
1

A Gradient Descent Method for a Neural Fractal

Memory

Ofer Melnik and Jordan Pollack, Volen Center for Complex Systems, Brandeis University, Waltham,

MA, USA

Abstract|

It has been demonstrated that higher order recurrent neu-

ral networks exhibit an underlying fractal attractor as an

artifact of their dynamics. These fractal attractors o�er a

very e�cent mechanism to encode visual memories in a neu-

ral substrate, since even a simple twelve weight network can

encode a very large set of di�erent images.

The main problem in this memory model, which so far has

remained unaddressed, is how to train the networks to learn

these di�erent attractors. Following other neural training

methods this paper proposes a Gradient Descent method

to learn the attractors. The method is based on an error

function which examines the e�ects of the current network

transform on the desired fractal attractor. It is tested across

a bank of di�erent target fractal attractors and at di�erent

noise levels. The results show positive performance across

three error measures.

Keywords| Recurrent Neural Networks, Dynamical Sys-

tems, Fractals, Iterated Function Systems, Inverse Fractal

Problem, Learning Rules, Gradient Descent.

I. Introduction

T
HERE have been numerous interpretations of the
function that dynamics serve in recurrent neural net-

works. The Hop�eld network uses the �xed points of the
network dynamics to represent memory elements. Net-
works studied by Pollack [1], Giles [2], and Casey [3] use
the current activation of the network as a state in a state
machine while using the dynamics of the network as the
transition map. Some try to model existing dynamical sys-
tems with recurrent neural networks [4]. RAAMs [5] use
the network dynamics to describe complex data structures
such as trees and lists.

We employ a di�erent interpretation of network dynam-
ics [6], in which the network is treated as an Iterated Func-

tion System that is coding for its underlying fractal attrac-
tor [7]. The fractal attractors used in this work are two
dimensional, hence the network is in e�ect coding for frac-
tal images, and may be acting as a form of visual memory.

Iterated Function Systems (IFS's) are a set of simple
functions. Each function receives as input a coordinate
from a space and returns a new coordinate which is usually
a simple transformation of the input coordinate. When
these functions are applied iteratively to points in a space,
they converge on a set of points, called the IFS's attractor.
This attractor is a fractal, a set with similar structure at
di�erent resolutions.

The connection between IFS's and recurrent neural net-
works comes from thinking of a network's neurons as the
functions or transforms of an IFS. As such, these neurons
receive (X,Y) coordinates as input and return new ones in
a recurrent manner.

It has been suggested that coding fractals by Iterated
Function Systems may be an e�ective mechanism for com-
pressing images [8]. As such this interpretation of network
dynamics may form the basis of a highly e�cient method
for storing visual information and other related memories.
A small sample of some of the fractals which a simple

network of only four neurons can encode is shown in Fig-
ure 1. It is conceivable that this rich and interesting set of
fractals may be used to encode real-world visual images or
at least some of their properties.

Fig. 1. A sample of fractal attractors which can be generated with
a four neuron neural network.

To make this interpretation of recurrent neural networks
as storing a fractal attractor applicable, it is necessary to
demonstrate a mechanism by which these attractors can
be learned or approximated by the network. This issue is
related to the Inverse Fractal Problem, an area of active
research, which asks how, given an image, do you �nd the
Iterated Function System which can generate the image.
There have been di�erent approaches towards solving the

inverse fractal problem; the main motivation for this re-
search has been image compression using fractals. Many of
the approaches use generalizations of IFS's such as LIFS's
which use local-similarity as well as self-similarity. The
method of moments uses invariant measures of moments to
match a function system to a target image [9]. Genetic Al-

gorithms have also been used to address this problem [10].
The current generation of successful fractal image compres-
sion algorithms succeed by severely limiting the space of
transforms to be used [11], [12]. At present there is still no
general algorithm for solving the inverse fractal problem.
It seems to be an elusive problem related to the classic
problem of object recognition under transformation.
In the vein of other learning algorithms for neural net-

2

works, such as the ubiquitous backprop [13] and many
which have come since, we developed a training method
for our network which relies on an energy or error function
that we seek to minimize by means of a gradient descent on
its energy landscape. In e�ect, minimization of this error
function will lead to the network learning the desired at-
tractor. In the rest of this article we describe the network
architecture employed, explain the ideas behind the choice
of the error function and evaluate its e�cacy.

II. Architecture

A neural network based IFS can have an arbitrary num-
ber of transforms. We have constrained ourselves to two
transforms in this implementation, because this is the min-
imal amount needed to have a rich set of underlying attrac-
tors.
Since each transform is a mapping from one X,Y coor-

dinate to another, it must be composed of two scalar func-
tions - one function for each output component, either X
or Y. Therefore the recurrent network we employed in our
study consists of four neurons, operating as a two transform
IFS, where all neurons receive an X,Y coordinate as input
and return either the X or Y component of a transform.

