of encgpsulation and re-use of sub-solutions. Each
of these has their analogues in biologicd though too: for example, frequency dependent fitness effeds,
niches defined by a different balance of charaders, and symbiogenesis, respedively. However, in bah

disciplines the mnredions between these mecdhanisms has not been previously fully redi sed.

Meanwhil e, the ideas of hierarchy and moduarity are highly pervasivein ou thougtis abou biologicd and
artificial systems, and Simon (1969 provides sme ncepts that have been very important in this work.
Specificdly, we have developed his intuitions abou ‘nealy-decmposable systems' into the more formal
notion d ‘moduar interdependency’, by clealy separating the ideaof separability from decomposability.
This has been criticd in identifying the dass of systems that are amenable to hierarchicd problem

decomposition or multi-level compasition.

In the experiments presented in this work we have operationalised the intuitive notions coming from
evolutionary biology into a working model using comporents from EC. In the processwe make threemain

contributions to the computational work:

 Firg, we darify the dass of problems that could in principle be solved by compositional

medhanisms but canna be solved by acaetive medchanisms. The principle insight here is the

304



definition d moduar interdependency where the feaures of a cmplex adaptation can be
decmposed to reduce the dimensionality of the problem, but the resultant subperts are not

separable and thus canna be solved acaetively.

Seoond we show clealy how sexual recombination in a form of genetic dgorithm can, in some
circumstances, enable the esolution o complex adaptations exhibiting moduar interdependency
that canna be evolved using acaetive mechanisms. We dso show the dependency of this result

onthe mndtions of genetic linkage.

Third, we provide a new model, the Symbiogenic Evolutionary Adaptation Model, of an
evolutionary process that solves this class of problem withou the neel for favourable gene

ordering. This model combines the following feaures:

a) A medhanism of composing sub-solutions together to find whole solutions: using pertial

spedfication and symbiotic encgpsulation.

b) A medhanism to ensure that entities co-adapt to cover complementary parts of the
problem domain: using Pareto coevolution and the multi-dimensional treament of

fitness

¢) A medanism to determine the value of a proposed modue in terms of its potentia to
make good asemblies (to distinguish between good modues and nd-so-good sub-

optimal asciations): using goup evaluation, and stochastic lookahead.

These dements together provide a principled way to balance moperative and competitive
presaures to alow complementary spedalists to coexist and at the same time dso all ow coadapted
spedalists to join together into compasites that may legitimately exclude sub-optimal composites.
This model shows that the potential of compositional medanisms to exploit moduar
interdependency in a problem domain is not dependent on Hases coming from the assumption o
favourable gene ordering. It also shows the asembly of partial-solutions into whole solutions

throughmany hierarchicd levelsin a consistent, scde-invariant manner.
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Returning to the biologicd observations that motivated these models, we have leaned that there is a
meaningful distinction to be made between compositional and acaetive mecdhanisms of evolutionary

change.

 We use the term ‘compositional’ to refer to evolutionary mechanisms that combine together
systems or subsystems of genetic material that have been semi-independently pre-adapted in
different lineages. Examples include sexua recombination (in subdvided popuations), natural

hybridization, horizontal gene transfer, and endosymbiosis.

* In contrast, we use the term ‘acaetive' to refer to medhanisms that acawmulate randam variations
in genetic material, (i.e. the new genetic material introduced by such changes has not been pre-
adapted elsewhere & a set). Examples of acaetive medchanisms include genetic mutation, and

sexual recombination (in urstructured popdations).

These mechanisms enable dfedive alaptationin dff erent classes of adaptive domains, and confer diff erent
understandings of evolvability and the dass of landscapes in which continued adaptation is possble,
different intuitions abou what is evolutionary possble or likely, and conversely diff erent intuitions what is

unevolvable and urikely. In short:

Certain kinds of complex systems, considered urevolvable under normal accretive change, are, in

principle and under certain circumstances, easily evolvable under compasitional change.

Infad, in generd, it is clea that different kinds of adaptive mechanism are well-suited to dfferent clases
of adaptive landscapes, but we have dore more than simply show that acaetive and compositiona

mechanisms are diff erent. In suppating this claim in the course of this dissertation we have:

e Clarified the fundamental algorithmic distinction bketween acaetive and compositiona
medchanisms by drawing analogies with dfferent algorithmic paradigms - namely greedy
optimisation methods such as hill-climbing, and dvide and conquer problem decomposition,

respedively. This helps usidentify the dassof complex systemsto which ead is well -suited.
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Described a dass of complex systems based on moduar interdependency that exemplifies the
difference in the aaptive cagadties of these mechanisms by utilising intuitive concepts of

interdependency, moduarity, and Herarchicd moduarity.

Shown how a system posesing moduar interdependency may exhibit all the usual charaderistics
of evolutionary difficulty: Creaing a fitness landscgpe which is highly rugged pessesdng an
exporential number of locd optima; where the width of fitness sddles large with resped to the
number of variables in the system; where high-fithess configurations of the system appea to be
irreducibly complex - i.e. any small changeis caastrophicdly deleterious; and finally, where there
is no pth of gradua changes conferring monaonicdly increasing fitness that approaces the

optimain the landscape.

And yet, we have ill ustrated a sufficient set of condtions under which such systems are eaily
evolvable via compasitional mechanisms. First, we ill ustrated this using sexual recombination -
investigating recessary condtions of popuation subdvision and genetic linkage. Second we
illustrated a cmpositional mechanism based on symbiotic encgpsulation - which requires
appropriate diversity condtions provided by a particular seledion model. However, the latter
model, SEAM, shows that the adaptive advantage of compositional mechanisms does nat, in
principle, depend on a priori knowledge of genetic dependencies as is required to provide

favourable gene ordering under sexual recombination.

In conclusion, the prevalent nations of evolutionary difficulty are dependent onthe sssumption o acaetive

change. Accordingly, in the presence of compasitional mechanisms, the existence of a path of small genetic

changes conferring monaonicdly increasing fitness is not necessarily required to explain a mmplex

adaptation. Accordingly, when faced with the existence of a particular complex system in nature, perhaps

posessng many complex interdependent parts, even thase where any small change in the system causes

the system to cease functioning, it is not strictly necessary to show that there eists a successon o proto-

systems that are gradually increasing in function. If such a successon can be found or reasonable

hypaheses abou the plausible existence of such a path can be upheld, then all well and good But other

explanations are posshble.
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