X Y

Y

X Y

X

Transform 1

X Y

Y

X Y

X

Transform 2

Fig. 2. The neural network architecture consists of four neurons each
pair acting as a transform.

The function each neuron computes is the standard sig-
moid of the weighted sum of the inputs, with a bias term:

Out =
1

1 + e�wxX+wyY+w1

As such each neuron has three modi�able parameters giving
a total of twelve parameters for the whole network.
Since the attractor is an intrinsic property of its IFS,

di�erent methods can be used to generate it. In our im-
plementation in order to generate the fractal attractor at a
user speci�ed resolution, we initially located a single point
on the attractor, by applying one of the transforms on a
random point for a number of steps, until it converged.
Next, the network was iteratively run on this point, gen-
erating new points on the attractor. Then the process was
repeated for all new points, until no new points were found,
and the set of points on the attractor was assumed to be
complete.

III. Learning

The problem we are trying to solve is: given a fractal
attractor, �nd a set of weights for the network which will
approximate the attractor. Our approach to this problem
consists of �nding an error function which will be mini-
mized when the network coded attractor is equal to the
desired attractor.
A common metric or error function used to compare frac-

tal attractors is the Hausdor� distance [7]. The distance is
calculated by �nding the farthest point on each set relative
to the other set and returning the maximum of these two
distances. By calculating from both sets in a symmetrical
manner, the Hausdor� distance gives a measure of mutual
overlap. In other words it will equal zero only when each
set is contained within the other, or when they are both
equal. The Hausdor� distance between two point sets, A
and B, is de�ned as:

H(A;B) = max (h; (A;B); h(B;A))

where

h(A;B) = max f�(a;B) j a 2 Ag

�(a;B) = min fkb� ak j b 2 Bg

The Hausdor� distance does not lend itself to a gradient
descent approach to minimization because it is not di�eren-
tiable. In the fractal case, this is due to two reasons. First,
the fractal attractor is generated by an iterative process,
which is inherently not di�erentiable. Second, the Haus-
dor� distance e�ectively uses only one point from each set.
This point is not constant and its selection may lead to
discontinuities.
Our error function borrows principles from the Hausdor�

distance and the collage thereom [8]. The collage thereom
provides the basis for most approaches to the fractal in-
verse problem or fractal image compression. It states that
in order to �nd an IFS for a given fractal attractor, it is
necessary to �nd a transformation which maps the attrac-
tor to itself. As such, our error function will be minimized
when the desired attractor and transformed desired attrac-

tor mutually overlap. Since the network transformations
are pseudo contractive due to the sigmoid non-linearity,
it follows from the collage thereom that this is equivalent
to the network coded attractor being equal to the desired
attractor.
As stated previously, there are two issues which need

to be addressed to make our error function di�erentiable:
the issue of attractor generation being iterative and the is-
sue of only using one point to calculate the error function.
By comparing the desired attractor with the transformed
desired attractor instead of the network coded attractor
as per the collage theorem, we can overcome the itera-
tive process issue. This works since, instead of comparing
two attractors generated by an iterative process, we will
be comparing one attractor with the same attractor acted
on by a function, one iteration of the IFS. The second dif-
ferentiabilty issue is the number of points used in actually

3

calculating the error function. Our approach is to sum over
all points, both on the desired attractor and transformed
desired attractor, rather than selecting only the furthest
points.
For a given attractor A and a set of transforms T our

error function is de�ned as follows.

E(T;A) =
X
i

X
x;y2A

�(Tix(x; y); Tiy(x; y); A) +

X
x;y2A

�(x; y; T (A))

Where Tix and Tiy represent the i-th transform for x and
y respectively (as calculated by each neuron) and T (A) is
the transformed attractor. The de�nition for � here is:

�(x; y; A) = min
n
k(x; y)� ak2 j a 2 A

o

This error function is similar to the Hausdor� metric
in being symmetrical, i.e., taking distances from the de-
sired attractor to the transformed desired attractor as well
as distances from the transformed desired attractor to the
desired attractor. It is also similar in its use of the � func-
tion for measuring the distance between a point and a set.
There are two advantages to this error function: �rst, by
summing over all the points in the calculation, we get a
better measure of the number of points of actual mutual
overlap. Second, this error function is practically di�eren-
tiable with respect to the weights of the transform, allowing
its use in our gradient descent approach to minimization.
In examining the error function, it is apparent that it is

composed of essentially continuous and di�erentiable func-
tions. The only part which is not is the min function. In
most applications the min function is not continuous, but
in this particular case it is. This continuity stems from the
continuity of � with respect to its parameters. For exam-
ple, if we were to examine the continuity of � with respect
to the x variable, we can imagine that for a while the min
function picks a certain point on the attractor which gives
the minimum distance, and at some value of x the min func-
tion switches to another point on the attractor. However,
by geometric reasoning we know that while switching to
that other point there is a certain intermediate x for which
the distances to the �rst and second points are equal. Thus
there is no jump in the value of the min function when
switching points, therefore it is continuous.
A similar argument can be presented for y and the

weights of the transform. Continuity does not mean dif-
ferentiabilty for the min function. At the points where the
min function could go to multiple points on the attractor
there is no single derivative. Since this is a relatively rare
event we have chosen to pick arbitrarily one of the points
for the derivative calculation.
Due to the fact that in the �rst term of E the transform

applies to x and y, and in the second term it applies to
the set of the attractor, the derivatives must be handled
di�erently for each term. Speci�cally, for each point in
T (A) we must remember the point in A from which it came
and which transform was used.

We now calculate the gradient of the function E with re-
spect to the weights of a Tx transform. The calculation for
the other transforms is identical and will not be repeated.
The gradient is given by:

�
@E

@w1
;
@E

@w2
;
@E

@w3

�
=

@E

@�
�
@�

@Tx
�

�
@Tx

@w1
;
@Tx

@w2
;
@Tx

@w3

�
+

@E

@�
�

@�

@T (A)
�

�
@T (A)

@w1
;
@T (A)

@w2
;
@T (A)

@w3

�

The derivative for the transform is the standard one used
in backprop as given by:

�
@Tx

@w1
;
@Tx

@w2
;
@Tx

@w3

�
= xa(1� xa)(x; y; 1)

Therefore the gradient can be written as

�
@E

@w1
;
@E

@w2
;
@E

@w3

�
=

X
x;y2A

2(Tx � x�1)Tx(1� Tx)(x; y; 1) +

X
x;y2A

2(x � x�2)x�2(1 � x�2)(x
o
�2; y

o
�2; 1)

where Tx refers to Tx(x; y) ; x�1 is the x chosen by the
min function of the � function in the �rst term of E ;
x�2 is the x chosen by the min function of the � function
in the second term of E ; and xo�2; y

o
�2 are de�ned by

x�2 = Tx(x
o
�2; y

o
�2).

Notice that for the second term x�2 may not exist with
respect to the mapping from the attractor given by a par-
ticular Tx, or be mapped to multiple times. By adjusting
the sum respectively, both terms in E even out in magni-
tude.

IV. Evaluation and Discussion

The motivation behind the evaluation of the error func-
tion was twofold. First, we wanted to demonstrate that
fractal attractors are learnable using this error function.
Second, we wanted to assess the domain in which the error
function was successful. This was done by applying the
algorithm across a diverse set of fractal attractors, and by
varying the initial noise conditions. Since it is well known
that it is di�cult to objectively gauge the di�erence be-
tween images, we chose to use three di�erent metrics to
evaluate the results as well as our own eyes.
The error function was tested on a set of 100 fractal at-

tractors. The fractals used were randomly selected from a
set of fractals previously generated using a hill-climbing al-
gorithm to locate non-point attractors. For each fractal the
set of weights used to generate the attractor with a certain
amount of noise were used as initial conditions for the gra-
dient descent algorithm. The attractors were represented

4

at 16 by 16 pixels. The weight values ranged between -5 to
5. The uniform noise introduced had a variance of 0.25, 0.5,
1.0 and 4.0 across di�erent trials. The gradient descent was
weighted using a linear decay function, and consisted of 20
iterations. For each noise level 10, trials were conducted
on each attractor, thus 4000 trials were conducted.

The performance of the algorithm was gauged using the
Hausdor� distance, Hamming distance, and similar to the
error function described in this article, the sum of the point
distances between two attractors. These distances to the
desired attractor were computed on the initial conditions
and on the �nal conditions after the gradient descent run.
On average, 79 out of the 100 attractors tested showed an
improvement across all three measures.

In Figure 3 we see subjective con�rmation of the success
of the algorithm. In the example runs A, B, C and D, we
see that the �nal network coded attractor is very similar to
the desired attractor, in spite of having a di�erent initial
network coded attractor. Sample runs E and F show how
the algorithm may fail, since we see that the �nal network
coded attractor di�ers more from the desired attractor than
the initial network coded attractor.

It seems that the algorithm performs more impressively
with higher initial error. This is seen clearly in Figure 4,
where a histogram of changes in the Hausdor� distance
across trials is displayed. We see that for the 4.0 and 1.0
error cases, across most trials, there is a strong negative
change in the Hausdor� distance, meaning an improvment.
However for the 0.5 and 0.25 error cases, the changes do not
seem as signi�cant and unilateral. One obvious explanation
for this e�ect might be that a larger initial error would
bring a greater perceived improvement. However this still
does not account for the skew in these graphs, which may
be due to the large initial jumps in the gradient descent
algorithm and the non-linear nature of the error landscape.

The graphs in Figure 5 suggest that in many cases the
algorithm is driving towards the global minimum, as op-
posed to local minima. This is seen most clearly in the er-
ror function graph, where most of the �nal network coded
attractors have an error near zero, meaning they are close
to the desired attractor. Across the other two measures
this migration towards zero is present but less obvious. We
would expect it be most conspicuous in the error function
which is closest to the measure used in the actual gradient
descent.

In physically examining the results across the di�erent
attractors, it appears that the algorithm performs better
on non-overlapping transforms and spatially distinct at-
tractors. This makes sense because there is less ambiguity
with respect to the transformation in relation to the self
similarity of the attractor.

This algorithm represents the �rst step in harnessing
fractal attractors of recurrent neural networks for compu-
tation. There are still many avenues of exploration with
this error function. For example, manipulating the error
constant decay in ways appropriate to the degree of error,
running simulations on di�erent categories of attractors,
using ensemble techniques, as well as modifying the error

function itself.
These network fractal attractors can be used in di�erent

applications. Obviously they can be used to store images.
But they can also represent operating ranges and domains.
For example an attractor may represent the range of free-
dom of a joint or the �eld of vision from a vantage point.
The main advantage of using fractal attractors is their in-
herently very compact coding of visual information. For
this reason we believe that this approach warrants further
research in the context of neural storage of visual informa-
tion.

V. Acknowledgments

This paper is supported in part by NSF grant IRI-
9529298 and the Sloan Center for Theoretical Neurobiology
at Brandeis University.

Desired Attractor Initial Final

A

B

C

D

E

F

Fig. 3. This �gure shows some example run results. These are 16 by
16 attractors. The �rst four are examples of subjective successes
while the last two leave something to be desired.

Error of 4.0
Error of 1.0
Error of 0.5
Error of 0.25

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

50

100

150

200

250

300

350

400

450

Change in Hausdorff distance after learning

N
u

m
b

e
r

o
f

tr
ia

ls

Fig. 4. This is a histogram of changes in the Hausdor� distance after
running the gradient descent algorithm. It was compiled across
all 4000 trials. Each of the di�erent graphs represent trials at
di�erent initial error levels.

5

Before learning After learning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

Hausdorff distance

0 5 10 15 20 25 30 35 40
0

100

200

300
Error function

N
u

m
b

e
r
 o

f
tr

ia
ls

0 20 40 60 80 100 120 140
0

50

100

150
Hamming distance

Error value

Fig. 5. Each graph represents a histogram of either the initial or
�nal error across each of the three error measures. These were
conducted for an initial error level of 4.0.

References

[1] J.B. Pollack, \The induction of dynamical recognizers," Ma-
chine Learning, vol. 7, pp. 227{252, 1991.

[2] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, and
Y.C. Lee, \Learning and extracting �nite state automata with
second-order recurrent neural networks," Neural Computation,
vol. 4, no. 3, pp. 393{405, 1992.

[3] M. Casey, \The dynamics of discrete-time computation, with
application to recurrent neural networks and �nite state machine
extraction," Neural Computation, vol. 8, no. 6, 1996.

[4] F.S. Tsung and G.W. Cottrell, \Phase-space learning for recur-
rent networks," Tech. Rep. CS93-285, Dept. Computer Science
and Engineering, University of California, San-Diego, 1993.

[5] J.B. Pollack, \Recursive distributed representations," Arti�cial
Intelligence, vol. 46, pp. 77{105, 1990.

[6] D.J. Stucki and J.B. Pollack, \Fractal (reconstructive analogue)
memory," in Proceedings of the Fourteenth Annual Conference
of the Cognitive Science Society. Cognitive Science Society, 1992,
pp. 118{123.

[7] M.F. Barnsley, Fractals Everywhere, Academic Press, San
Diego, 1988.

[8] M.F. Barnsley and L.P. Hurd, Fractal Image Compression, AK
Peters, Wellesley, 1992.

[9] E.R. Vrscay and C. J. Roehrig, Iterated Function Systems and
the Inverse Problem of Fractal Construction Using Moments,
pp. 250{259, Springer-Verlag, New York, 1989.

[10] R. Shonkwiler, F. Mendivil, and A. Deliu, \Genetic algorithms
for the 1-d fractal inverse problem," in Proceedings of the Fourth
International Conference on Genetic Algorithms, San Diego,
1991.

[11] A. Jacquin, \A novel fractal block-coding technique for digital
images," in IEEE ICASSP Proc. 4. IEEE, 1990, pp. 2225{2228.

[12] Y. Fisher, Fractal Image Compression, Springer-Verlag, New
York, 1994.

[13] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Learning In-
ternal Representations by Error Propagation, vol. 1, chapter 8,
MIT Press, Cambride, MA, 1986.

